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The precursor dynamics of ferroelectric phase transitions in relaxor-based ferroelectric (1 − x)
Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals, with x = 0.07, 0.10, and 0.12, were investigated using inelastic
light scattering from a longitudinal acoustic phonon. An acoustic anomaly in a broad temperature range,
which is characteristic of relaxor ferroelectrics, was observed. We describe the anomalies in the paraelectric
phase by assuming local piezoelectric coupling inside polar nanoregions, which are surrounded by a nonpolar
matrix. On the basis of local piezoelectric coupling, a relaxation time τ and a dynamic characteristic length
L of the order-parameter (polarization) fluctuations were determined to be in the order of 10−13 s and 10−9 m,
respectively. The τ and L values increase sharply upon cooling from high temperatures but more gradually below
the intermediate temperature T ∗ (=493 − 510 K). This result implies that the local polarization fluctuations
grow rapidly upon cooling down to above T ∗ and the growth rate decreases below T ∗. The inflexion point of this
growth process in the paraelectric phase is related to the characteristic properties of relaxor-based solid solutions.
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I. INTRODUCTION

The phenomena of inhomogeneous systems have attracted
a great deal of research in the field of condensed matter
science. Intrinsic inhomogeneity in complex oxides induces
a few kinds of unusual behavior. For example, microtwins—
inhomogeneity in shape-memory alloys—induce recoverable
giant strain,1 while nanometer-sized conductive regions in
manganite induce colossal magnetoresistance.2 In the case of
relaxor ferroelectrics, local polar regions of several nanometers
wide, called polar nanoregions (PNRs), are believed to con-
tribute to giant dielectric and electromechanical responses.3

These properties find a wide range of technological applica-
tions; however, their microscopic mechanisms, especially the
effects of inhomogeneity on macroscopic phenomena, such
as the ferroelectric phase transition in relaxor ferroelectrics,
remain poorly understood.

Relaxor behavior is found in various kinds of com-
pounds, for instance, Pb(B′B′′)O3-PbTiO3, (Sr1−xBax)Nb2O6,
and (K3Li2−x)Nb5+xO15+2x . In particular, the single crystals
of perovskite relaxor-based ferroelectric Pb(B′B′′)O3-PbTiO3

solid solutions possess extremely high dielectric, piezoelectric,
and electrostrictive properties, making them the materials of
choice for the next generation of electromechanical devices
for sensing and actuation.4

Relaxor ferroelectrics are distinguished from normal ferro-
electrics by the broad and frequency-dispersive maximum in
the temperature dependence of the dielectric constant. From
a structural point of view, the inhomogeneous arrangement
of different ions on crystallographically equivalent sites is
another common feature of relaxor ferroelectrics. It is believed

that the disorder, due to the different ions at equivalent
lattice sites, generates PNRs at much higher temperatures
than a ferroelectric phase-transition temperature, leading to
relaxor phenomena. Since PNRs are directly responsible for
the various properties, the study of the dynamics of PNRs
is essential for a better understanding of the intricate phase
transitions in relaxor ferroelectrics.3

The phase transitions and PNR behavior in relaxor ferro-
electrics can be described using four characteristic tempera-
tures. From the highest to the lowest, these are (i) the Burns
temperature TB ,5 (ii) the intermediate temperature T ∗,6–8

(iii) the frequency-dependent temperature of the dielectric
permittivity peak Tm, and (iv) the ferroelectric phase transition
temperature TC [or the freezing temperature Tf in the case in
which this transition is absent as, e.g., in Pb(Mg1/3Nb2/3)O3

(PMN)].9 Above TB , the phase is paraelectric without PNRs,
and the structure is essentially the same as the paraelectric
state of normal ferroelectrics. Below TB , in the so-called
ergodic relaxor phase, the frustration between electric and
spatial instabilities induces PNRs, despite the fact that the
macroscopic crystal symmetry is identical to that above TB .
In this temperature range, the dynamics of PNRs affects the
macroscopic properties. For example, the refractive index
deviates from the linear temperature dependence below TB .5

Another example is that the temperature dependence of the
dielectric constant does not obey the Curie-Weiss law.10

