
PHYSICAL REVIEW B 87, 014305 (2013)

Nonperturbative stochastic method for driven spin-boson model
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We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of
quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the
spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators.
This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations
exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of
decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from
the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us
to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly
extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. A 82, 032118 (2010)] by fleshing
out the core concepts of the method and by presenting a number of interesting applications. Methodologically,
we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a
random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the
weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting
applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the
dynamics of the coherence σ x(t) and of σ z(t) under a Landau-Zener sweep of the bias field. We also compute to
a high precision the asymptotic long-time dynamics of σ z(t) without bias and demonstrate the wide applicability
of our approach by calculating the spin dynamics at nonzero bias and different temperatures.
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I. INTRODUCTION

The coupling of a system to its environment leads to
irreversible energy flow between system and environment, thus
giving rise to the phenomenon of dissipation.1–3 In addition,
thermal and quantum fluctuations in the environmental bath
cause fluctuations of the system degrees of freedom, which
results in a Brownian motion.4–7 These features of bath-
induced dissipation and fluctuations occur both in classical
and quantum systems. A quantum system that becomes
entangled with the bath exhibits decoherence, the suppression
of coherence between different states in the system.8,9 The
effect of decoherence is particularly crucial if one wants to
implement a quantum computer,10–14 where phase coherence
between the two qubit states |↑〉 and |↓〉 is used as a resource.
In fact, virtually no system is completely isolated from its
surrounding, making dissipation and decoherence ubiquitous
in physics, chemistry, and biology.2,15–21 An impurity spin
embedded in a macroscopic environment also emerges as
an effective model for strongly correlated materials within
(extended) dynamical mean-field theory.22–25 In this work, we
consider the paradigmatic spin-boson model,3,26 which is a
variant of the Caldeira-Leggett model.27,28 Here, the system
consists of only two states and the environment is described
by a bosonic bath of harmonic oscillators.

The spin-boson model with an Ohmic bath is a par-
ticularly rich model as it exhibits a wealth of interesting
phenomena such as a delocalization-localization quantum
phase transition of the spin for sufficiently strong coupling
to the environment.29–34 There exist exact mappings to the
anisotropic Kondo model,35–38 to the interacting resonance

level model, and to the one-dimensional Ising model with 1/r2

interaction.38–40 Various theoretical proposals have been made
to experimentally implement the Ohmic spin-boson model
in a controllable low-energy circuit. In particular, the recent
progress in nanotechnology41–47 allows for great control on the
dissipation strength of resistive (Ohmic) environments.48–54

In principle, this development could lead to the realization
of a tunable spin-boson model with microwave photons.55–60

A tunable spin-boson Hamiltonian with Ohmic dissipation
can also be realized using trapped ions61 or in cold-atom
systems,62–70 where sound modes of a one-dimensional Bose-
Einstein condensate mimic the bosonic environment.

Several methods have been devised to investigate the
dissipative spin dynamics in this system, for example, the well-
known noninteracting-blip approximation3,26 (NIBA) and
extensions to it,71–73 (non)-Markovian master equations,74–81

(iterative) path-integral sampling and related techniques,82–92

Monte Carlo methods on the Keldysh contour,93–96 and various
renormalization group approaches.64,97–112 The Feynman-
Vernon real-time functional integral formalism,113 which will
be the starting point in the following, is particularly well suited
to study this class of models since one can easily eliminate the
environmental degrees of freedom.

Here, our primary goal is to introduce and apply a
nonperturbative and numerically exact method to investigate
the dissipative dynamics of the Ohmic spin-boson model
beyond the weak spin-bath coupling limit. Starting from the
real-time functional integral description, we derive an exact
nonperturbative stochastic Schrödinger equation (SSE).114–118

Compared to earlier SSE approaches,119–123 our method allows
exact consideration of the initial spin-bath correlations as we
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derive in the main text below. Our approach works both at zero
and at finite temperatures, and we may easily consider a bias
field ε(t) with arbitrary time dependence in the Hamiltonian.
We have previously applied this method to investigate the
spin dynamics during a Landau-Zener sweep ε(t) = vt with
velocity v.118 In addition, it may also be applied to other
many-body environments, and in particular to a fermionic
environment, that can be represented in the form of a Coulomb
gas such as the Kondo model.40,115–117

The main idea of our method is to recast the problem
of finding the exact path-integral amplitudes into the form
of a numerically solvable linear stochastic equation.114,115,118

The quantum spin evolution is given by the average solution
over different stochastic realizations. We explicitly derive
an analogy to a classical spin in a random magnetic field.
Compared to the NIBA, we treat the blip-blip interactions in
an exact manner here, then solve the SSE numerically.

The starting point to study the influence of the environ-
ment on the dynamics of a quantum spin is the spin-boson
Hamiltonian

H = �

2
σx + ε(t)

2
σ z + σ z

2

∑
k

λk(b†k + bk) +
∑

k

ωkb
†
kbk .

(1)

The spin is described by Pauli matrices σα , α = x,y,z, and the
operators bk describe bosonic oscillators with momentum k

and frequency ωk . They fulfill bosonic commutation relations
[bk,b

†
q] = δk,q . In Eq. (1), we have set the reduced Planck

constant h̄ = 1. The spin part of the Hamiltonian contains
a tunneling element �, which induces transitions between
eigenstates {|↑〉,|↓〉} of σ z. It also contains a bias field ε(t),
which can be time dependent and sets the energy difference
between states |↑〉 and |↓〉. The spin couples to the bath mode
bk via the σ z component and with coupling strength λk .

It is well known that the spin-bath coupling is uniquely
characterized by the bath spectral function, which we assume
to be of Ohmic form

J (ω) = π
∑

k

λ2
kδ(ω − ωk) = 2παωe−ω/ωc . (2)

In the following, we take the bath cutoff frequency ωc to
be the largest energy scale in the system. The dimensionless
parameter α � 0 describes the dissipation strength. For α < 1,
the interaction with the bath renormalizes the characteristic
tunneling frequency scale of the spin from its bare value � to

�r = �

(
�

ωc

) α
1−α

. (3)

This important energy scale governs the low-energy Fermi-
liquid fixed point in the delocalized regime α < 1, and the
spin dynamics for α < 1

2 .3,26,32 At αc = 1, there occurs a lo-
calization quantum phase transition where the bath completely
suppresses tunneling between the two spin states, and formally
�r = 0.

In this article, we are interested to calculate the real-time
dynamics of the spin 〈σα(t)〉 for different initial preparations
of spin and bath. We also consider the dynamics of the
spin-spin correlation function Cz(t) = 〈σ z(t)σ z(0)〉. We focus
on the regime of dissipation strength 0 < α < 1/2, where

〈σ z(t)〉 exhibits damped coherent oscillations. We emphasize
that perturbative master-equation approaches fail for α � 0.1
and the regime is experimentally accessible.42,44–46 Nonper-
turbative methods are thus required to reliably calculate the
time evolution of the spin. In this article, we will not discuss
even stronger spin-bath coupling α > 1

2 , where the dynamics
of 〈σ z(t)〉 becomes completely incoherent124,125 before it is
completely suppressed for α � 1.26,36,126

Our method allows us to investigate the non-Markovian
effects of the initial spin-bath preparation on the dynamics of
〈σα(t)〉. We distinguish two different preparation schemes. In
both cases, the spin and bath are first brought into contact at
a time t0. At this time, we assume that the spin is in a given
pure state, for example, ρS(t0) = |↑〉〈↑|, and the bath is in
canonical equilibrium at temperature T . The total state at time
t0 is thus given by the product state ρ(t0) = ρS(t0) ⊗ ρB(t0)
with ρB(t0) = exp(−HB/T )/Tr[exp(−HB/T )] where HB =∑

k ωkb
†
kbk and the Boltzmann constant is set to kB = 1. We

then hold the spin fixed in state |↑〉 until time tI � t0. This
can be achieved, for instance, by applying a large bias field
ε(t) = ε0θ (−t + tI ) with |ε0| � �. During the time interval
[t0,tI ] spin and bath are in contact. The large-bias constraint
is released for t > tI , and the spin starts to evolve in time. The
system thus starts out from a nonequilibrium state at time tI ,
which is a spin-bath product state

ρ(tI ) = |↑〉〈↑| ⊗ ρB(tI ) . (4)

We now distinguish between two cases: either we send t0 →
−∞ or we set t0 = tI . This yields different bath states ρB(tI ) at
time tI . We study the influence of the two different preparation
schemes on the spin dynamics in detail below.

We also discuss initial states which are not spin-bath
product states, and consider a system starting out from its
equilibrium state at time t = 0. Computing the spin-spin
correlation function 〈σ z(t)σ z(0)〉, we demonstrate the effect
of initial spin-bath correlations present at t = 0.

The structure of the paper is as follows: After this intro-
duction, we briefly develop the real-time functional integral
description in Sec. II mainly to introduce our notation. In
Sec. III, we explain in detail our nonperturbative stochastic
Schrödinger equation approach. We derive all important results
that show how to exactly solve for the driven Ohmic spin-boson
dynamics provided that ωc � �. In Sec. IV, we make an
analogy of the quantum spin evolution to the dynamics of
a classical spin in a random magnetic field. We also expose
the relation to the NIBA in a transparent manner. In Sec. V,
we discuss the influence of the spin-bath preparation on the
dynamics of the spin. We provide different examples where
the initial state of the bath has a pronounced effect on the
time evolution of the spin. We show that such non-Markovian
signatures can be seen in both 〈σx(t)〉 and 〈σ z(t)〉. In Sec. VI,
we describe how spin-spin correlation functions such as
Cz(t) = 〈σ z(t)σ z(0)〉 can be calculated within the SSE. In
Sec. VII, we discuss the dynamics of the spin expectation
value 〈σ z(t)〉 in various physically relevant situations. This
component of the spin is most interesting since, in contrast
to σx,y(t), it exhibits universal dynamics for large ωc, and is
thus relevant to the dynamics of a Kondo spin. We close this
article in Sec. VII with a summary and a discussion of open
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questions and current limitations of the SSE method. In the
Appendices, we provide for completeness all relevant formulas
from the NIBA, corrections to the NIBA, and a rigorous Born
approximation result of Ref. 76.

II. REAL-TIME FUNCTIONAL DESCRIPTION

To study the nonequilibrium dynamics of the spin-boson
model in a nonperturbative way, we employ the real-time
functional integral description.3,26 In this section, we set the
stage and introduce a few technical concepts following the
seminal work of Leggett et al. in Ref. 26. Then, in Sec. III,
in contrast to Ref. 26 we shall treat the blip-blip interaction
exactly. This affects, for example, the long-time behavior of
the spin dynamics.

We are interested to calculate the spin reduced density
matrix ρS(t) = TrBρ(t), where ρ(t) is the full density matrix
and TrB denotes the trace over the bath. Its components can be
expressed using real-time functional integrals as

〈σf |ρS(t)|σ ′
f 〉 =

∫
Dσ (·)

∫
Dσ ′(·)A[σ ]A∗[σ ′]F [σ,σ ′] ,

(5)

with σf ,σ ′
f ∈ {|↑〉,|↓〉}. Here, Dσ (·) denotes integration over

all real-time spin paths σ (t) with fixed initial and final
conditions. A spin path σ (s) jumps back and forth between
the two values σ = ±1. The initial conditions describe the
preparation of the spin, while different final conditions σ (t) =
σf , σ ′(t) = σ ′

f yield different elements of the spin reduced
density matrix at time t .

The integrand in Eq. (5) contains A[σ ] and A∗[σ ′], which
denote the amplitude of the spin to follow a path in the absence
of the bath. The effect of the environment on the spin is
captured by the real-time influence functional26,113

F [σ,σ ′] = exp

(
− 1

π

∫ t

t0

ds

∫ s

t0

ds ′[−iL1(s − s ′)ξ (s)η(s ′)

+L2(s − s ′)ξ (s)ξ (s ′)]
)

, (6)

where we have introduced symmetric and antisymmetric spin
paths η(s) = 1

2 [σ (s) + σ ′(s)] and ξ (s) = 1
2 [σ (s) − σ ′(s)]. It

results from an exact integration over the bath degrees
of freedom.3,113 It contains the real and imaginary parts
of the force autocorrelation function of the environment
π〈X(t)X(0)〉T =L2(t) − iL1(t) with X = ∑

k λk(b†k + bk) and

L1(t) =
∫ ∞

0
dω J (ω) sin ωt, (7)

L2(t) =
∫ ∞

0
dω J (ω) cos ωt coth βω/2 , (8)

where β = 1/kBT with temperature T .
Next, one parametrizes a general (double) spin path and

inserts it into the functional integral in Eq. (5). Since the spin
is held fixed at times t < tI , the double spin path is constrained
to one of the diagonal (or “sojourn”) states {|↑↑〉,|↓↓〉}. If we
are interested in a diagonal element (population) of ρs(t), we
fix the final state of the spin path to be a “sojourn” state as
well. To calculate an off-diagonal element (coherence), we let
the spin path end at time t in an off-diagonal (or “blip”) state
{|↑↓〉,|↓↑〉}.

