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We present a functional renormalization group investigation of an Euclidean three-dimensional matrix Yukawa
model with U (N ) symmetry, which describes N = 2 Weyl fermions that effectively interact via a short-range
repulsive interaction. This system relates to an effective low-energy theory of spinless electrons on the honeycomb
lattice and can be seen as a simple model for suspended graphene. We find a continuous phase transition charac-
terized by large anomalous dimensions for the fermions and composite degrees of freedom. The critical exponents
define a new universality class distinct from Gross-Neveu type models, typically considered in this context.
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I. INTRODUCTION

Since the experimental realization of graphene1 there
has been a tremendous activity leading to new intriguing
phenomena in condensed matter physics.2 The characteristic
feature of graphene is the presence of the so-called Dirac points
at the corners of the first Brillouin zone. At these special points,
a linear dispersion for the low-energy excitations occurs,3

closely resembling that of massless relativistic fermions.
The massless relativistic dispersion leads to remarkable elec-
tronic properties. A prominent example is the observation
of the anomalous quantum Hall effect corresponding to
a pseudospin-1/2 Berry phase.1,4 Moreover, graphene may
serve as a simple toy model for studying long sought-after
quantum relativistic effects2 as, e.g., Klein tunneling5,6 and
Zitterbewegung.7 These phenomena can be understood in
the framework of noninteracting relativistic Dirac fermions
that are realized in monolayer graphene on a substrate.
However, for suspended graphene,8 the situation is different
and the system is strongly influenced by the large unscreened
Coulomb interactions.9 In what way the dynamics modifies
the low-energy behavior of the excitations in graphene is
an important open question. This parallels the situation in
strongly interacting quantum field theories, as, e.g., quantum
chromodynamics (QCD) where the interaction at low energies
leads to the spontaneous breaking of chiral symmetry.10 In
that sense, graphene can be seen as a laboratory for strongly
interacting fermions. For suspended graphene, the essential
question is whether the Coulomb interactions are strong
enough to drive the system close to an interacting fixed point. In
the vicinity of a fixed point, the system is governed only by the
low-energy modes. The details of the underlying lattice theory
are no longer relevant, and the theory drastically simplifies.
There, it often occurs that one has additional symmetries that
are not present in the lattice theory.11 Striking examples being
the effective relativistic dispersion and the effective chiral
symmetry for the low-energy theory.

In this work, we consider the situation where the low-energy
theory is defined in the vicinity of an interacting fixed point
and we inquire specifically about its critical properties. In fact,
suspended graphene may be expected to be close to a nontrivial
quantum critical point if the coupling is sufficiently strong.12

While in the perturbative regime, short-range interactions

are irrelevant for the dynamics, at strong coupling this is
not necessarily so. Local four-fermion interactions can be
generated dynamically and may play an important role even
for the long-range correlated system.13–15 In the past, the role
of the short-range repulsive interactions has been studied in
the framework of the tight-binding model on the honeycomb
lattice where, depending on the strength of the interactions, a
competition between the staggered density and nontrivial topo-
logical phases was found.16 Although both types of order are
conceivable, for the case of suspended graphene, one expects a
semimetal-Mott insulator phase transition,14,15,17–19 where the
chiral symmetry is broken spontaneously by a nonzero vacuum
expectation value of the chiral condensate. This corresponds
to a type of staggered density phase19,20 that alternates on the
two sublattices of the bipartite honeycomb lattice.

Here, we specifically address the critical properties for this
chiral phase transition using the nonperturbative functional
renormalization group.21 In particular, we neglect the influence
of the long-range Coulomb interactions and characterize
the properties of the short-range repulsive quantum critical
point. Our approach circumvents the problems of a purely
perturbative approach close to criticality, and for the first
time, allows us to follow the flow of this model into the
broken phase. Introducing composite degrees of freedom for
the order parameters, we show that our model has a continuous
phase transition in the universality class of a three-dimensional
matrix Yukawa model with U (2) symmetry.

