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Long-range plasmon-assisted energy transfer over doped graphene
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We demonstrate that longitudinal plasmons in doped monolayer graphene can mediate highly efficient long-
range energy transfer between nearby fluorophores, e.g., semiconductor quantum dots. We derive a simple
analytical expression for the energy transfer efficiency that incorporates all the essential processes involved. We
perform numerical calculations of the transfer efficiency for a pair of PbSe quantum dots near graphene for
interfluorophore distances of up to 1 μm and find that the plasmon-assisted long-range energy transfer can be
enhanced by up to a factor of ∼104 relative to the Förster’s transfer in vacuum.
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I. INTRODUCTION

Förster resonance energy transfer (FRET)1 between spa-
tially separated donor and acceptor fluorophores, such as dye
molecules or semiconductors quantum dots (QD), underpins
diverse phenomena in physics, chemistry, and biology. Exam-
ples include photosynthesis, exciton transfer in molecular ag-
gregates, interactions between proteins,2,3 and, more recently,
energy transfer between QDs and QD-protein assemblies.4–6

During the past decade, remarkable progress has been made in
applications of FRET spectroscopy, e.g., in protein folding,7,8

live cell protein localization,9,10 biosensing,11,12 and light
harvesting.13 The range of present and potential applications
of FRET is, however, limited by its intrinsically short-
range nature. Indeed, the underlying FRET mechanism—the
direct Coulomb interaction between fluorophores—supports
efficient transfer only at donor-acceptor distances (rad ) below
the typical Förster radius of rF ∼ 10 nm.2 At larger distances,
the Coulomb potential between electrically neutral donor and
acceptor decreases rapidly, and the FRET efficiency falls off
as ∼ r6

F /r6
ad . Substantial efforts have been undertaken to

improve the efficiency and increase the range of energy transfer
(ET) at the nanoscale by utilizing surface plasmons (SP)
and surface plasmon polaritons (SPP) as intermediaries.14–20

Placing molecules or QDs near a metal film or a nanoparticle
can lead to a significant improvement of ET efficiency (ETE)—
the fraction of donor’s energy transferred to the acceptor.21–26

In metals, however, the efficiency of plasmon-mediated ET
channels is limited by significant ohmic losses and plasmon-
enhanced radiative losses26 resulting in a relatively modest
(∼ 10) overall ETE increase14–16,18–20 or even its reduction17,27

near metal structures.
In this article, we propose to exploit collective excitations

in graphene as efficient ET intermediaries. Graphene has
recently emerged as a novel intrinsically two-dimensional
material28,29 with unique electronic and optical properties.30

Clean graphene samples are characterized by long electron
scattering times and much lower, compared to metals, ohmic
losses due to relatively weak electron-phonon interaction.31

Furthermore, doped graphene possesses a stable in-plane
longitudinal plasmon in the infrared frequency range with
gate-tunable wavelength, λp, well below radiation (or SPP)

wavelength λ0 at the same frequency.32 Recent optical imaging
of graphene plasmons (GP) propagating in a graphene ribbon
on SiC substrate indeed demonstrated the high degree of
GP localization characterized by light-to-GP wavelength ratio
of λ0/λp ≈ 40.33,34 The large GP local density of states, as
compared to that of SPP, permits very efficient GP excitation by
a local probe such as a scanning tunneling microscope/atomic
force microscope tip, an excited molecule, or QD placed at a
close distance (� λp) from the graphene sheet.35–37 Recently,
superradiance from two emitters placed near graphene was
studied,38 and it was demonstrated that the interaction of
fluorophores with plasmons in graphene can be strong enough
to significantly enhance the superradiant coupling between
these fluorophores.

In this work, we demonstrate that plasmons in doped
graphene can mediate a highly efficient long-range ET
between fluorophores, e.g., QDs. A photoexcited donor with
energy h̄ω situated at a distance zd from the graphene sheet
excites a GP which propagates a distance Rad � λp in the
plane before exciting a remote acceptor at a distance za from
graphene (see schematics in Fig. 1 and Fig. 2). Importantly,
when the GP wave reaches the acceptor, its intensity is reduced
only by factor of ∝ λp/Rad due to the strictly in-plane GP
propagation. This, along with the efficient fluorophore-GP
coupling at za,d � λp, leads to a very strong ET enhancement
(up to ∼104) as compared to the FRET channel, at distances
far exceeding the Förster radius.

