
PHYSICAL REVIEW B 87, 014111 (2013)

Microscopic spin-distortion model for switchable molecular solids: Spatiotemporal study
of the deformation field and local stress at the thermal spin transition
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We design a microscopic model for switchable molecular solids (e.g., spin crossover), based on the elastic
properties of a discrete lattice made of switchable sites, denoted high spin (HS) or low spin (LS). The elastic
interactions and equilibrium distances between sites are written as explicit functions of their HS or LS states. The
model was solved by Monte Carlo technique, alternatively running on the electronic and position variables. In
the present work we investigate the thermal transition in the case of a square two-dimensionsal lattice, including
short-range interactions up to the second neighbors in order to maintain the stability of the lattice. The input
values of the elastic parameters are selected so as to lead to realistic values of the bulk modulus and Debye
temperature. We show that the elastic interactions act as effective Ising interactions, leading to the expected
transition and phase diagram, in terms of transition temperature vs elastic interaction parameter. We study the
domain growth of the LS or HS species at different temperatures along the thermal loop and obtain features
consistent with the experimental data. We also follow the mechanical properties of the system by calculating the
displacement field and the internal stresses produced by the domain growth process. The resulting maps evidence
the leading role of the HS/LS interface and the crucial effect of the edges of the lattice, thus paving the way to a
real understanding of the shape effects in spin transition nanocrystals.
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I. INTRODUCTION

The thermally induced spin crossover (SC) transition
between the low-spin (LS) and the high-spin (HS) states of
Fe(II) complexes with suitable ligands is a typical example
of switchable molecular solids (SMCs). SMCs have been
studied1–3 for many years due to their promising applica-
tions as materials for information storage. The bistability of
SMCs originates from an intramolecular vibronic coupling4

and can be enhanced at the solid state by intermolecular
interactions. Indeed, elastic interactions5–7 are recognized as
a basic ingredient of the SC transition and lead to various
behaviors: from gradual, with a transition corresponding
to the simple Boltzmann distribution between two states
which is generally obtained in highly diluted crystals (i.e.,
in noncooperative systems), to rather abrupt thermal spin
transitions, and even up to hysteretic behavior denoting a
first-order phase transition8–10 above a threshold value of the
interaction strength. The occurrence of two-step transitions has
been assigned to the coexistence of interactions with opposite
signs.10,11 Most of the models developed historically (regular
solutions,12 Ising-like13,14) are based on two-level approaches
which totally discard the volume change at the transition and,
consequently, the effect of mechanical stresses on the transition
mechanism. In such models, the first-order thermal transition
is obtained through a phenomenological interaction parameter,
electronic in nature. At variance from these electronic models,

the continuous medium model developed by H. Spiering6

showed that an elastic interaction could also give rise to
the observed first-order transitions. More recently, discrete
models based on deformable lattices15–21 were introduced so
as to mimic the spatiotemporal features of the nucleation and
growth (NG) process of spin phases, which were revealed by
optical microscopy investigations22–24 at the thermal transition
of SC single crystals. The present work aims to conciliate
the continuous medium and discrete lattice approaches with
purely elastic interactions, so as to reproduce both the lattice
and the spin transformations of the system, thus giving
access to spatiotemporal properties. The relevance of the
model is established through its ability to reproduce, at least
qualitatively, the spatiotemporal effects reported as follows in
the well-documented case of the HS → LS transition of fresh
single crystals: (i) the transition usually starts from a corner
and/or an edge of the crystal (depending on its shape); (ii) the
LS phase spreads over the whole crystal with a well-defined
frontline, the shape of which depends on the interplay with
the edges of the crystal; (iii) the frontline propagates at a
very slow velocity (≈2–10 μm/s); (iv) the existence of large
mechanical stresses is evidenced by irreversible damage; and
(v) the stresses (after thermal cycling) strongly impact the
subsequent transition temperatures. By proceeding to a local
analysis of the kinetics of the transformation, we deduced
that the NG process at the thermal transition is a multiscale
process driven by the propagation of mechanical stresses ahead
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of the transformation frontline.23 These results pointed out the
importance of the coupling between the spin-state change and
the local deformation of the lattice, opening the way to very
interesting theoretical problems in which electronic (spin) and
structural (lattice parameter) degrees of freedom are coupled.
The present problem is similar to that of miscibility and
superstructure formation in binary solid alloys, which in the
past was studied in the frame of lattice-gas statistical models.
However, these historical lattice-gas models involve rigid
lattices and actually belong to the class of two-level models
previously quoted.12–14 More recent models were proposed
on the basis of deformable lattices with various interaction
potentials.15–20 Indeed, the choices of a proper interaction
potential and of the degrees of freedom of the sites are crucial
issues. Long-range potentials may be very time-consuming.
Therefore, we use here a short-range anharmonic quartic
potential, recently introduced and exactly solved for the
one-dimensional (1D) case by the transfer integral method.25

The present work is restricted to the case of a 2D square lattice,
with fixed topology. It is solved by a Monte Carlo algorithm
which alternatively changes the spin states and moves the
nodes in the framework of a canonical ensemble. In the choice
of input parameters we aimed to match the experimental
values of relevant parameters such as the bulk modulus and
Debye temperatures, as well as the structure variations at the
transition.