Between TB and T ∗, it is thought that the fluctuating PNRs
are dispersed. Below T ∗, the static components of PNRs start
to appear, leading to a change in the Raman spectra and a
deviation from the linear temperature dependence of expansion
coefficient.6,11 When dynamic PNRs transform into static
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PNRs, an acoustic emission (AE) burst is observed at T ∗.7,8

The polarization fluctuations increase toward Tm. At this time,
the polarization fluctuations are composed of both dynamic
PNRs and polar fluctuations at the static PNR boundaries.
Then, the static PNRs become larger and can correlate to
each other strongly enough to form macroscopic ferroelectric
domains at TC . Note that even at low temperatures, PNRs exist,
and their interactions contribute to ferroelectric responses.12,13

Due to the presence of PNRs, peculiar properties are
observed in relaxor ferroelectrics. As mentioned above, the
alignment of PNRs induces ferroelectric ordering; therefore,
the fluctuations related with the alignment in the paraelectric
phase should be an important phenomenon to investigate.12,13

The polarization dynamics in relaxor ferroelectrics is so
complicated that it needs to be studied from diverse viewpoints.
Thus, dielectric measurement, inelastic light scattering (both
Brillouin and Raman scatterings), inelastic neutron scattering,
and inelastic x-ray scattering have been performed in various
studies.11,14–23

Of note, the study of acoustic phonons in ferroelectric
materials is one of the most powerful approaches for inves-
tigating the polarization fluctuations related to a ferroelec-
tric phase transition.24 This is because acoustic properties
are influenced by polarization fluctuations through strain-
polarization coupling. In the present study, we have probed
the acoustic phonons in relaxor-based ferroelectric (1 − x)
Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-xPT) crystals (with x =
0.07, 0.10, and 0.12) by measuring inelastic light scattering
in the gigahertz range (i.e., the Brillouin scattering). Here, the
phase diagram, T ∗, and TB were already reported in Refs. 7,8,
and 25. The solid solution of PZN-xPT exhibits interesting
phase behavior, with the rhombohedral symmetry on the
PZN-rich side (x < 0.08) at room temperature, transforming
into the tetragonal phase with increasing PT concentration
(x > 0.11). A morphotropic phase boundary (MPB) is formed
in the composition range of 0.08 < x < 0.11, where a lower-
symmetry (orthorhombic) phase exists.26 By investigating the
temperature dependence of acoustic phonons of three PZN-
xPT compositions, we have examined the behavior of PNRs
at the ferroelectric phase transitions in these relaxor-based
ferroelectrics. In our previous study, the relaxation observed
at the central peak was related to the acoustic anomalies
observed in PZN-0.07PT.20 A comprehensive explanation of
the acoustic anomalies of relaxor ferroelectrics is presented
in this paper, which is based on the determination of the
relaxation times of polarization fluctuations that couple to
the strain fluctuations in the PZN-xPT crystals. The dynamic
correlation length of the relaxation time is also discussed.

II. EXPERIMENTS

Single crystals of PZN-0.07PT were grown using the
high-temperature flux technique with PbO-based fluxes
(Microfine Materials Technologies),27 while PZN-0.10PT and
PZN-0.12PT single crystals were grown using the top-cooled
solution growth technique.28 Platelets of pseudocubic (100)
orientation were cut from the as-grown crystals for the
subsequent experiments.

An acoustic phonon at |k| ≈ 0 was observed through
inelastic light scattering. The light scattering was measured

with a high-contrast 3 + 3-pass tandem Fabry-Perot interfer-
ometer (JRS Scientific Instruments) combined with an optical
microscope (Olympus). A diode-pumped solid-state laser
(Coherent Inc.) with a single-frequency operation at 532 nm
at 100 mW was used. A 180◦ scattering geometry without
a polarizer (vertical to open) was adopted for observing the
LA phonon. In this scattering geometry, only the LA phonon
along the [100]C direction was observed in the cubic phase.
For temperature variation between 80 and 873 K, the sample
was placed inside a cryostat cell (Linkam), and measurements
were performed upon cooling for PZN-xPT (x = 0.07, 0.12)
and upon heating for PZN-0.10PT. Because the LA phonon of
relaxor ferroelectrics behaves in the same manner above TC ,
there is no difference between the measurements on cooling
and on heating.