For a path that ends in a sojourn state and makes 2n

transitions at time tI < t1 < t2 < . . . < t2n < t along the way,
we write the spin paths as

ξ (t) =
2n∑

j=1

�jθ (t − tj ), (9)

η(t) =
2n∑

j=0

ϒjθ (t − tj ). (10)

The variables {�1, . . . ,�2n} = {ξ1, −ξ1, . . . , −ξn} with
ξj = ±1 describe the n off-diagonal or “blip” parts of the
path spent in the states {|↑↓〉,|↓↑〉} during times t2m−1 <

t < t2m (m = 1, . . . ,n), where ξ (t) = ±1 and η(t) = 0. The
variables {ϒ0, . . . ,ϒ2n} = {η0, − η0, . . . ,ηn}, on the other
hand, characterize the (n + 1) diagonal or “sojourn” parts of
the path during times t2m < t < t2m+1 (m = 0, . . . ,n), where
η(t) = ±1 and ξ (t) = 0. The beginning of the initial sojourn
is either at t0 → −∞ or at t0 = tI , depending on whether spin
and bath are in contact at t < tI . We discuss the influence of
this initial preparation on the dynamics in detail later. Formally,
we have t2n+1 ≡ t , and the path’s boundary conditions specify
η0 and ηn. Altogether, the two-spin path is completely
characterized by the variables {t0,t1, . . . ,t2n; ξ1, . . . ,ξn; η0 =
1, η1, . . . ,ηn−1,ηn}. A spin path that ends in a blip state is
written in an analogous way.

Using this parametrization of the spin path in Eqs. (9) and
(10), we may perform the time integrations in the influence
functional in Eq. (6), which yields

Fn[{�j },{ϒj },{tj }] = Q1Q2, (11)

where

Q1 = exp

⎡
⎣ i

π

2n∑
j>k�0

�jϒkQ1(tj − tk)

⎤
⎦, (12)

Q2 = exp

⎡
⎣ 1

π

2n∑
j>k�1

�j�kQ2(tj − tk)

⎤
⎦. (13)

The bath functions Q1,2(t) are the second integrals of L1,2(t),
i.e., Q̈1,2 = L1,2. Explicitly, they read as for an Ohmic spectral
density

Q1(t) = 2πα tan−1(ωct), (14)

Q2(t) = πα ln
(
1 + ω2

c t
2
)+ 2πα ln

(
β

πt
sinh

πt

β

)
. (15)

The influence functional is a product of two terms: Q1 and
Q2. While Q1 describes a coupling between the blip and all
previous sojourn parts of the path, the term Q2 contains the
interaction between all blips (including a self-interaction).

The environment induces a (long-range) interaction be-
tween the spin path at different times. The state of the spin
at time t depends on its state at earlier times, which leads
to a non-Markovian Heisenberg equation of motion for the
spin. The form of the interaction depends, of course, on the
spectral density J (ω) and the temperature T . At zero temper-
ature, for example, one finds that L2(t) = 2παω2

c (1 − ω2
c t

2)/
(1 + ω2

c t
2)2 only decays algebraically in time. Non-Markovian

effects are thus pronounced, especially at long times. At
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high temperatures, on the other hand, the blip-blip interaction
becomes short ranged. In the white-noise limit at T > ωc, for
example, one derives L2(t) = 2παkBT δ(t) and the dynamics
is Markovian.

The path integral of the reduced density matrix in
Eq. (5) also depends on the free spin-path amplitudes A[σ ]
and A∗[σ ′]. These amplitudes contribute a factor of iξη�/2
for each transition between a sojourn state η and a blip state ξ ,
as well as a bias-dependent phase factor

Hn = exp

⎡
⎣i

2n∑
j=1

�jhε(tj )

⎤
⎦ (16)

with

hε(t) =
∫ t

tI

dt ′ε(t ′). (17)

Altogether, the diagonal element of the density matrix describ-
ing the probability

p(t) = 〈↑|ρS(t)|↑〉 (18)

to find the system in state |↑〉 at time t is given by a series in
the tunneling coupling �2:

p(t) = 1 +
∞∑

n=1

(
i�

2

)2n ∫ t

tI

dt2n . . .

∫ t2

tI

dt1
∑

{ξj ,ηj }
FnHn.

(19)

The sum is only over even exponents of �2n because we are
calculating a diagonal element of ρS(t). The spin expectation
value 〈σ z(t)〉 ≡ P (t) can be expressed as

〈σ z(t)〉 ≡ P (t) = 2p(t) − 1. (20)

In contrast, for an off-diagonal element of ρS(t), the path ends
in a blip state ξ2n = ±1 and one finds

〈↑|ρS(t)|↓〉 = 〈σ+(t)〉 = iξ2n

∞∑
n=1

(
i�

2

)2n−1

×
∫ t

tI

dt2n−1 . . .

∫ t2

tI

dt1
∑

{ξj ,ηj }
FnHn, (21)

where ξ2n = 1 for this off-diagonal element and σ+ = 1
2 (σx +

iσ y). Note the presence of a boundary term in Eq. (21) at the
final time t since it now determines the end of the last blip,
i.e., t2n = t .

The formal series expansions in Eqs. (19) and (21) are
exact. What makes these expressions complicated is the fact
that the coupling between the spin paths in the influence
functional F is long range in time. Hence, one must consider
all terms coupling different blips and sojourns. Their analytical
evaluation is only possible in special cases, e.g., at α =
1
2 , or if one simplifies them using approximations. The
most prominent so-called noninteracting blip approximation
(NIBA) is discussed in detail in Appendix A. It simply neglects
all interactions between different blips. In the next section, we
introduce a method that allows us to take all terms in the
influence functional exactly into account. In particular, unlike
the NIBA, we exactly consider the long-range interactions
between different blips. This is achieved by mapping the

problem onto a linear stochastic equation that can be easily
solved numerically.

III. NONPERTURBATIVE STOCHASTIC SCHRÖDINGER
EQUATION METHOD

We now present a method to evaluate the full spin reduced
density matrix ρS(t) in a numerically exact manner. Its element
〈i|ρS(t)|j 〉 with i,j ∈ {↑,↓} is calculated by averaging over
solutions of a nonperturbative stochastic Schrödinger equation
(SSE). We explicitly derive the SSE from the expressions
in Eqs. (19) and (21). This method works for all tempera-
tures and, importantly, for an arbitrary time-dependent bias
field ε(t).

In contrast to other numerical approaches such as the
real-time Monte-Carlo method,82,83,127 or the quasiadiabatic
path-integral scheme,84,85,88,89 we will not directly evaluate
the real-time path integral in Eqs. (19) and (21). Instead,
we first decouple the terms bilinear in the blip and sojourn
variables in the influence functional Fn = Q1Q2 in Eq. (11)
using Hubbard-Stratonovich transformations. We then obtain
〈i|ρS(t)|j 〉 as a statistical average over solutions of a stochastic
Schrödinger equation.

We want to emphasize that our method takes all terms in
the influence functional exactly into account. In particular,
we fully account for all interactions between different blips.
Although this method is quite powerful, it is so far restricted
to the case of an Ohmic bath with 0 < α < 1

2 and a large
cutoff frequency ωc � � (scaling limit). The reason for this
limitation will become clear in the following when we show
that Q1 greatly simplifies in the Ohmic scaling limit. Although
we can formally apply our approach also for sub-Ohmic
and super-Ohmic bath spectral functions, it remains an open
question to sufficiently improve the numerical convergence
properties to make it useful in practice.

A. Blip-blip interaction part Q2

We first analyze the Q2 part of the influence functional Fn

in Eq. (11), which describes the interactions between blips.
Before we can apply a Hubbard-Stratonovich transformation,
we must diagonalize the kernel Q2(t) and write it in a
factorized form as116,118

Q2(tj − tk) = πα

[
G0 +

mmax∑
m=1

Gm�m(tj )�m(tk)

]
. (22)

We truncate the sum and keep mmax terms, but always check
that the final result is independent of mmax.

To achieve this, we expand Q2(t) in a Fourier series. To
obtain only negative Fourier coefficients, we rather expand
Q̃2(τ ) = Q2(τ ) − Q2(2) and write

Q2(τ ) = Q2(2) + πα

[
g0 +

mmax/2∑
m=1

gm cos
mπτ

2

]
(23)

on the interval τ ∈ (−2,2). Here, τ = (t − tI )/ttot is a rescaled
time which depends on the total length of our numerical
simulation ttot. The time τ = 0 corresponds to the initial time
tI , when the large-bias constraint on the spin is turned off.
The time τ = 1 corresponds to the final time tmax = ttot + tI
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of our numerical simulation. Note that Q2(2) is a constant
that depends on the length of the simulation ttot. At T = 0, it
reads as, for example, Q2(2) = πα ln[1 + 4ω2

c t
2
tot]. Since we

obtain the Fourier coefficients gm numerically, this approach
is quite general and can be used for various forms of the
bath correlation function Q2(t), as arise for different spectral
densities J (ω).

From the Fourier expansion, we identify the (trigonometric)
eigenfunctions as �2k−1(τ ) = cos kπτ

2 as well as �2k(τ ) =
sin kπτ

2 . The coefficients in Eq. (22) read as

G0 = g0 + 1

πα
Q2(2), (24)

G2k−1 = G2k = gk < 0. (25)

We can thus write Q2 in factorized form as

Q2 = exp
{−nα

[
ln
(
1 + 4ω2

c t
2
tot

)+ G
]}

×
mmax∏
m=1

exp

⎧⎪⎨
⎪⎩

1

2

⎡
⎣√αGm

2n∑
j=1

�j�m(tj )

⎤
⎦

2
⎫⎪⎬
⎪⎭, (26)

with constant G =∑mmax/2
m=0 gm. Note that limmmax→∞ G =

− ln(1 + 4ω2
c t

2
tot), so the prefactor in Eq. (26) approaches

unity in this limit. To derive Eq. (26), we have used that∑2n
j>k�1 �j�k = −n and �2

j = 1. Since Gm < 0 for m � 1,
it is more appropriate to write

√
αGm = i

√−αGm. Next, we
decouple the blip variables {�j } in the exponent in Eq. (26)
using a total of mmax Hubbard-Stratonovich transformations,
resulting in

Q2 = exp
{− nα

[
ln
(
1 + 4ω2

c t
2
tot

)+ G
]}

×
∫

dS exp

⎧⎨
⎩i

2n∑
j=1

�jhs(τj )

⎫⎬
⎭ . (27)

The integral over the Hubbard-Stratonovich variables {sm}
reads as ∫

dS =
mmax∏
m=1

∫ ∞

−∞

dsm√
2π

e−s2
m/2, (28)

and we have introduced a real (height) function

hs(τ ) =
mmax∑
m=1

sm

√
−αGm�m(τ ). (29)

The function hs(τ ) contains information about the environ-
ment via the eigenfunctions and eigenvalues of the bath
correlation function Q2(t). It also depends on the Hubbard-
Stratonovich variables {sm}, which can be interpreted as
Gaussian distributed random (noise) variables. One thus finds
that 〈hs(t)〉S = 0 and 〈hs(t)hs(s)〉S = αG0 − Q2(t − s)/π ,
while all higher moments vanish.

B. Blip-sojourn interaction part Q1

Let us now turn to the Q1 part of the influence functional
Fn = Q1Q2 that couples the blip and sojourn part of the spin
path. It is important to distinguish between the first sojourn,
which occurs during initial time t0 � t � tI when the spin

is polarized, and all other sojourns. We thus separate Q1 =
Q(0)

1 Q(1)
1 .

The contribution of the first sojourn Q(0)
1 encodes the initial

preparation of the system. It is given by the terms where k =
0,1 in Eq. (12) and reads as Q(0)

1 = exp[ i
π

∑2n
j=1 �j {Q1(tj −

t0) − Q1(tj − t1)}]. Within our method, we can take it into
account in an exact manner. This is described in Sec. V, and
allows us to study the effect of the spin-bath preparation on
the spin dynamics. It plays an important role, e.g., for the
dynamics of 〈σx(t)〉 or if the bias ε(t) depends on time. The
spin-bath preparation is less important for the dynamics of
〈σ z(t)〉 at constant bias.3

The contribution of all later sojourns Q(1)
1 is given by

the terms with k � 2 in Eq. (12) and reads as Q(1)
1 =

exp[ i
π

∑2n
j>k�2 �jϒkQ1(tj − tk)]. Fortunately, it takes a par-

ticularly simple form for an Ohmic bath and if �/ωc � 1 and
α < 1/2 (scaling limit), where one may safely approximate26

Q1(t) = 2πα tan−1(ωct) ≈ απ2θ (t). (30)

We thus find that

Q(1)
1 = exp

⎡
⎣iπα

2n∑
j>k�2

�jϒk

⎤
⎦ = exp

[
iπα

n−1∑
k=1

ξk+1ηk

]
.