The structure of this paper is as follows. In Sec. II and
III, we introduce the low-energy theory for the relativistic
quasiparticles in graphene and discuss its symmetry properties.
We consider the behavior of fermion bilinears under the
discrete parity P , charge conjugation C, and time-reversal
T transformations and identify their role in the underlying
lattice theory. In Sec. IV, we introduce the low-energy theory
of spinless fermions on the honeycomb lattice that serves
as a model for the dynamics of fermions interacting via
a short-range repulsive interaction. In Sec. V, within the
framework of the functional renormalization group, we derive
the flow equations for the partially bosonized model. Finally,
in Sec. VI, we characterize the properties of the continuous
chiral phase transition and determine the critical scaling
exponents.
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II. LOW-ENERGY THEORY

On a substrate, the low-energy theory of graphene is
described by the free Lagrangian

L = iψ̄aγμ∂μψa, (1)

with the linear dispersion of Dirac quasiparticles. The flavor
index takes the values a = 1, . . . ,Nf and characterizes the
physical spin of the quasiparticles. For a single layer of
graphene, the number of Dirac fermions is Nf = 2. In this
work, we take Nf = 1, which corresponds to a system of
spinless fermions on the honeycomb lattice whose band
structure can also be modeled by photonic crystals.22–24 In
the following, we will leave the value Nf unspecified as long
as not stated otherwise. The low-energy excitations on the
honeycomb lattice in two space dimensions are described in
terms a Lagrangian in d = 3 Euclidean space-time dimensions,
with the index μ = 0,1,2. That is, throughout this work we
assume full Euclidean rotational invariance. For the 2 + 1-
dimensional relativistic theory, this translates to the statement
that the dynamical critical exponent is assumed to be z = 1
and that the Fermi velocity vF is noncritical. In fact, it has
been argued that close to the semimetal-insulator critical point
Lorentz-symmetry breaking perturbations are irrelevant and
that a description in terms of a Euclidean-invariant low-energy
theory is viable.14,19,25 In Euclidean space-time the Lagrangian
(1) satisfies Osterwalder-Schrader reflection positivity,26 and
the spinors ψ† ≡ iψ̄γ0 are not conjugate to ψ , but instead
define independent degrees of freedom. (For our Euclidean
conventions see, e.g., Ref. 27.) Furthermore, we use a reducible
chiral representation for the fermions where the gamma
matrices satisfy the Dirac algebra,

{γμ,γν} = 2δμν, μ,ν = 0,1,2, (2)

and are given explicitly by

γ0 =
(

0 −iσ3

iσ3 0

)
, γk =

(
0 −iσk

iσk 0

)
, k = 1,2,

(3)

where σk , k = 1,2,3 denote the 2 × 2 Pauli matrices. Apart
from these matrices the Dirac algebra consists of the two
matrices

γ3 =
(

0 1

1 0

)
, γ5 =

(
1 0

0 −1

)
, (4)

that anticommute with all γμ, μ = 0,1,2, and with each other,
as well as their combination γ35 = i

2 [γ3,γ5]. Note, that these
matrices do not appear in the Lagrangian (1), which gives rise
to a certain freedom to define the discrete symmetries28 (see
Sec. III).

In the chiral representation, the states with definite chirality

γ5ψ± = ±ψ±, (5)

are taken to define the excitations around the two distinct
Dirac points �K+ and �K− = − �K+ at opposite corners of the
first Brillouin zone. It is exactly at these two points where
the one-particle spectrum becomes linear and can be modeled
by a theory of relativistic Dirac fermions (1). The remaining
components of the chiral left- and right-handed fermions
essentially characterize the excitations on the two triangular

sublattices A and B of the bipartite honeycomb lattice. To
make this mapping explicit, we give the connection to the
one-particle fermion operators that describe the hopping of
electrons on the honeycomb lattice. The free tight-binding
Hamiltonian

H0 = −t
∑
〈i,j〉

[u†a(�ri)v
a(�rj ) + H. c.], (6)

defines the dynamics, where a summation over the spin (flavor)
indices a = 1, . . . ,Nf is implied (recall that the flavor index
relates to the physical spin of the particles on the honeycomb
lattice). Here, t is the hopping parameter and the sum is
taken over all nearest neighbor sites on the honeycomb lattice.
The operators ua(�ri) and va(�rj ) anticommute and define the
fermionic excitations on the two sublattices A and B. In the
low-energy limit, where we consider only the linear excitations
around the two Dirac points, this model reproduces the free
Dirac Lagrangian (1) (in units where vF = ta