The complex dielectric constant (ε∗ = ε′ − jε′′) of a
PZN-0.07PT single crystal was measured using an LCR
meter (Solartron) in the [100]C direction. The measurements
were performed upon cooling at a rate of 1 K min−1. The
temperature was controlled by a homemade furnace. Ag paste
was painted on each of the parallel plane (100) faces of a
crystal as electrodes.

III. RESULTS AND DISCUSSION

Figure 1 shows the contour map of the inelastic light
scattering intensity of PZN-0.07PT as a function of frequency
shift and temperature under the geometry of 180◦ scattering
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FIG. 1. (Color online) Contour map of inelastic light scattering
intensity from PZN-0.07PT crystal versus temperature and frequency
shift in x(zy + z)x scattering geometry (FSR = 75 GHz, scan range
= 70.5 GHz). The temperature-dependent inelastic scattering from
the LA phonon is clearly observed. The dark parts at 0 GHz denote
elastic scattering. The scattering was measured upon cooling without
a polarizer. Note that 1 [meV] = 242 [GHz].
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x(z y + z)x̄, where x, y, and z denote the cubic axes. The
spectrum consists of an LA phonon at ± 42 GHz and a central
peak at 0 GHz. The transverse-acoustic phonons do not appear
due to the symmetry restriction of the cubic photoelastic tensor.
In PZN-0.07PT, the average crystal structure transforms from
ferroelectric rhombohedral to ferroelectric tetragonal at 390 K,
then to paraelectric cubic at 420 K(= TC) upon heating.25 The
characteristic temperatures of PNRs in PZN-0.07PT are also
known: TB ≈ 736 K and T ∗ ≈ 499 K.8

Figure 1 shows a clear anomaly in the LA phonon at
around 390 K; the LA phonon softens when approaching
TC on the cooling run, while at the same time, the peak
broadens. Because the phase transitions are smeared by the
fine domain structure on the cooling measurement,29 only
one minimum was observed in PZN-0.07PT. The anomalous
temperature dependence of the LA phonon is typical of
the ferroelectric phase transitions in perovskite ferroelectrics
through the strain-polarization coupling in the free energy.
However, the temperature range is especially wide around the
phonon anomaly in PZN-0.07PT, reflecting the characteristics
of relaxor ferroelectrics. In addition to the LA phonon, a central
peak is observed in a broad frequency range, which increases in
intensity with decreasing temperature and becomes strongest
around TC . This peak is also a characteristic of relaxor
ferroelectrics, and its interpretation was discussed in our
previous works.17,19,20,22

To extract the frequency shift and width of the LA phonon
from the light scattering spectra, we used the Voigt function.
The width of a Gaussian component in the Voigt function was
fixed as an instrumental function. The computed parameters
of the acoustic phonons, including Brillouin shift νB and full
width at half-maximum (FWHM) �, are shown in Fig. 2
as a function of temperature for the three PZN-xPT crystals
(x = 0.07, 0.10, and 0.12). The figure shows two characteristic
temperatures, TB and TC . Below TB ∼ 740 K, νB deviates
from a linear temperature dependence markedly, which is
attributed to the appearance of PNRs below this temperature.
That is, the PNRs induce additional polarization fluctuations,
and this simultaneously generates strain fluctuations through
polarization-strain coupling. In Fig. 2, νB and � show a
minimum and a maximum at TC , respectively, for each of the
crystals, indicating that the dynamic polarization fluctuations
at TC are the greatest of all temperatures. The acoustic
anomaly at TC becomes sharper as x increases in the PZN-xPT
crystals, showing that the ferroelectric phase transition from
paraelectric cubic phase to ferroelectric tetragonal phase tends
to be a normal one. The temperature dependence of the
dielectric constant of PZN-0.07PT is shown in Fig. 3, where a
jump is found in both ε′ and ε′′ at 390 K, which corresponds
to the TC observed in the LA phonon in Fig. 2. νB and �

are related to the sound velocity V , an absorption coefficient
α, and the complex elastic stiffness constant c∗

