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Calculations of isothermal elastic constants in the phase-field crystal model
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The phase-field crystal (PFC) method is an emerging coarse-grained atomistic model that can be used to
predict material properties. In this work, we describe procedures for calculating isothermal elastic constants
using the PFC method. We find that the conventional procedures used in the PFC method for calculating the
elastic constants are inconsistent with those defined from a theory of thermoelasticity of stressed materials.
Therefore we present an alternative procedure for calculating the elastic constants that are consistent with the
definitions from the thermoelasticity theory, and show that the two procedures result in different predictions.
Furthermore, we employ a thermodynamic formulation of stressed solids to quantify the differences between the
elastic constants obtained from the two procedures in terms of thermodynamic quantities such as the pressure
evaluated at the undeformed state.
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I. INTRODUCTION

The phase-field crystal (PFC) method1 is an emerging
model that has been employed to simulate many nonequilib-
rium processes such as nucleation,2 phase transformation,3–6

thin film growth,7,8 elastic and plastic deformation,9–12 and
glass formation.13–15 There are two main advantages of this
method that make it attractive for materials modeling. One
is that it can simulate crystalline solids without a restriction
on their lattices and orientations, just as molecular dynamics
(MD) can, but at diffusive time scales that can be several
orders of magnitude larger than those associated with MD.
The other reason is the fact that the PFC method provides
a unified and thermodynamically consistent framework that
naturally incorporates elastic and crystalline symmetry effects.
As a result, the method can be used to model a wide
variety of phenomena including spinodal decomposition,16

grain-boundary premelting,17,18 dislocation dynamics,19 and
the Kirkendall effect.20

These aforementioned benefits suggest that the PFC method
can potentially be used to predict nonequilibrium behaviors of
a material system over experimentally relevant time and length
scales. However, before the PFC method can be applied to
predict the nonequilibrium behaviors of the material system, it
must be parameterized with the known equilibrium properties
of the materials of interest and be verified that the model accu-
rately predicts the thermodynamic properties of the system at
equilibrium beyond those used in parametrization. Therefore,
in this paper, we focus on how equilibrium properties should
be calculated within the PFC framework.

The equilibrium properties considered in this work are
isothermal elastic constants, which were calculated from the
PFC approach in Refs. 1, 21, and 22. These elastic constants,
which will be referred to as the PFC elastic constants, are
calculated from variations in the free energy density (total free
energy per actual volume) associated with various types of
quasistatic deformation at a constant average number density.
However, we have found that this procedure is inconsistent
with the definitions from the thermodynamics of elastically
stressed solids23–25 (hereafter, referred to as the theory of
thermoelasticity), which are widely adopted. Therefore, we

propose an alternative procedure for calculating the elastic
constants as defined by the thermoelasticity theory, which
will be referred to as the TE elastic constants. The TE
elastic constants are instead calculated from variations in
the total free energy per undeformed volume associated with
quasistatic deformations at a constant number of particles
in the system. To give numerical examples, we use an
existing PFC model for iron (Fe) to show that the PFC and
TE elastic constants can be significantly different from one
another. Therefore we conclude that the conventional and
the proposed procedures are not interchangeable and, more
importantly, one should calculate the elastic constants using
the proposed procedure in order to make fair comparisons
with values from other approaches such as classical density
functional theory,26–28 Monte Carlo,29 MD,30 and ab initio
density functional theory.31–33

Furthermore, by comparing the conventional and the
proposed procedures, we identify two differences in the
calculation procedures that contribute to the discrepancies
between the PFC and TE elastic constants. The first is due
to the frame in which the free energy density is calculated;
the PFC elastic constants are calculated from the free energy
density measured with respect to the deformed frame of
reference while the TE elastic constants are calculated from the
free energy density measured with respect to the undeformed
frame. The difference arises due to the different volumes in
these two frames. The second difference is due to the constraint
imposed on the quasistatic deformations; the constraint for the
PFC elastic constants is a constant average number density,
whereas the constraint for the TE elastic constant is a constant
number of particles.

Finally, we employ a thermodynamic theory of stressed
solids34–36 to systematically define the PFC and TE elastic
constants in the same framework. This formulation allows us
to obtain the relationships between the PFC and TE elastic
constants. These relationships not only facilitate conversions
between the PFC and TE elastic constants but also provide
quantitative measures of the differences between the PFC and
TE elastic constants in terms of thermodynamic quantities such
as the pressure of the undeformed state. For a cubic material,
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our current technique only yields the correct relationships
between 11- and 12-type elastic constants due to a restriction in
defining a volume ratio as a function of the elements of a strain
tensor. We will address the relationships between 44-type elas-
tic constants as well as general relationships, in a future work.

The paper is organized as follows. In Sec. II, we provide
background material on the PFC method, continuum mechan-
ics, and the theory of thermoelasticity of stressed materials.
Next, we review the conventional procedure for calculating
the PFC elastic constants in Sec. III A and propose the
alternative procedure for calculating the TE elastic constants
using the PFC method in Sec. III B. We then present numerical
comparisons between the PFC and TE elastic constants, and
present further discussions in Sec. III C. Furthermore, we
present a more general procedure for calculating the PFC
elastic constants and propose formal definitions of the PFC
elastic constants in Sec. IV. We then derive the relationships
between the PFC and TE elastic constants of a system with
cubic symmetry using the thermodynamic theory of stressed
solids in Sec. V. Lastly, we conclude this paper with a short
summary in Sec. VI.

II. BACKGROUND

This section provides the background necessary in devel-
oping the analyses presented in the remainder of the paper.
In Sec. II A, the PFC free energy functional and its one-mode
approximation are introduced. We introduce the definitions
of strain tensors in Sec. II B, and then introduce the elastic
constants derived from the thermoelasticity theory in Sec. II C.
In Sec. II D, we present three types of deformation that will be
used to extract three values of the elastic constants of a cubic
material.

A. PFC method

We consider the following free energy for the PFC
method:21

F =
∫

w(φ) dR, w(φ) ≡ φ

2

[
at + λ

(
q2

0 + ∇2
)2]

φ + gt

φ4

4
,

(1)

where w(φ) is the free energy density, and at , gt , λ, and q0

are fitting parameters. The number density field, φ, can be
expressed in a Fourier expansion of the form:

φ(R,φave) = φave +
∑

i

Aie
iGi ·R + c.c., (2)

where Ai is the amplitude, φave is the average number density,
R is the real-space position vector (R = R1i + R2j + R3k,
where i, j, and k constitute an orthonormal Cartesian basis), Gi

is the reciprocal lattice vector (RLV) that is constructed from
the reciprocal basis of a periodic structure, and c.c. denotes
the complex conjugate. We define the following dimensionless
parameters:21

R̃ ≡ q0R, ε ≡ − at

λq4
0

, φ̃ ≡
√

gt

λq4
0

φ,

(3)
F̃ ≡ gt

λ2q8−d
0

F , h̃ ≡ gt

λ2q8
0

h,

where d is the dimensionality of the problem. The PFC free
energy can then be written in a simpler form:

F̃ =
∫

w̃(φ̃) dR̃, w̃(φ̃) = φ̃

2
[−ε + (1 + ∇̃2)2]φ̃ + φ̃4

4
.

