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Quantum collapses and revivals of matter wave in dynamics of symmetry breaking
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Quantum processes can be described in terms of a quasiprobability distribution (the Wigner distribution)
analogous to the phase-space probability distribution of the classical realm. In contrast to the incomplete glimpse
of the wave function that is achievable in a single shot experiment, the Wigner distribution, accessible by quantum
state tomography, reflects the full quantum state. We show that during the fundamental symmetry-breaking
process of a generic quantum system, with a symmetry-breaking field driving the quantum system far from
equilibrium, the Wigner distribution evolves continuously with the system undergoing a sequence of revivals
into the symmetry-unbroken state, followed by collapses onto a quasiclassical state akin to the one realized in
infinite-size systems. We show that generically this state is completely delocalized both in momentum and in real
space.
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I. INTRODUCTION

Spontaneous symmetry breaking causes a macroscopic
body under equilibrium condition to have less symmetry than
its microscopic building blocks. Probably the phenomenon
of superconductivity is the most spectacular example of the
symmetry breaking which a macroscopic body spontaneously
undergoes. Of course, this is not the only one. Antiferro-
magnets, liquid crystals, and other states of matter obey this
rather general scheme of broken symmetries. The general
idea is that when the number N of microscopic quantum
constituents which, depending on the system, corresponds
to the number of Cooper pairs, particles, or spins goes to
infinity, the matter undergoes a “phase” transition to a state
in which the microscopic symmetries are violated.1–5 In the
context of quantum magnetism,6–8 the macroscopic classical
state has been described as a combination of “thin spectrum”
states emerging in the N → ∞ limit because of the singular
nature of the thermodynamic limit. The same description
has been shown to apply also to the cases of quantum
crystals, Bose-Einstein condensates, and superconductors.9–13

The theory of spontaneous symmetry breaking explains the
stability and rigidity of states which are not eigenstates of the
underlying microscopic Hamiltonian, but it makes no assertion
on whether or how a symmetry-broken ground state can evolve
out of the symmetric state in a closed quantum system. To
investigate this, one can perform a gedanken experiment in
which a symmetry-breaking perturbation is slowly switched
on in an arbitrary large but finite system initially prepared in
a fully symmetric state. Using a particular antiferromagnetic
model system (the Lieb-Mattis model6), it has been recently
shown that the corresponding quantum dynamics is dominated
by highly nonadiabatic processes triggering the appearance of
a symmetric nonequilibrium state that recursively collapses at
punctured times into a symmetry-broken state.14

Here, we shed light on this far-from-equilibrium symmetry-
breaking process that is so ubiquitous in physics (in the
formation of crystalline matter, atomic condensates, Josephson
junction arrays, and local pairing superconductors to name
but a few) by introducing quantum state tomography. In

complete analogy with medical diagnostics where three-
dimensional images of the inner part of a body can be
extracted from NMR or x rays, two-dimensional images
obtained at different directions, quantum state tomography
determines a quasiprobability distribution in phase space from
only position (Q) or momentum (�) measurements.15,16 This
quasiprobability distribution has been introduced by Wigner in
his phase-space formulation of quantum mechanics. For a pure
quantum state, the Wigner distribution W (Q,�) is defined
in terms of the position wave function �(Q) as W (Q,�) =
π−1

∫ ∞
−∞ ��(Q − S)�(Q + S)e−2i�SdS (in h̄ = 1 units) and

retains the marginal probability distributions17

∫
W (Q,�)d� = |�(Q)|2,∫
W (Q,�)dQ = |�(�)|2.

By detecting the position of many objects prepared in the
same quantum state yields the spatial distribution of the wave
function |�(Q)|2 as a spacelike shadow of the Wigner distri-
bution. This, in turns, allows for a tomographic reconstruction
of W (Q,�) once various shadows at different directions in
phase space have been observed.18

We unravel these snapshots in the dynamics of symmetry
breaking by using the paradigmatic example of a harmonic
crystal to show that the quantum dynamics is generically
characterized by the appearance of revivals of the symmetric
ground-state wave function followed by collapses towards a
quasiclassical state akin to the symmetry-broken ground state
of infinite-size system. In this quasiclassical state, however, the
matter wave has maximum uncertainty both in total position
(precisely as in the symmetric translational-invariant ground
state) and in total momentum. The exceptions are punctured
times which render a Dirac comb of symmetry-broken states.14