(31)

This reflects the fact that the main contribution to the path
integral stems from paths with spin-flip separations larger than
ω−1

c .
If we use the scaling form Q1(t) = απ2θ (t) for the first

sojourn as well, this corresponds to the spin-bath preparation
where t0 = tI . In this case, the complete blip-sojourn interac-
tion term Q1 = Q(0)

1 Q(1)
1 is given by

Q1 = exp

⎡
⎣iπα

2n∑
j>k�0

�jϒk

⎤
⎦ = exp

[
iπα

n−1∑
k=0

ξk+1ηk

]
.

(32)

Let us finally note that we can, in principle, deal with the
blip-sojourn interaction term Q1 in a similar way as with Q2.
In this case, we must first separate the bath correlation function
Q1(t) in the exponent into a symmetric part Q1(|t |) and an
antisymmetric part Q1(t), in order to extend the sum over the
blip and sojourn variables to j � k. Then, we can diagonalize
the kernels, complete the square in the exponent, and linearize
it using Hubbard-Stratonovich transformations. The resulting
expression for the height function hs(τ ), however, is no longer
purely real, but also contains an imaginary component. This
leads to slow convergence properties, similar to the case
of the sign problem known from Monte Carlo sampling.
This currently limits our SSE approach to an Ohmic bath
with �/ωc � 1 and 0 < α < 1

2 (see also Sec. VIII), where
Q1(t) = απ2θ (t).

C. Stochastic Schrödinger equation (SSE)

We now use the form of the influence functional
Fn = Q1Q2 that we have derived in the last two sections to
obtain the spin reduced density matrix as a statistical average
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of solutions of a stochastic Schrödinger equation. Employing
Eqs. (32), (27), and (16), a diagonal entry of ρS(t) can be
written as

p(τ ) = 1 +
∫

dS
∞∑

n=1

(
i�ttote

−(α/2)[ln(1+4ω2
c t

2
tot)+G]

2

)2n

×
∫ τ

0
dτ2n . . .

∫ τ2

0
dτ1

∑
{ξj ,ηj }

exp

[
iπα

n−1∑
k=0

ηkξk+1

]

×
2n∏

j=1

exp[i �jh(τj )]. (33)

Here, we have defined the total height function

h(τ ) = hs(τ ) + hε(τ ). (34)

It contains both the random height function hs(τ ) in Eq. (29)
as well as the bias-dependent part which reads as

hε(τ ) =
∫ ttotτ

0
dτ ′ε(τ ′). (35)

Without the summation over the blip and sojourn variables
{ξj ,ηj } the expression in Eq. (33) has the form of a time-
ordered exponential, averaged over the random noise variables
{sm}. This summation, however, can easily be incorporated into
a product of matrices in the vector space of two-spin states
{|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉}, which read as114

V = V0

⎛
⎜⎜⎜⎝

0 e−ih(τ ) −eih(τ ) 0

eiπαeih(τ ) 0 0 −e−iπαeih(τ )

−e−iπαe−ih(τ ) 0 0 eiπαe−ih(τ )

0 −e−ih(τ ) eih(τ ) 0

⎞
⎟⎟⎟⎠,

(36)

where

V0 = 1

2
�ttot exp

{− (α/2)
[
ln
(
1 + 4ω2

c t
2
tot

)+ G
]}

. (37)

Note that V0 = 1
2�ttot for mmax → ∞. It is worth emphasizing

that the two-spin basis states simply correspond to the four
elements of the reduced density matrix 〈i|ρS |j 〉. The final
two-spin state |ij 〉 with i,j ∈ {↑,↓} of the real-time spin
path determines which density matrix element 〈i|ρS(t)|j 〉 is
calculated. A product of matrices of the type in Eq. (36)
automatically satisfies the requirement that transitions between
two-spin states occur via single spin flips. A two-spin path
consists of an alternating sequence of sojourn (diagonal) and
blip (off-diagonal) parts. The different signs in Eq. (36) stem
from the free-spin contribution i�ξη/2 for each spin flip
between blip state ξ and sojourn state η.

We finally arrive at the central result of our work. With
Eq. (36) we can express Eq. (33) as a time-ordered exponential

p(τ ) =
∫

dS〈�f |T e−i
∫ τ

0 dsV (s)|�i〉. (38)

Here, T is the usual time-ordering operator. The two-spin
states |�i〉 and |�f 〉 are the initial and final states of the
spin path. When calculating the diagonal element p(τ ) =
〈↑|ρS(τ )|↑〉, we thus have �f = |↑↑〉. Since we consider
an initial polarization of the spin in state |↑〉, it follows

that |�i〉 = |↑↑〉 as well. We can evaluate the amplitudes
on the right-hand side of Eq. (38) by solving the stochastic
Schrödinger equation

i
∂

∂τ
|�(τ )〉 = V (τ )|�(τ )〉 (39)

with initial and final conditions �i,f = (1,0,0,0)T . The vector
(1,0,0,0)T corresponds to the basis state |↑↑〉. The integration∫

dS over the Hubbard-Stratonovich variables is performed by
averaging the result over N different realizations of the noise
variables {sm}. One then obtains p(τ ) by averaging over the
different results

p(τ ) = 1

N

N∑
k=1

�
(k)
1 (τ ) = 〈�1(τ )〉S , (40)

where �1(τ ) is the first component of |�(τ )〉 and 〈. . .〉S
denotes the average over the Hubbard-Stratonovich random
noise variables {sm}. We note that 〈�1(τ )〉S is purely real
as required. The spin expectation value 〈σ z(t)〉 is given by
〈σ z(t)〉 ≡ P (t) = 2p(t) − 1.

Other components of the spin reduced density matrix ρS

can be computed simply by using different final conditions
�f . In order to calculate the off-diagonal element 〈↑|ρS(t)|↓〉,
for instance, we must project onto the final state |↑↓〉 which
corresponds to �f = (0,1,0,0)T . In this case, we also need
to consider a boundary term in the influence functional at
τ = τ2n which arises if the spin path ends in a blip state.3

It appears as if the system steps back to a sojourn state at
the final time τ . This can be implemented by multiplying
�2(τ ) with [�rttot/(ωc/�)]α , where �r = �(�/ωc)α/(1−α) is
the renormalized tunneling element.

The different spin expectation values are found from

〈σx(t)〉 = 2(�rttot�/ωc)α〈�′
2(ttotτ )〉S , (41)

〈σy(t)〉 = 2(�rttot�/ωc)α〈�′′
2(ttotτ )〉S , (42)

〈σ z(t)〉 = 2〈�′
1(ttotτ )〉S − 1, (43)

with �′
α = Re�α , �′′

α = Im�α , and V0 given in Eq. (37).
Here, we have set tI = 0 for notational clarity. Because of the
boundary factor (�rttot�/ωc)α , the spin expectation values
〈σx,y(t)〉 are not universal functions and strictly vanish in
the scaling limit �/ωc → 0. A universal function depends
on the bath cutoff frequency ωc only through the renormalized
tunneling element �r , and is thus universal as a function of
the dimensionless variable y = �rt .

Apart from using the scaling form Q1(t) ≈ απ2θ (t) [see
Eq. (30)], the final expressions in Eqs. (40)–(43) are still
exact in the limit mmax → ∞ and N → ∞. In practice, of
course, we work with finite values of typically mmax ≈ 4000
and N ∼ 106–107. We always check that the final result for
p(t) and 〈↑|ρS(t)|↓〉 is independent of mmax and N . As the
numerical accuracy of our results scales with the number of
noise realizations such as N−1/2, we are able to routinely
calculate the spin expectation values 〈σx,y,z(t)〉 up to an
(absolute) uncertainty as small as 10−4.
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D. Symmetries of the stochastic equations

It is interesting to note that the differential equations in
Eq. (39) with the initial condition �i = (1,0,0,0)T in fact
obey the additional symmetries

�′′
1(τ ) = 0, (44)

�∗
3(τ ) = �2(τ ), (45)

�4(τ ) = 1 − �1(τ ). (46)

From the eight real variables {�′
1,2,3,4,�

′′
1,2,3,4}, in fact only

three are independent. Choosing as independent variables
{�′

1,�
′
2,�

′′
2}, the differential equations (39) read explicitly as

∂τ�
′
1 = 2V0[− sin(h)�′

2 + cos(h)�′′
2], (47)

∂τ�
′
2 = V0[cos(h) sin(πα) + cos(πα) sin(h)(2�′

1 − 1)],

(48)

∂τ�
′′
2 = V0[sin(πα) sin(h) − cos(πα) cos(h)(2�′

1 − 1)].

(49)

For a particular realization of the random height function
h(τ ), the time evolution described by these equations is not
unitary. The values of the different components {�′

1,�
′
2,�

′′
2}

are therefore not bounded. In contrast, we can restore the ξj →
−ξj symmetry by performing two simulations with h(τ ) =
hε(τ ) ± hs(τ ), which yield the two (unbounded) solutions
�±(t). We then take the average �(τ ) = 1

2 [�+(τ ) + �−(τ )],
and find that both �′

1(τ ) and �′′
2(τ ) are bounded if and only if

ε = 0. In this case, the components are constrained to �′
1(τ ) ∈

[0,1] and �′′
2(τ ) ∈ [− 1

2 , 1
2 ]. This significantly improves the

numerical convergence properties, also for the remaining
component �′

2(τ ) even though it is not bounded.

IV. ANALOGY TO CLASSICAL SPIN IN RANDOM
FIELD AND RELATION TO NIBA

In this section, we show that we can interpret the stochastic
equation of motion for 〈σ z(t)〉 = P (t) in the scaling limit
�/ωc � 1 and at zero bias ε = 0 as that of a classical spin S(t)
that rotates in a random magnetic field H(t). Quantum effects
and dissipation follow from the noncommutativity of rotations
around different axes, which are induced by the magnetic field,
and due to the average over different random magnetic field
configurations.

Importantly, however, the quantum-classical analogy only
applies to the y and z components of the spin. These
components are related as 〈σy(t)〉 = −�−1 d

dt
〈σ z(t)〉3. The

analogy can not be applied to the component 〈σx(t)〉 because
the derivation below relies on an assumption that is not valid
for 〈σx(t)〉. In fact, the “classical” Bloch-type equation, which
we derive in the following, predicts 〈σx(t)〉 ≡ 0, which is
incorrect.

We then exploit the analogy to the classical Bloch equations
to explain the relation of the SSE method to the well-known
noninteracting blip approximation (NIBA). We show that the
NIBA follows in our approach from neglecting correlations
between the classical trajectory of the spin and the random
height function hs(t).

A. Analogy to classical Bloch equations

We have previously shown how to obtain the spin expec-
tation values 〈σx,y,z(t)〉 by solving the stochastic equation
(39) for different height functions h(τ ) and averaging over
the results. Different vector components 〈�α(t)〉S determine
different spin components [see Eqs. (41)–(43)]. For a particular
realization of the height function, however, the components
�α(t) are unbounded and can therefore not be interpreted as
components of a spin. The situation is different if we explicitly
perform the sum over the sojourn variables in the expression
of Q1 in Eq. (32), which gives

Q1 = eiπαξ1 (2 cos πα)n−1. (50)

For zero bias ε = 0 and if we are interested in calculating
〈σ z(t)〉, where the system ends in a sojourn state ηn, we
may use that the real-time functional integral expression for
p(t) in Eq. (19) is invariant under the reversal of the sign of
all blip variables ξj → −ξj . The imaginary part in Eq. (50)
does therefore not contribute to 〈σ z(t)〉 since it cancels
after summation over ξ1. This assumption does not hold for
〈σx(t)〉, where the system ends in a blip state ξ . Neglecting
the imaginary part in Eq. (50) is therefore not justified for
〈σx(t)〉. In fact, 〈σx(t)〉 is solely determined by the imaginary
contribution in Eq. (50), which is antisymmetric in ξ1. Since we
only keep the real part in the following, the resulting equations
yield 〈σx(t)〉 ≡ 0.

Keeping only the real part in Eq. (50), we find from
Eq. (33) that 〈σ z(t)〉 = P (t) = 2p(t) − 1 is given by

〈σ z(τ )〉 = 1 +
∫

DS
∞∑

n=1

(
i
√

2 cos πα V0
)2n

×
∫ τ

0
dτ2n . . .

∫ τ2

0
dτ1

∑
{�j }

2n∏
j=1

exp [i�jhs(τj )],

(51)

with V0 given in Eq. (37). Note that Eq. (51) only contains
the random part of the height function hs(τ ) since we have
assumed that ε = 0. It is worth noting that the right-hand
side of Eq. (51) vanishes at the Toulouse point α = 1

2 . This
point marks the boundary between coherent and incoherent
dynamics of 〈σ z(t)〉. For α = 1

2 , the spin-boson model may be
solved exactly via mapping to a noninteracting resonant level
model, and one finds 〈σ z(t)〉α=1/2 = exp(−π�2

2ωc
t).3,26

Since the sojourn variables {ηj } are now absent from the
expression, we do not need to distinguish between the two
diagonal states |↑↑〉 and |↓↓〉 anymore. It is thus sufficient
to work with a three-dimensional basis {|↑↑〉,|↑↓〉,|↓↑〉}. To
perform the summation over the blip variables {�j } via a
matrix product, we introduce the three-dimensional matrix
V3(τ ). Specifically, we can express 〈σ z(t)〉 as a time-ordered
product, averaged over the noise variables, as

〈σ z(τ )〉 =
∫

DS〈�f |T e−i
∫ τ

0 dτ ′V3(τ ′)|�i〉 (52)
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with the matrix

V3(τ ) = V0

√
2 cos πα

⎛
⎜⎝

0 e−ihs (τ ) −eihs (τ )

eihs (τ ) 0 0

−e−ihs (τ ) 0 0

⎞
⎟⎠.