The paper is organized as follows: in Sec. II the model and
simulation method are described; in Sec. III the interaction
parameter values are derived from the available literature on
elastic properties of SC solids; Sec. IV is devoted to the results
of the model (phase diagram, spatiotemporal properties of the
thermal transition), with a focus on the atomic displacements
and the propagation of mechanical stresses; and in Sec. V we
summarize the main conclusions and outline some possible
developments of the work.

II. THE MODEL: THEORETICAL BACKGROUND

The model consists of a discrete deformable lattice made
of two-level units representing the HS and LS states. The
lattice is square planar of size L × L. The electronic state
of each unit is described by a fictitious spin S = +1 (HS)
or −1 (LS), with degeneracy ratio gHS/gLS = g and energy
gap EHS − ELS = �. We also assumed that the energy gap
of an isolated molecule does not depend on temperature. In a
previous work,26,27 we demonstrated that the present Ising-like
system, with gLS �= gHS, is isomorphic to a pure two-state Ising
system under a temperature-dependent field, − 1

2kBT ln(g).
We then obtained an effective temperature-dependent energy
gap, (� − kBT ln(g)), where the second contribution has an
entropic origin.

We assumed for simplicity that the lattice deformations
remain inside the plane. The molecules at the lattice sites in-
teract by springs between first- and second-nearest neighbors.
It is important to mention that the intersite distances used
here do not directly refer to the bond lengths between the
metal ion and the ligands, which is the distance Fe-N in iron
SC materials, for example. The intersite distances actually
correspond to the distances between SC metal centers, and
the first-neighbor distance is called the lattice parameter or

intermolecular distance in the following. The topology of
the bond network will be maintained during the simulation,
irrespective of the actual values of the lattice parameters. In
the present case of a square planar lattice, the presence of
second-neighbor interactions is needed to ensure mechanical
stability with respect to shear distortion. Simulations were
performed on a system with open boundary conditions, so as
to reveal surface effects, which are expected to be large in the
case of nanosize systems. The simulations do not explicitly
involve pressure effects.

In this problem, the equilibrium distances between site i and
site j depend on the spin states of these sites and are written
as R0(Si,Sj ) and R

′
0(Si,Sk) for the first- and second-neighbor

pairs, respectively. The corresponding bond stiffness constants
are denoted A(rij ) and B(rij ), where rij is the distance between
site i and site j . The electromechanical Hamiltonian is written

H = Helec + Helas, (1)

with Helec a two-state Hamiltonian,

Helec =
∑

i

1

2
(� − kBT ln(g))Si, (2)

and Helas an elastic Hamiltonian,

Helas =
∑
i−j

Aij (rij )(rij − R0(Si,Sj ))2

2

+
∑
i−k

Bik(rik)(rik − R
′
0(Si,Sk))2

2
, (3)

where

Aij (rij ) = A0 + A1
(
rij − RHH

0

)2
and

Bik(rik) = B0 + B1
(
rik −

√
2RHH

0

)2
. (4)

Here, i − j and i − k, respectively, denote the first- and
second-neighbor bonds. The bond vectors and the intermolecu-
lar distances are written �rij = �rj − �ri and �rik = �rk − �ri , respec-
tively, and RHH

0 ≡ R0(1,1). The variations of the equilibrium
intermolecular distance and bond stiffness result in volume
and bulk modulus changes, which are major experimental
features of the spin transition leading to an increase in the
volume and a decrease in the bulk modulus upon the LS → HS
transition. Anharmonic contributions, such as those written in
Eq. (4) (in terms of even-degree polynomials for ensuring
stability of the system with respect to large distortions), can
be introduced so as to generate the thermal dependences of
the bulk modulus and of the Debye temperature, which can be
determined experimentally. We neglected here the third-order
contributions to the total elastic constant, which are responsible
for the thermal expansion of the lattice. In fact, the anharmonic
form of the elastic constant, given in Eq. (4), should be seen
as an empirical form, due to the lack of appropriate studies
on the elastic constants of SC single crystals, the anisotropy
of which makes the Brillouin scattering investigations very
complicated.

Let us assume for simplicity that A1/A0 = B1/B0; then
the stiffness constant of the lattice only depends on the ratio
A1/A0. In the present work we took A0 = 4 × 103 K/nm2,
A1 × a2 = 4 × 104 K/nm2, where a = 1 nm is the lattice
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parameter of the LS state. Namely, Aij (RHH
0 ) = 4 ×

103 K/nm2 and Aij (RLL
0 ) = 5.6 × 103 K/nm2, with A0 = B0

and A1 = B1.
The ratio of the elastic constants A0 and A1 can be derived

from the changes in the Debye temperatures of the HS and LS
phases as expressed in Refs. 25 and 28:

�LL
D

�HH
D

=
√

A
(
RLL

0

)
A

(
RHH

0

) =
√

1 + A1

A0

(
RLL

0 − RHH
0

)2
, (5)

where

RLL
0 ≡ R0(−1,−1). (6)

As a matter of fact, the anharmonic terms are not needed to
obtain the phase transition, and their effect was finally found
to be negligible.