Interestingly, we find this sequence of collapses/revivals of the
ground-state wave function to occur on a characteristic time
scale set by Zurek’s equation of nonequilibrium quantum phase
transition.19
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II. SPONTANEOUS SYMMETRY BREAKING AND THE
THIN SPECTRUM

The Nambu-Goldstone theorem20,21 guarantees the exis-
tence of low-energy gapless collective excitations in systems
with spontaneously broken continuous symmetries. The low-
energy Hamiltonian for these normal modes, which depending
on the particular system at hand correspond to phonons, spin
waves, or Bogoliubov’s excitations, can be always recast in
the form

H =
∑

k

ωk b
†
k bk, (1)

where ωk indicate the frequencies of the Goldstone mode
excitations vanishing in the long-wavelength limit. If there is
a spontaneously broken symmetry, the motion along the con-
tinuous symmetry axis characterizing the quantum mechanics
of the macroscopic body as whole can not be of the form12

b†b, but it will be either given by �2/(2I ) (as in crystals and
Josephson junction arrays) or Q2/(2I ) (e.g., antiferromagnets
and local pairing superconductors)10,13 where Q and � are the
coordinate and the conjugate momentum operators along the
symmetry axis, whereas the parameter I depends on the total
number of microscopic quantum constituents and diverges in
the thermodynamic limit where N → ∞. This is explicitly
manifest by considering the specific example of a harmonic
crystal with Hamiltonian

H =
∑

j

p2
j

2m
+ κ

2

∑
j

(xj − xj+1)2, (2)

where the index j labels the N atoms in the lattice which
have mass m, momentum pj , and position xj . The harmonic
potential among neighboring atoms is parametrized by the
constant κ . Let us now define the bosonic annihilation
and creation operators bj = [C xj + ipj/C]/

√
2 and b

†
j =

[C xj − ipj/C]/
√

2 where C = (2 m κ)1/4. In momentum
space, the Hamiltonian (2) reduces to

H =
√

κ

2m

∑
k

(
Akb

†
kbk + Bk

2
(b†kb

†
−k + bkb−k) + 1

)
,

where Ak = 2 − cos(ka), Bk = − cos(ka), a is the lattice
constant, and we have set h̄ = 1. This Hamiltonian is not
diagonal since the terms b

†
kb

†
−k and bkb−k create and annihilate

two bosons at the same time. One can get rid of them by
performing a canonical Bogoliubov transformation. However,
the parameters in the Bogoliubov transformation diverge as
k → 0 and thus the canonical transformation is not well
defined.10 This implies that one should investigate separately
the k = 0 component

Hk=0 =
√

κ

2m

[
1 − 1

2
(b†0 − b0)2

]
.

This part of the Hamiltonian describes the fact that the quantum
crystal carries a kinetic energy associated with the combined
mass of all N atoms. Going back to real space, it reads as

Hk=0 = �2

2 m N
, (3)

where � = ∑
j pj is the total momentum of the entire system

and we left out a negligible constant. The ground state of this
Hamiltonian has total zero momentum: it has no uncertainty in
total momentum and maximum uncertainty in total position,
thereby implying that the translational symmetry is unbroken.
At finite N , the excitations over the ground state respecting
the symmetry give rise to a tower of ultralow-energy states
that form the so-called “thin spectrum.”10,11 It is “thin”
because it contains states that are of such low energy that
their contribution to thermodynamic quantities vanish in the
thermodynamic limit. Nevertheless, when N → ∞, the thin
spectrum excitations collapse to form a degenerate continuum
of states. Within this continuum, even a vanishingly small
symmetry-breaking perturbation is enough to couple different
thin spectrum states thereby stabilizing the symmetry-broken
ground state. To show this, let us take into account the effect
of a symmetry-breaking perturbation (a pinning potential for
the individual atoms) rendering a symmetry-breaking Hamilto-
nianHSB = −V

∑
j cos(2πxj/a)/(2π )2. For small deviations

of the atoms from their mean positions, the zero-momentum
term in lowest order is given10 by HSB = Bx2

tot /(2N ) where
xtot = ∑

j xj and B = V/a2. This, in turn, implies that the
collective behavior of the harmonic crystal as a whole is
governed by the harmonic-oscillator Hamiltonian

Hc = �2

2 N
+ B N Q2

2
, (4)

where for simplicity we have set m = 1 and we introduced the
center-of-mass coordinate Q = xtot /N satisfying the canoni-
cal commutation relation [Q,�] = i. The quantum of energy
of this Hamiltonian �E ∝ √