(53)

The random height function hs(t) is defined in Eq. (29). To
calculate 〈σ z(t)〉, we solve the differential equations

i
∂

∂τ
|�(τ )〉 = V3(τ )|�(τ )〉 (54)

with initial and final conditions |�i,f 〉 = (1,0,0)T , and take
the average over N different noise configurations: 〈σ z(t)〉 =
〈�1(ttotτ + tI )〉S .

Similarly to Eq. (39), the differential equations (54) with
initial condition |�i〉 = (1,0,0)T obey additional symmetries

Im �1(τ ) = 0, (55)

�∗
3(τ ) = �2(τ ). (56)

Only three out of the six variables Re(�1,2,3), Im(�1,2,3)
are thus independent. As before, we choose {�′

1,�
′
2,�

′′
2} =

{Re�1,Re�2,Im�2}, and the differential equations (54) ex-
plicitly read as

∂τ�
′
1 = 2V0

√
2 cos πα[cos(hs)�

′′
2 − sin(hs)�

′
2], (57)

∂τ�
′
2 = V0

√
2 cos πα sin(hs)�

′
1, (58)

∂τ�
′′
2 = −V0

√
2 cos πα cos(hs)�

′
1. (59)

Denoting a solution for a particular realization of the height
function h(τ ) by �(+)

α (τ ), then the solutions for [−h(τ )] are
given by �′−

1 (τ ) = �′+
1 (τ ), �′−

2 (τ ) = −�′+
2 (τ ), and �′′−

2 (τ ) =
�′′+

2 (τ ). Since we draw the random variables {sm} from a
Gaussian distribution with mean 〈sm〉S = 0, both h(τ ) and
[−h(τ )] are equally probable and 〈h(τ )〉S = 0. As discussed
earlier, Eq. (54) therefore (incorrectly) predicts that 〈σx(τ )〉 =
2〈�′

2(τ )〉S = 0.
A crucial observation is that the system of differential

equations in Eq. (54) has an integral of motion

1 = �1(τ )2 + 2|�2(τ )|2 = �′
1(τ )2 + 2[�′

2(τ )2 + �′′
2(τ )2].

(60)

This allows us to introduce an effective classical spin variable

S = (Sx,Sy,Sz) = (
√

2�′
2,

√
2�′′

2,�
′
1), (61)

which is normalized to unit length |S| = 1. The equations
of motion for the spin components in Eqs. (57)–(59) can be
compactly expressed as the classical Bloch equation

d

dτ
S(τ ) = H(τ ) × S(τ ). (62)

The effective noisy magnetic field H(τ ) depends on the
random height function hs(τ ) and lies in the x-y plane

H = H0[cos hs(τ ), sin hs(τ ),0]. (63)

The amplitude of the magnetic fields reads as H0 =√
2V0

√
2 cos πα. The dissipative dynamics of the quantum

spin follows from averaging over different random field
configurations as

〈σ z(t)〉 = 〈Sz(t)〉S . (64)

The quantum problem of the dissipative time evolution of the
quantum spin component 〈σ z(t)〉 at zero bias can therefore
be formulated as an evolution of a classical spin S(t) in
a random magnetic field H(t). The quantum nature of the
problem is hidden in the fact that spin rotations about different
axes do not commute and through the averaging over different
random field configurations. It is important to keep in mind,
however, that the quantum-classical correspondence relies on
an assumption that is not valid for σx . It is therefore restricted
to the y and z components of the spin, and predicts that
〈Sx(t)〉S = 0 �= 〈σx(t)〉.

B. Relation between SSE method and NIBA

We can employ the classical spin description of the previous
section to make the relation of the SSE method to the NIBA
transparent. Starting from the “classical” Bloch equations of
motion in Eq. (62), which yield the exact result for 〈σ z(t)〉 =
〈Sz(t)〉S in the limit of mmax,N → ∞, we derive an equation
that describes 〈σ z(t)〉 within the NIBA.

We start from the “classical” Bloch equation (62) in the
random magnetic field H = H0(cos[hs(τ )], sin[hs(τ )],0). The
different spin components obey Ṡx = HyS

z, Ṡy = −HxS
z, and

Ṡz = HxS
y − HyS

x . For the z component, we thus obtain

Ṡz(t) = −�2 cos(πα)
∫ t

0
ds cos[hs(t) − hs(s)]Sz(s) (65)

since H0 = �
√

cos πα for mmax → ∞. For a particular
realization of the noise {sm}, which defines the height function
hs(t), Eq. (65) is not in convoluted form. In general, one can
not write [hs(t) − hs(s)] as a function of the time difference
(t − s) only. It is thus not possible to solve Eq. (65) via Laplace
transformation.

In order to find the time evolution of the quantum spin
〈σ z(t)〉, we have to average Sz(t) over different magnetic field
configurations

d

dt
〈σ z(t)〉 = 〈Ṡz(t)〉S = −�2 cos(πα)

×
∫ t

0
ds 〈cos[hs(t) − hs(s)]Sz(s)〉S . (66)

It is important to note that there exist correlations between the
random height function hs(t) and the classical spin trajectory
Sz(s) such that in general

〈cos[hs(t) − hs(s)]Sz(s)〉S
�= 〈cos[hs(t) − hs(s)]〉S〈Sz(s)〉S . (67)

These correlations are absent in the initial state at t = 0, but
are generated over the course of time, as follows from the
differential equation (65). The correlations are thus small at
short times t . Note also that since hs(t) ∼ √

α, the factor
cos[hs(t) − hs(s)] ≈ 1 for small α � 1. At α = 0, both clas-
sical and quantum spin undergo undamped Rabi oscillations
with frequency �. The correlations between hs(t) and Sz(t)
thus become more pronounced for larger values of α. The
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mean-field decoupling anticipated in Eq. (67) can thus be
justified at short times t and/or small dissipation α. Indeed,
we now show that one recovers the NIBA from this mean-field
decoupling.

Using the mean-field approximation of Eq. (67), we obtain
for the equation of motion of the quantum spin

d

dt
〈σ z(t)〉 = 〈Ṡz(t)〉S ≈ −�2 cos(πα)

×
∫ t

0
ds 〈cos[hs(t) − hs(s)]〉S〈Sz(s)〉S . (68)

Using the statistical properties of the height function
〈hs(τ )〉S = 0 and 〈hs(τ )hs(s)〉S = αG0 − Q2(τ − s)/π , one
easily computes the expectation value

〈cos[hs(t) − hs(s)]〉S = exp[−Q2(t − s)/π ]. (69)

The equation of motion thus takes the form

d

dt
〈σ z(t)〉 = −�2cos(πα)

∫ t

0
ds exp[−Q2(t − s)/π ]〈σ z(s)〉,

(70)

which we recognize as the NIBA equation of motion as we
show in Appendix A 2 following Refs. 128 and 129.

We note that one also recovers the NIBA equations for finite
bias ε0 �= 0 within the same mean-field decoupling scheme of
Eq. (67). For nonzero bias, however, one must use the equations
of motion in Eqs. (47)–(49) to arrive at26

d

dt
〈σ z(t)〉 +

∫ t

0
dτ [f (t − τ ) + g(t − τ )〈σ z(τ )〉] = 0, (71)

where f (t − τ ) = �2e−Q2(t−τ )/π sin(πα) sin[ε0(t − τ )] and
g(t − τ ) = �2e−Q2(t−τ )/π cos(πα) cos[ε0(t − τ )]. Since the
norm of the vector S defined in Eq. (61) is not conserved for
finite ε0, however, we can not interpret each trajectory �j (t)
for a fixed realization of the noise S as the path of a classical
spin in a random field.

To summarize, within our approach we recover the NIBA
when neglecting the statistical correlations between the classi-
cal spin trajectories in a random magnetic field and the random
magnetic field itself [see Eq. (67)]. These correlations develop
over the course of time and thus become more pronounced
at longer times. Since the magnetic field fluctuations grow
with larger dissipation, the correlations also increase with α.
The derivation of the NIBA using our SSE approach thus
makes the validity of the NIBA at short times and/or weak
dissipation very transparent. In the following sections, we
study the differences between these two methods.

V. SPIN-BATH PREPARATION EFFECTS

In this section, we investigate the effect of the initial
spin-bath preparation on the dynamics of the spin. We show
that the initial preparation can influence the dynamics even at
long times. The SSE method is ideally suited to consider such
situations because it allows us to take the spin-bath preparation
exactly into account. Specifically, we give two examples: the
dynamics of the coherence σx(t) and the behavior of σ z(t)
under a linear Landau-Zener sweep of the bias.

We distinguish two different spin-bath preparation
schemes: in the first one, spin and bath are brought into contact
at time t0 → −∞, but the spin is held fixed in state |↑〉 by
applying a large bias field until a much later time tI , where
|tI − t0| → ∞. By the time tI , the bath has relaxed to the
shifted canonical equilibrium state

ρB(σi) = exp
{− β

[
HB + σi

2

∑
k λk(b†k + bk)

]}
Tr
[

exp
(− β

[
HB + σi

2

∑
k λk(b†k + bk)

])] , (72)

with σi = 1 corresponding to initial spin state |↑〉. In the
second preparation scheme, spin and bath are brought into
contact only at time t0 = tI . The initial bath state then equals
the canonical thermal state, as given by Eq. (72) with σi = 0.

We first explain how the exact consideration of the spin-
bath preparation is technically implemented within the SSE
method, and then investigate two physical situations.

A. Exact consideration of spin-bath preparation
within SSE method

The spin-bath preparation is encoded in the contribution of
the initial sojourn between time t0 and time t1, which denotes
the beginning of the first blip. To exactly take the spin-bath
preparation into account, we must therefore use the full form
of the bath kernel function Q1(t) = 2πα tan−1(ωct) in the
contribution of the first sojourn.

The contribution of the first sojourn corresponds to the
k = 0,1 terms in Eq. (12), and explicitly reads as

Q(0)
1 = exp

⎡
⎣ i

π

2n∑
j=1

�j {Q1(tj − t0) − Q1(tj − t1)}
⎤
⎦ .

(73)

We can incorporate these terms in an exact manner by adding
them to the height function h(τ ) in Eq. (34), which then
explicitly depends on τ1, the beginning of the first blip, and
reads as

h(τ,τ1) = hs(τ ) + hε(τ ) − 2α{tan−1[ωcttot(τ − τ1)]

− δt0,tI tan−1[ωcttotτ ]}. (74)

The terms hs(τ ) and hε(τ ) are defined in Eqs. (29) and (35).
The last term is present only for the preparation scheme t0 = tI
and absent for t0 → −∞.

The fact that the height function h(τ,τ1) in Eq. (74) now
depends on τ1 forces us to explicitly perform the integration
over τ1 ∈ [0,1] in Eq. (33). We thus randomly pick a uniformly
distributed τ1 ∈ [0,1], which determines the height function
h(τ,τ1) in Eq. (74). It also determines the initial state of
the simulation via a single application of V (τ1) on �i =
(1,0,0,0)T as

|�τ1〉 = −i(0,eih(τ1,τ1), − e−ih(τ1,τ1),0)T . (75)

Note that the factors exp(±iπα) that we would expect from
naively computing −iV (τ1)�i do not occur in Eq. (75) because
they are taken into account by the last two terms in the height
function in Eq. (74).

We then propagate this initial state |�τ1〉 in the interval
[τ1,1] according to Eq. (39), and calculate the probability to
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find the system in state |↑〉 at time t = τ ttot + tI as

p(τ ) = 1 + 〈�1(τ )〉S . (76)

From this we find 〈σ z(τ )〉 = 2p(τ ) − 1. The average is over
N different choices of τ1 and sets of random variables {sm}.
In each individual run, we set |�(τ < τ1)〉 = 0 since �(τ )
only accounts for the contribution of paths with at least one
spin flip. This also explains the difference to Eq. (40). The
off-diagonal element 〈↑|ρS(t)|↓〉 = 〈σ+〉 is still determined
by 〈�2〉S and yields the spin expectation value 〈σx(t)〉 =
2(�rttot�/ωc)αRe 〈�2〉S [see Eq. (41)].

B. Dynamics of coherence 〈σ x(t)〉
In this section, we investigate the dynamics of the spin

expectation value 〈σx(t)〉, which describes phase coherence
between states |↑〉 and |↓〉.32 The quantum (de)coherence can
be measured in a persistent current experiment or in a SQUID
geometry as suggested by Refs. 48 and 49. We show that the
initial spin-bath preparation has a profound influence on its
dynamics, not just at short times. Of course, in the long-time
limit the system relaxes to its equilibrium state and 〈σx(t)〉
becomes independent on the preparation scheme.