11 = c′
11 − jc′′

11
through the equations

V =
√

c′(ωs)

ρ
= 2n sin(θ/2)

λ0
νB, (1)

α = ωs

2ρV 3
c′′(ωs) = π�

V
, (2)

where, ρ denotes the density, θ is the scattering angle, λ0 is
the wavelength of the incident beam, n denotes the refractive

200 400 600 800

1

2

3

4

38

40

42

44

46

λ= 532 nm

180o scattering

PZN-xPT

 0.07
 0.10

x =

 0.12

F
W

H
M

 (
G

H
z)

Temperature (K)

ν

S
ou

nd
 V

el
oc

it
y 

(m
/s

)

F
re

qu
en

cy
 S

hi
ft

 (
G

H
z)

3800

4000

4200

4400

4600

FIG. 2. (Color online) Frequency shift νB and FWHM � of
Brillouin scattering of PZN-xPT crystal, determined by fitting the
spectra. The right axis denotes the hypersound velocity that is
calculated by Eq. (1) under θ = 180◦, λ0 = 532 × 10−9 m, and n =
2.7. The solid lines at high temperature denote the high-frequency
limit of the Brillouin shift of each PZN-xPT ν∞, where νB deviates
from below TB . TC is marked by up-pointing arrows.

index, and ωs is the angular frequency of the acoustic phonon
connected with νB , ωs = 2πνB .

A. Elastic anomaly above the Curie temperature

First, we discuss why the anomaly in the LA phonon
occurs in a broad temperature range in the paraelectric and
ergodic relaxor phases, where νB deviates from the usual
linear temperature dependence of ν∞ (that is, νB at the
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FIG. 3. (Color online) Variations of the real and imaginary parts
of the complex dielectric constant ε′ and ε′′ of PZN-0.07PT crystal
as a function of temperature.
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high-frequency limit) at far above TC . The anomalous range in
the paraelectric phase is between 390 K (=TC) and 790 K
(=TB + 50 K) in PZN-0.07PT, between 425 K (=TC) and
760 K (=TB + 20 K) in PZN-0.10PT, and between 460 K
(=TC) and 740 K (∼TB) in PZN-0.12PT (as shown in Fig. 2).
In the same temperature range, � increases upon cooling. The
increase of PT content results in sharp anomalies in both νB

and �, reflecting the sharpening of dielectric anomaly at the
phase transition with increasing x in PZN-xPT.

The deviation of νB from ν∞ and the increase in �

above TC in Fig. 2 indicate the appearance of fluctuations
in strain. The increased �(� ∝ c′′

mn) generally results from
energy dissipation that is transferred to thermal fluctuations.
For a ferroelectric material, the increase in � toward TC means
the growing thermal fluctuations of polarization that is related
to the ferroelectric phase transition. The anomalous behavior
in the dynamic susceptibility is usually understood using the
fluctuation-dissipation theorem (FDT)24

c′′
mn(ωs) = ωsV

2kBT

∫ ∞

−∞
exp(iωst)〈δσm(t)δσ ∗

n (0)〉dt

m, n = 1, 2 . . . , 6, (3)

which connects the imaginary part of the susceptibility c′′
mn

with the Fourier transform of the time-correlation function
of the internal stress fluctuation δσm in a volume V . Using
the Kramers-Kronig transform, the anomaly in c′

mn is also
described by a time-correlation function. In the present study
on ferroelectric phase transition, δσm that is related to the
order-parameter fluctuation will be discussed.