We show that at large transfer distances, Rad � λp, ETE
between donor and acceptor is given by (see Sec. II for the
detailed derivation)

E
gp

ad = Dp/Rad, (1)

where

Dp(Rad ) = 4

3κ̃

∫
dω q2

p(ω)fd (ω)α′′
a (ω)

× e−Rad/Rp(ω)−2qp(ω)|za | (2)

is the characteristic ET length which, in high mobility
graphene, only weakly depends on Rad . Here, αa(ω) =
α′

a(ω) + iα′′
a (ω) is acceptor’s complex dipole polarizability,

qp(ω) and Rp(ω) are GP wave number and characteristic travel
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FIG. 1. (Color online) (a) Schematic of ET between donor (D)
and acceptor (A) through the GP excitation. (b) Density plot of
the imaginary part of graphene density correlation function (darker
shades of gray correspond to higher magnitudes). The Fermi level
is set to εf = 0.6 eV. (c) Normalized donor energy loss rate versus
donor-graphene distance for suspended graphene in vacuum. The
energy loss rate is plotted for three different excitation energies. Thick
solid portions of lines mark the intervals of the exponential decay of
kd—intervals where GP is most efficiently excited (tagged “plasmon”
in the graph). The inset shows the zoomed-in left-top portion of the
main graph in the panel (c). Intervals of efficient electron-hole pair
excitation at low zd are tagged “e-h pairs” in the inset.

length, respectively, fd (ω) is donor’s normalized emission
spectral function, and κ̃ is the effective dielectric constant
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FIG. 2. (Color online) ETE versus in-plane distance between
donor and acceptor near suspended graphene in vacuum (κ̃ = 1). The
Fermi level is set to εf = 0.6 eV. Analytical and numerical results
are shown by symbols and solid lines, respectively. ETE with and
without graphene is shown in color and black, respectively. Further
details are provided in the text.

of the environment (κ̃ = 1 for vacuum and κ̃ = 2.5 for SiO2

substrate).
Figure 2 shows our numerical and analytical results for ETE

between PbSe QDs near a graphene sheet doped to the Fermi
level of εf = 0.6 eV for several values of electron scattering
rate γ . Numerical results are obtained using the full graphene
density correlation function, while analytical results, given
by Eqs. (1) and (2), are obtained within the plasmon pole
approximation (see Sec. II); they are in excellent agreement for
distances exceeding GP wavelength λp ≈ 30 nm. The large-
distance behavior of ETE depends strongly on the sample
quality characterized by γ , which, in turn, determines GP
travel length Rp. As is seen, for low-γ samples, GP-assisted
ETE exceeds Förster’s ETE in vacuum with rF = 8 nm (shown
by the solid black line) by a factor of ∼ 100 for Rad = 100
nm and by factor of 104–106 for Rad = 500 nm. Such extreme
enhancements are due to the slow decay of two-dimensional
GP wave amplitude. For high-γ samples, ET is limited due to
reduced GP travel length Rp.

In the rest of the paper, we derive Eqs. (1) and (2), and study
numerically and analytically ET over graphene for various
system parameters.

II. THEORY

We consider donor and acceptor fluorophores (dye
molecules or QDs) as point dipoles situated at ri = (Ri ,zi)
(i = a,d), with transition dipole moments μi = μini , where
ni is the dipole orientation, separated from each other by
rad = [R2

ad + (za − zd )2]1/2 (see inset in Fig. 2). If zi is not
too small so that fluorophores’ internal transitions are not
significantly affected by graphene, ETE can be found within
the semiclassical approach.26,39 The power transferred from
the donor, initially excited at frequency ω, to the acceptor is
given by

Pad (ω) = ω

2
α′′

a (ω)|na · E(ω; ra)|2, (3)

where E(ω; ra) is the electric field at the acceptor’s position.
This field is related to the donor’s dipole moment via