In Fig. 1, we present 〈σx(t)〉 for the two preparation
schemes that we have introduced above. The spin-bath interac-
tion is either turned on at t0 → −∞ (red line) or at t0 = tI (blue
dashed line). While 〈σx(t)〉 clearly exhibits oscillations if t0 →
−∞, it increases monotonously for t0 = tI . The oscillation
frequency is of the order of the renormalized tunneling
element �r and independent of the bath cutoff frequency
ωc. For both preparation protocols, 〈σx(t)〉 approaches the
correct equilibrium value, which we have computed using the
thermodynamic Bethe ansatz for the interacting resonant level
model, which can be mapped to the spin-boson model.32 The
spin relaxation to the ground state occurs due to thermalization
with the bath.

We can intuitively understand the appearance of the oscil-
lations for t0 → −∞ in the following way. For this spin-bath
preparation, the initial bath state at t = tI is polarized because
the bath has relaxed to the state ρB(1) in Eq. (72) due to
the interaction with the fixed spin. At t = tI , all harmonic
oscillators are in the ground state of a shifted quadratic
potential. This shifted bath state acts as a bias field εB(t) in the
z direction for the spin. At t = tI , it reads as

εB(tI ) =
〈∑

k

λk(b†k + bk)

〉
ρB (1)

= −2αωc. (77)

Since the spin is released for t > tI , it relaxes towards 〈σ z〉∞ =
0 for ε = 0. The polarization of the harmonic oscillator bath
therefore slowly disappears for t > tI , and as a result εB(t) →
0. For each oscillator, the relaxation process occurs on a time
scale given by its frequency ωk . Due to the presence of many
slow modes in the Ohmic bath with ωk < �r , the spin thus
experiences the bath-induced bias field εB(t) until times much
larger than �−1

r .
We can understand the oscillations in 〈σx(t)〉 by noticing

that the total (“magnetic”) field for the spin reads as

B = (�r,0,εB(t)), (78)

FIG. 1. (Color online) Coherence 〈σx(t)〉 for different values of
α = {0.01,0.05,0.1} with ωc = 200� for α = {0.01,0.05} and ωc =
50� for α = 0.1. Other parameters are � = 1, ε = 0, mmax = 3000,
and N = 9 × 106. We present SSE results for two different spin-
bath preparations: t0 → −∞ and t0 = tI . While 〈σ x(t)〉 oscillates
for t0 → −∞, it increases monotonously for t0 = tI . We include
results of a weak-coupling theory beyond NIBA (“NIBA + Corr”)
(Refs. 3,72, and 73) that we discuss in Appendix B. SSE curves
approach the correct thermodynamic expectation value 〈σx〉∞ at
long times as calculated from Bethe ansatz (Ref. 32). We also show
〈σ x〉∞,Loss/DiVincenzo calculated from a rigorous Born approximation to
order α by Loss and DiVincenzo (Ref. 76).

where initially εB(tI ) = −2αωc and we have taken into
account the renormalization of � to �r . The spin rotates
around the magnetic field vector B(t) with a frequency
�B(t) = √�2

r + εB(t)2 that is given by the total field strength
|B|. Different components 〈σα(t)〉 are given by projections on
the different axes. Oscillations in σx(t) thus only occur if the
field does not point along the x direction, i.e., only as long as
εB(t) �= 0.

It is worth pointing out that although εB(tI ) � �r for the
parameters in Fig. 1, we observe an oscillation frequency of
the order of �r , independently of εB(tI ), which depends on the
bath cutoff ωc. This can be easily understood from the fact that
the bath oscillators with frequencies ωk > �r relax on a fast
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time scale much smaller than �−1
r . The relevant bath-induced

detuning for t > �−1
r is thus rather given by εB ≈ −2α�r .

The amplitude of the oscillations in 〈σx(t)〉 is proportional
to the angle γ between B(t) and the x axis that reads
as γ = tan−1[εB(t)/�r ]. In fact, measuring the oscillation
amplitude of 〈σx(t)〉 is a new kind of bath spectroscopy. It
yields the bath relaxation function εB(t) in Eq. (77), which
contains information about the distribution of oscillators and
their coupling to the spin.

This clearly non-Markovian effect of the bath initial state
is captured exactly within SSE, as shown in Fig. 1. Since
the NIBA yields erroneous results for calculating 〈σx(t)〉, we
compare SSE to predictions of a weak-coupling theory beyond
the NIBA (“NIBA + Corr”). This approach perturbatively
accounts for all interblip correlations up to first order in α.3,72,73

Details about NIBA + Corr are provided in Appendix B.
In the case of t0 = tI , where the bath initial state is

unpolarized, SSE and NIBA + Corr agree well at weak
dissipation (α = 0.01). For slightly stronger dissipation of
α ∈ {0.05,0.1}, however, the agreement is limited to short
times only. This reflects the fact that blip-blip interactions
become more important at longer times.

Most importantly, in contrast to NIBA + Corr, the SSE
results approach the correct thermodynamic stationary value
〈σx〉∞ at long times, independently of the spin-bath prepara-
tion and for all values of α. The relaxation to the ground state
occurs since spin and bath thermalize. This clearly exemplifies
the strength of the SSE approach. In Fig. 1, we include the
result for 〈σx〉∞ of two different calculations. First, using a
thermodynamic Bethe ansatz for the interacting resonant level
model32 and, second, using a rigorous Born approximation to
order α (Ref. 76) (see Appendixes B and C for the analytical
expressions).

C. Landau-Zener transition

Another important situation where the spin-bath prepara-
tion affects the spin dynamics at long times is the famous
Landau-Zener level crossing problem, where the bias field
varies linearly in time like ε(t) = vt with v > 0. Such a
Landau-Zener sweep of the bias arises in a variety of physical
areas such as molecular collisions,130 chemical reaction
dynamics,15 molecular nanomagnets,131 quantum information
and metrology,42,132–135 and cold-atom systems.136–139

In the absence of dissipation, the Landau-Zener problem
can be solved exactly.140–143 As shown in Fig. 2, the (survival)
probability p(t) for the spin to remain in its initial state |↑〉
shows a jump at the resonance ε = 0 at t = 0. After the
resonance, p(t) quickly converges to its asymptotic value

lim
t→∞ p(t) = exp

[
−π�2

2v

]
≡ plz. (79)

The convergence occurs as soon as ε ∼ �, i.e., on a time scale
t ≈ �/v.

A fundamental question is how the coupling to an environ-
ment affects the dynamics and the asymptotic value of p(t).
Analytical results are only know in certain limits.86,144–147

Quite surprisingly, it was proved rigorously in Refs. 148
and 149 that at zero temperature, the asymptotic transition
probability in the presence of dissipation is still given by

FIG. 2. (Color online) Survival probability p(t) of a free spin for
different sweep velocities v/�2 = {0.5,1,2} and � = 1. After the
jump at ε = 0, p(t) rapidly converges to the classic Landau-Zener
result plz on a time scale t ≈ �/v.

the classic Landau-Zener result plz, which is derived in the
absence of dissipation, provided the spin-bath coupling is
purely longitudinal (i.e., via σ z) and the total system is initially
prepared in its ground state. The proof is valid for any type of
bath.

The proof breaks down, however, for any other initial
spin-bath state. In general, one finds that the initial preparation
affects the asymptotic long-time value of p(t) in the Landau-
Zener sweep. Furthermore, the time scale at which the spin
reaches its asymptotic limit is governed by the bath cutoff
frequency, which is typically orders of magnitude larger
than �.

We exemplify this clearly by investigating a model of a spin
coupled to a single bosonic oscillator mode as arises in cavity
QED setups.150–153 It is described by the Hamiltonian

Hsingle-mode = �

2
σx + vt

2
σ z + σ z

2
λ(b + b†) + ωcb

†b. (80)

In Fig. 3, we observe in this toy model that p(t) undergoes
a sequence of discrete steps separated in time by ωc/v. We

FIG. 3. (Color online) Toy model result for p(t) under a Landau-
Zener sweep for v = 5�2 and different bath initial states. It is only for
ρB (1), i.e., t0 → −∞, that p(t) converges towards plz at long times of
O(ωc/v). Other parameters are ωc = 25�, λ = 8�, tI = −30�−1,
and � = 1.
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change the detuning from an initial value of ε(tI ) = −150 =
−6ωc at tI = −30�−1 to a final value of ε(tf ) = 150� = 6ωc

at tf = 30�−1. This behavior occurs since the system is driven
through a series of avoided crossings, which are separated in
energy by ωc. Each spin state is dressed by a ladder of bosonic
states |nb〉 where nb ∈ N denotes the occupation number of
the bosonic mode.

The probability p(t) only converges towards plz for the
initial preparation t0 → −∞, which corresponds to the initial
bath state ρB(1) at t = tI [see Eq. (72) with only one bosonic
mode here]. The time scale of the convergence is set by the
oscillator frequency: t ∼ ωc/v, and is much larger than �

(compare to Fig. 2). If, on the other hand, the system does
not start out from the ground state of the full Hamiltonian in
Eq. (80), as is the case for t = tI where the initial bath state
reads as ρB(0) = |0〉〈0| with b|0〉 = 0, we observe that p(t)
does not approach plz at long times. The long-time value
of p(t) thus depends on the initial spin-bath preparation.
Of course, the difference in the final values depends on the
coupling strength between spin and bath.

We have also investigated the Landau-Zener sweep for a
spin coupled to an Ohmic bath. This is shown in Fig. 4 for two
different velocities v = {5�2,10�2} and spin-bath coupling
strengths α = {0.2,0.3}. Prominently, we find that the jump at
resonance at t = 0 is strongly suppressed due to the coupling
to the bath. The size of the jump decreases with increasing α.
The series of steps, which occurred for the single-mode bath,
is replaced with a smooth decay of p(t) for the continuous
bath. The decay occurs over a time scale governed by the

FIG. 4. (Color online) Survival probability p(t) of spin coupled
to an Ohmic bath under Landau-Zener sweep. In the upper panel,
the detuning is swept with velocity v = 5�2 and dissipation strength
α = 0.2. In the lower panel, velocity is v = 10�2 and α = 0.3. Other
parameters read as ωc = 50�, � = 1, mmax = 2000, and N ∼ 106.

bath cutoff frequency ωc. In this decay region, which occurs
for intermediate times �/v � t � ωc/v, the spin dynamics is
universal.118

At long times, the system converges to the classic Landau-
Zener result plz. Interestingly, this is true for both initial spin-
bath preparations, at least for sufficiently weak interaction
α = 0.2. While the proof of Refs. 148 and 149 is only valid
for the preparation t0 → −∞, we conclude that significant
differences in the asymptotic limit of p(t) require large spin-
bath couplings, at least α � 0.2. This is in agreement with the
result for α = 0.3 in the lower panel of Fig. 4, where we notice
first small differences in the long-time value of p(t).

In conclusion, the asymptotic long-time value of p(t)
depends on the spin-bath preparation scheme. Convergence
to the classic Landau-Zener result plz occurs if the full system
starts out from the ground state, e.g., for an infinitely long
sweep. Significant differences, however, require sufficiently
strong spin-bath coupling.

VI. CORRELATION FUNCTION

With the SSE method we can also access the spin-spin
autocorrelation function

Cz(t) = 〈σ z(t)σ z(0)〉T − 〈σ z〉2
T , (81)

where σ z(t) is taken in the Heisenberg picture and
〈σ z〉T = Tr(σ ze−βH )/Tr(e−βH ) denotes the equilibrium ex-
pectation value at temperature T with respect to the
full spin-boson Hamiltonian H in Eq. (1). To obtain
limt→∞ Cz(t) = 0, we subtracted the equilibrium value
〈σ z〉T = ε

�b
tanh �b

2T
with �b = (�2

eff + ε2)1/2 and �eff =
[�(1 − 2α) cos(πα)]1/2(1−α)�r .

In the following, we focus on the symmetric autocorrelation
function, which is the real part of Cz(t). The antisymmetric
part χz(t) = −2θ (t)ImCz(t) can be computed within the SSE
approach in a similar way. The symmetric part of the autocor-
relation function Sz(t) = Re Cz(t) can be expressed as154

Sz(t) = Ps(t) + lim
t0→−∞ Qs(t,t0), (82)

where Ps(t) is the bias-symmetric part of P (t) ≡ 〈σ z(t)〉, i.e.,
Ps(t) = 1

2 [P (ε,t) + P (−ε,t)]. The remaining part Qs(t,t0)
in Eq. (82) describes the difference between the equilibrium
autocorrelation function Sz(t) and the single-spin expectation
value Ps(t) (for zero bias) due to the different bath preparation
protocols. We always use tI = 0 in this section.