Using the proper equation for the free coupling energy FC ,
one can express stress fluctuations in terms of the polarization
(order parameter) 〈P 〉 = PS and its fluctuations δPi . For
example, in the case of linear (piezoelectric) coupling, we
obtain

δσm =
∑

i

βimδPi i = 1, 2, 3, (4)

where βmn is a coupling constant. Equation (3) is rewritten as

c′′
mn(ωs) =

∑
i,j

βimβjnImχij (ωs), (5)

using the FDT for the dielectric susceptibility χij = χ ′
ij + iχ ′′

ij .
Using the Kramers-Kronig transform, the anomalous behavior
in the real part is expressed as

c′
mn(ωs) = c′

mn(∞) −
∑
i,j

βimβjnReχij (ωS). (6)

In the case of quadratic coupling of the order parameter
(electrostrictive coupling), the stress fluctuations are written
as

δσm =
∑
i,j

γijm(〈Pi〉 δPj + 〈Pj 〉δPi + δPiδPj )

i, j = 1, 2, 3, (7)

and c′′
mn is expressed by the sum of the linear coupling and

a four-point correlation function describing the fluctuation
interactions.24

Above TC , typical perovskite ferroelectrics such as PbTiO3

do not show any anomaly in the LA phonon or only show

anomalies in a narrow temperature range of less than 10 K
wide,30 because the piezoelectric coupling is prohibited in
their paraelectric phases due to the symmetry restriction. In
this case, the electrostrictive coupling, as shown in Eq. (7),
contributes to the elastic anomaly. Consequently, the elastic
anomaly in the paraelectric phase becomes smaller, compared
with that of a ferroelectric phase in which piezoelectric
coupling is allowed. However, ferroelectric materials with
disorder, e.g., relaxor ferroelectrics and barium titanate-
(BaTiO3-) based ferroelectrics show the anomaly in a much
wider temperature range.17–20,22,31–33 We attribute the anomaly
to a piezoelectric coupling inside the noncentrosymmetric
disordered regions. Because the local structure inside the PNRs
is noncentrosymmetric,3,12,13 even though the matrix around
the PNR is centrosymmetric, the polarization fluctuation can
couple linearly with the strain fluctuation. On the assumption
of the existence of piezoelectric coupling, we determine the
relaxation time of the polarization in Sec. III C.

Slight deviation of νB from ν∞ in a narrow temperature
range above TB is shown in Fig. 2. It is related with the
TO phonon condensation. As reported in Refs. 16 and 34,
one zone-center TO phonon of relaxor ferroelectrics softens
upon cooling toward TB from above, and such polarization
fluctuation can induce the strain fluctuation. In this temperature
range, no PNR exists, and consequently, not piezoelectric
coupling, but electrostrictive coupling dominates the elastic
property. This is why the change in LA phonon above TB is
much smaller than that below TB .

Recent experimental evidence demonstrates that the fer-
roelectric phase transition of relaxor ferroelectrics is not a
displacive phase transition but is, in fact, an order-disorder-
type ferroelectric phase transition,12,13 in which the fluctuating
component must be a relaxation of the PNR. Consequently,
considering the fluctuating component inside the noncen-
trosymmetric PNR using Eq. (5) is a valid approach for
simulating the dynamic properties.

B. Elastic anomaly at T ∗

In the previous section, we examine the characteristic
temperatures of PNRs and point out two anomalies in the
acoustic phonon at TB and TC , respectively. In addition, an
anomaly at T ∗ is detected, as shown in Fig. 4, which presents
the temperature derivative of the LA phonon’s width d�/dT .
A clear minimum is seen in d�/dT at 493 K in PZN-0.07PT,
498 K in PZN-0.10PT, and 513 K in PZN-0.12PT. These
temperatures are located between TB and TC and are in
good agreement with the T ∗ temperature observed in the
AE measurements.7,8 Anomalies in some physical properties
around T ∗ are sometimes regarded as a result of the near-
surface effect.35 However, the anomaly in d�/dT is found not
only in a 180◦ scattering geometry but also in a 90◦ scattering
geometry, which probes internal crystals. We can therefore
conclude that the LA phonon anomaly at T ∗ is an intrinsic
effect.18–20,22

We attribute the elastic anomaly in the paraelectric phase to
the polarization fluctuation through the piezoelectric coupling.
This is described in Eq. (5), in which a large � (due
to c′′ ∝ �) indicates a large polarization fluctuation. The
derivative d�/dT represents the inflexion point of �, and
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shows an extremum at T ∗.