Now we turn to a formal transformation of the Hamilto-
nian, based on an equivalent formulation of the equilibrium
distances, as follows:

R0(Si,Sj ) = ρ0 + ρ1(Si + Sj ) + ρ2SiSj . (7)

Simple identification to the equilibrium distances for HH, LH,
and LL bonds leads to

ρ0 = 1
4

(
RHH

0 + RLL
0 + 2RHL

0

)
, ρ1 = 1

4

(
RHH

0 − RLL
0

)
, and

ρ2 = 1
4

(
RHH

0 + RLL
0 − 2RHL

0

)
. (8)

The parameter ρ0 is obviously associated with the average
lattice parameter of the system, termed a in the following.
The parameters ρ1 and ρ2 are associated with mismatch of
the HS and LS lattices. In the present work we took ρ2 = 0
and consequently termed ρ1 the misfit parameter. In order to
derive the analytical dependence of the total potential energy
on the stiffness constant and the lattice misfit, we investi-
gated the structure of the Hamiltonian. For making the dis-
cussion easier, we only consider in the present section the
harmonic part and the nearest-neighbor interactions. Then the
total Hamiltonian, (1), is accordingly re-expressed in terms
of an Ising-like Hamiltonian with space-dependent effective
interactions and effective field:

H =
∑
i−j

Jij SiSj +
∑

i

hiSi + A0

2

∑
i−j

(rij − ρ0)2 + C, (9)

where the parameters Jij and hi are the local exchange-like
interactions and the local field-like contributions, respectively.
The expressions of Jij and hi are given by

Jij = A0
[
ρ2

1 − ρ2(rij − ρ0)
]

(10)

and

hi = 1

2
(� − kBT ln g) + z

2
A0ρ1ρ2 − A0ρ1

z∑
j=1

(rij − ρ0),

(11)

where the index j runs over the neighbors of a given site i, and
z (=4) is the coordination number. The constant C is given by

C = zN

4
A0

(
2ρ2

1 + ρ2
2

)
. (12)

The third term in Eq. (9) is related to the cohesion energy of
the elastic system, the equilibrium distance of which is given

by ρ0 when the spin variables are absent. The constant term
C is omitted hereafter, since it does not play any role in the
thermodynamic properties of the system.

In the present simulations, we have used RHL
0 = (RHH

0 +RLL
0 )

2 ,
and therefore ρ2 = 0, which leads to the following expressions
of Jij and hi :

Jij = A0ρ
2
1 (13)

and

hi = 1

2
(� − kBT ln g) − A0ρ1

z∑
j=1

(rij − ρ0). (14)

Equation (13) clearly shows a spatially invariant effective
interaction Jij , which is the product of the elastic constant of
the lattice and of the square of the lattice misfit parameter. It
also expresses a bilinear coupling between displacements and
spins, proportional to ρ2

1 , in agreement with the continuous
medium model of H. Spiering.6,7 In addition, Eq. (14)
evidences the direct synergy between the effective “field,”
1
2 (� − kBT ln g), which stabilizes the LS (HS) state at low
(high) temperatures and the elastic contribution in the local
field-like hi , which does the same. Indeed, the sign of the
quantity −A0ρ1

∑z
j=1[(rij − ρ0)] reverses from positive to

negative when the lattice goes from LS (rij = RLL
0 ) to HS

(rij = RHH
0 ) states. Thus, the local field-like hi constitutes one

of the driving forces of the SC transition. An important issue of
this model is the direct identification of the effective interaction
term Jij with the elastic energy associated with the volume
misfit between the HS and the LS lattices. Interestingly, this
short-range effective interaction is strictly positive and thus the
coupling is antiferroelastic and leads to stabilize energetically
the HS-LS configurations at short range. However, the elastic
interaction arising from the local field-like contribution, hi , is
long ranged and favors the appearance of HS or LS domains. In
a recent work we reported on the coexistence of antiferroelastic
and ferroelastic correlation functions, for nearest neighbors
and long distance, respectively.30 A competition between
these two contributions may lead to observe self-organized
structures, reminiscent of two-step transitions, a work which
will be addressed elsewhere.

It is emphasized that the present model including the
anharmonic part is not a standard compressible Ising model,
in which the displacement field should couple to the squared
spin field.29 The present bilinear coupling is not possible in
true magnetic systems because of symmetry breaking by time
reversal but is allowed here due to the different symmetry
properties of the pseudospins.