√
3/2 = 1, with

a being the lattice spacing). It is this limit that provides
the connection between the microscopic degrees of freedom
that enter the dynamics (6) and the low-energy excitations
of the continuum theory (1). Following this correspondence,
the Dirac spinor ψ has a direct representation in terms of the
single-particle fermionic operators ua

± and va
±, defined at the

two Dirac points �K±, respectively. It is given by

ψ =

⎛⎜⎜⎜⎝
u+
iv+
iv−
u−

⎞⎟⎟⎟⎠, ψ̄ = −(iv†
−, u

†
−, u

†
+, iv

†
+), (7)

up to a global phase factor, where we have dropped the
flavor indices for simplicity, and we will write them explicitly
when needed. The relative phases follow from the chosen
representation of the Dirac algebra (3). It immediately follows
that the two-component chiral left- and right-handed fermions
can be identified as

ψ+ =
(

u+
iv+

)
, ψ− =

(
iv−
u−

)
. (8)

Note that this identification of the spinor degrees of freedom
in the chiral representation is equivalent to the one given, e.g.,
in Ref. 29. Both the decomposition of the honeycomb lattice
into the two sublattices, and the two inequivalent Dirac points
in the first Brillouin zone are illustrated in Fig. 1.

The low-energy theory of Dirac fermions (1) has a continu-
ous U (2) chiral symmetry which is not apparent on the level of
the microscopic tight-binding model (6). It is generated by the
matrices 1, γ3, γ5, and γ35 with the following transformation
properties:

U1(1) : ψ → eiθψ, ψ̄ → ψ̄e−iθ , (9)

Uγ3 (1) : ψ → eiγ3θψ, ψ̄ → ψ̄eiγ3θ , (10)

Uγ5 (1) : ψ → eiγ5θψ, ψ̄ → ψ̄eiγ5θ , (11)

Uγ35 (1) : ψ → eiγ35θψ, ψ̄ → ψ̄e−iγ35θ , (12)

where θ is a real parameter. In fact, this U (2) chiral sym-
metry leads to a global U (2Nf ) symmetry, which plays an
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FIG. 1. (Color online) (Left) The bipartite hexagonal lattice with
the two sublattices A and B indicated by full and open dots. The
red arrows denote the nearest-neighbor hopping in the tight-binding
Hamiltonian (6). (Right) The two inequivalent Dirac points �K+ and
�K− at opposite corners of the first Brillouin zone.

important role for the dynamics, as it constrains the possible
interactions for the low-energy theory close to the critical
point. Specifically, for the local four fermion interactions it
is possible to define a complete set of operators that respect
the U (2Nf ) flavor symmetry.19,30 The corresponding operators
are quasilocal in the microscopic lattice description (i.e., next
neighbor and next-to-nearest neighbor). We have four such
interactions, two of which are of flavor-singlet type, with the
vector Thirring-like interaction

(ψ̄aγμψa)2, (13)

and the scalar Gross-Neveu-like interaction

(ψ̄aγ35ψ
a)2. (14)

Furthermore, there is a flavor-non-diagonal generalized
Nambu-Jona-Lasinio interaction

(ψ̄aψb)2 − (ψ̄aγ3ψ
b)2 − (ψ̄aγ5ψ

b)2 + (ψ̄aγ35ψ
b)2, (15)

and another flavor-non-diagonal interaction of vector type

(ψ̄aγμψb)2 +
(

ψ̄a σμν√
2
ψb

)2

− (ψ̄aiγμγ3ψ
b)2

−(ψ̄aiγμγ5ψ
b)2, (16)

where σμν = i
2 [γμ,γν] and (ψ̄a	(j )ψb)2 ≡

ψ̄a	(j )ψbψ̄b	(j )ψa , with 	(j ) some element of the Dirac
algebra. This defines all interactions invariant under the global
U (2Nf ) symmetry.19,30 However, this set of operators is
over-complete. By Fierz transformations, it is possible to show
that only two of the above operators are linearly independent.
Thus we may choose to write any U (2Nf )-complete theory in
terms of only the scalar and vector flavor-singlet interactions

L = iψ̄aγμ∂μψa + ḡV

2Nf

(ψ̄aγμψa)2 + ḡS

2Nf

(ψ̄aγ35ψ
a)2,

(17)

which fully parametrize the short-range interactions. This
theory is invariant also under the discrete parity, charge, and
time reversal operations.