(4)

In this work, we will consider a body-centered-cubic (bcc)
crystal, of which the set of smallest RLVs has the magnitude of
2π

√
2/La , where La is the side length of a cubic unit cell. We

will therefore set q0 = 2π
√

2/La in order to make the PFC
free energy functional favor the bcc structure. The simplest
analytical expression for the bcc structure, the so-called one-
mode approximation, can be obtained by keeping only the
terms with |Gi | = 2π

√
2/La in the expansion of Eq. (2):

φ̃one(R̃,φ̃ave) = φ̃ave + Ãs[cos(q1R̃1) cos(q1R̃3) + cos(q1R̃2)

× cos(q1R̃3) + cos(q1R̃1) cos(q1R̃2)], (5)

where Ãs is the nondimensionalized amplitude and q1 =
1/

√
2. Henceforth, we will omit the tilde notation for the

nondimensionalized quantities.

B. Measure of deformation

We denote the undeformed state of a material as the state
prior to the deformations of the material. In other words,
the material is subjected to zero strain, but not necessarily
zero stress. We use (R1,R2,R3) to denote the undeformed
coordinates of the position of a volume element in the material
while using (r1,r2,r3) to denote the deformed coordinates of
the position. Since we assume that both coordinates share
the same basis, the deformation gradient tensor αij and the
displacement gradient tensor uij are written as

αij = ∂ri

∂Rj

(6)

and

uij = ∂(ri − Ri)

∂Rj

, (7)

where the subscripts i and j vary from 1 to 3, and it follows
that uij = αij − δij . The symbol δij is the Kronecker δ and
the Einstein summation notation is used throughout the paper
unless stated otherwise. The deformation considered in this
work is the affine or homogeneous deformation, and thus we
can write37,38

ri = αijRj = (uij + δij )Rj . (8)

Conversely, we can write Ri in terms of rj :

Ri = α−1
ij rj , (9)

where α−1
ij = ∂Ri/∂rj . For brevity, we write the above

transformation in tensor notation: R = α−1 · r, where r =
r1i + r2j + r3k. The Lagrangian strain tensor is expressed as

Eij = 1
2 (αkiαkj − δij ) = 1

2 (uij + uji + ukiukj ), (10)

and is employed in a nonlinear elasticity theory. In a linear
elasticity theory, one assumes infinitesimal deformations and
defines the symmetric small-strain tensor,

εij = 1
2 (uij + uji), (11)
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and the antisymmetric small-strain tensor,

ωij = 1
2 (uij − uji). (12)

Equations (11) and (12) can be used to calculate uij from

uij = 1
2 (εij + εji + ωij − ωji). (13)

C. Definitions of isothermal elastic constants from
the thermoelasticity theory

The definitions of the isothermal elastic constants from the
theory of thermoelasticity of stressed materials23–25 depend on
the choice of the independent variables of the Helmholtz free
energy, F (not necessarily identical to F introduced earlier).
The Helmholtz free energy of a nonhydrostatically stressed
system can be written in the form

F (θ,aij ,N,Ri), (14)

where θ is temperature, aij denotes either Eij or εij , N is
the number of atoms or particles, and Ri is the reference or
undeformed coordinates. Since we consider Ri as constant, we
will omit this dependence subsequently.

The elastic constants, as well as other thermodynamic
quantities, can be defined from the Taylor expansion of the free
energy around the undeformed state and we refer to Appendix
A for more details. The coefficients of the first-order terms with
respect to the elements of the strain tensors give the following
definitions:25,37

T u
ij = 1

V
∂F

∂Eij

∣∣∣∣
u

θ,E∗
mn,N

= 1

V
∂F

∂εij

∣∣∣∣
u

θ,ε∗
mn,N

, (15)

where V is the volume of the system at the undeformed
state and T u

ij is an element of the symmetric second Piola-
Kirchhoff stress tensor37 evaluated at the undeformed state.
The subscripts E∗

mn and ε∗
mn indicate that the elements of the

strain tensors other than those involved in the partial derivative
are held constant, and the superscript u indicates that the partial
derivatives are evaluated at the undeformed state.

The coefficients of the second-order terms with respect to
the elements of the strain tensors yield the definitions of elastic
constants:25,37

Cijkl = 1

V
∂2F

∂Eij ∂Ekl

∣∣∣∣
u

θ,E∗
mn,N

(16)

and

Kijkl = 1

V
∂2F

∂εij ∂εkl

∣∣∣∣
u

θ,ε∗
mn,N

, (17)

in the nonlinear and linear elasticity theories, respectively.
The elastic constants Cijkl and Kijkl , both referred to as the TE
elastic constants, are fourth-order tensors with complete Voigt
symmetry for the indices, i.e., Cijkl = Cjikl , Cijkl = Cijlk , and
Cijkl = Cklij , and similarly for Kijkl . For a cubic material,
each set of Cijlk and Kijkl reduces to three independent
values, which are (no summation) C11 = Ciiii , C12 = Ciijj ,
and C44 = Cijij = Cijji with the other elements being zero.
Similar notation applies to the elastic constants Kijkl .

For a cubic material under hydrostatic pressure, Pu, of
the undeformed state, which is considered in this work, the

relationships between Cαβ and Kαβ are25

C11 = K11 + Pu, C12 = K12, C44 = K44 + Pu

2
, (18)

where the details of the derivation are shown in Appendix A.
The above relationships reveal the fact that the elastic

constants defined by the linear and nonlinear elasticity theories
are not, in general, equal to one another even at the limit of
zero strain (undeformed state). Only when the pressure of the
undeformed state is zero do these two set of elastic constants
become identical. For simulations of materials under ambient
pressure, the magnitude of the pressure is typically much
smaller than that of the elastic constants, and therefore, the two
sets of elastic constants are approximately equal. However, for
simulations of materials under high pressure,33,39,40 the two
sets of the elastic constants can differ significantly. We find
that, for the parameterized PFC model used in this work, the
magnitude of the pressure is not negligible compared with that
of the elastic constants.