E(ω; r) = 4πω2

c2
G(ω; r,rd ) · μd , (4)

where G(ω; r,r′) = G0(ω; r,r′) + Gg(ω; r,r′) is the electric
field Green dyadic comprised of direct and graphene-assisted
contributions, respectively. For brevity, we introduce a matrix
Sij (ω) = (4πω2/c2) ni · G(ω; ri ,rj ) · nj , with similar decom-
position Sij = S0

ij (ω) + S
g

ij (ω). In terms of Sij , the transferred
power, Eq. (3), takes a simple form Pad = (ω/2)μ2

dα
′′
a |Sad |2.

ETE is obtained by normalizing Pad (ω) with respect to the
donor’s full power loss, Pd (ω), followed by integration over the
donor’s emission band: Ead = ∫

dωfdPad/Pd . In the lowest
order, Pd (ω) has the form

Pd = P 0
d + P

g

d + Pad, (5)

where P 0
d stands for the donor’s power loss due to radiative

and intrinsic (nonradiative) processes and P
g

d is the power
dissipated in graphene. In vacuum, the former is given by
P 0

d = (ω/2Qd )μ2
d ImS0

dd = μ2
dω

4/3c3Qd , where the donor’s
quantum yield, Qd , accounts for intrinsic losses, while in the
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presence of dielectric interface (formed by an under-graphene
substrate, e.g., SiO2), it is more involved40 and has been
evaluated by us numerically. The power dissipated in graphene
is given by P

g

d = (ω/2)μ2
d ImS

g

dd . For zi > 1 nm considered
here, higher order terms describing feedback from acceptor
to graphene and from graphene to donor26 are small and,
therefore, neglected. The ETE then takes the form

Ead =
∫

dω
fdα

′′
a |Sad |2

ImS0
dd/Qd + ImS

g

dd + α′′
a |Sad |2

, (6)

where averaging over dipoles’ orientations is implied (see
Appendix B for the detailed discussion of the ETE dependence
on specific dipoles’ orientations).

We now proceed with evaluation of Sij = S0
ij (ω) + S

g

ij (ω).
The direct (Förster) ETE is determined by the Coulomb term
in free space, S0

ad = qad/r3
ad ,41 where qad is the orientational

factor with average 〈q2
ad〉 = 2/3, while the donor’s radiative

losses are described by ImS0
dd = 2

3 (ω/c)3. The graphene
contribution to Sij can be found as follows. In the long
wave limit where retardation effects can be neglected, Sad (ω)
reduces to

Sad = −(na · ∇a)(nd · ∇d )U (ra,rd ), (7)

where U = v + v	v is the Coulomb potential screened by the
graphene sheet, v(r) = v(R,z) is the bare Coulomb potential,
and 	(R,ω) is the density correlation function of graphene.
After the in-plane Fourier transform using vq(z) = 2π

κ̃q
e−q|z|,

the graphene contribution is obtained as

S
g

ad (ω) = e2

κ̃2

∫
dq ga(q̂)g∗

d (q̂)	(q,ω)e−q|za |−q|zd |+iq·Rad ,

(8)
where gi(q̂) = ni · q̂ + ini · ẑi is the orientational factor, q̂ and
ẑi being, respectively, the radial unit vector in the graphene’s
plane and the normal from graphene’s plane to fluorophore
i. Equations (6) and (8) are used by us to numerically
evaluate ETE and obtain all the numerical results in this work.
Specifically, all the Green dyadics in the matrix representation
(Sad , S0

dd , and S
g

dd ) are first evaluated (for each ω) via numerical
integration over the wave number q adopting the density
correlation function of the homogeneous graphene, 	(q,ω),
in the random phase approximation (see Appendix A for
details). Then, the integration over ω in Eq. (6) is performed
numerically.