III. SYMMETRY PROPERTIES

A possible instability triggered by the local four-fermion
interactions can lead to very different patterns of spontaneous
symmetry breaking. Such an instability essentially leads to
a nonvanishing vacuum expectation value of some fermion
bilinear 〈ψ̄	(j )ψ〉, with 	(j ) an element of the Dirac algebra.
To identify the physical role of the order parameters in
the low-energy theory, we review the properties of generic
fermion bilinears under discrete symmetry transformations.
This enables us to map the order parameters in the low-energy
theory onto the corresponding quantities in the microscopic
lattice model. Such an identification is necessary, as different
representations of the Dirac algebra may lead to very different
interpretations for the order parameters and for the fermion
masses that are generated dynamically by the interactions. It
is this mapping that allows us to understand the properties of
the possible phases and their relevance for graphene.

A. P , C, and T

Here, we take the parity transformation to reverse both
spatial coordinates. This choice reflects the direct mapping to
the tight-binding model where the parity operation is defined
with respect to the center of the first Brillouin zone (see,
e.g., the discussion in Ref. 29). It is important to emphasize
that reversing both spatial coordinates does not necessarily
correspond to a rotation in the two-dimensional plane, since
the generators for both transformations in spinor space do not
have to coincide.

For the fermions, parity acts in the following way:

Pψ(x)P −1 = Pψ(x̃), x̃ = (x0, − x1, − x2), (18)

with the unitary matrix P acting on the spinor components.
Parity transformations should leave the kinetic term invariant,
and we see that any operator of the form

P ∈ {γ0,iγ1γ2,iγ0γ3,iγ0γ5} (19)

will do the trick. However, each of these possibilities can
lead to very different transformation properties for the fermion
bilinears ψ̄	(j )ψ .That is, in principle, we could obtain a mass
term iψ̄ψ that is parity-odd. This is in contrast to the usual
situation in three-dimensional relativistic field theories where
one doubles the degrees of freedom to define a parity-even
mass term for the fermions.28,31 Here, we want to find those
order parameters that correspond to the physical excitations
on the honeycomb lattice. Therefore we define the discrete
symmetry operations in such a way that they are consistent
with the identification of the spinor components with the
one-particle fermion operators on the honeycomb lattice.
It is clear that an inversion about the center of the first
Brillouin zone should exchange both, the Dirac points and
the sublattices. Since, in the chiral representation, the states
with definite chirality correspond to the excitations around
the two inequivalent Dirac points �K+ and �K− = − �K+, this
leaves only two possibilities for the operator P , namely, those
that exchange states with opposite chirality: γ0 and iγ0γ5. In
principle, we could choose any one of the two. We define
P = γ0, which yields the same transformation properties for
the fermion bilinears ψ̄	(j )ψ as in Ref. 29 so that the mass
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term iψ̄ψ and iψ̄γ35ψ are parity-even, whereas ψ̄γ3ψ and
ψ̄γ5ψ are parity-odd. The components of the Dirac spinor (7)
transform under parity according to⎛⎜⎜⎜⎝

u+
iv+
iv−
u−

⎞⎟⎟⎟⎠ −→
P

⎛⎜⎜⎜⎝
v−
iu−
iu+
v+

⎞⎟⎟⎟⎠, (20)

where it is understood that the transformed spinor has reversed
spatial coordinates.

Charge conjugation is defined as

Cψ C−1 = (ψ̄C)T (21)

with the unitary operator C being any one of the following
possibilities:

C ∈ {γ2,iγ0γ1,iγ2γ3,iγ2γ5}. (22)

This follows from the requirement that under charge conjuga-
tion iψ̄γμψ → −iψ̄γμψ should hold. Again, the question
is how to constrain this set of operators. It is clear that
charge conjugation should leave the two Dirac points invariant.
However, it exchanges the sublattices A and B as it transforms
particles into antiparticles. We are left with two possibilities for
the operator C: γ2 and iγ2γ5. Here, we define C = iγ2γ5 where
the fermion bilinears iψ̄ψ , ψ̄γ3ψ , and iψ̄γ35ψ are even under
charge conjugation, and ψ̄γ5ψ is odd. For the components of
the Dirac spinor, charge conjugation acts as⎛⎜⎜⎜⎝

u+
iv+
iv−
u−

⎞⎟⎟⎟⎠ −→
C

⎛⎜⎜⎜⎜⎝
−v

†
+

−iu
†
+

iu
†
−

v
†
−

⎞⎟⎟⎟⎟⎠. (23)

Notice that the chiral left- and right-handed components
transform with a relative phase factor.