Eq. (5) shows that this is induced by the inflexion point of
χ ′′

mn(ωs) = ε′′
mn(ωs), where ωS is around 40 GHz. From this

consideration, d�/dT can be read as the growth rate of the
dynamic polarization fluctuation per kelvin at a frequency of
ωS Hz. Consequently, T ∗, at which the minimum in d�/dT

appears, is the changing point: the growth rate increases upon
cooling from high temperatures down to T ∗, and it decreases
below T ∗.

Neutron and x-ray diffuse scattering appears clearly in
relaxor ferroelectrics.14,36,37 The diffuse scattering grows and
its width markedly decreases below T ∗. In addition, the
lattice parameter, Raman scattering, and AE show anoma-
lies at T ∗.6–8,11 The piezoelectric force microscopy probes
nanodomains below T ∗.38 These are interpreted by the fact
that static PNRs start to appear below T ∗. On the basis of
this interpretation, we reach the following understanding: the
appearance of static PNRs below T ∗ induces a random static
electric field, which then suppresses the dynamic polarization
fluctuation. Thus, the growth rate of the dynamic polarization
fluctuation is reduced below T ∗, leading to the appearance of
the minima in d�/dT through piezoelectric coupling.

There are a number of similarities between relaxor fer-
roelectrics and BaTiO3, both having mesoscopic disorders,
and as a result, similar elastic anomalies are observed at TB

and TC .5,19,20,31–33,39 From the macroscopic point of view, the
difference between them is the appearance of inflexion points
in νB , �, ε′, and ε′′. For example, Fig. 5 shows that there is
no inflexion point in � for BaTiO3,31 as the first derivative
of � shows no extremum. From the microscopic point of
view, we attribute the difference to the growth process of the
dynamic polarization fluctuation. In the case of a ferroelectric
phase transition in BaTiO3, the growth is never suppressed
above TC , and d�/dT drops at TC , as shown in Fig. 5. Thus,
the temperature dependence of ε′ in BaTiO3 shows a sharp
anomaly at TC . On the other hand, in relaxor ferroelectrics, the
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FIG. 5. Temperature derivative of the LA phonon’s FWHM
d�/dT of BaTiO3. The data were obtained by reanalyzing the results
of Ko et al.31 d�/dT shows no extremum above TC .

growth rate decreases at T ∗, which leads to the minimum in
d�/dT , as shown in Fig. 4. This change in the growth rate at
T ∗ induces the broad peak in ε′ at Tm.

C. Polarization relaxation coupled with the LA phonon

If we assume that only one Debye-type dielectric relaxation,

χ∗(ωs) = χ (0)

1 − iωsτ
, (8)

is coupled to the LA phonon through the piezoelectric
coupling, Eqs. (5) and (6) can be reduced to the Landau-
Khalatnikov mechanism written as

c′(ωs) = c′(∞) − c′(∞) − c′(0)

1 + (ωsτ )2
, (9)

c′′(ωs) =
[
c′(∞) − c′(0)

]
ωsτ

1 + (ωsτ )2
, (10)

where, τ denotes the relaxation time of the assumed Debye-
type relaxation and c′(0) is a constant c′ at the low-frequency
limit, which is determined by χ (0) and βij . From Eqs. (9) and
(10) and the relationships between c∗ and Brillouin scattering
and between V and α [Eqs. (1) and (2)], τ can be simplified as

τ = �

2π
(
ν2∞ − ν2

B

) . (11)

In Eq. (11), � and ν∞ denote the FWHM related to the
phase transition and a linear temperature dependence of νB =
A + BT much above TB , respectively. The parameters A and
B are determined by the least-squares fitting technique. The
resulting values of τ are shown in Fig. 6 for three specimens. As
x increases, the rate of change of τ increases, and the relaxation
time becomes longer. Interestingly, τ does not go larger than
1 × 10−12 s, and its increase appears to be disturbed below
T ∗. We note that τ in KF-substituted BaTiO3, determined
in the same way, obeys the critical slowing down, i.e., τ

becomes larger and larger toward TC .31–33 The differences in τ

between PZN-xPT and KF-substituted BaTiO3 should reflect
the different growing processes of their PNRs, as discussed in
Sec. III B. Because the relaxation processes in the gigahertz
region are not as complex as in the lower frequencies, we
believe that our assumption about the Debye-type relaxation
[Eq. (8)] is reasonable.
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dependence of E0.