D. Deformation types

In this work, we will calculate both the PFC and TE elastic
constants using the PFC approach. Since the PFC free energy
is not an explicit function of the elements of a strain tensor,
one cannot directly calculate the elastic constants by taking
the second derivatives of the free energy with respect to the
element of the strain tensors, as shown in Eqs. (16) and
(17). Instead, one extracts the values of the elastic constants
from variations in the free energy density with respect to
various types of quasistatic deformations, as will be shown
in Sec. III. For the elastic constants of a cubic material,
we need three deformation types in order to obtain a set of
linearly independent equations to solve for three unknowns.
We choose to consider the following types of deformation:
(1) isotropic deformation characterized by uij = δij ξ , where
ξ is a parameter quantifying the amount of deformation
(hereafter referred to as the “small deformation parameter”),
(2) biaxial deformation where the nonzero elements are u11 =
ξ and u22 = −ξ , and (3) simple-shear deformation where the
nonzero element is u12 = −ξ . These deformations are chosen
because we are aiming to make a direct comparison with the
previous PFC studies.21,22 We note that we could use any
other type of affine deformation to extract the elastic constants
as long as they give three linearly independent equations.
For example, we could use a volume-conserving biaxial
deformation, where the nonzero elements are u11 = 1 + ξ and
u22 = 1/(1 + ξ ), instead of the biaxial deformation presented
above. If the volume-conserving biaxial deformation were
used along with the isotropic and simple-shear deformations,
we would obtain a different set of three linearly independent
equations; nevertheless, the solution to the system of equations
would be the same, yielding the same values of the elastic
constants.

III. CALCULATIONS OF ISOTHERMAL ELASTIC
CONSTANTS USING PFC FREE ENERGY

In this section, we review the conventional procedure
for calculating the PFC elastic constants and propose the
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TABLE I. A list of (i) types of deformation, (ii) functional forms of density profiles in terms of the deformed coordinates, φ(α−1 · r),
(iii) expressions for the integration over the deformed unit cell, and (iv) the deformed volume of the unit cell, Vn(ξ ). The unit cell is cubic with
a side length of La in the undeformed state.

(i) Deformation (ii) φ(α−1 · r) (iii)
∫

Vn(ξ ) dr (iv) Vn(ξ )

Isotropic (n = 1) φ(α−1 · r) = φ
(

r1
1+ξ

,
r2

1+ξ
,

r3
1+ξ

) ∫ La (1+ξ )
0

∫ La (1+ξ )
0

∫ La (1+ξ )
0 dr1dr2dr3 L3

a(1 + ξ )3

Biaxial (n = 2) φ(α−1 · r) = φ
(

r1
1+ξ

,
r2

1−ξ
,r3

) ∫ La

0

∫ La (1−ξ )
0

∫ La (1+ξ )
0 dr1dr2dr3 L3

a(1 − ξ 2)

Simple Shear (n = 3) φ(α−1 · r) = φ (r1 + ξr2,r2,r3)
∫ La

0

∫ La

0

∫ La−ξr2
−ξr2

dr1dr2dr3 L3
a

alternative procedure for calculating the TE elastic constants
using the PFC free energy. We present numerical results from
an existing PFC model for bcc Fe to show that the PFC and
TE elastic constants can be significantly different, and then
discuss the implications of the results.

A. PFC elastic constants

We describe the procedure for obtaining the PFC elastic
constants of a bcc crystal using the PFC free energy and
the one-mode approximation as a density profile.22 We first
write φone(R,φave) in terms of the deformed coordinates,
or φone(α−1 · r,φave), and then obtain the total energy by
integrating w(φone) over the deformed unit cell at a constant
average density φave:

Fn(ξ,φave) =
∫

Vn(ξ )
w[φone(α−1 · r,φave)] dr, (19)

where the limit of the integration is shown in Table I and the
variable Vn(ξ ) is the deformed volume. We have assumed an
isothermal condition and thus omitted the dependence of the
free energy on θ . The subscript n(=1,2,3) denotes the types of
deformation shown in Table I, and we evaluate the quantities
with the subscript n separately for each deformation type.
The PFC elastic constants are obtained from calculating the
following quantities:


hn(ξ,φave) ≡ Fn(ξ,φave)

Vn(ξ )
− Fn(0,φave)

Vn(0)
= hn(ξ,φave) − hn(0,φave), (20)

where hn(ξ,φave) can be interpreted as the “bulk” free energy
density because it is spatially independent. The second-order
coefficient of the Taylor expansion of 
hn(ξ,φave) around ξ =
0 is related to the cubic elastic constants, Hαβ , as follows:


h1(ξ,φave) = · · · + 1
2 (3H11 + 6H12)ξ 2 + · · · ,


h2(ξ,φave) = · · · + 1
2 (2H11 − 2H12)ξ 2 + · · · , (21)


h3(ξ,φave) = · · · + 1
2 (H44)ξ 2 + · · · ,

where we use the subscript αβ to denote 11, 12, or 44. We note
that Hαβ are functions of φave, which is not explicitly indicated
for brevity. To put the above calculation in the same context
as that in the next section, we note that the method in finding
the elastic constants in Eq. (21) is equivalent to calculating the
second-order partial derivative of the free energy density with
respect to the small deformation parameter,

QPFC
n (φave) ≡ ∂2

∂ξ 2

(Fn(ξ,φave)

Vn(ξ )

)∣∣∣∣
ξ=0

θ,φave

, (22)

and solving for the elastic constants from

QPFC
1 (φave) = 3H11 + 6H12,

QPFC
2 (φave) = 2H11 − 2H12, (23)

QPFC
3 (φave) = H44.

We emphasize that the partial derivatives in Eq. (22) are
performed at constant φave, as indicated in the subscript at the
vertical line. We also note that the two procedures described
above are only valid for the density profiles that minimize
(or maximize) the bulk free energy density with respect to
deformations at a constant average number density. For these
density profiles, the first derivative of the free energy density
with respect to a small deformation variable at a constant
average number density is zero. In the context of this work
where the density profiles are described by the one-mode
approximation, the two procedures above are only valid for
the density profiles that minimize hn(ξ,φave) with respect to ξ

at constant φave. However, in Sec. IV, we will present a more
general procedure to calculate the PFC elastic constants that
applies to a density profile that does not necessarily minimize
hn(ξ,φave) with respect to ξ at constant φave.

B. TE elastic constants

We now propose the alternative procedure for obtaining the
TE elastic constants defined in Eqs. (16) and (17) from the
PFC free energy. We evaluate the integral similar to that from
Eq. (19), but with a condition that the total number of particles,

NT =
∫
V

φone(R,φave)dR, (24)

remains constant during the deformations. This means that the
average density φave will no longer remain constant and we
write

φave ≡ φave,n(ξ ) = NT

Vn(ξ )
= NT /V

Vn(ξ )/V = φ′
ave

Jn(ξ )
, (25)

where Jn(ξ ) = Vn(ξ )/V and φ′
ave is the total number of parti-

cles per undeformed volume. Because the undeformed volume
V is constant, holding φ′

ave constant during the deformations is
equivalent to holding NT constant. The integration of the PFC
free energy with respect to the deformed coordinates is then

Fn(ξ,φ′
ave) =

∫
Vn(ξ )

w

[
φone

(
α−1 · r,

φ′
ave

Jn(ξ )

)]
dr, (26)
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where we have assumed that Fn is the total Helmholtz free
energy. We then proceed to calculate

QTE
n (φ′

ave) ≡ ∂2

∂ξ 2

[Fn(ξ,φ′
ave)

V

]∣∣∣∣
ξ=0

θ,φ′
ave

, (27)

where we emphasize that Fn(ξ,φ′
ave) is obtained from the de-

formations with constant φ′
ave. We note that in the limit of ξ =

0, we have V = V and, therefore, φave = φ′
ave. Using the chain

rule, one can write the second derivative with respect to ξ as

∂2

∂ξ 2
= ∂2Eij

∂ξ 2

∂

∂Eij

+ ∂Eij

∂ξ

∂Ekl

∂ξ

∂2

∂Eij ∂Ekl

, (28)

where the derivative is performed with constant θ and φ′
ave.