Analytical expression for the long-distance behavior of S
g

ad

can be derived using the plasmon pole approximation for
	(q,ω) as (see Appendix A)

	(q,ω) ≈ 	pp(q,ω) = 
p

qp − q + i/2Rp

, (9)

where 
p, qp, and Rp, being respectively the GP amplitude,
wave number, and travel length, are obtained by locating the
resonance of 	(q,ω) at q = qp(ω). At low energies (i.e., h̄ω �
εf ), this can be done analytically yielding


p = κ̃q2
p

2πe2
, (10a)

qp = κ̃h̄2ω2/2εf e2, (10b)

Rp = εf e2/κ̃h̄2ωγ. (10c)

It turns out that even at h̄ω ∼ εf (i.e., regime considered in
this work) the low-ω analytical expressions for 
p and qp are
still applicable. In contrast, Rp has to be found very accurately
(i.e., numerically) since Eq. (2) is exponentially sensitive to
its value. Our additional numerical tests (not shown) have
demonstrated that the analytical expression for Rp becomes
quite accurate already at h̄ω/εf � 0.3–0.5. However, at h̄ω ≈
εf one can expect the magnitude of the inaccuracy of Rp,
as obtained from Eq. (10c), to be of the order of the value
of Rp. Specifically, for the parameters adopted in this paper,
the analytically found Rp is approximately twice as high
as its numerical counterpart. In what follows, the analytical
expressions for 
p, qp, and numerically found Rp are adopted.

Substitution of Eq. (9) into Eq. (8) yields

S
g

ad = q2
p

2πκ̃

∫
dq q

e−q(|za |+|zd |)

qp − q + i/2Rp

∫
dφ fa(q̂)f ∗

d (q̂)eiq·R,

(11)
where φ is the azimuthal angle in q-plane. For qR � 1, only
small fluctuations of φ around q · R = ±qR contribute to
φ-integral I , and in these regions fi(q̂) can be replaced by
fi(±R̂), yielding

I =
(

8π

qR

)1/2

Re[eiqR−iπ/4fa(R̂)f ∗
d (R̂)]. (12)

Upon substitution of Eq. (12) into Eq. (11), S
g

ad splits into
two parts corresponding to the outgoing and incoming waves,
e±iqR . For qR � 1, the dominant contribution comes from the
pole at q = qp + i/2Rp into the outgoing part. Finally, after
averaging of |Sg

ad |2 over dipoles’ orientations using relations
〈fif

∗
j 〉 = 2

3δij and 〈fifj 〉 = 0, one obtains

∣∣Sg

ad

∣∣2 = 8πq5
p

9κ̃2Rad

e−Rad/Rp−2qp(|za |+|zd |). (13)

Comparison of Eq. (13) and direct contribution |S0
ad |2 = 2

3 r−6
ad

reveals that the GP-assisted ET channel is dominant for
Rad � λp. Specifically, numerical calculations point to a
crossover to the GP-assisted regime at Rad ∼ 30–40 nm for
λp ≈ 30 nm (see Fig. 2). GP-assisted ET is ineffective for large
fluorophores’ distances to the graphene plane (ziqp � 1) or
for their in-plane separation significantly exceeding plasmon
travel length (Rad/Rp � 1).

Turning to dissipated power in graphene, P
g

d , the diagonal
element S

g

dd can be obtained from Eqs. (8) and (9) via

substitution a → d, which yields ImS
g

dd = 2π
3

q3
p

κ̃
e−2qp |zd |.35 If

the acceptor is absent, P
g

d determines the normalized energy
loss rate of the donor, kd = (P 0

d + P
g

d )/P 0
d , shown in Fig.

1(c) for several values of h̄ω. At very large zd , the donor
does not “feel” the presence of graphene, so its losses are
dominated by radiative and nonradiative ones. At smaller
distances, the exponential decay of kd with the donor-graphene
distance indicates the predominant donor’s energy transfer
to GP. At even smaller fluorophore-graphene distances, the
nonexponential dependence of kd on zd is due to the onset
of excitations of electron-hole pairs in graphene [see inset
in Fig. 1(c)]. These three regimes of a single fluorophore
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interaction with graphene have recently been studied in detail
elsewhere.35,36,38

The above considerations lead to a conclusion that in
the wide range of intermediate donor-graphene distances (i)
donor’s energy losses are dominated by GP excitation, and
(ii) kd � 1 and so P

g

d dominates over intrinsic and radia-
tive losses. Furthermore, at distances between fluorophores
exceeding Förster radius, P

g

d dominates over Pad in Eq.
(5) as well. Thus, in a wide parameter range, both the
numerator and denominator of the integrand in Eq. (6) are
dominated by GP-assisted channels, yielding Eqs. (1) and (2)
for ETE.