The linear dependence of τ vs 1000/T above T ∗ appears
(not shown), suggesting the thermal activation process of
the relaxation. It is usual to fit the dependence with the
Arrhenius law of τ = τ0 exp(E/kBT ), where E, τ0, and
kB are the activation energy, attempt relaxation time, and
Boltzmann constant, respectively. However, τ0 determined by
the Arrhenius law (∼10−17 Hz) is too small to be meaningful
for the physical phenomena.22,40 Thus, to reproduce the
linear temperature dependence of τ , we apply the modified
superparaelectric model (modified Arrhenius law)

τ = τ0 exp

[
E0

kB

(
1

T
− 1

TB

)]
, (12)

in which the temperature dependence of E is roughly approx-
imated to be E0(TB − T )/TB , where E0 is the energy barrier
extrapolated to 0 K. This approximation represents that energy
barrier separating the local states of dipole, which appears at
TB accompanying with the appearance of the dynamic PNRs,
and then increases linearly on further cooling. To determine
E0 and τ0, TB is fixed to be 740 K for the three PZN-xPT
samples. The fitted results by this model [Eq. (12)] are shown
in Fig. 6 with solid lines, and the parameters are listed in
Table I. The attempt frequency (=1/2πτ0) of the three
crystals is 1.5 ∼ 1.9 × 1012 Hz, which is within the order
of the typical Debye frequency range. This indicates that
the model described in Eq. (12) is valid in the relaxor
ferroelectrics. τ0 decreases with the increasing PT concen-
tration, while E0 increases as shown in the inset of Fig. 6.
This trend is consistent with our previous work on (1 − x)
Pb(Mg1/3Nb2/3)O3 − xPbTiO3 (PMN-xPT), which shows that

TABLE I. Fitted parameters of τ (T ) to the modified superpara-
electric model (modified Arrhenius law) for the PZN-xPT crystals.
The fitted lines are described in Fig. 6.

x E0/kB (K) τ0 (s)

0.07 3061 1.04405 × 10−13

0.10 3406 9.68827 × 10−14

0.12 4149 8.24161 × 10−14

E0 increases markedly with PT content increasing across the
MPB.22 The composition dependence of E0 indicates that the
energy barrier E becomes sensitive to the temperature with
increasing x. As we suggested in Ref. 22, the comparatively
large values of E0 signify the specific mechanism of normal
ferroelectric phase transition, in which abrupt growth of PNRs
occurs at TC rather than the parallel alignment of PNR’s dipole
moments due to ferroelectric-type interactions among PNRs.

Since the relaxor properties are closely connected with
various dynamics with different length scales, a discussion
regarding the length scale is important. The length scale L of
the dynamics can be estimated from the present results using

L = S(ϕ)V τ, (13)

where S(ϕ) is the shape parameter of the relaxation unit.23,41

In this paper, we use S(ϕ) = 1.0 for simplicity, and only
discuss L along the [100] direction in the paraelectric phase.
L indicates the distance over which local relaxation interacts
elastically, and a stress takes longer than τ to travel from a
relaxation center to a distance greater than L. After this time
τ , a new relaxation happens at the same relaxation center or
nearby, and the process repeats. Thus, L captures the dynamic
process of relaxation in a disordered system and denotes the
maximal distance at which two relaxation centers interact.
In the situation in which τ is determined by viscosity, L

is called the liquid elasticity length.42 In this study, τ and
V are determined by the LA phonon along [100], so L is
a characteristic length for the volume fluctuation along this
direction.

The propagation length of the LA phonon per second
is given by the phase velocity V , which is determined by
our Brillouin scattering measurement through Eq. (1), where
θ = 180◦ and λ0 = 532 × 10−9 m. The refractive index n is
regarded as 2.7 for all the compositions and temperatures, and
the change in n must be trivial compared with that in the
parameters of the LA phonon.5,43,44 The plots of V for the
three PZN-xPT crystals are shown in Fig. 2.