Using the transformation in Eq. (28) with Eq. (27), one arrives
at a system of equations to solve for the elastic constants Cαβ

(see Refs. 26 and 29):

QTE
1 (φ′

ave) = 3C11 + 6C12 − 3Pu,

QTE
2 (φ′

ave) = 2C11 − 2C12 − 2Pu, (29)

QTE
3 (φ′

ave) = C44 − Pu,

where it is assumed that the material has cubic symmetry and is
under the hydrostatic pressure, Pu, of the undeformed state.41

The elastic constants Cαβ are functions of φ′
ave or, equivalently,

φave because they are evaluated at the undeformed state. The
pressure can be calculated from the isotropic deformation
(n = 1):

Pu = −1

3

∂

∂ξ

(F1(ξ,φ′
ave)

V

)∣∣∣∣
ξ=0

θ,φ′
ave

. (30)

After obtaining Cαβ , we can simply calculate Kαβ from
Eq. (18). We emphasize that we do not calculate Kαβ from
the procedure similar to the one used to obtain Cαβ because
the procedure will yield values of Kαβ that are inconsistent
with the definition in Eq. (17). We discuss this issue in
Appendix B.

C. Numerical comparison between PFC and
TE elastic constants

To elucidate the implications of the above analysis, we
proceed to numerically compare the PFC and TE elastic
constants. We use a PFC model for bcc Fe since it has been
more extensively studied. There have been two studies of bcc
Fe using the PFC method; one study was performed by Jaatinen
et al.42 and the other study was conducted by Wu et al.43 We do
not examine the PFC model from the former study here because
the corresponding free energy is the energy difference from
that of the reference liquid state. As a result, we would need to
consider the quantities pertaining to the reference liquid state,
which is beyond the scope of the present work. On the other
hand, the PFC free energy used by Wu et al.43 (described in
Sec. II A) is based on a phenomenological model1 and can
be considered as the total energy of the system. Therefore
we will use the parametrization of the PFC method presented
in the study by Wu et al.43 The values of the PFC fitting
parameters used in this work are as follows:43 q0 = 2.985 Å−1,
λ = 0.291 eVÅ7, ε = 0.0923, and gt = 9.703 eVÅ9 (see also
Ref. 44).

Figure 1 shows the plots of the PFC elastic constants,
the TE elastic constants, and the pressure at the undeformed
state as functions of φave; the values of these elastic constants
at the liquid-solid coexistence density (φave = −0.201) are
reported in Table II in rows (i) to (iii). In row (iv), we
tabulate the PFC elastic constants calculated in Ref. 22 for
comparison with those calculated in the present study [row
(i)]. The small differences in values of the two sets of the
elastic constants are due to the slight difference in the values
of gt . The values of the elastic constants calculated from MD
simulations22 are also tabulated in row (v) of Table II. The
procedure for obtaining these MD results is similar to that
used in Ref. 45 to obtain the elastic constants of Ni.46 Lastly,
we find that this parametrization of the PFC method yields the
pressure at the solid-liquid coexistence of Pu = 184.5 GPa =
1.821 × 106 atm.

We note that Hαβ can be directly compared with both Cαβ

and Kαβ only because the density profile used in this work is
constructed so that hn(ξ,φave) is minimized with respect to ξ at
constant φave. This construction makes the values of the PFC
elastic constants, defined by the linear and nonlinear elasticity
theories, identical; this justifies our comparisons between Hαβ

and Cαβ and between Hαβ and Kαβ . For a general form of
a density profile, however, we can only directly compare the
elastic constants that are defined from the same measure of
deformation; in this work, the measure of deformation is
either the Lagragian strain tensor or the small-strain tensor.
Therefore, in the next section, we will propose a general
procedure for calculating the two sets of PFC elastic constants:
one defined by the linear elasticity theory and the other one
defined by the nonlinear elasticity theory.

By comparing the PFC and TE elastic constants, we find that
the PFC elastic constants, Hαβ , are equivalent to neither Cαβ

nor Kαβ ; both sets of the TE elastic constants are significantly
larger than Hαβ , especially for the 11-type constants. Therefore
we find that the PFC and TE elastic constants cannot be
used interchangeably. Consequently, since the thermoelasticity
theory is widely adopted, one should only use the TE elastic
constants to make consistent comparisons of the elastic
constants from the PFC method with those from other theories
such as classical density functional theory,26–28 Monte Carlo,29

MD,30 and ab initio density functional theory.31–33

The reasons for the discrepancies between the PFC and TE
elastic constants can be understood by comparing Eqs. (22) and
(27). The first difference is the frame in which the free energy
density is measured. The difference leads to the different
volume that divides the total free energy. The PFC elastic
constants are derived from the free energy per unit deformed
volume, while the TE elastic constants are obtained from the
free energy per unit undeformed volume.

The second difference is whether or not φave or φ′
ave

is held constant when taking the second derivative of the
free energy density with respect to the small deformation
parameter. The constant-φave condition, which is used to obtain
the PFC elastic constants, causes the number of particles
in the system to change when the volume of the system
is changing during the quasistatic deformations. However,
the constant-φ′

ave condition, which is used to obtain the TE
elastic constants, is equivalent to keeping the total number
of particles in the system constant during the deformations.
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(a) (b)

(c) (d)

ave ave

ave ave

FIG. 1. (Color online) The plots of different sets of elastic constants and hydrostatic pressure as functions of φave, or equivalently φ′
ave.

(a) The PFC elastic constants. (b) The TE elastic constants in the nonlinear elasticity theory. (c) The TE elastic constant in the linear elasticity
theory. (d) The hydrostatic pressure of the undeformed state.

Therefore we find that the choices of the frame of reference
and the different constraints imposed upon the quasistatic
deformations contribute to the different values between the
PFC and TE elastic constants.

TABLE II. The elastic constants of bcc Fe at the melting point.
The unit of the elastic constants is GPa. (i) The PFC elastic constants
calculated in this work using slightly different parameters from those
in Ref. 22 (see also Ref. 44). (ii) The TE elastic constants in the
nonlinear elasticity theory. (iii) The TE elastic constants in the linear
elasticity theory. (iv) The PFC elastic constants reported in Ref. 22.
(v) The elastic constants predicted by the MD simulations.22 For (i)
to (iv), the elastic constants are evaluated at φave = −0.201.