It is worth pointing out that the initial condition for P (t =
0) = 1 does not correspond to a small perturbation. Therefore,
P (t) can not be expressed in terms of equilibrium correlation
functions.26 The initial spin-bath state is a product state ρ(0) =
|↑〉 ⊗ ρB(1). In contrast, in the case of Sz(t), the system is in
its equilibrium state at t = 0, where spin-bath correlations are
present. These equilibrium spin-bath correlations are described
by the term Qs(t,t0) in Eq. (82).154,155

The initial spin-bath correlations lead to significant differ-
ences between Sz(t) and P (t), especially at low temperatures.
At T = 0, for example, P (t) decays exponentially125 (or
exponentially × power-law124) at long times (see more later
in Sec. VII). In contrast, the long-time decay of the autocorre-
lation is algebraically Sz(t) ∼ t−2 for all α < 1. This includes
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the exactly solvable Toulouse point α = 1
2 , where P (t) =

exp(−γ t) with γ = π�2/2ωc while Sz(t) ≈ −(4/πγ t)2 for
t → ∞.3,154 We note that the fact that Sz(t) ∼ t−2 for α < 1
follows very generally from the Shiba relation,156–159 which
yields limω→0 Sz(ω) = 2πα(χ̄z/2)2|ω| ∼ α|ω|, where χ̄z =
Reχz(ω = 0) is the static susceptibility.

A. Computation of Sz(t) with SSE method

We now show how to calculate Sz(t) using the SSE
approach. The additional term Qs(t,t0) in Eq. (82), that
describes the spin-bath correlations in the equilibrium state
reads explicitly as154

Qs(t,t0) = [− tan2(πα)]
∞∑

n,m=1

(
i�

2

)2n+2m

[2 cos(πα)]n+m

×
∫ t

0
dt2n+2m . . .

∫ t2n+2

0
dt2n+1

∫ 0

t0

dt2n . . .

∫ t2

t0

dt1

×
∑
{ξj }

ξ1ξn+1Q2 cos

⎡
⎣ε

2n+2m∑
j=1

�j tj

⎤
⎦ . (83)

Here, we have assumed a constant bias value ε. For simplicity,
we will focus on ε = 0 in the following, but it is straightfor-
ward to include a finite bias into our formalism.

If there was no explicit dependence on the first blips at
negative and positive times {ξ1,ξn+1}, we could directly use
the SSE formalism developed for P (t) in Sec. IV to calculate
Qs(t,t0). There, we learned that for ε = 0 it is possible to first
perform the sum over sojourn states, and define the stochastic
Schrödinger equation via a three-dimensional matrix V3(τ )
[see Eq. (53)]. In order to keep track of the sign of the initial
blips at negative and positive time {ξ1,ξn+1}, we add a fourth
state to the SSE matrix formalism. For nonzero bias, we would
simply introduce a fifth state in the version of our formalism
with V4(τ ). This additional state serves as the initial state of
the stochastic Schrödinger equation at times t = t0 and t = 0:

|�(t = t0)〉 = |�(t = 0)〉 = (0,0,0,1)T . (84)

The enlarged matrix is obtained from V3(τ ) in Eq. (53) and
now reads as

VQ(τ ) = V0

√
2 cos(πα)

×

⎛
⎜⎜⎜⎝

0 e−ihs (τ ) −eihs (τ ) 0

eihs (τ ) 0 0 eihs (τ )

−e−ihs (τ ) 0 0 e−ihs (τ )

0 0 0 0

⎞
⎟⎟⎟⎠, (85)

with hs(τ ) and V0 given in Eqs. (29) and (37).
We start our simulation at the early time t0, which should in

principle be sent to t0 → −∞. In practice, we have to take this
limit numerically. We use a large negative time t0 < 0, where
|t0| � �−1, and check that the final result does not depend on
t0. This is to ensure that spin and bath have come to equilibrium
by the time t = 0. The final time of our simulation is given
by tmax > 0. As before, we denote the total length by ttot =
tmax − t0, and the rescaled time by τ = (t − t0)/ttot ∈ [0,1].

The function Qs(t,t0) is then calculated from

Qs(t,t0) = − tan2(πα)〈�1(|t0|/ttot)〉S
×〈�1[(t + |t0|)/ttot]〉S , (86)

where 〈�1
(|t0|/ttot

)〉S is the first component of the solution at
time τ = |t0|/ttot of the system of equations

i
∂

∂τ
|�(τ )〉 = VQ|�(τ )〉, (87)

τ ∈ [0,|t0|/ttot], (88)

|�(τ = 0)〉 = (0,0,0,1)T , (89)

averaged over the noise variables S. The function 〈�1[(t +
|t0|)/ttot]〉S , on the other hand, is the first component of the
solution at time τ = (t + |t0|)/ttot of the system of equations

i
∂

∂τ
|�(τ )〉 = VQ|�(τ )〉, (90)

τ ∈ [|t0|/ttot,t/ttot], (91)

|�(τ = |t0|/ttot)〉 = (0,0,0,1)T , (92)

again averaged over the noise S.
Initially, the system is in the sojourn state |�(τ = 0)〉 =

(0,0,0,1)T . Applying VQ once moves the system to one of the
blip states {|↑↓〉,|↓↑〉}. The sign of the first blip ξ1 is taken
care of by the different signs in the fourth column compared
to the first column in Eq. (85). After an even number of spin
transitions, the system has returned to a sojourn state at time
t = 0 corresponding to τ = |t0|/ttot. Projecting onto the first
component �1(τ = |t0|/ttot) assures that we only consider
paths in Eq. (86) that visit a sojourn state at t = 0. This is
required for the symmetric autocorrelation function. The sign
of the first blip ξn+1 at t > 0 is again taken care of by starting
from state (0,0,0,1)T at t = 0 and definition of VQ.

If we were interested in the antisymmetric autocorrelation
function χz(t) = iθ (t)〈[σ z(t),σ z(0)]〉T , we would have to
consider paths that visit a blip state at t = 0. This quantity has
been analyzed within the NRG via a mapping to the anisotropic
Kondo model in Refs. 158 and 159. As in the case of the
calculation of the coherence 〈σx(t〉), if we want to compute
χz(t) we are required to keep all four two-spin basis states
in the SSE calculation and use the four-dimensional matrix
V4(τ ). Apart from this difference, the calculation of χz(t) is
similar to the one for Sz(t).

B. Results for the symmetric autocorrelation function Sz

In Fig. 5, we present results for Sz(t) for different values of
α. Comparing Sz(t) to P (t), we find quantitative differences
already within the first oscillation for α � 0.1. This is a result
of the spin-bath correlations present in the initial state, and
will become more pronounced at longer times. Since we must
simulate the dynamics over a sufficiently long-time interval
at negative times [t0,0] such that the system has reached
equilibrium, the computation of the autocorrelation function
Sz(t) using SSE is limited to shorter times compared to the
computation of P (t).
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FIG. 5. (Color online) Symmetric autocorrelation function Sz(t)
and spin expectation value P (t) ≡ 〈σ z(t)〉 for different values of
α = {0.1,0.15,0.2,0.25}. Inset shows Qs(t,t0) defined in Eq. (83).
Other parameters read as � = 1, ωc = 100�, ε = 0, and t0 = {−30,

−30, −20, −20}�−1. We observe a significant quantitative differ-
ence between Sz(t) and P (t) already over the first oscillation period.
Within the NIBA, both functions are predicted to be identical.

Still, in Fig. 6 we show the Fourier transform of the
symmetric autocorrelation function

Sz(ω) = 1

T

∫ T

−T

dt Sz(t)e
iωt (93)

for different values of α, where we note that Sz(−t) = Sz(t). It
exhibits a peak close to the renormalized tunneling frequency
�r . The peak is universal, i.e., independent of the value of ωc.
As expected, the peak width (height) increases (decreases) with
increasing dissipation strength α. Furthermore, in agreement

FIG. 6. (Color online) Fourier transform of symmetric autocorre-
lation function Sz(ω) for different values of α. Other parameters are
as in Fig. 5. We observe a peak close to the renormalized tunneling
frequency �r (independent of ωc). With increasing dissipation,
the peak width increases while the peak height decreases. The
low-frequency behavior is Sz(ω) ∼ α|ω| as expected from the Shiba
relation (Refs. 156–159).

with the Korringa-Shiba relation,156–159 Sz(ω) shows linear
behavior Sz(ω) ∼ α|ω| at low frequencies.

VII. VARIOUS APPLICATIONS

In this section, we discuss the dynamics of 〈σ z(t)〉 in
a number of different physically relevant situations. It also
serves to illustrate the capability of the SSE method. We
first consider the dynamics of 〈σ z(t)〉 at zero bias ε = 0. We
confirm the validity of SSE by comparison to the NIBA at
short to intermediate times and not too strong coupling, where
the NIBA is valid. We refer to Appendix A for details about
the NIBA.

We also closely investigate the long-time behavior of
〈σ z(t)〉, where the NIBA and corrections to it fail. We exploit
the fact that we can compute 〈σ z(t)〉 with great numerical pre-
cision of 5 × 10−4. Here, we find exponential decay, possibly
with a power law in the denominator, in agreement with a
nonperturbative prediction from conformal field theory125 and
an expansion around the Toulouse point.112,124

We then study the dynamics of 〈σ z(t)〉 for finite static bias
fields ε �= 0. The SSE method is essentially (numerically)
exact for α < 1

2 in the Ohmic scaling regime of �/ωc � 1
for any given bias field ε(t). This makes SSE particularly
useful in parameter regions where no approximation scheme
is known, for instance, at low temperatures T , small bias fields
ε, and intermediate coupling strength α � 0.05. In particular,
we show that a correction to the NIBA for nonzero bias fails
already for α � 0.05. In Appendix B, we include relevant
predictions of this NIBA correction which we refer to as
“NIBA + Corr”.

A. Zero-bias dynamics of 〈σ z(t)〉
In this section, we study the dynamics of 〈σ z(t)〉 for zero

bias ε = 0. We consider both zero and finite temperature
T . We first discuss the dynamics on short-to-intermediate
timescales, where the NIBA works well. We then consider
the long-time dynamics of 〈σ z(t)〉, where NIBA fails. Here,
SSE predicts exponential decay, possibly with a power-law
denominator, which is in agreement with nonperturbative
analytical predictions.112,124,125 The oscillation frequency is
found to be in excellent agreement with predictions from
conformal field theory.125

1. Dynamics at short-to-intermediate times

At zero bias, the NIBA is valid for short-to-intermediate
times and not too strong coupling. We refer to Appendix A
for details. At T = 0, the NIBA predicts that 〈σ z(t)〉 is a
sum of a coherent part Pcoh and an incoherent part Pinc.
The coherent part describes damped coherent oscillations
with frequency � = �eff sin π

2(1−α) and quality factor �/γ =
cot πα

2(1−α) . Surprisingly, the same result for the quality factor
is obtained from a nonperturbative conformal field theory
(CFT) calculation.125 Although the NIBA is a weak-coupling
approximation, it yields the correct quality factor for the
full range of 0 < α < 1

2 . The predicted oscillation frequency,
however, is slightly different from the NIBA and CFT. In
Fig. 7(a), we present SSE results of 〈σ z(t)〉 for various values
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FIG. 7. (Color online) (a) P (t) ≡ 〈σ z(t)〉 from SSE for various
values of α, � = 1, ωc = 100, ε = 0, and T = 0. For a given
value of α, curves corresponding to different values of ωc/� � 1
scale on top of each other in units of the renormalized tunneling
frequency �r . Numerical parameters are mmax = 3000, N = 5 × 104.
(b) Quality factor �/γ of damped oscillations at T = 0. Solid line
shows prediction from CFT and NIBA. (c), (d) Finite-temperature
comparison of 〈σ z(t)〉 between SSE and NIBA at α = 0.1. Other
parameters read as � = 1, ωc = 100�, ε = 0, mmax = 2000, N =
5 × 104. We find good agreement between SSE and NIBA, and
quantitative agreement improves for higher temperatures as expected.
SSE also agrees with NIBA temperature T ∗(α = 0.1) = 2.6�, where
the coherent-to-incoherent crossover occurs.

of α. In Fig. 7(b), we show that the SSE quality factor precisely
matches with this formula.

At finite temperature, the NIBA yields coherent behavior
only below a temperature scale T ∗(α). The coherent regime is
further divided into low temperatures T < �eff and T > �eff.
Above T ∗, the dynamics is fully incoherent. In Appendix A 4,
we provide all relevant NIBA formulas in those parameter
regions. In Figs. 7(c) and 7(d), we show that SSE agrees
well with the NIBA over the full temperature range. The
quantitative agreement improves for higher temperatures and
for smaller values of α (weak coupling).

2. Long-time behavior

Let us now investigate the asymptotic long-time limit of
〈σ z(t)〉, where |〈σ z(t)〉| � 1. Within NIBA, the algebraically
decaying incoherent part Pinc(t) becomes larger than the
exponentially decaying coherent part Pcoh(t) after a time
t � �−1

eff that depends on α. For α = 0.3, for instance, one
finds that |Pinc| > |Pcoh| already after one half of an oscillation.