III. RESULTS AND DISCUSSION

ET calculations below were performed for a pair (donor
and acceptor) of PbSe QDs with emission and absorption
bands centered at 0.55 eV and 0.6 eV, respectively.42,43 The
fluorescence quantum yield for such QDs varies significantly
in literature,42,44 so the “average’value of 10−2 is adopted here.
Lorentzian line shape for both bands is assumed with full width
at half maximum (FWHM) of 0.1 eV,42,43,45 and the acceptor
absorption cross section is chosen σa = (4πω/3c)α′′ = 2 Å2

at its spectral maximum.43,46,47 Both optical bands lie within
the GP band with dispersion ω ∝ √

q in doped graphene with
electron scattering rate chosen as γ = 10 ps−1.32,36 For the
Fermi level at εf = 0.6 eV adopted here,48 GP is well defined
up to q ≈ 0.6 nm−1 corresponding to h̄ω ≈ 0.8 eV, while
for larger q GP is dampened by interband single-particle
transitions—Landau damping [see Fig. 1(b)]. A donor with
emission band centered at 0.55 eV [dashed horizontal line
in Fig. 1(b)] predominantly excites GPs with qp ≈ 0.2 nm−1

(red dagger), while excitation of electron-hole pairs requires
higher wave numbers q � 0.9 nm−1 (blue half-oval) and is,
therefore, efficient only for zd < 1 nm [see inset in Fig.
1(c)]. Below we choose the values zd = za = 3 nm lying
in the GP-dominated exponential domain with kd ≈ 5 × 103

[see Fig. 1(c)].
In Fig. 2, the results of our numerical and analytical

calculations of ETE for suspended graphene are compared
to Förster’s ETE for a similar system in vacuum. Förster’s
ETE shows characteristic behavior described by standard
expression EF

ad = (1 + r6
ad/r6

F )−1, where calculated Förster
radius rF ≈ 8 Å is consistent with experimental results for a
similar system.6 Numerical results for ETE in the presence of
graphene (solid lines) are shown for several values of electron
scattering rate γ . For small Rad , the energy transfer from donor
to acceptor, determined by the integrand’s numerator in Eq. (6),
is dominated by the direct Förster mechanism. However, the
donor energy losses, defined by the integrand’s denominator,
are greatly increased, as compared to the vacuum case, due
to the presence of graphene. Under these conditions, the ETE
dependence on the distance between QDs becomes Förster-
like again with Ead = (1 + r6

ad/r6
g )−1. However, the effective

transfer radius, rg ≈ 2 nm, is now significantly smaller than
rF in the vacuum case due to a much larger, compared to
radiative and intrinsic losses, donor energy dissipation to
graphene.

For large Rad , ETE exhibits significant dispersion for
different values of γ caused by reduction of plasmon travel
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FIG. 3. (Color online) Dependence of ETE between two PbSe
QDs situated near graphene on the doping level of graphene. The
adopted parameters are γ = 10 ps−1 and zd = za = 3 nm. The
schematic of the system is shown in the inset.

length Rp with increasing γ [see Eq. (9)] and, hence, the
exponential suppression of ETE for Rad � Rp. The distance
dependence of ETE for Rad � 10 nm is in excellent agreement
with our analytical results, Eqs. (1) and (2), shown by symbols
in Fig. 2.