Elastic Constants 11-Type 12-Type 44-Type

(i) Hαβ 89.8 44.9 44.9
(ii) Cαβ 542.0 128.1 229.4
(iii) Kαβ 357.5 128.1 137.2

(iv) PFC-WAK 90.0 45.0 45.0
(v) MD 128.0 103.4 63.9

Since Hαβ cannot be compared with the elastic constants
calculated using other theories, we will instead compare the
TE elastic constants with those from the MD simulations.22 We
find that the values of 11- and 44-type constants for both Cαβ

and Kαβ are significantly larger than those of the MD results.
This discrepancy is not unexpected considering the fact that the
model predicts a large pressure at the liquid-solid coexistence
density (1.821 × 106 atm),47 while the potential in the MD
simulations is constructed so that the predicted pressure is
close to zero to model normal experimental conditions.48

This indicates that the systems described by the PFC and
MD simulations are in very different thermodynamic states.
Therefore a different set of PFC parameters that yields a
reasonable value of pressure should be obtained to improve
the prediction of the elastic constants.

IV. A GENERAL PROCEDURE TO OBTAIN THE PFC
ELASTIC CONSTANTS

Up to this point, we have introduced the TE elastic constants
defined by the linear and nonlinear elasticity theories, which
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are Cijkl and Kijkl , respectively. However, we have not
specified whether Hijkl is defined by the linear or nonlinear
elasticity theory. As we have mentioned in the previous section,
this specification is not necessary for the particular form of
the density profile used in this work because it minimizes
hn(ξ,φave) with respect to ξ at constant φave. However, for
a general form of a density profile, we need to be able to
calculate the PFC elastic constants defined by both the linear
and nonlinear elasticity theories. Therefore a more general
procedure than those presented in Sec. III A is needed.

We first propose formal definitions of the PFC elastic
constants from the second derivatives of the free energy
density with respect to the elements of the strain tensors; these
definitions are analogous to how the TE elastic constants are
defined. By considering the procedure in Sec. III A, the two
possible choices are

∂2

∂Eij ∂Ekl

(F
V

)∣∣∣∣
θ,φave,E∗

mn

≡ HE
ijkl (31)

and

∂2

∂εij ∂εkl

(F
V

)∣∣∣∣
θ,φave,ε∗

mn

≡ Hε
ijkl . (32)

The elastic constants HE
ijkl (Hε

ijkl) are analogous to Cijkl (Kijkl)
in the sense that they are defined by the nonlinear (linear)
elasticity theory.

We then outline the procedure for calculating HE
αβ and Hε

αβ .
Using a procedure similar to that used to obtain Cαβ , we can
obtain HE

αβ from

QPFC
1 = 3HE

11 + 6HE
12 − 3P g

u ,

QPFC
2 = 2HE

11 − 2HE
12 − 2P g

u , (33)

QPFC
3 = HE

44 − P g
u ,

where

P g
u = −1

3

∂

∂ξ

(F1(ξ,φave)

V1(ξ )

)∣∣∣∣
ξ=0

θ,φave

. (34)

We emphasize that the partial derivative is performed with
constant φave. Finally, similar to how Kαβ is related to Cαβ

from Eq. (18), we can relate Hε
αβ to HE

αβ from the following
relationships:

HE
11 = Hε

11 + P g
u , HE

12 = Hε
12, HE

44 = Hε
44 + P

g
u

2
. (35)

When P
g
u = 0, HE

αβ = Hε
αβ , which is the case for the choice of

the density profile used in this work. The term P
g
u is analogous

to Pu in that it is proportional to the first derivative of the
free energy density with respect to the deformation variable.
However, the deformation process to obtain P

g
u is performed

with constant φave instead of φ′
ave. Furthermore, the free energy

density to obtain P
g
u is measured with respect to the deformed

frame instead of the undeformed frame. For the PFC free
energy and the one-mode approximation given in Eq. (5), the
value of P

g
u is equal to zero for all values of φave because the

form of the density profile minimizes hn(ξ,φave) with respect
to ξ at constant φave. However, P g

u = 0 does not correspond to
Pu = 0 as we have shown in Fig. 1(d).

V. THERMODYNAMICS OF STRESSED SOLIDS

In this section, we use a thermodynamic formulation to
define the PFC and TE elastic constants in a systematic
manner. We then derive the relationships between the PFC
and TE elastic constants as well as those among other
thermodynamic quantities resulting from Taylor expansions of
thermodynamic energy functions. We discuss the implications
of the relationships among the thermodynamic quantities
and then present numerical verifications of the relationships
between the PFC and TE elastic constants.

A. Formulation

In addition to the thermoelasticity theory,23–25 we employ
a thermodynamic theory of stressed solids by Larche and
Cahn34,35 that considers the solid as a network of lattices and
allows a description of vacancies. In this work, we consider
only substitutional lattices which can be occupied by atomic
species A and vacancies. The Helmholtz free energy of such a
system can be written in the following form:

Fs = Fs(θ,NA,aij ,Ri), (36)

where NA is the number of lattice sites occupied by atomic
species A (not to be confused with the Avogadro’s number),
and the subscript s denotes that the material is a crystalline
solid. The fact that Fs depends on only NA and not the
number of lattice sites occupied by vacancies comes from the
assumption that the total number of lattice sites are conserved
in all thermodynamic states. This assumption applies when
there is no consideration of defects such as surfaces, grain
boundaries, and dislocations that can alter the total number of
lattice sites by acting as sources or sinks of vacancies.34 Again,
since we consider Ri as constant, we will omit this dependence
subsequently.

From the form of Fs , we now redefine the stress and elastic
constants in Eqs. (15)–(17):

T u
ij = 1

V
∂Fs

∂Eij

∣∣∣∣
u

θ,E∗
mn,NA

= 1

V
∂Fs

∂εij

∣∣∣∣
u

θ,ε∗
mn,NA

,

(37)

Cijkl = 1

V
∂2Fs

∂EijEkl

∣∣∣∣
u

θ,NA,E∗
mn

, Kijkl = 1

V
∂2Fs

∂εij εkl

∣∣∣∣
u

θ,NA,ε∗
mn

,

where the subscript N has been replaced by NA and F has
been replaced by Fs .