B and the excitations over the
ground state realize a “dual” thin spectrum. The ground-state
wave function corresponds to a Gaussian wave packet for the
collective coordinate Q of the form �0(Q) ∝ e−Q2/2L2

with
width L ∝ (N

√
B)−1/2. For a vanishing symmetry-breaking

field and a finite number of atoms, we find that the ground-state
wave function obviously collapses onto the symmetric ground
state of the microscopic Hamiltonian. However, by taking
first the thermodynamic limit, the center-of-mass position
becomes completely localized even if at the end the symmetry-
breaking field is set to zero. Therefore, one finds that the
system is in a stable state which is not an eigenstate of the
underlying microscopic Hamiltonian: the system is inferred
to spontaneously break the symmetry. Strictly speaking, only
truly infinite-size systems are allowed to spontaneously break
the symmetry. A large, but not infinitely large crystal requires a
finite symmetry-breaking field to stabilize a symmetry-broken
state over the symmetric ground state of the microscopic
Hamiltonian.

III. QUANTUM DYNAMICS OF SYMMETRY BREAKING

Let us then consider such a large but finite system with a
pinning potential whose strength is switched on linearly in time
as B(t) = δt with ramp rate δ. At initial time t0, we consider
a finite symmetry-breaking perturbation B(t0) ≡ B0 [cf. inset
of Fig. 1(b)] and the wave function of the system in the
corresponding ground state. We stress that the choice of a finite
symmetry-breaking perturbation at initial time is essential
in order to have a cutoff guaranteeing the continuity of the
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FIG. 1. (Color online) (a) Sketch of the behavior of the relaxation
time (continuous line) as compared to the typical time on which
the Hamiltonian is changed t determining the freeze-out time of
Zurek’s equation. (b) The corresponding regimes for the dynamics
of symmetry breaking in the t − t0 plane. Times have been measured
in units of the freeze-out time t̂ . The inset shows the setup of the
symmetry-breaking field.

wave-function basis. Later on we will consider the limit B0 →
0 corresponding for finite N to an initial completely symmetric
ground state with gapless dual thin spectrum excitations. The
inclusion of a cutoff B0 renders two distinct regimes of the
quantum dynamics. Whenever the characteristic relaxation
time, which is set by the size of the gap among the ground state
and the dual thin spectrum excitations, τ (t) = 1/�E(t) =
(δt)−1/2 is much smaller than the typical time scale t on which
the Hamiltonian is changed, the system is able to react to the
changing Hamiltonian thereby rendering an adiabatic passage.
In the opposite regime τ (t) � t , reflexes of the system are so
deteriorated that the state can be considered effectively frozen
and the dynamics is impulselike. Clearly, the crux of this story
is the instant where the dynamics changes from impulse to

adiabatic; it is determined by Zurek’s equation19 τ (t̂) ≡ t̂ and
defines the so-called freeze-out time t̂ ∝ δ−1/3 [cf. Fig. 1(a)].
By considering an initial time t0 � t̂ , the entire evolution will
be thus nearly adiabatic. In this case, fluctuations of the center-
of-mass coordinate decrease continuously in time as �Q2 =
〈Q2〉 − 〈Q〉2 ∝ [N

√
δt]−1. However, for the dynamics of

symmetry breaking to be adiabatic, the ramp rate δ is seen
to be bounded by δ < B

3/2
0 . Henceforth, for a vanishing ramp

rate δ at finite values of B0, we recover a quasiadiabatic time
evolution. But, taking the B0 → 0 limit at finite ramp rate δ, the
dynamics will start in the impulse regime even if at the end the
ramp rate is set to zero: the adiabatic limit can never be reached
for a sufficiently small B0. This is in agreement with the recent
finding22 that adiabatic processes in low-dimensional systems
with broken continuous symmetries are absent.

In the same spirit of Ref. 14, to analyze the dynamics of
symmetry breaking in the strongly nonadiabatic regime, we
first make use of the adiabatic-impulse (AI) approximation
which underlies the Kibble-Zurek theory23–25 of nonequilib-
rium phase transition. In the AI scheme,26 the initial state
is considered effectively frozen in the impulselike regime
t0 < t < t̂ changing only by a trivial overall phase factor.
At freeze-out time, the system therefore reaches a state
that is a superposition of dual thin spectrum excitations
|�0(Q,t0)〉 = ∑

n cn |�n(Q,t̂)〉 where the coefficients cn are
nonzero only for even values of the quantum number n.
The evolution at t > t̂ can be considered to be adiabatic and
therefore the dynamics of the wave function is governed by
|�(Q,t)〉 = ∑