We are left with the antiunitary time reversal (note that
in Euclidean space time reversal simply complex conjugates
c-numbers without changing the sign of spatial momentum
components or Euclidean time):

T ψT −1 = T ψ, (24)

where the unitary matrix T is given by

T ∈ {iγ2,γ0γ1,γ2γ3,γ2γ5}. (25)

Time reversal changes both the momentum and spin of the
quasiparticles where we neglect the part of the operator that
acts on the physical spin, given by some nondiagonal matrix in
flavor space). As it reverses the momentum, it should exchange
the two inequivalent Dirac points at opposing corners of the
first Brillouin zone �K+ and �K− = − �K+. Thus it appears that
we again have two possibilities: iγ2 and γ2γ5. We take T =
iγ2 for which the bilinears iψ̄ψ , ψ̄γ3ψ , and ψ̄γ5ψ are even,
and iψ̄γ35ψ is odd under time reversal. The action of the
transformation (24) on the components of the Dirac spinor is

TABLE I. Transformation properties of fermion bilinears under
P , C, and T , where γ̃μ = (γ0, − γ1, − γ2).

P C T

iψ̄ψ + + +
ψ̄γ3ψ − + +
ψ̄γ5ψ − − +
iψ̄γ35ψ + + −
iψ̄γμψ iψ̄γ̃μψ −iψ̄γμψ iψ̄γμψ

then given by ⎛⎜⎜⎜⎝
u+
iv+
iv−
u−

⎞⎟⎟⎟⎠ −→
T

−i

⎛⎜⎜⎜⎝
u−
iv−
iv+
u+

⎞⎟⎟⎟⎠. (26)

However, it should be kept in mind that for simplicity we
neglect the transformation that acts on the true spin (i.e., flavor)
indices.

From these considerations it follows that in the chiral
representation the mass term iψ̄ψ is invariant separately under
P , C, and T . All other mass terms break at least one of the
discrete symmetries. The properties of the various fermion
bilinears are summarized in Table I.

B. Antiunitary symmetries

Apart from the antiunitary time reversal symmetry

[D,iγ2K] = 0, (27)

that was defined in the previous section, the Euclidean Dirac
operator with a possible mass termD = γμ∂μ + m has another
antiunitary symmetry S = −iγ0γ1K , which is written as

[D, − iγ0γ1K] = 0. (28)

Here, the operator K denotes complex conjugation. In terms of
the Dirac spinor components, the symmetry (28) exchanges the
excitations on the two sublattices A and B and also the physical
spin of the quasiparticles (as for the time reversal symmetry,
we will neglect the part acting on the spin components in the
following). In contrast to the time reversal (24), however, it
does not exchange the two Dirac points. That is, it reverses
the momentum of the chiral left- and right-handed excitations
independently, and in that sense, Eq. (28) can be seen as a
time reversal acting separately at the two inequivalent Dirac
points.6 While the time reversal symmetry satisfies (iγ2K)2 =
1, and therefore defines an orthogonal symmetry here (an
additional minus sign arises when including the true spin
components), we have (−iγ0γ1K)2 = −1 for the antiunitary
operator (28), which corresponds to a symplectic symmetry (in
the spinless case). These two different antiunitary symmetries
are essentially due to the fact that one has an even number of
two-component Weyl fermions in the low-energy theory.

The commutator of both antiunitary operators T and S

vanishes, and therefore their product

T S = iγ35, (29)

gives a well-defined unitary operator, exchanging both the
two Dirac points and sublattices A and B. Clearly, if both T
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TABLE II. Transformation properties of fermion bilinears under
the antiunitary and discrete chiral transformations.