The next step is to formulate thermodynamic energy
functions that allow different sets of elastic constants to be
defined in a systematic manner. The energy function that can
be used to define HE

ijkl or Hε
ijkl is

gs ≡ Fs(θ,aij ,ρA)

V
, (38)

where ρA = NA/V is the number of the lattice sites occupied
by atomic species A divided by the volume of the deformed
system. On the other hand, the energy function that can be
used to calculate Cijkl and Kijkl is

f ′
s ≡ Fs(θ,aij ,ρ

′
A)

V , (39)

where ρ ′
A = NA/V = JρA is the number of lattice sites

occupied by atomic species A divided by the volume of the
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undeformed system. The reason for defining ρ ′
A is that the

condition of constant ρ ′
A is the same as constant NA because

V is constant.
For completeness, one could define the other two energy

functions:

g′
s ≡ Fs(θ,aij ,ρA)

V , fs ≡ Fs(θ,aij ,ρ
′
A)

V
, (40)

which can be used to define the other two sets of elastic
constants that are different from the PFC and TE elastic
constants. We will not address these additional two sets of
elastic constants in this work.

Regarding the notation, we use the letters g and f to
indicate that the energy functions depend on ρA and ρ ′

A,
respectively. The use of a prime in f ′

s , g′
s , and ρ ′

A indicates
that the corresponding variables are quantities per unit volume
of the undeformed system. Without the prime, fs , gs and ρA

are quantities per unit volume of the deformed system.
Lastly, we define the quantities at the undeformed state as

follows:

θ → θu, aij → 0, ρ ′
A → ρ ′

Au,
(41)

ρA → ρ ′
Au, gs → gsu, f ′

s → f ′
su,

where gsu = f ′
su.

B. Taylor expansions of energy functions

We are now in the position to define the elastic constants
as well as other thermodynamic quantities from the Taylor
expansions of the energy functions. We expand the energy
functions around the undeformed state with respect to aij and
ρA or ρ ′

A. For f ′
s , we write the expansion as follows:

f ′
s (θu,aij ,ρ

′
Au + 
ρ ′

A)

= f ′
su + Ufp

s 
ρ ′
A + Pfp

ij aij + Dfp

ij 
ρ ′
Aaij

+ 1
2A

fp
s (
ρ ′

A)2 + 1
2L

fp

ijklaij akl, (42)

where 
ρ ′
A = ρ ′

A − ρ ′
Au, and

f ′
su = f ′

s (θu,0,ρ ′
Au), Ufp

s = ∂f ′
s

∂ρ ′
A

∣∣∣∣
u

θ,aij

,

Pfp

ij = ∂f ′
s

∂aij

∣∣∣∣
u

θ,a∗
mn,ρ

′
A

, Dfp

ij = ∂

∂aij

∣∣∣∣
u

θ,ρ ′
A,a∗

mn

(
∂f ′

s

∂ρ ′
A

∣∣∣∣
θ,akl

)
,

Afp
s = ∂2f ′

s

∂(ρ ′
A)2

∣∣∣∣
u

θ,aij

, Lfp

ijkl = ∂2f ′
s

∂aij ∂akl

∣∣∣∣
u

θ,a∗
mn,ρ

′
A

. (43)

The superscript u denotes that the partial derivatives are
evaluated at the undeformed state, and the superscript fp

denotes that the quantity is obtained from the Taylor expansion
of f ′

s . For the Taylor expansion of gs , we write

gs(θu,aij ,ρ
′
Au + 
ρA) = gsu +Ug

s 
ρA +Pg

ij aij +Dg

ij
ρAaij

+ 1
2A

g
s (
ρA)2 + 1

2L
g

ijklaij akl, (44)

where 
ρA = ρA − ρ ′
Au, and

gsu = gs(θu,0,ρ ′
Au), Ug

s = ∂gs

∂ρA

∣∣∣∣
u

θ,aij

, Pg

ij = ∂gs

∂aij

∣∣∣∣
u

θ,a∗
mn,ρA

,

Dg

ij = ∂

∂aij

∣∣∣∣
u

θ,ρA,a∗
mn

(
∂gs

∂ρA

∣∣∣∣
θ,akl

)
, Ag

s = ∂2gs

∂(ρA)2

∣∣∣∣
u

θ,aij

,

Lg

ijkl = ∂2gs

∂aij ∂akl

∣∣∣∣
u

θ,a∗
mn,ρA

. (45)

The superscript g indicates that the corresponding quantity
is from the Taylor expansion of gs . Furthermore, whether aij

refers to Eij or εij does not affect the values of Ux
s , Px

ij ,
Ax

s , and Dx
ij , where the superscript x denotes either g or fp.

However, the choice of Eij or εij affects the values of Lx
ijkl ,

for a given x. Therefore we define Cx
ijkl ≡ Lx

ijkl for aij = Eij ,
and Kx

ijkl ≡ Lx
ijkl for aij = εij . As will be evident later, the

quantities Lx
ijkl are the elastic constants.

We can relate the coefficients of the Taylor expansions
to some of the quantities introduced previously. First, if we
substitute φave = ρA and F = Fs in Eqs. (31) and (32), it is
clear from Eq. (45) and the definition of gs in Eq. (38) that

Cg

ijkl = HE
ijkl, and Kg

ijkl = Hε
ijkl . (46)

In other words, the quantities Lg

ijkl (i.e., Cg

ijkl and Kg

ijkl) are the
PFC elastic constants.

Second, we show that Pfp

ij is equal to the stress tensor
evaluated at the undeformed state by considering Eqs. (37),
(39), and (43):

Pfp

ij = ∂f ′
s

∂aij

∣∣∣∣
u

θ,a∗
mn,ρ

′
A

= 1

V
∂Fs

∂aij

∣∣∣∣
u

θ,a∗
mn,NA

= T u
ij , (47)

where we emphasize that constant ρ ′
A is identical to constant

NA. However, Pg

ij �= T u
ij because the constant-ρA condition

does not equal to the constant-NA condition and because
gs is the free energy density measured with respect to the
deformed frame whereas f ′

s is the free energy measured with
respect to the undeformed frame. For isotropic pressure at the
undeformed state, or T u

ij = −δijPu, the rotational invariance
of the free energy requires the quantities Px

ij and Dx
ij to be

represented by scalar matrices (scalar multiples of the identity
matrix) and we denote the value of their diagonal entries to be
Px

s and Dx
s , respectively.

Third, from Eq. (43) and the definition of f ′
s in Eq. (39),

we can write

Lfp

ijkl = ∂2f ′
s

∂aij ∂akl

∣∣∣∣
u

θ,a∗
mn,ρ

′
A

= 1

V
∂2Fs

∂aij ∂akl

∣∣∣∣
u

θ,a∗
mn,NA

. (48)

Comparing the above expression to that in Eq. (37), we obtain

Cfp

ijkl = Cijkl, and Kfp

ijkl = Kijkl, (49)

which means that the quantities Lfp

ijkl (i.e., Cfp

ijkl and Kfp

ijkl) are
the TE elastic constants.

For a cubic material under isotropic pressure at the
undeformed state, the relationships between Cx

αβ and Kx
αβ is

analogous to those in Eq. (18):

Cx
11 = Kx

11 − Px
s , Cx

12 = Kx
12, Cx

44 = Kx
44 − Px

s

2
, (50)
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where we note that the sign of Px
s is the opposite of the sign of

Pu. These relationships are derived from the same procedure
described from Eqs. (A1) to (A6) in Appendix A.