n cn |�n(Q,t)〉 e−i�n(t) where we have defined
the dynamical phase factor �n(t) = ��(t)(n + 1/2) and
��(t) = 2/3 × [(t/t̂)3/2 − 1]. Within the AI approximation,
we can obtain the time evolution of the symmetry-breaking
order parameter (defined by the inverse of the fluctuations of
the center-of-mass coordinate) taking explicitly into account
quantum phase interference effects. This is unlike, for instance,
the case of the Lieb-Mattis model where in the AI scheme the
time evolution of the staggered magnetization can be computed
only by neglecting interference effects.14 We find

[�Q2(t)]−1 = 2
N

t̂

√
t t0

t̂2

[
1 −

(
1 − t0

t̂

)
sin2 ��(t)

]−1

,

(5)
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FIG. 2. (Color online) (a) Time evolution of (�Q2)−1 for different values of the initial time t0. The continuous thick line is for t0 = 10−1,
the dashed line for t0 = 10−2, and the dotted line corresponds to t0 = 10−3. By decreasing the initial time t0, a Dirac comb of symmetry-broken
states is approached. (b) Same for the inverse of the fluctuations of the total momentum. Also in this case a Dirac comb is approached. (c) Same
of (a) for the time evolution of the total uncertainty of the matter wave. Apart from punctured times, it is seen to diverge in the t0 → 0 limit.

014304-3



KIRTSCHIG, RIJNBEEK, VAN DEN BRINK, AND ORTIX PHYSICAL REVIEW B 87, 014304 (2013)

the behavior of which is shown in Fig. 2(a). When decreasing
the initial time t0 we observe that the behavior of the order
parameter calculated above corresponds precisely to a Dirac
comb of symmetry-broken states in perfect agreement with the
case of antiferromagnets.14 Aside from this, we find that at the
punctured times where the fluctuation of the center-of-mass
coordinate vanishes, the dynamical phases of the excited
dual thin spectrum excitations have π shifts, i.e., for t =
tκ = [3κπ/2 + 3π/4 + 1]2/3 t̂ with κ integer. This shows that
independent of the actual strength of the symmetry-breaking
perturbation, destructive quantum phase interference leads to
an instantaneous breaking of the translational symmetry. It is
also manifested by the fact that a direct computation shows
at these instants Q̂ |�(Q,tκ )〉 ≡ 0 and therefore the harmonic
crystal is completely localized in the center of the potential
well.

To further show the nature of the nonequilibrium state
realized in the remaining time evolution, we have determined

the time evolution of the inverse of the fluctuations of the total
momentum of the entire crystal and find

[��2(t)]−1 = 2
t̂

N

√
t̂2

t t0

[
1 −

(
1 − t̂

t0

)
sin2 ��(t)

]−1

,

(6)

the behavior of which is shown in Fig. 2(b). A Dirac
comb is also the result. The instants where the system is
an eigenstate of the total momentum �, which correspond
to revivals of the initial completely delocalized symmetric
state even in the presence of a sizable pinning potential, are
realized for t = tκ = [3κπ/2 + 1]2/3 t̂ with κ integer in which
case quantum phase interference effects are absent. This is
again in line with the dynamics of the Lieb-Mattis model
and henceforth guarantees the universality of the dynamical
symmetry-breaking phenomenon independent of the specific
microscopic model taken into account.
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FIG. 3. (Color online) Density plots of the Wigner function in phase space (Q,�). The center-of-mass coordinate Q and the total momentum
� have been rescaled, respectively, as Q → Q

√
N and � → �/

√
N in order to absorb the N dependence of the Wigner function. By decreasing

the initial time t0, the time evolution changes from an adiabatic shear motion to a strongly nonequilibrium rotative motion.
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Apart from the punctured times where the matter wave has
either no uncertainty in total position or no uncertainty in total
momentum, a strongly nonequilibrium state is realized. This
state is rather interesting as it retains a perfect delocalization
of both the center-of-mass position and its corresponding
momentum. It has an infinite uncertainty, i.e., ��2�Q2 → ∞
as it is shown in Fig. 2(c).