In Fig. 3 we show how ETE evolves with the doping level of
graphene. As the Fermi level is reduced from 0.6 eV to 0.2 eV
with the decrement of 0.1 eV, ETE first decreases slowly and
then sharply drops at εf below 0.5 eV, i.e., when GP Landau
damping onset (≈ 1.3εf ) moves below donor’s emission band.
For εf = 0.2 eV, ETE shows Förster-like behavior ∝ R−6

ad

but with the reduced effective radius of ≈2.5 nm due to ET
quenching by graphene.35,49,50

In Fig. 4, we plot calculated ETE vs fluorophores’ sep-
aration from the graphene sheet (za,zd ) for different values
of in-plane distance Rad . Here, we distinguish between two
scenarios: (a) the acceptor’s position is fixed, whereas the
donor is moved away from the graphene plane, so that
donor-acceptor distance rad increases as well; and (b) the
acceptor follows the donor so that both fluorophores are moved
in sinc away from the graphene plane, i.e., rad stays constant
for each Rad value. In both scenarios, at zd � 10–20 nm both
ET and losses are dominated by the GP-assisted channel,
and, therefore, Eqs. (1) and (2) are expected to provide an
accurate description of ETE behavior. Indeed, ETE plateaus
[panel (a)] and the exponential decay of ETE [panel (b)] at low
zd both originate from the same exponent in Eq. (2), which is
independent of zd and linear with respect za , respectively.

At large zd , the GP amplitude is exponentially dampened
[Eq. (8)], i.e., graphene becomes effectively absent from the
ET picture, so that ETE dependence on zd follows the standard
FRET-like r−6

ad behavior. Specifically, Ead ∝ R−6
ad behavior for

za = zd results in plateaus with Rad -dependent levels at large
zd [panel (b)]. In panel (a), this r−6

ad dependence reduces to
z−6
d at very large zd (i.e., zd � Rad,za). If the GP-assisted

channel is already negligible but zd is still much smaller than
Rad—this regime can be realized at Rad � λp ≈ 30 nm—
then rad ≈ Rad and Ead levels off with respect to zd at, e.g.,
zd = 30–100 nm for Rad = 100 and 200 nm [panel (a)]. Note

245432-4



LONG-RANGE PLASMON-ASSISTED ENERGY TRANSFER . . . PHYSICAL REVIEW B 86, 245432 (2012)

1 10 100
10

-9

10
-6

10
-3

1

E
a
d

E
a
d

(b) 

zd (nm)

za = 3 nm

za = zd

10 nm
20 nm
50 nm

100 nm
200 nm

10
-9

10
-6

10
-3

1
10 nm
20 nm
50 nm
100 nm
200 nm

Plasmons FRET

(a) 

FIG. 4. (Color online) Dependence of ETE on the distance
between donor/acceptor and graphene. Legend encodes Rad . (a)
Donor-graphene distance, zd , is varied, while the acceptor-graphene
distance kept constant (za = 3 nm). (b) Both distances are varied
simultaneously (za = zd ). Doped graphene (εf = 0.6 eV) lays on top
of the SiO2 substrate (κ̃ = 2.5). The adopted electron scattering rate
is γ = 10 ps−1. The gradient-colored bar between the panels marks
the transition from the GP-mediated ET at small zd to the standard
FRET mechanism at larger zd .

that the magnitudes of large-zd plateaus in panels (a) and (b)
match for each Rad value.

Finally, Fig. 4(a) shows that the transition from GP-
dominated to FRET-dominated ET results in the ETE increase
for Rad = 10–20 nm and its decrease for larger in-plane
distances. Bearing in mind the effective “absence’of graphene
at large zd , this behavior can be traced back to that in Fig.
2, where ET without graphene (i.e., FRET) is more efficient
than the GP-mediated ET in the presence of graphene at
Rad � 30 nm, and less efficient for larger in-plane distances.