C. Relationships between the coefficients of Taylor expansions

We can now derive the relationships between the coeffi-
cients of the Taylor expansions. In particular, we are interested
in the relationships between HE

αβ (Hε
αβ) and Cαβ (Kαβ), which

are essentially the relationships between Lfp

αβ and Lg

αβ . This
is obtained by substituting ρA = ρ ′

A/J and gs = f ′
s /J into

Eq. (44), using the following expressions for J :36

J → (1 + ε11)(1 + ε22)(1 + ε33) (51)

or

J →
√

(1 + 2E11)(1 + 2E22)(1 + 2E33), (52)

depending on whether Eij or εij is considered. We then expand
the resulting expression around the undeformed state and
equate the coefficients of the Taylor expansion with those from

Eq. (42). We obtain the following relationships:

Ufp
s = Ug

s , Pfp
s = Pg

s − Ug
s ρ ′

Au + gsu,
(53)

Dfp
s = Dg

s − Ag
s ρ

′
Au, Afp

s = Ag
s .

When we consider aij = Eij , we have

Cfp

11 = Cg

11 + Ag
s (ρ ′

Au)2 − 2Dg
s ρ

′
Au + 2Pg

s + Ug
s ρ ′

Au − gsu,

Cfp

12 = Cg

12 + Ag
s (ρ ′

Au)2 − 2Dg
s ρ

′
Au + 2Pg

s − Ug
s ρ ′

Au + gsu,

(54)

and when aij = εij , we obtain

Kfp

11 = Kg

11 + Ag
s (ρ ′

Au)2 − 2Dg
s ρ

′
Au + 2Pg

s ,

Kfp

12 = Kg

12 + Ag
s (ρ ′

Au)2 − 2Dg
s ρ

′
Au + 2Pg

s − Ug
s ρ ′

Au + gsu.

(55)

The relationships in Eqs. (54) and (55) above not only
facilitate conversions between the PFC and TE elastic con-
stants, but also quantify the difference between the PFC and
TE elastic constants in terms of thermodynamic quantities.

(a) (b)

(c) (d)

ave ave

ave ave

FIG. 2. (Color online) The plots of elastic constants as functions of φave, or equivalently φ′
ave. The elastic constants Cfp1

αβ and Kfp1
αβ are

calculated from the procedure described in Sec. III B, which is similar to how the TE elastic constants are obtained. The elastic constants Cfp2
αβ

and Kfp2
αβ are obtained from Eqs. (54) and (55), which in turn employ the values of Cg

αβ and Kg

αβ calculated from the procedure in Sec. IV.
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These thermodynamic quantities are the coefficients of the
Taylor expansion in Eq. (44), which can be related to
the thermodynamic quantities from the Taylor expansion in
Eq. (42) through the relationships in Eq. (53). For example,
the quantity Pg

s in the above equation can be related to Pfp
s ,

which is in turn equal to the negative of the pressure evaluated
at the undeformed state (−Pu).

The thermodynamic quantities that quantify the difference
between the PFC and TE elastic constants depend on the spe-
cific parametrization of the model and in general are nonzero.
Furthermore, these quantities pertain to the undeformed state
that is characterized by the limit of strain approaching zero (or
the limit of ξ approaching zero). Therefore we conclude that
these quantities do not generally vanish at the zero-strain limit,
which also implies that the PFC and TE elastic constants are
not generally identical at this limit.

We now present verifications of Eqs. (54) and (55) from
numerical calculations. Specifically, we compare the values of
Cfp

αβ and Kfp

αβ calculated from two different procedures. The
first procedure is described in Sec. III B, which is how we
obtained the TE elastic constants. We denote the resulting
quantities Cfp1

αβ and Kfp1
αβ . The second procedure is to use

Eqs. (54) and (55), and we denote the resulting values Cfp2
αβ and

Kfp2
αβ . To use the second procedure, we calculate Cg

αβ and Kg

αβ

from the procedure in Sec. IV, which is the general procedure
to calculate the PFC elastic constants. We also need to calculate
the values of Pg

s , Dg
s , Ug

s , Ag
s , gsu, and ρ ′

Au from the following
equations:

Pg
s = 1

3

∂

∂ξ

[F1(ξ,φave)

V1(ξ )

]∣∣∣∣
ξ=0

θ,φave

, (56)

Dg
s = 1

3

∂

∂ξ

∣∣∣∣
ξ=0

θ,φave

{
∂

∂φave

[F1(ξ,φave)

V1(ξ )

]∣∣∣∣
θ,ξ

}
, (57)

Ug
s = ∂

∂φave

[Fn(ξ,φave)

Vn(ξ )

]∣∣∣∣
ξ=0

θ,ξ

, (58)

Ag
s = ∂2

∂φ2
ave

[Fn(ξ,φave)

Vn(ξ )

]∣∣∣∣
ξ=0

θ,ξ

, (59)

gsu = Fn(ξ,φave)|ξ=0, (60)

ρ ′
Au = φave|ξ=0 = φ′

ave. (61)

We note that since Cg

αβ and Kg

αβ and the quantities from
Eqs. (56) to (60) are evaluated at the undeformed state,
they can be equivalently expressed as functions of φave or
φ′

ave. Also, Eqs. (56) and (57) only apply to the isotropic
deformation (n = 1), whereas Eqs. (58) to (61) is valid for
all types of deformation. We verify that Cfp1

11 = Cfp2
11 and

Cfp1
12 = Cfp2

12 from Figs. 2(a) and 2(b), respectively. We also
show that Kfp1

11 = Kfp2
11 and Kfp1

12 = Kfp2
12 from Figs. 2(c) and

2(d), respectively. These results validate the relationships in
Eqs. (54) and (55).

We do not report the relationship between Lfp

44 and Lg

44
from the method used to obtain Eqs. (54) and (55) because
the method does not yield a correct result. The reason is
that the definitions of J in Eqs. (51) and (52) only apply

to the deformations where the angles of the cubic unit cell
are not distorted,36 which is apparent from the fact that no
off-diagonal elements of the strain tensors are present in either
Eq. (51) or Eq. (52). Unfortunately, there is no general form
of J in terms of Eij and εij that would apply to all types of
affine deformation. Therefore we can only obtain the correct
relationships for the elastic constants that are defined from
the second derivatives of the diagonal elements of the strain
tensors. We will address this issue in a future work.