IV. QUANTUM DYNAMICS IN PHASE SPACE

To unravel the origin of this nonequilibrium state, we
analyze the dynamics of symmetry breaking with quantum
state tomography. The time-dependent Hamiltonian

H(t) = �2

2 N
+ N

2
δ t Q2

represents a simple example of generalized time-dependent
harmonic oscillator whose exact quantum theory has been ex-
tensively studied in the literature.27–39 In particular, within the
Feynman path-integral approach, it has been shown38 that the
spectral decomposition of the propagator G(Qb,tb|Qa,ta) =∑

n ��
n(Qa,ta) �n(Qb,tb) is defined by a complete set of wave

functions of the form

�n(Q,t) =
√

1

2n n!

[
Re[ω(t)]

π

]1/4

Hn[
√

Re[ω(t)] Q]

× e− Q2

2 ω(t) × e−i(n+ 1
2 )φ(t), (7)

where Hn are the Hermite polynomials and Re[ω(t)] > 0 in
order to guarantee square integrability. The quantal phase φ(t)
and the complex parameter ω(t) are uniquely determined by
solving the classical Euler-Lagrange equation of motion. It is
worth mentioning that the complex parameter ω(t) differs from
the dynamical phase factors �n(t) of Sec. III. Different sets of
wave functions of the form Eq. (7) correspond to take different
pairs of linearly independent solutions to the classical equation
of motion. This enables us to choose two particular solutions
guaranteeing that at the initial time �0(Q,t0) corresponds to
the initial static Gaussian wave packet and implies that the
wave function at all times remains an n = 0 state of the form
of Eq. (7).

The exact solution of the time-dependent Schrödinger
equation allows us to determine the time evolution of the
Wigner function (see Fig. 3) given by

W (Q,�,t) = 1

π
e−Re[ω(t)]Q2 × e−(�+Im[ω(t)]Q)2/Re[ω(t)]. (8)

By considering a nearly adiabatic process (an initial time
t0 � t̂), one finds that the Wigner function shears in time in
agreement with the time evolution of a Gaussian wave packet
reacting adiabatically to the time change of the harmonic-
oscillator angular frequency. On the contrary, in the out-of-
equilibrium regime, i.e., for t0 < t̂ , the Wigner distribution
shears and rotates in phase space as it follows from the fact
that the initial width of the Gaussian wave packet acquires
a non-negligible imaginary part. Finally, in the t0 → 0 limit
instead, any shear is absent and the motion simply corresponds
to a rigid rotation in phase space. For a completely symmetric
initial state, the initial Wigner function corresponds to an
infinite line in phase space δ(Q) and a rigid rotation is the

0 1 2 3 4 5
0

π/2

π

3π/2

2π

5π/2
N=101

N=102

N=103

t / t ̂

θ(
t)

FIG. 4. (Color online) The time evolution of the angle θ char-
acterizing the rotation in phase space of the Wigner function.
By increasing the number of microscopic constituents, a steplike
behavior is realized.

only motion preserving this one-dimensional character. As a
result, we find in the t0 → 0 limit the time evolution of the
Wigner function as

W (Q,�,t) ∝ δ[cos θ (t) Q + sin θ (t) �], (9)

where the angle θ (t) 
 tan−1 Im[ω(t)]. By increasing the
number of microscopic quantum constituents N , the time
dependence of the angle θ (t) approaches a steplike behavior
as Im[ω(t)] ∝ N (cf. Fig. 4). This, in turns, implies that the
quantum dynamics of symmetry breaking in a macroscopic
body is characterized by revivals of the initial symmetric
state and collapses of the initial quantum state towards a
“quasiclassical” state, tomographically indistinguishable from
the symmetry-broken state of infinite-size systems but, as we
have shown above, completely delocalized both in momentum
and in real space. The exceptions are the punctured times where
the angle θ (t) ≡ 0,π/2 in which case the fully symmetric
ground state and the completely localized ground state,
respectively, become fact. This is in line with the foregoing
adiabatic-impulse approximation of Sec. III.

V. CONCLUSIONS

In conclusion, by considering the paradigmatic example of
a harmonic oscillator, we have shown that in the dynamical
realm, symmetry breaking is characterized by far-from-
equilibrium processes. No matter how slowly a symmetry-
breaking perturbation is driven, the adiabatic limit can never
be reached in a macroscopic body. By means of quantum state
tomography, we have shown that nevertheless the evolution of
symmetry breaking corresponds to a continuous, rigid rotation
of the Wigner distribution. This rotation yields at the same time
a sequence of steplike revivals of the symmetric state followed
by collapses onto a symmetry-broken ground state akin to
the one realized in infinite-size systems but with maximum
uncertainty both in total position and in total momentum.
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