The way the total Hamiltonian is solved may be the most
crucial issue for the physical relevance of the model, and it
involves the different time scales of the spin-state switching
and of the lattice dynamics. Representative values of the
spin-state lifetimes in the temperature range of the thermal
transition typically are in the millisecond range (and far above
at lower temperatures). On the other hand, the distortions are
expected to propagate at the velocity of sound in the crystal
(some 103 m/s) and, consequently, propagate through a unit
cell (10−9 m) within typically less than 1 μs. Therefore, we as-
sumed that after each spin switching the lattice has time enough
to (almost) relax the excess elastic energy generated by the spin
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switching. Consequently, we used a two-step iterative strategy,
as follows: (i) randomly select a given site and perform an
eventual spin-state switching according to a Monte Carlo
procedure based on the variation of the energy of the system
and (ii) perform the site displacements by a Metropolis Monte
Carlo update. During steps i and ii the lattice and the spins
are frozen, respectively. Step i is similar to a Franck-Condon
process; step ii performs a sufficient number of Monte Carlo
cycles, typically 1000, to approach mechanical equilibrium.

III. CHOICE OF PARAMETER VALUES

The relationships between electronic parameters and ther-
modynamic data on the system are well known for Ising-
like models (see, e.g., Refs. 11, 13, and 26. The LS-HS
energy gap � is related to the molar enthalpy variation upon
complete transition, according to �H = NA�, where NA is
the Avogadro number. The values of �H are in the range
5–20 kJ/mol.31 The degeneracy ratio is related to the molar
entropy change upon complete transition �S, according to
�S = R ln g, where R is the perfect gas constant. The values
of �S are in the range 35–80 J/K/mol. In the present work
we used � = 900 K and ln g 	 10, respectively, leading to
�H ≈ 7.5 kJ/mol and �S ≈ 83 J/K/mol. The corresponding
value of the transition temperature is

Teq = �H

�S
= �

kB ln g
, (15)

which is equal to ≈90 K for the used parameter values. Some of
the elastic parameter values of the model can be derived from
the known properties of the pure phases (LS or HS). For exam-
ple, the equilibrium Fe(II)-ligand distances increase by about
10% upon the LS-HS transition,2 but the variations of the lat-
tice parameters usually are closer to a few percent. We actually
used, for the first- neighbor pairs (lattice parameter distance),
RLL

0 = 1 nm, RHH
0 = 1.2 nm, and for the second-neighbor

pairs, R′LL
0 = √

2RLL
0 , R′HH

0 = √
2RHH

0 , based on the
idea that the angular distortions32 may be neglected. The
choice of such a large lattice parameter variation is rather
arbitrary since the relationship between the lattice parameter
and the metal-ligand bond distance variations is certainly
complex, and it is so far unknown. In addition, the use of
a large value of the lattice mismatch is expected to balance the
reduction in stress effects due to the small size of the lattice.
Moreover, the possible overestimate of the lattice mismatch
parameter can be merely compensated by a decrease in the bulk
modulus value, as shown by Eqs. (10) and (13). In other words,
we believe that the qualitative nature of the phenomenon is
universal.

The values of the harmonic interaction parameters Aij in
the HS and LS phases can be derived from the bulk modulus
E, which, in SC solids, amounts to ≈5–20 GPa.33,34 An
order of magnitude of the stiffness constant A0 is obtained by
considering the elongation of a cubic cell using a 3D lattice,
with lattice parameter a, submitted to an uniaxial stress, and
neglecting the transversal effects. This simplified model results
in the (approximate) relationship A0 + 2B0 ≈ Ea. Following
these observations, we took A0 ≈ 4000 K/nm2 ≈ 4 meV/Å2,
leading to the bulk modulus value, E = 6 GPa, which is in
good agreement with the experimental literature data.33

The ratio A1/A0 can be estimated by the Debye temperature
ratio [Eq. (5)], and we took A1 = 4 × 104 K/nm2, leading to
A1ρ

2
1 = 100 K. This simple working assumption concerned

terms which apparently did not play a leading role at the
transition, and it was not further questioned in the course of
the present work.

IV. RESULTS AND ANALYSIS

We investigated here the thermal properties of a planar
square system (50 × 50 = N = L2) with free boundary con-
ditions. The temperature was increased from T = 0 to 200 K,
then decreased to 0 K, in 1 K increments. As described in
Sec. II, the stochastic procedure was alternatively performed
on spin and lattice variables, with 1000 lattice Monte Carlo
cycles after each eventual spin-state switch. Random applica-
tion of the two-step Monte Carlo procedure over all sites of the
lattice—termed here a “spin-lattice Monte Carlo cycle”—was
repeated 2.0 × 103 times at each temperature. The first 103

times were used to reach the equilibrium of the system, and
the second 103 times for the statistical analysis of the physical
quantities of interest. We first determined the phase diagram
of the thermal transition of the system in order to validate the
model (with respect to the well-known properties of SMSs)
and in the second step we analyzed the spatiotemporal features
of the thermal transition, from both electronic and structural
viewpoints.