VI. SUMMARY

We have investigated the methods for calculating the
isothermal elastic constants using the PFC method and found
that the procedure outlined in Refs. 1, 21, and 22 is not con-
sistent with the definitions from the theory of thermoelasticity
of stressed materials.23–25 The PFC elastic constants (from the
procedure outlined in Refs. 1, 21, and 22) are calculated from
variations in the free energy density associated with various
types of quasistatic deformations at a constant average number
density. In this work, we proposed an alternative procedure
for calculating the elastic constants (termed the TE elastic
constants in this article) that are consistent with the definitions
from the thermoelasticity theory. The TE elastic constants
are calculated from variations in the total free energy per
undeformed volume associated with quasistatic deformations
at a constant number of particles in the system. Comparing
the conventional and the proposed procedures, we found that
the discrepancies between the PFC and TE elastic constants
result from the choices of the frame of reference used to
calculate the free energy density and the different constraints
imposed upon the quasistatic deformations. The numerical
results using an existing PFC model for bcc Fe show that the
two procedures can yield significantly different values of the
elastic constants. Therefore the TE elastic constants should be
used when parameterizing the PFC model.

Furthermore, we derived the relationships between the
PFC and the TE elastic constants using the energy func-
tions formulated from the thermodynamic theory of stressed
solids.34–36 These relationships were obtained by performing
Taylor expansions of and changes of variables to the energy
functions. From the relationships, we have quantified the
differences between the PFC and TE elastic constants in
terms of thermodynamic quantities such as the pressure of
the undeformed state.

In the present work, we have only derived the relationships
between the 11- and 12-type constants due to the restriction
in defining a volume ratio as a function of the elements of the
strain tensor. The relationship between the 44-type constants,
as well as general relationships, will be addressed in a future
work.
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APPENDIX A: TAYLOR EXPANSION OF THE
HELMHOLTZ FREE ENERGY

In this section, the Taylor expansion of the Helmholtz free
energy in Eq. (14) is performed in order to derive the definitions
shown in Eqs. (15)–(17). The expansion of F (θ,Eij ,N ) with
respect to Eij around the undeformed state gives37

F (θ,Eij ,N ) = F (θ,0,N ) + VT u
ijEij + V

2
CijklEijEkl + · · · ,

(A1)

where T u
ij and Cijkl are the coefficients of expansions written

as

T u
ij = 1

V
∂F

∂Eij

∣∣∣∣
u

θ,E∗
mn,N

(A2)

and

Cijkl = 1

V
∂2F

∂Eij ∂Ekl

∣∣∣∣
u

θ,E∗
mn,N

, (A3)

respectively. These are the definitions in Eqs. (15) and (16).
From the expansion in Eq. (A1), one can change the

variables from Eij to uij using Eq. (10), and subsequently
change the variables from uij to εij and ωij by using Eq. (13).
The resulting expansion is

F (θ,εij ,N ) = F (θ,0,N )

+VT u
ij

[
εij + 1

2
(εmi + ωmi)(εmj + ωmj )

]

+ V
2

Cijklεij εkl + · · · , (A4)

where we omit the higher-order terms in εij and ωij for
brevity, and we also use the symmetric property of εij

and antisymmetric property of ωij to simplify the above
expression. Despite the fact that the above expression contains
both εij and ωij , the free energy must still be dependent on
only εij and not on ωij due to the requirement that the free
energy be rotationally invariant.25 By rearranging the above
expression and omitting terms with ωij , we obtain

F (θ,εij ,N ) = F (θ,0,N ) + VT u
ij εij + V

2
Kijklεij εkl + · · · ,

(A5)

where

Kijkl = Cijkl + 1
4

(
T u

ikδjl + T u
il δjk + T u

jkδil + T u
jlδik

)
. (A6)

For a cubic material under isotropic pressure, Pu, where T u
ij =

−Puδij , Eq. (A6) simplifies to Eq. (18).
From Eq. (A5), we can write an alternative definition of T u

ij ,

T u
ij = 1

V
∂F

∂εij

∣∣∣∣
u

θ,ε∗
mn,N

, (A7)

and define another set of elastic constants,

Kijkl = 1

V
∂2F

∂εij ∂εkl

∣∣∣∣
u

θ,ε∗
mn,N

. (A8)

These are the definitions in Eqs. (15) and (17).

APPENDIX B: CALCULATIONS OF Kαβ

In this section, we discuss two issues that arise when the
elastic constants Kαβ are calculated from the procedure similar
to the one used to obtain Cαβ in Sec. III B. We illustrate the
first issue by using this procedure to calculate Kαβ . We first
calculate QTE

n (φ′
ave) from Eq. (27) and then use the chain rule

to transform the partial derivative as follows:

∂2

∂ξ 2
= ∂2εij

∂ξ 2

∂

∂εij

+ ∂εij

∂ξ

∂εkl

∂ξ

∂2

∂εij ∂εkl

. (B1)

Using the above equation to transform the partial derivative in
Eq. (27), we obtain

QTE
1 (φ′

ave) = 3K11 + 6K12 = 3C11 + 6C12 − 3Pu,

QTE
2 (φ′

ave) = 2K11 − 2K12 = 2C11 − 2C12 − 2Pu, (B2)

QTE
3 (φ′

ave) = K44 = C44 − Pu,

where the second equality in each line is taken from Eq. (29)
for comparison. From Eq. (B2), we find that the relationship
between K44 and C44 is different from that given in Eq. (18),
which indicates that K44 calculated from the procedure above
is inconsistent with the definition given by the thermoelasticity
theory in Eq. (17). The second issue when using the above
procedure to calculate Kαβ is that the resulting value of Kαβ

will depend on the choice of deformation, which contradicts
the fact that elastic constants are material properties.

In order to understand the cause of these issues, we first
consider why the procedure from Eqs. (26) to (29) can be
used to calculate Cαβ . The reason is that the Taylor expansion
of Fn(ξ,φ′

ave) from Eq. (26) with respect to ξ around the
undeformed state,

Fn(ξ,φ′
ave) = Fn(0,φ′

ave) + ∂Fn(ξ,φ′
ave)

∂ξ

∣∣∣∣
ξ=0

ξ

+ V
2

QTE
n (φ′

ave)ξ 2 + · · · , (B3)

is equivalent to the Taylor expansion,

Fn(Eij (ξ ),φ′
ave) = Fn(0,φ′

ave) + VTijEij (ξ )

+ V
2

CijklEij (ξ )Ekl(ξ ) + · · · , (B4)

for all deformation types up to the second-order terms in ξ .
This equality is the underlying assumption in Eq. (29) and we
confirm this equality by the fact that we obtain the same values
of Cijkl for all types of deformation.

However, we find that, due to the small-strain approxima-
tion, the expansion in Eq. (B3) is not equivalent to the Taylor
expansion,

Fn(εij (ξ ),φ′
ave) = Fn(0,φ′

ave) + VTij εij (ξ )

+ V
2

Kijklεij (ξ )εkl(ξ ) + · · · , (B5)

for all deformation types up to the second-order terms in ξ .
Therefore the equality in Eq. (B2) will not be valid in general,
and we have to instead calculate Kαβ from Eq. (18). With this
alternative method, we confirm that the same values of Kαβ

are obtained regardless of the choice of deformation types.
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