IV. CONCLUSION

In this paper, we have shown that a single-atom layer of
doped graphene can be used for highly efficient long-range
energy transfer at the nanoscale. The transfer is mediated by
longitudinal plasmons in graphene and hence it is very sensi-
tive to the sample mobility and doping level which determine
plasmon lifetime and travel length. We have demonstrated that
in clean samples with high doping levels (e.g., εf = 0.6 eV),
the energy transfer efficiency can exceed that of FRET by up to
104 at hundreds nm distances. For a given donor-acceptor pair,
the transfer efficiency can be optimized by tuning parameters
of the system, e.g., fluorophore-graphene distances.
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APPENDIX A: DENSITY CORRELATION FUNCTION

The bare density correlation function, or retarded po-
larization operator, is calculated within the Dirac electrons
approximation as36,51,52

	0(q,ω) = 1

4πh̄

⎡
⎣ 8εf

h̄v2
f q2

+ G(−�−)θ [−Re{�−} − 1]√
ω2 − v2

f q2
,

+ [G(�−) + iπ ]θ [Re{�−} + 1] − G(�+)√
ω2 − v2

f q2

⎤
⎦ ,

(A1)

where G(z) = z
√

z2 − 1 − ln(z + √
z2 − 1) and �± =

(ω/vf ± 2εf /h̄vf )/q. The square roots are chosen to yield
positive real parts and the imaginary part of the logarithm
is taken in (−π,π ] range. Fermi velocity and Fermi level
(the latter determines the extent of graphene doping) are
denoted by vf and εf , respectively. Within the Dirac electrons
approximation, the density correlation function is insensitive
to the sign of the Fermi level, so in all the expressions here
and in the main text εf has to be understood as |εf |.

The two important limiting forms of the density correlation
function are (i) the long wavelength limit (q → 0, h̄ω � 2εf ),
and (ii) the static limit (ω → 0, q < 2kf ). The long wavelength
limit is given by

	0(q → 0,ω) = εf q2

πh̄2ω2
. (A2)

The static limit of the bare density correlation function is
obtained as

	0(q,ω → 0) = − 2εf

πh̄2v2
f

. (A3)

The naive substitution ω → ω + iγ /2 to account for in-
graphene scattering losses in Eq. (A1) (γ is the electron
scattering rate) is inaccurate in a general case (especially if γ is
not small), since it does not preserve the particle conservation
requirement. To correct for this, the more accurate Mermin
procedure is adopted, yielding53,54

	γ (q,ω) = (1 + iγ /ω)	0(q,ω + iγ )

1 + (iγ /ω)	0(q,ω + iγ )/	0(q,0)
. (A4)

The full (or “dressed’) density correlation function, which
accounts for screening in graphene, is obtained within the
random phase approximation as

	(q,ω) = 	γ (q,ω)

1 − e2v(q)	γ (q,ω)
, (A5)

where v(q) = 2π/κ̃q is the two-dimensional Fourier trans-
form of the Coulomb potential within the graphene’s plane,
v(R) = 1/κ̃R. The effective dielectric constant of the envi-
ronment is given by κ̃ = (κ1 + κ2)/2 for a graphene sheet
sandwiched between two homogeneous dielectrics with di-
electric constants κ1 and κ2.55,56 Thus κ̃ = 1 for a suspended
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graphene sheet in vacuum. For graphene, laid on top of a SiO2

substrate (κ1 = 1, κ2 = κSiO2 = 4), one obtains κ̃ = 2.5.
The plasmon dispersion relation, qp = qp(ω), is found by

requiring the real part of the denominator of Eq. (A5) to vanish.
The Taylor expansion of the denominator around this point
(up to leading terms in both real and imaginary parts) leads
to the possibility of approximating the full density correlation
function within the so-called plasmon pole approximation as

	pp(q,ω) = 
p

qp − q + i/2Rp

, (A6)

where 
p = 	γ (qp,ω)/A is the plasmon amplitude, and Rp =
A/2B is the plasmon travel length. The coefficients of the
Taylor expansion of the denominator of Eq. (A5) are

A = e2 ∂

∂q
{v(q)Re[	γ (q,ω)]}

∣∣∣∣
q=qp

,

(A7)
B = −e2v(qp)Im[	γ (qp,ω)].

In the low-ω limit (i.e., h̄ω � εf ), the density correlation
function in the plasmon pole approximation can be obtained
purely analytically by (i) substituting Eqs. (A2) and (A3) into
Eq. (A4), and (ii) using the so obtained 	γ (q,ω) to evaluate
the Taylor expansion coefficients A and B. The result of these
manipulations—the explicit analytical formulas for 
p, qp,
and Rp—is provided in the main text after Eq. (9).