A. The thermally induced first-order transition
and phase diagram

We first investigated the average properties of the system,
with the HS fraction defined as

nHS = (1 + 〈Si〉)
2

, (16)

and that of the lattice parameter given by

〈d〉 =
∑

ij

√
(xj − xi)2 + (yj − yi)2

N (N − 1)/2
, (17)

where i, j run over [1,N ] and are restricted to first-neighbor
pairs. The simulation results are shown in Fig. 1 for different
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FIG. 1. (Color online) Thermal dependence of the HS fraction
for different values of the elastic constant A0. Inset: Correlation
between the lattice parameter 〈d〉 and the HS fraction (computed for
A0 = 4000 K/nm2).
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FIG. 2. (Color online) (a) Dependence of TC and Teq on A0ρ
2
1 ; (b) phase diagram of the system, where T+, T− are the limiting temperatures

of the hysteresis loop and Teq is approximated by (T++T−)
2 . (c) Dependence of the hysteresis width �T on A0ρ

2
1 .

values of the harmonic elastic constant A0 in the range of
the significant values determined in the previous section.
Upon increasing A0, the transition transforms from gradual
to first-order. A0 can be scaled to the phenomenological
interaction parameter of the usual two-level models through
Eq. (13), and we derived a phase diagram in elastic terms,
which is shown below. The slightly rounded shape of the
simulated hysteresis loop denotes the existence of kinetic
effects, previously characterized by the Ising-like model. Also,
a clear correlation could be established between the two order
parameters, as shown in the inset in Fig. 1.

As shown in Fig. 1, the model exhibits a phase transition
due to the elastic interaction, which is now discussed by
analogy to the usual phenomenological description.11,26 For
the needs of the coming discussion, we characterized the
order-disorder temperature of the system, TC , as the “critical
temperature” resulting from Hamiltonian (9) in the case
where the local field-like, hi , is set to 0. For this specific
case, we set � = 0, g = 1 (non-degenerate states) in the
expressions (9) and (11). In other words, we considered a
“pure” Ising model with an exchange interaction parameter
A0ρ

2
1 on which we performed Monte Carlo simulations and

calculated the thermal dependence of the magnetization, 〈S〉,
for determining its order-disorder temperature. A second-order
phase transition was then obtained, despite the existence of
a negligible residual elastic field contribution in the local
field-like hi [see Eq. (14)]. We have studied the dependence
of this order-disorder temperature, TC , on the elastic energy
A0ρ

2
1 . The results are reported in Fig. 2(a), where the TC data

(black symbols) are compared to the equilibrium temperature
values Teq (for which nHS = 0.5; red symbols).

We found that TC is proportional to A0ρ
2
1 ,

TC ≈ αA0ρ
2
1 , (18)

while Teq does not depend on the elastic interaction parameter
A0. This is mainly due to the fact that the average contribution
of the elastic “field,” A0ρ1

∑Z
1 (rij − ρ0), to the local field-like

contribution, hi [given in Eq. (14)], is negligible, which agrees
with Eq. (15). As a general property, the criterion for the
existence of a first-order transition is given by Teq < TC . We
have plotted the upper, T+, and lower, T−, transition temper-
atures of the hysteresis loop in Fig. 2(b) and the dependence
of the hysteresis width, �T , on the elastic interaction A0ρ

2
1

in Fig. 2(c). The obtained phase diagram demonstrates, as
expected, a critical value of the elastic constant parameter. The
borderlines in this diagram are slightly curved at the vicinity of
the critical point, and we checked that this effect is due to the

finite value of the temperature sweeping rate (kinetic effect).
For the data reported in Fig. 2(a), we scanned A0 while keeping
ρ1 constant. We also checked that TC was proportional to ρ2

1
when A0 was kept constant. This simple dependence of TC on
the mismatch energy was assumed in a recent theoretical work
on the effective character of the long-range interaction in the
frame of the short-range interacting model.35

1. Lattice configurations upon the SC transition

Now we report on the elastic properties of the lattice at
some positions on the hysteresis loop shown in Fig. 3(a). In
Fig. 3(b) we show the corresponding snapshots of the system.
In Fig. 3(c) we plot the distribution of the local pressure P (i)
defined as

P (i) = −
∑

j

Aij (rij )(rij − R0(Si,Sj ))

−
∑

k

Bik(rik)(rik − R0(Si,Sk)), (19)

where j (k) runs over nearest (next-nearest) neighbors of site i.
Figure 3(b) gives evidence for a domain growth process

starting from all corners, for both the HS → LS and the LS →
HS transformations, as already reported by previous molecular
dynamics and Monte Carlo studies.17,36 The growing domains
extend towards the center of the crystal and then collapse. This
behavior is reminiscent of experimental observations obtained
by optical microscopy,23 for which the NG process starts from a
single point (edge, corner, or defect) and can propagate through
the entire crystal under isothermal conditions. However,
simultaneous nucleation at all corners followed by propagation
toward the center has not been experimentally observed so far.
A possible reason for this difference may be a shape effect,
because all crystals investigated till now always departed from
the perfect square shape of the present model. An alternative
explanation might be the (unavoidable) presence of defects in
real systems.

The maps of the local pressure, shown in Fig. 3(c), mainly
show short-range inhomogeneous distributions of pressures
resulting from local expansions and shrinkages. Along the
cooling branch (from B to C), the peaks of positive pressure
progressively take over, due to the cooperative effect of the
local shrinkages resulting from the growth of LS domains,
and the reverse is observed (mutatis mutandis) along the
heating branch. The onset of such inhomogeneous structures
was reported during the domain wall propagation observed by
optical microscopy.23
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FIG. 3. (Color online) (a) Calculated thermal hysteresis loop for A0ρ
2
1 = 160 K. (b) Snapshots of the system at positions A to F. Red and

blue filled circles are associated with HS and LS units, respectively. (c) Snapshots of the local pressure map (defined in text).