Corrections of the NIBA that take further neighbor blip-
blip correlations systematically into account modify the form
of the algebraic power law, but all finite-order corrections to
the NIBA predict the occurrence of an algebraically decaying

incoherent part. The prediction of an algebraic decay of 〈σ z(t)〉
at long times is known to be an incorrect prediction of the NIBA
(and its finite-order corrections).3

In contrast to the algebraic decay predicted by the NIBA
and its corrections, the conformal field theory calculation in
Ref. 125 predicts a purely exponential decay of 〈σ z(t)〉 at long
times. The CFT oscillation frequency �LS (and decay rate γLS)
is also slightly different from the NIBA frequency �, and reads
as

�LS = sin

[
πα

2(1 − α)

]
a(α)�eff, (94)

where

a(α) =
�
(

α
2(1−α)

)
√

π�
(

1
2(1−α)

)
[

�
(

1
2 + α

)
�(1 − α)√
π

]1/2(1−α)

.

(95)

In addition, a systematic expansion about the exactly solvable
Toulouse point α = 1

2 − κ with κ � 1 yields an exponentially
decaying 〈σ z(t)〉 since it yields an incoherent part of the
form Pinc(t) = −2κ exp[−�efft/2]/(�efft)1+2κ .124 As shown
in Ref. 124, a systematic expansion in κ shows that interblip
correlations shift the endpoint of the branch cut in 〈σ z(λ)〉,
which is responsible for the algebraic decay of in real time
within the NIBA, from λ = 0 to the nonzero value λ =
−�eff/2. This behavior is also found in a recent study using
real-time renormalization group (RG) and functional RG,112

where an analytical result for intermediate times, which is
valid to O(|1 − 2α|), is reported as well.

In Fig. 8, we present SSE results of |〈σ z(t)〉| for α =
{0.25,0.3} in the long-time limit. We clearly observe exponen-
tial decay up to a numerical accuracy of about 5 × 10−4, and
no sign of a purely algebraic contribution. This agrees with
predictions from CFT (“LS”) (Ref. 125) and the expansion
around the Toulouse point (“Toulouse exp.”).124 It is worth
pointing out that SSE oscillations precisely match with the
CFT frequency scale in Eq. (94). In Fig. 8, we clearly see
that the erroneous algebraic term dominates the solution of the
NIBA and its first-order correction (“NIBA + corrections”)
already after a few oscillations.

B. Dynamics of 〈σ z(t)〉 at nonzero bias

In this section, we discuss the spin dynamics for nonzero
bias |ε| > 0. We focus on the case where |ε| ∼ �. It is well
known that in this case the NIBA breaks down for temperatures

below �b =
√

�2
eff + ε2.3 One possibility to go beyond the

NIBA is to consider interblip correlations up to first order
in the spin-bath interaction strength α. It is thus limited to
weak spin-bath coupling. This approach was introduced in
Refs. 72,73 and we provide all relevant results in Appendix A 4
[see, e.g., Eq. (B1)].

In Figs. 9 and 10, we compare SSE to this weak-coupling
extension of the NIBA (“NIBA + Corr”) for ε = −� and two
different temperatures T = {10−3�,�}. We find that at low
temperatures T = 10−3�, “NIBA + Corr” is limited to quite
small values of α � 0.01. Even for α = 0.05, one observes
large differences to SSE. At larger temperatures T = �,
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FIG. 8. (Color online) Long-time behavior of |〈σ z(t)〉| computed
with different methods. Upper panel shows α = 0.25, lower one α =
0.3. Other parameters are � = 1, ωc = 50, ε = 0, T = 0, mmax =
1000, and N = 2 × 107. “NIBA + corrections” refers to P (1)(�efft)
of Ref. 26, which is a correction to the NIBA that takes nearest-
neighbor blip-blip correlations into account. It improves the NIBA at
shorter times, but also fails at longer times. “LS” refers to the CFT
prediction of Lesage and Saleur (Ref. 125) and “Toulouse exp.” result
from an expansion around the Toulouse point (Ref. 124). Within
numerical accuracy, our results are in agreement with exponential
decay, possibly with a power-law in the denominator (Refs. 112,
124). We can certainly exclude purely algebraic contributions. SSE
precisely confirms the CFT frequency scale �LS.

the damping is much stronger and the qualitative agreement
improves. This is similar to the zero-bias case. The overall
agreement between SSE and “NIBA + Corr” at nonzero bias
is worse than the agreement between SSE and NIBA at zero
bias. This makes the SSE approach a valuable tool to obtain
the dynamics in the presence of nonzero bias, especially at
smaller temperatures.

VIII. SUMMARY AND OPEN QUESTIONS

We want to end with a summary and a discussion of a
number of open questions related to the SSE method and
its application to problems beyond the spin-boson model.
The spin-boson model finds abundant applications in physics
from quantum computing to the study of dissipation-induced
quantum phase transitions. It is realized in a variety of
experimental settings, most notably tunable mesoscopic or
cold-atom setups.

In this article, we have exposed in detail a nonperturbative
numerical method that allows us to exactly solve for the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

α=0.01 (SSE)
α=0.01 (NIBA+Corr)

α=0.05 (SSE)
α=0.05 (NIBA+Corr)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12

α=0.1 (SSE)
α=0.1 (NIBA+Corr)

α=0.15 (SSE)
α=0.15 (NIBA+Corr)

FIG. 9. (Color online) Comparison of 〈σ z(t)〉 for nonzero bias
ε = −� and low temperature T = 10−3� between a weak-coupling
extension of the NIBA (“NIBA + Corr,” dashed line) and SSE (solid
line). Although both solutions agree for α = 0.01, we observe
significant deviations already for α = 0.05. This is expected since
the correction to the NIBA takes the interblip correlations only up
to first order in α into account. Other parameters are ωc = 200�,
mmax = 3000, and N = 4.5 × 106.

spin dynamics 〈σα(t)〉 in the Ohmic spin-boson model for
α < 1

2 . The method can be applied provided the bath cutoff
frequency is the largest frequency scale in the problem
ωc � �. The underlying idea of the SSE approach is very
general and consists of employing Hubbard-Stratonovich
identity to transform the quadratic and time-nonlocal action
of the spin into a linear and time-local action. The crucial
advantage is that the functional integral over the spin path
amplitudes can now be exactly calculated by solving a linear
Schrödinger-type equation. The price to pay is the integration
over the Gaussian distributed Hubbard-Stratonovich variables
{sm}. Since the Schrödinger equation contains the variables
{sm}, this integration corresponds to a numerical average over
different Schrödinger equation solutions.

The SSE method exhibits very nice convergence properties
for the Ohmic model with ωc � � and α < 1

2 since the random
height function hs(t) is purely real in this case. As a result,
each solution of the stochastic equation is bounded for zero
bias. Even for nonzero bias ε �= 0, the individual solutions are
well behaved and, for example, do not grow exponentially. The
situation is different, however, for other bath spectral functions
such as a sub-Ohmic bath. Here, the random height function
hs(t) acquires an imaginary part, which leads to such bad
convergence that the approach becomes impracticable.

We obtain 〈σα(t)〉 as a statistical average over solutions of
a time-dependent Schrödinger equation that is easily solved
numerically by a standard Runge-Kutta solver. Therefore, we
can easily consider a time-dependent external bias field ε(t).
Any nonpathological time dependence can be implemented.
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FIG. 10. (Color online) Comparison of 〈σ z(t)〉 for nonzero bias
ε = −� and temperature T = � between “NIBA + Corr” (dashed
line) and SSE (solid line). For this larger value of temperature, the
qualitative agreement between the two approaches has improved
compared to Fig. 9. This is expected as the average blip length
reduces with temperature (Ref. 26). Other parameters are ωc = 200�,
mmax = 3000, and N = 4.5 × 106.

As an example, in addition to constant external bias, we have
investigated the case of a linear Landau-Zener sweep of the
detuning.

Finally, in contrast to earlier stochastic approaches, our
method allows us to take the initial spin-bath preparation
exactly into account. In particular, a polarized bath initial state
can have substantial effects on the spin dynamics, as we have
shown for 〈σx(t)〉, for example.

An interesting further direction is to apply this general
idea115,116 of using Hubbard-Stratonovich transformation to
obtain a time-local linear action for the impurity degree of
freedom to other impurity problems such as the Kondo model,
the resonant level model, or the Holstein model.160 The method
could also be generalized to the case of quantum transport
through a quantum dot in the Coulomb blockade regime,161

where quantum Monte Carlo techniques on the real-time
Keldysh contour have been implemented as well.93–96 Another
possible extension of the SSE formalism is to consider a
spin with S > 1

2 . This increases the number of two-spin basis
states, which are necessary, and this approach is thus limited
to S ∼ O(1) in practice.
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APPENDIX A: NONINTERACTING BLIP
APPROXIMATION (NIBA)

In this section, we derive and discuss the well-known
noninteracting blip approximation.3,26 It is essentially a short-
time and weak-coupling approximation. It becomes exact in
the Markovian limit of an Ohmic bath at high temperatures.
Neglecting blip-blip interactions simplifies the functional
integral expression in such a way that it can be solved
analytically via Laplace transformation. Even if the inverse
transformation to real time can not be performed exactly, much
can be learned from an investigation of the analytic structure
(branch points, branch cuts) in Laplace space.

The NIBA has many shortcomings. Since it is a short-time
approximation, it always fails at long times (see Sec. IV B). In
addition, the NIBA can only be used for the spin component
〈σ z(t)〉. It can not be used for calculating the coherence 〈σx(t)〉
and the spin autocorrelation function Sz(t) (except at large
temperatures), where it fails even at weak spin-bath coupling.
For 〈σ z(t)〉, it gives incorrect results at low temperatures and
nonzero bias, except at very large bias, where it can be justified
again.

In all cases where the NIBA fails, blip-blip interactions are
important. A weak-coupling extension to the NIBA that takes
blip-blip interactions to first order into account in α is derived
in Refs. 3,72, and 73 and is discussed in Appendix B.

1. Derivation from functional integral expression

The starting point is the exact expression for the influence
functional Fn[{�j },{ϒj },{tj }] = Q1Q2 with Q1,2 given in
Eqs. (12) and (13):

Q1 = exp

⎡
⎣ i

π

2n∑
j>k�0

�jϒkQ1(tj − tk)

⎤
⎦ , (A1)

Q2 = exp

⎡
⎣ 1

π

2n∑
j>k�1

�j�kQ2(tj − tk)

⎤
⎦ . (A2)

The Q1 part greatly simplifies in the scaling limit �/ωc → 0
for α < 1

2 since one may use Q1(t) = π2αθ (t). Summing over
the sojourn variables {η1, . . . ,ηn−1} results in Eq. (31):

Q1 = exp

[
iπα

n−1∑
k=0

ξk+1ηk

]
= [2 cos(πα)]n−1eiπαξ1 . (A3)

For zero bias ε = 0 and if we are interested in calculating
〈σ z(t)〉, where the system ends in a sojourn state ηn, the
real-time functional integral expression for p(t) in Eq. (19) is
invariant under the simultaneous reversal of the sign of all blip
variables {ξ1, . . . ,ξn} → {−ξ1, . . . , − ξn}. Therefore, only the

014305-17



PETER P. ORTH, ADILET IMAMBEKOV, AND KARYN LE HUR PHYSICAL REVIEW B 87, 014305 (2013)

symmetric part cos(πα) of the exponential eiπαξ1 contributes
to 〈σ z(t)〉, and we find Q1 = 2n−1[cos(πα)]n.

The Q2 part of the influence functional in Eq. (76) contains
the interactions between all blips. The NIBA consists of
neglecting all blip-blip interactions apart from the blip self-
interactions. This relies on the assumption that the average
time that the system spends in a sojourn state is much longer
than the average time it spends in a blip state.26 The expression
of Q2 then becomes

QNIBA
2 = exp

⎡
⎣− 1

π

n∑
j=1

Q2(t2j − t2j−1)

⎤
⎦ . (A4)

A a result, the influence functional does not depend on the blip
and sojourn variables {ξj ,ηj } anymore:

Fn[{tj }] = Q1QNIBA
2

= 2n−1[cos(πα)]n
n∏

j=1

exp

[
− 1

π
Q2(t2j − t2j−1)

]
.

(A5)

The spin dynamics 〈σ z(t)〉 ≡ P (t) = 2p(t) − 1 follows with
Hn = 1 for zero bias from Eq. (19) as

〈σ z(t)〉 =
∞∑

n=0

[−�2 cos(πα)]n
∫ t

0
dt2n . . .

∫ t2

0
dt1

×
n∏

j=1

exp

[
− 1

π
Q2(t2j − t2j−1)

]
, (A6)

where we have used that
∑

{ξj } = 2n. One can solve Eq. (A6)

by Laplace transformation26

〈σ z(λ)〉 =
∫ ∞

0
dt e−λt 〈σ z(t)〉. (A7)

If we define the function

f (t) = �2 cos(πα) exp

[
− 1

π
Q2(t)

]
, (A8)

one finds after rearranging the order of integration

〈σ z(λ)〉 =
∞∑

n=0

(−1)n
∫ ∞

0
dt

∫ ∞

0
dt1 . . .