It turns out that for the specific case considered here, i.e.,
the plasmon pole approximation in the long wavelength limit,
the same analytical expression for 	pp(q,ω) could have been
obtained in the limit of small γ by using the substitution ω →
ω + iγ /2 instead of the more general Mermin’s procedure.
It has to be emphasized, however, that such an agreement is
not general and hard to foresee. Therefore, the more accurate
Mermin’s procedure has to be favored over more approximate
methods of introducing the finite scattering rate into the density
correlation function.54

APPENDIX B: DIPOLES’ ORIENTATION DEPENDENCE
OF ETE

Figure 5 shows the distance dependence of ETE for
fluorophores near graphene at different dipole orientations.
Graphene is laid on top of the SiO2 substrate (κ̃ = 2.5) and
the Fermi level is set to εf = 0.6 eV. The electron scattering
rate is assumed γ = 10 ps−1.

Dash-dotted and dash-double-dotted lines represent both
the donor and acceptor transition dipoles fixed in the x

direction [schematically shown in Fig. 1(a) in the main text]
and in the z direction (dipoles perpendicular to the graphene’s
plane), respectively. ETE in the projection-averaged case is
shown by solid lines.

Dashed lines represent the case where the summation is
performed over the acceptor’s dipole projections instead of
averaging (solid lines). This has to be done if the acceptor’s
dipole polarizability is isotropic, which is frequently the case
for spherical semiconductor QDs as fluorophores. For exam-
ple, this is true for PbSe QDs, where the dipole polarizability
is isotropic due to the presence of four degenerate L valleys
corresponding to the four equivalent 〈111〉 directions in the
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FIG. 5. (Color online) ETE without (black) and with graphene
(color lines) laid on top of the SiO2 substrate (κ̃ ≈ 2.5). The adopted
parameters are εf = 0.6 eV, γ = 10 ps−1, and za = zd = 3 nm. Dash-
dotted, dash-double-dotted, and solid lines correspond to cases where
both the donor and acceptor transition dipole vectors are elongated in
x and z directions, or averaged over all the directions, respectively.
Dashed lines represent summing over acceptor’s dipole projections
instead of averaging.

face-centered cubic lattice of lead chalcogenides.57 Within
the analytical plasmon pole approximation, to substitute the
averaging over the acceptor’s projections with summation it
suffices to add an extra factor of 3 into Eq. (13) in the main
text.

For comparison, the dependence of the Förster ETE (i.e.,
in the absence of graphene) on dipole orientations is shown by
black lines. In this case, the standard Förster ETE with Ead =
(1 + r6

ad/r6
F )−1 is recovered. The slightly smaller Förster

radius, rF ≈ 7.5 nm for the solid black line, than the one
obtained for the suspended graphene (rF ≈ 8 nm) (Fig. 2 in
the main text), is due to the SiO2-induced dielectric screening
(κ̃ = 2.5).

Specific dipole orientations can lead to strong ETE varia-
tions in the crossover region between Förster-dominated and
GP-dominated regimes. This behavior is due to the interference
between the Förster and GP contributions to ET in the region
where the magnitudes of these two contributions are com-
parable. In particular, the negative and positive interferences
are seen for dipole projections fixed in z and x directions,
respectively, at Rad ≈ 10 nm in Fig. 5.

At large donor-acceptor distances, a specific dipole ori-
entation has no significant effect on ETE, except for the
overall numerical factor of the order of ∼1. For example,
the donor with the transition dipole fixed in z direction is
twice as efficient in exciting GP than that with the dipole
in x direction.35 However, the z dipole excites plasmons
isotropically within the graphene plane, whereas the GP
emission of x dipole has a characteristic dipolar pattern [see
Fig. 1(a) in the main text], concentrated in the direction of the
acceptor (and also in the opposite direction). This results in
the same power transfer in both cases, but with lower power
losses in the case of the dipole fixed in the x direction, which
ultimately yields twice as high ETE for x dipoles than for z

dipoles.
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