We can explain why nucleation in the model starts from the
corners, by simple energetic considerations. Let us start from a
lattice in a saturated HS state and consider a nucleus made of a
single LS site. The energy cost associated with the creation of
an LS nucleus at the corner, edge, and center of the HS lattice
is written

�Ecorner = E(LS) − E(HS)

= −(� − kBT ln g) + 4(A0 + B0)ρ2
1 , (20)

�Eedge = −(� − kBT ln g) + 2(3A0 + 4B0)ρ2
1 , (21)

�Ecenter = −(� − kBT ln g) + 4(2A0 + 4B0)ρ2
1 . (22)

The first contribution to Eqs. (20)–(22), that is, the
temperature-dependent field, is negative due to the situation of
the system in the metastable state. The second term is positive,
and it is obviously minimized at the corner position. Upon
heating, similar considerations can be developed, with the
only difference that larger thermal fluctuations may increase
slightly the (low) probabilities of nucleation at the center or
edges, with respect to the corner position.

In addition, we calculated the total elastic energy of the HS
lattice with an LS atom embedded at the corner, at the edge,
and in the center. We show in Fig. 4 how the energy relaxes
in these cases. Clearly, the elastic energy is best relaxed in
the corner case.17 This should make further growth easier. The
relaxation process of the elastic energy is an important issue
which will be detailed separately.

B. Analysis of the displacement field

Now we focus on the stresses generated by the NG process,
which have been shown to be important in experiments. We
determined the elastic stresses at the various positions (A–F)
in Fig. 3. To do so, we introduced a displacement field �u(ix,iy)
associated with the lattice site (ix,iy), defined as

�u(ix,iy) = �r(ix,iy) − �r0(ix,iy), (23)

0 100 200 300 400 500
0

1x104

2x104

3x104

4x104

Corner

EdgeE
la

st
ic

en
er

gy
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eV
)

MC time (MCS)

Center

FIG. 4. (Color online) Spontaneous evolution of the elastic
energy of an LS lattice through mechanical relaxation when one
atom of the lattice has been set in the HS state, in a corner [bottom
(black) curve], at an edge [middle (blue) curve], and in the center [top
(red) curve]. The time scale is expressed in Monte Carlo steps, and
calculation was performed at a low temperature (1 K).
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where �r0(ix,iy) and �r(ix,iy) are the initial and final atomic
positions of site (ix,iy). In the present analysis, we used the
positions in the perfect HS state as a reference state, i.e.,

�r0(ix,iy) = (
ixR

HH
0 ,iyR

HH
0

)
. (24)

Deformations are obtained by deriving the displacement
expressions: in the continuum approximation,

∂ux

∂x
= ux(ix + 1,iy) − ux(ix,iy)

RHH
0

, (25)

and ∂uy

∂y
, ∂ux

∂y
, and ∂uy

∂x
are also given in the same way. In the case

of a harmonic potential, the potential energy is transformed
into the continuum elastic potential with a square symmetry
according to

Helas =
∫

d�r
{

A0 + B0

2
(εxx(�r)2 + εyy(�r)2)

+B0εxx(�r)εyy(�r) + 2B0εxy(�r)2

}
, (26)

where εαβ represents the strain tensor

εαβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
(27)

and α, β may be x or y and xx = x, xy = x. It is known that
when A0 = 2B0, the system reduces to an isotropic one with
the Lamé coefficients, λ = μ = B0. In the present simulation,
we took A0 = B0 and thus gave the system square symmetry.

We have calculated the displacement field and its spatial
distribution at different temperatures at positions A–F along
the hysteresis loop in Fig. 3. We derived the spatial distribution
of the strain tensors, εxx , εyy , εxy , and εyx . The first two terms
εxx and εyy provide information about the local relative volume
change and the last two terms εxy and εyx are related to the
pure shear strains.

We also derived the following fields, denoted the “dilata-
tion” and “distortion” fields, respectively:

div[�u(�r)] = εxx(�r) + εyy(�r) and
�rot[�u(�r)] = εxy(�r) − εyx(�r). (28)

The divergence of the displacement field, that is, the trace
of the strain tensor, describes the pure relative volume (here
surface) expansion.

We have mapped the dilation and distortion fields, in Figs. 5
and 6, respectively, at positions A ↔ F along the hysteresis
loop defined in Fig. 3. An obvious correlation between the
dilatation maps in Fig. 5 and the spin configurations in Fig. 3
is observed. However, the dilatation maps of the cooling and
the heating branches clearly differ. Due to the choice of the HS
state as the reference state, the divergence of the displacement
field starts from 0 in the HS state [Fig. 5(a)] and becomes
negative in the cooling mode, corresponding to the shrinking
of the system. The detailed observation of the distortion maps
at positions B and C shows that the shrinking is mainly
concentrated at the corners of the lattice, while it is weak
at the center and on the edges. This feature is associated with
a nucleation process starting from the corners. Upon heating
(positions E and F), similar observations can be made (for an
expansion effect).