∫ ∞

0
dt2n

× e−λ(t+t1+t2+···+t2n)
n∏

j=1

f (t2j )

=
∞∑

n=0

(−1)n
[f (λ)]n

λn+1
= 1

λ + f (λ)
, (A9)

where f (λ) is the Laplace transform of f (t). The solution
in the time domain is obtained from an inverse Laplace
transformation via the standard integral along the Bromwich
contour C (Ref. 162):

〈σ z(t)〉 = 1

2πi

∫
C

dλ eλt 〈σ z(λ)〉. (A10)

Even if the inverse transformation can not be performed
explicitly, much can be inferred from a study of the analytical
properties of 〈σ z(λ)〉, i.e., its singularities, branch cuts, and
residua.

2. Derivation using Heisenberg equations of motion

In this section, we present an alternative and physically
more transparent derivation of the NIBA, which was derived
in Ref. 128. It starts from the polaron transformed spin-boson
Hamiltonian

H̃ = U †HU = �

2
(σ+ei� + H.c.) +

∑
k

ωkb
†
kbk, (A11)

where H is defined in Eq. (1) and the unitary transformation
reads as U = exp(− 1

2σ z�) with � = −i
∑

k
λk

ωk
(b†k − bk). The

Heisenberg equation of motion for σ z(t) then reads as

σ̇ z(t) = −i�σ+(t)ei�(t) + H.c. . (A12)

It contains σ±(t) which is calculated to

σ+
j (t) = − i�j

2

∫ t

0
ds σ z

j (s)e−i�(s), (A13)

and σ−
j = (σ+

j )∗. Inserting Eq. (A13) into (A12) yields

σ̇ z(t) = −�2

2

∫ t

0
ds[σ z(s)ei�(t)e−i�(s) + H.c.]. (A14)

We now employ two approximations to recover the NIBA.
First, we assume that the time evolution of the bath operators
is governed by the free bath Hamiltonian HB =∑k ωkb

†
kbk .

The reduced density matrix of the bath remains unperturbed
by the spins. Second, we trace out the bath degrees of freedom
in a weak-coupling sense by writing

TrB[ei�(t)e−i�(s)] = exp

{
1

π
[iQ1(t − s) − Q2(t − s)]

}
,

(A15)

which includes the bath correlation functions defined in
Eqs. (14) and (15). The equation of motion for the spin,
averaged over the bath, thus becomes〈

σ̇ z
j (t)
〉

= −�2
j

∫ t

0
ds

{〈
σ z

j (s)
〉
cos

[
Q1(t − s)

π

]
e−Q2(t−s)/π

}
.

(A16)

Using the definition of f (t) in Eq. (A8), this can be written as

〈
σ̇ z

j (t)
〉+ ∫ t

0
dsf (t − s)

〈
σ z

j (s)
〉 = 0. (A17)

If we apply a Laplace transformation, we thus recover the
result for 〈σ z(λ)〉 within the NIBA, which we have derived in
the previous Sec. A 1 in Eq. (A9):

〈σ z(λ)〉 = 1

λ + f (λ)
. (A18)

3. Zero-temperature dynamics

In this section, we discuss the predictions of the NIBA at
zero temperature. At T = 0, the Ohmic bath correlation func-
tion reads as Q2(t) = πα ln[1 + ω2

c t
2]. The Laplace transform

of f (t) in Eq. (A8) is calculated to

f (λ) = �eff(�eff/λ)1−2α. (A19)
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It contains the effective tunneling element

�eff = [�(1 − 2α) cos(πα)]1/2(1−α)�r, (A20)

where the renormalized tunneling element is defined as

�r = �(�/ωc)α/(1−α). (A21)

Both �eff and �r are smaller than the bare value � because
spin transitions are suppressed in the presence of a polaronic
cloud of bath modes. From Eq. (A9), we find that the function
〈σ z(λ)〉 has a complex conjugate pair of simple poles at

λ1,2 = −γ ± i� = �eff exp

[
±i

π

2(1 − α)

]
, (A22)

at which point λ1,2 + f (λ1,2) = 0. It also has a branch cut
along the negative real axis, which ends at the branch point
λ = 0. We note that the branch cut is absent for α = 0 and 1

2 .
In the time domain, the complete solution within the NIBA
thus reads as

〈σ z(t)〉 ≡ P (t) = Pcoh(t) + Pinc(t). (A23)

The poles give rise to damped coherent oscillations of the form

Pcoh(t) = 1

1 − α
e−γ t cos �t (A24)

with frequency � = �eff sin π
2(1−α) and decay rate γ =

�eff cos π
2(1−α) . The quality factor of the oscillations is thus

independent of �eff and reads as

�

γ
= cot

πα

2(1 − α)
. (A25)

The branch cut, on the other hand, yields a (negative)
incoherent contribution26

Pinc(t) = − sin 2πα

π

∫ ∞

0
dz

z2α−1e−z�efft

z2 + 2z2α cos 2πα + z4α−2
.

(A26)

The incoherent part dominates the dynamics at long times
�efft � 1, where it behaves like

Pinc(t) ∼ 1

(�efft)2−2α
. (A27)

This is known to be an incorrect prediction of the NIBA.3

Nevertheless, for short to intermediate times, the NIBA makes
two correct predictions. First, that the dynamics is universal,
i.e., P (t) is a function of the dimensionless scaling variable y =
�efft only. Results of P (t) for different values of ωc collapse on
top of each other, if they are plotted as a function of y = �efft .
Second, the quality factor of the oscillations in Eq. (A25)
exactly agrees with results from conformal field theory in the
full range of 0 < α < 1

2 .125

4. Finite-temperature dynamics

In this section, we discuss the predictions of the NIBA at
finite temperature. We include this section for completeness
(it mostly follows Ref. 3). In general, the quality of the NIBA
improves with increasing temperature since the average blip
length decreases for larger temperatures. This follows directly

from inserting the finite-temperature bath correlation function

Q2(t) = πα ln
(
1 + ω2

c t
2
)+ 2πα ln

(
β

πt
sinh

πt

β

)
(A28)

into QNIBA
2 in Eq. (A4).

The Laplace transform of f (t) at T > 0 is calculated to3,26

f (λ) = �eff

(
β�eff

2π

)1−2α
h(λ)

α + (βλ)/(2π )
(A29)

with

h(λ) = �(1 + α + βλ/2π )

�(1 − α + βλ/2π )
. (A30)

The branch point of f (λ)|T =0 at λ = 0 with the corresponding
branch cut along the negative real axis, which occurred at
T = 0, turns into an infinite number of simple poles at
finite temperatures. The poles λn are located on the negative
real axis in intervals − 2π

β
(n + α) < λn < 2π

β
(−n + α) with

n = 1,2, . . . . The spacing of the poles grows linearly with
temperature. One can show3,26 that the resulting contribution
Pinc(t) =∑n An exp(λnt) is still negative, like the contribution
of the branch cut at T = 0, and that this part may be neglected
for weak dissipation.

The dynamics is dominated by the behavior of the two
simple poles of 〈σ z(λ)〉 as a function of temperature. The poles
λ1,2(T ) = −γ (T ) ± i�(T ) move toward the negative real axis
for increasing temperature. At a temperature of T = T ∗(α),
they hit the real axis, where

T ∗ = �eff

2π

{
�(α)

α�(1 − α)

×[1 + πα cot(πα) + 2
√

W (α)]

}1/2(1−α)

. (A31)

For weak dissipation α � 1, one finds T ∗ ≈ �r

πα
. We have used

the definitions

W (α) = πα cot(πα) − α2g2(α), (A32)

g2(α) = 1
2

[
ψ ′(1 − α) − ψ ′(1 + α) − g2

1

]
, (A33)

g1(α) = α−1 − π cot(πα). (A34)

Here, ψ ′(z) is the first derivative of the digamma function
ψ(z).163 The temperature T ∗ separates the regime, where
P (t) exhibits coherent oscillations (T < T ∗) from the regime,
where it exhibits incoherent decay (T > T ∗).

Specifically, as long as T � �eff, one finds that λ1,2(T ) =
−γ (T ) ± i�(T ) with3

�(T ) = �eff{1 + α[Re ψ(iβ�eff/2π ) − ln(β�eff/2π )]},
(A35)

γ (T ) = π

2
α�eff coth(β�eff/2). (A36)

For larger temperatures T � �eff, but potentially still T <

T ∗, one can expand h(λ) in Eq. (A29) up to second order in λ.
From λ + f (λ) = 0, we find the poles λ1,2(T ) by solving3

(1 − g2u)x2 + (α + g1u)x + u = 0. (A37)
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Here, we have introduced x = βλ/2π , u = (β�eff/

2π )2−2αh(0). The two poles are complex conjugates λ1,2 =
−γ ± i� for T < T ∗. On the other hand, for T > T ∗ they
are real and negative λ1,2 = −γ1,2 and lie in the interval
(−2πT α,0). As temperature is increased, both poles move
in opposite directions. While one of them converges for
large temperatures toward λ1(T � �eff) → 0, the other one
converges toward λ2(T � �eff) → −2πT α.

The real-time dynamics of the spin is again obtained from
Laplace inversion. In the coherent regime �eff � T < T ∗,
we find that 〈σ z(t)〉 exhibits damped oscillations with {�,γ }
defined by the location of the pole, and φ = −| tan−1(γ /�)|
being an initial phase shift. In the incoherent regime T > T ∗,
we obtain the dynamics

〈σ z(t)〉 = γ1

γ1 − γ2
e−γ2t − γ2

γ1 − γ2
e−γ1t , (A38)

where γ1 > γ2. Fairly above T ∗, the prefactor of the larger
decay rate term, which reads as γ2/(γ1 − γ2), becomes very
small. The decay is thus dominated by the smaller decay rate
γ2, which shows an asymptotic temperature dependence of3

γ2(T ) =
√

π�(α)

2�(α + 1/2)

�2
r

T

(
πT

�r

)2α

∼ T 2α−1. (A39)

In the main text, we compare SSE to these NIBA predictions
and find good agreement at short to intermediate times. As
expected, the quantitative agreement enhances for increasing
temperatures. The NIBA fails at longer times, nonzero-bias
fields, and off-diagonal elements of the reduced density matrix,
i.e., 〈σx(t)〉.

APPENDIX B: WEAK-COUPLING EXTENSION
TO THE NIBA (NIBA + CORR)

The NIBA breaks down for finite bias fields ε �= 0 at
temperatures below �b =

√
�2

eff + ε2.3 Even for zero bias, the
NIBA can not be used for calculating the coherence 〈σx(t)〉.
First-order blip-blip interactions are crucial in those situations.

In this section, we state for completeness results of an
approach that goes beyond the NIBA which was introduced in
Refs. 72 and 73. This weak-coupling extension of the NIBA
(“NIBA + Corr”) considers the interblip correlations up to first
order in the spin-bath interaction strength α. It is therefore
limited to weak spin-bath coupling, i.e., small values of α � 1.

The first-order interblip contribution to the influence func-
tional can be exactly calculated and yields

〈σ z(t)〉 = 〈σ z〉∞ +
[

ε2

�2
b

− 〈σ z〉∞
]
e−γr t +

{
�2

eff

�2
b

cos �t

+
[
γrε

2 + γ�2
eff

�3
− γrP∞

�

]
sin �t

}
e−γ t , (B1)

with nonzero long-time value

〈σ z〉∞ = ε

�b

tanh
�b

2T
(B2)

and

�b =
√

�2
eff + ε2, (B3)

� =
√

�2
b + 2α�2

eff[Re ψ(i�b/2πT ) − ln(�b/2πT )], (B4)

γ = γr

2
+ 2παε2T

�2
b

, (B5)

γr = πα
�2

eff

�b

coth
�b

2T
. (B6)

Here, ψ(z) is the digamma function. For the coherence 〈σx(t)〉,
one finds

〈σx(t)〉 =
[
−ε�eff

��2
cos �t + b2 sin �t

]
e−γ t

+
[
ε�eff

��2
− 〈σx〉∞,wc

]
e−γr t + 〈σx〉∞,wc , (B7)

with long-time value

〈σx〉∞,wc = �2
eff

��
tanh

�

2T
(B8)

and

b2 = �2
eff

��

[
πα + ε

γr − γ

�2

]
− γr〈σx〉∞,wc

�
. (B9)

APPENDIX C: RIGOROUS BORN APPROXIMATION
RESULTS OF LOSS AND DIVINCENZO

We also compare the long-time limit of our results for the
coherence 〈σx(t)〉 with a formula derived in Ref. 76 by Loss
and DiVincenzo using an approximation scheme that does not
apply any other approximation than the Born approximation.
It is thus “exact” to first order in α. They find the steady-state
value of the coherence

〈σx〉∞,LDV = �

E
− α

[
−�3

E3
+
(
C − ln

ωc

E

)(
�3

E3
− 2�

E

)]
,

(C1)

with E = √
�2 + ε2 and Euler-Mascheroni number C, which

agrees perfectly with the Bethe ansatz prediction and our
numerical SSE result for α � 0.1.
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