Figure 7 plots the obtained values of L as a function of
the temperature, showing that L is on the scale of nanometers.
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FIG. 7. (Color online) Temperature dependence of the charac-
teristic length L along [100] of PZN-xPT crystals above TC . The
length scale L was determined from τ (Fig. 6) and V (Fig. 2) by
using Eq. (13) with S(ϕ) = 1.0. The correlation length ξ along [100]
determined by neutron diffuse scattering is also shown.45
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FIG. 8. (Color online) Temperature dependence of νB , ν0, ν∞
(upper), ν2

∞ − ν2
0 ∝ 〈P 2〉 (middle), and d(ν2

∞ − ν2
0 )/dT ∝

d〈P 2〉/dT (lower) in PZN-0.07PT. The values of ν0 were determined
on the assumption of a single relaxation process at gigahertz range
[Eq. (8)]. No other relaxations at lower frequency were taken into
account.

As the temperature decreases, the change in L becomes larger;
however, unlike the correlation length in normal ferroelectrics,
L does not diverge when T approaches TC . The correlation
length determined by diffuse neutron scattering ξ is of the same
order as L and depends on temperature in the same manner as
L.14,45 Therefore, we speculate that L may reflect the dynamic
PNR. Because the larger dynamic PNRs transform into static
below T ∗, the dynamic PNRs cannot be larger than 3.5 nm
below T ∗. As a result, L does not grow below T ∗. To confirm
this interpretation of L, more data are required, along with a
more refined discussion. However, this simple estimation of
L can be accepted as a starting point for understanding the
ferroelectric phase transition in relaxor ferroelectrics.

In Sec. III B, we discussed the fluctuation around ωS Hz
(∼40 GHz of Brillouin scattering frequency) because the imag-
inary part of the susceptibility is proportional to the spectral
intensity of fluctuation.46,47 However, the total fluctuation,
〈P 2〉, is proportional to the real part of the susceptibility.
On the assumption of one Debye-type dielectric relaxation
around the gigahertz range [Eq. (8)], the Brillouin shift at

the low-frequency limit, ν0, can be calculated in a similar
way as Eq. (11), and 〈P 2〉 ∝ c′(∞) − c′(0) ∝ ν2

∞ − ν2
0 can be

determined. The determined values of ν0 are shown in Fig. 8,
with ν∞ and νB . ν0 shows similar temperature dependence toνB

at high temperature and deviates from νB when approaching
TC , where the polarization fluctuates markedly. The quantities
representing the total fluctuation are also shown in Fig. 8.
The temperature dependence of ν2

∞ − ν2
0 shows the growing

process of polarization fluctuation upon cooling toward TC .
In the same way as shown in Fig. 4 in which the growth of
fluctuation at ωS Hz starts to be suppressed below T ∗, 〈P 2〉 ∝
c′(∞) − c′(0) ∝ ν2

∞ − ν2
0 also shows an inflexion point, indi-

cating that the growth of total fluctuation starts to be suppressed
below T ∗. The same trend is also found in PZN-0.10PT and
PZN-0.12PT. Thus, it is concluded that inflexion point of the
growing process in a paraelectric phase can be related to the
characteristic properties of relaxor-based solid solutions.

IV. CONCLUSIONS

Brillouin scattering from PZN-xPT (x = 0.07, 0.10, and
0.12) crystals was measured, and the ferroelectric phase
transition in relaxor ferroelectrics was discussed from the
viewpoint of acoustic phonons. The acoustic anomaly was
observed in all crystals in a wide temperature range and was
described by a model involving piezoelectric coupling inside
PNRs, even in the paraelectric phase. The anomaly at TB

indicates the appearance of fluctuating PNRs, and that at T ∗
represents the suppression of the growth rate of PNRs.

The relaxation time and the dynamic characteristic length
scale were determined on the basis of the piezoelectric
coupling inside PNRs. The relaxation time is of the order
of 10−13 s, while the characteristic length is of the order of
10−9 m. Both of these do not grow markedly below T ∗,
which can be attributed to the suppression of growth of
the polarization of PNRs. These results imply that static
PNRs appear below T ∗, and they generate random electric
fields, which suppress the growth of polarization fluctuations.
We believe that T ∗ is a distinguishing feature of relaxor
ferroelectrics.
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