FIG. 5. (Color online) Maps of the divergence of the displacement
field at different positions along the hysteresis loop in Fig. 3. The
reference state is the HS phase, thus leading to a negative value of
the divergence, which reaches its maximum value in the saturated LS
state.

The distortion field gives evidence for an enhancement
of the shear stresses at the intersects of the transformation
frontline and the edges of the lattice. These regions constitute
brittle points at which dislocations and/or fractures may be
initiated. The understanding of these aspects is of major
importance for technological applications of the SMSs. The
quantity e = εxx − εyy describes deviatoric shear strains37 but
is not analyzed here. It plays an important role in the onset of
fractures in the material, an interesting problem which will be
treated separately.

V. THE ELASTIC LONG-RANGE NATURE OF THE
INTERACTION BETWEEN SC ATOMS AND THE

FORMATION OF SPIN DOMAINS

It is well known that elastic effects generate long-range
interactions. For example, a classical behavior was observed in
the gas-liquid transition of hydrogen in metals,38 in structural
phase transitions,39 and in ferroelectrics40 long ago. The

FIG. 6. (Color online) Maps of the rotation of the displacement
field at several positions along the hysteresis loop in Fig. 3. The
maximum values are observed at the edges of the system and/or at
the interfaces between the LS and the HS domains, as depicted in
images B, C, E, and F. They outline the presence of shear strains.
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theoretical side of the problem was considered in Ref. 41, and
other pioneering works.42 It is also quite well established that
an elastic interaction between dipolar elastic defects41 (i.e.,
localized stresses) decays as r−3

ij . However, the defect-defect
interaction is strongly modified by the shape of the lattice and
by finite-size effects.43 The long-range character of the present
model plays an important role in the domain formation and also
in the deformation of the lattice edges reported in Fig. 3. It has
been discussed in the pure elastic model proposed in Ref. 15,
which has been shown to belong to the mean-field universality
class. In addition, recent investigations on circularly shaped
lattices have evidenced the macroscopic character of the NG
phenomena involved in this class of models,21 as well as the
importance of shape effects.

However, the literature on elastic models devoted to the
SC problem does not contain any explicit formulation of
the long-range character of the interaction. To quantify the
long-range character of the present elastic model, we have
investigated some typical situations obtained by inserting one
and two defects in a homogeneous lattice. We started with
a lattice in the LS state (for both electronic and structural
degrees of freedom) and then we flipped only one spin (from
the LS to the HS state) located at the center of the lattice
(far from the borders), and then we performed Monte Carlo
and/or molecular dynamics simulations including a friction
term in order to reach the mechanical equilibrium in a frozen
spin configuration. We then made a quantitative analysis of the
computed displacement field �u(ix,iy).

1. The case of a single point defect

We consider here the spatial dependence of the displace-
ment field around an HS atom embedded in an LS lattice.
We have drawn the two components ux and uy of the atomic
displacements of the neighboring atoms of the defect at
position (ix0,iy0) in the x and y directions as a function of
their distance d(ix,iy) ≡ √

(ix − ix0)2 + (iy − iy0)2 from the
HS defect. As shown in Fig. 7(a), due to the symmetry
of the lattice and shape of the defect (here a point-like
defect), the components ux and uy are strictly equal (save
for numerical errors). The deformation field caused by the
perturbed atom visibly propagates at least up to the ≈10th
neighbor, thus evidencing the long-range character of the
effective interaction.

We have reported in Fig. 7(b), the spatial evolution of the
absolute value of the displacement, i.e., ux(ix,iy) as a function
of 1/d(ix,0). The results clearly show that the displacement
field follows the law

ux = m

d(ix,0)
+ U∞, (29)

where the fitted parameter values are m = 0.04623(2) nm2 and
U∞ = −0.0043(6) nm. The constant U∞ can be understood as
the effect of the image pressure resulting from the finite shape
of the system and vanishes at the limit of large systems. We
have checked that an identical radial dependence was obtained
in any direction around the defect site. This property gives
to the displacement field in an infinite system the simple
radial dependence u ∝ m

r
. The specific dependence of this

displacement field obeys the Gauss theorem, and we expect
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FIG. 7. (Color online) (a) Atomic displacements (ux and uy) of
neighboring atoms of the HS defect at position (ix0,iy0) in the x and y

directions versus their distance d(ix,iy) ≡ √
(ix − ix0)2 + (iy − iy0)2

from the defect. Because of the square symmetry, we have uy = ux .
(b) Linear fitting of the displacement of the atoms in the x direction
versus the inverse of the distance 1/d(ix,0) showing that ux(ix,iy) ∝
1/d(ix,0). The slope is proportional to the lattice misfit (see text for
more explanations). The parameter values are the same as those in
previous figures.

the same property in 3D systems, then leading to the r−2

radial dependence of the displacement field. We have checked
that different values of the elastic constants A0 and A1 led to
similar results, and this indicated that the obtained behavior
is universal and makes possible a tight analogy with the
properties of elastic continuous media.

We carefully investigated the dependence of the slope m

of this universal curve on the lattice mismatch associated with
the nature of the defect. We separately considered various
values of (RHH

0 − RHL
0 ) at constant (RHH

0 + RHL
0 ), and vice

versa. We observed that the slope m was proportional to both
of these factors, and consequently, it was merely expressed
as

m ∝ [(
RHH

0

)2 − (
RHL

0

)2] ≈ aρ1. (30)

Similar displacement fields, following u ∝ 1/rd−1, are
obtained in the frame of linear elasticity theory for radially
symmetric strain around any point-like perturbation in a d = 2
or d = 3 medium. The remarkable finding of the present model
is that Eq. (30) yields also the amplitude of this strain if it is
caused by an embedded LS or HS atom inside an HS or LS
lattice, respectively. The amplitude of the displacement field
is directly related to the lattice misfit, ρ1, while the specific
form of the interaction potential drops out from the results.
The displacement field within this model is then a topological
property of the point-like defect.

2. The case of two point defects: Elastic interaction energy

Tor elucidate the nature of the elastic interaction between
SC units, we considered the case of two HS point defects
embedded in an LS lattice. We calculated the elastic energy of
the ground state of the system as a function of the interdefect
distance, denoted r . The obtained results are reported in
Fig. 8(a), and they clearly show that the two defects are
submitted to an attractive interaction. A simple quantitative
analysis of the data [see inset in Fig. 8(a)] demonstrates that
the elastic energy follows the simple law

Eelas = c − α

r2
, (31)
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FIG. 8. (Color online) (a) Evolution of the total elastic energy in
the case of two HS atoms embedded in an LS lattice, as a function
of their distance. The attractive interaction between the defects is
inferred from the decrease in the elastic energy at short distances.
Inset: This plot of E(r) − E(r −→ ∞) versus 1/r2 characterizes the
radial dependence of the interaction. (b) Spatial distribution of the
atomic displacement field (the LS state is the reference state); defects
are indicated by (black) crosses. The specific shape of the contour
plots demonstrates the attractive character of the deformation field in
the space between the two defects and its repulsive nature far away.
Lattice size was 20 × 20.

where c (�445 meV) is the elastic energy generated by two
independent defects located far away from each other, and α

is a constant proportional to the misfit parameter between the
LS and the HS lattices.

We also considered the reverse situation, that is, the case
of two LS defects embedded in an HS lattice, which led to
similar results [shown as light (red) squares in Fig. 8(a)]. This
means that the elastic energy does not depend on the sign of
the misfit parameter, in agreement with the conclusions drawn
for the one-point defect.

Equation (31) expresses the interaction between the strain
fields, ε1(r) and ε2(r), produced by two defects considered
independently. The overlap of these strain fields gives rise to
an interaction energy 	ε1(r)ε2(r), which vanishes in an infinite
medium.44 One can understand this by noting that ε1(r) and
ε2(r) have opposite signs (i.e., the interaction is attractive) in
the space between the two centrers, but far away from the
defects they have the same sign as depicted in Fig. 8(b).

In a finite system bounded by a surface [i.e., when the
system size has the same order of magnitude as the distance
between the defects; see Fig. 8(b)], the situation may be sizably
different: the deformation field stops at the surface and this
favors the attractive character of the interaction energy. These
surface effects will be analyzed in detail in a forthcoming
report, in which we address the case of a finite system
containing a distribution of dilatation centers.

VI. CONCLUSION

We have presented a deformable-lattice SC model with real-
istic parameter values, aiming to reproduce the spatiotemporal
behavior of SC solids. The model contains both spin and lattice
degrees of freedom and allows a complete description of the
thermal behavior of the SMSs. We have demonstrated that this
model can be mapped under the form of an Ising-like model
with effective interaction parameters depending on the lattice
parameter misfit between the LS and the HS phases and on
the bulk modulus of the material. This mapping allowed us
to establish the phase diagram of the model, from which the
gradual and the first-order transitions as well as the transition
temperature were analytically predicted. We also studied the
thermal dependence of the lattice configurations upon cooling
and heating along the thermal hysteresis loop and characterized
the evolution of the system at a constant temperature when
it is prepared in a metastable state. We have introduced,
for the first time in this type of model, the calculation
of the local strains, displacements, and deformation fields,
which govern the transition mechanism. The results agree
with expectations derived from experimental observations by
optical microscopy. Although not investigated in this work, the
relaxation properties of the photoinduced metastable state can
be accessed as well through the present model.

Ongoing developments of the simulations should include
the effect of a bilinear interaction, given in Eq. (7), by

considering the case RHL
0 �= RHH

0 +RLL
0

2 . The present model has
the advantage of producing naturally short-range and long-
range interactions. The sign of these interactions might be
reversed according to the parameter values, which is expected
to lead to a simple description of the two-step SC behavior,
which so far is restricted to the phenomenological level.
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