T S T S

iψ̄ψ + + +
ψ̄γ3ψ + − −
ψ̄γ5ψ + − −
iψ̄γ35ψ − − +
iψ̄γμψ + + +

and S are symmetries of the theory then the discrete chiral
transformation T S also defines a symmetry operation. In
Table II, we have collected the transformation properties of
the fermion bilinears under the antiunitary and discrete chiral
transformations.

Let us comment on the importance of the antiunitary
symmetries. Typically, in QCD-like theories, the antiunitary
symmetry of the Dirac operator is related to the (pseudo)reality
of the fermion color representation. Though three-color QCD
with quarks in the fundamental representation does not
fall into this class, examples are two-color QCD, adjoint
QCD, or the G2 gauge theory.32,33 In these theories, the
antiunitary symmetry is responsible for an enlargement of
the SU (Nf ) × SU (Nf ) × U (1) chiral and baryon number
symmetries to a global SU (2Nf ) extended flavor symmetry
when the fermions are massless. Furthermore, it determines the
dynamics of the low-energy excitations giving rise to different
patterns of spontaneous symmetry breaking.32,33 Considering
the low-energy theory of free massless fermions (1) with the
antiunitary symmetries (27) and (28) and the global SU (2Nf )
flavor symmetry, one is very much reminded of the situation
in QCD-like theories with real or pseudoreal fermion color
representations. Here, however, the extended flavor symmetry
is a simple consequence of the reducible four-dimensional
representation for the fermions in three space-time dimensions.
As far as the the antiunitary symmetries of the Dirac operator
are concerned, one has to ask whether they are relevant for the
low-energy dynamics in presence of interactions or disorder.34

In fact, when the fermions are charged and couple to an
abelian U (1) gauge field, the Dirac operator in the gauge-field
background does not have the antiunitary symmetries (27)
and (28). Such a 2 + 1-dimensional QED dynamics can be
modeled in the context of random matrix theory by a chiral
Gaussian unitary ensemble (chGUE) that belongs to the class
AIII after Cartan’s classification of symmetric spaces.35,36

The spontaneous breaking of the antiunitary symmetries is
then ruled out. Of course, in the instantaneous approximation,
the Coulomb field alone would not break the time-reversal
invariance. However, close to the charge neutral point this
approximation breaks down when the Fermi velocity increases
due to the strong electron-electron interaction.37,38 Therefore,
in the following, we are interested especially in the chiral
symmetry breaking mass term which leaves the antiunitary
symmetries unchanged.

C. Order parameters

From the above discussion, it follows that the expectation
value i〈ψ̄ψ〉 is invariant under P , C, and T whereas both

〈ψ̄γ3ψ〉 and 〈ψ̄γ5ψ〉 are parity-odd (compare Table I). All
three order parameters break the extended U (2Nf ) flavor
symmetry, generating a dynamical mass for the fermions. The
symmetry breaking pattern is given by39

U (2Nf ) → U (Nf ) × U (Nf ). (30)

It is clear how to identify these order parameters with the
excitations in the underlying lattice model. They can be
mapped onto the staggered density phase where one has an
alternating density on the two different sublattices A and
B,19,20,40 and a bond-ordered phase that corresponds to a
hopping texture on the nearest-neighbor links in the language
of the tight-binding model.41 Indeed, a nonvanishing staggered
density on the two sublattices breaks parity and we may
associate the order parameter 〈ψ̄γ3ψ〉 with such a phase. The
corresponding bilinear measures the imbalance in the local
densities of the two sublattices and therefore does not mix the
chiral modes. This is immediately apparent when we write the
bilinear directly in terms of the one-particle fermion operators
on the honeycomb lattice:

〈ψ̄γ3ψ〉 → 〈v†
+v+〉 + 〈v†

−v−〉 − 〈u†
+u+〉 − 〈u†

−u−〉. (31)

The order parameter for the bond-ordered phase however,
should couple excitations both at the two inequivalent Dirac
points �K+ and �K− and on the two sublattices A and
B,29,41 which is accomplished by the bilinear i〈ψ̄(cos α +
γ5 sin α)ψ〉. The parameter α controls the hopping texture, and
depending on its value, one obtains either a parity-conserving
or a parity-breaking type of order (see Table I). Again,
switching to the language of the single-particle excitations
on the honeycomb lattice this corresponds to the bilinear

i〈ψ̄(cos α + γ5 sin α)ψ〉
→ (cos α + sin α)(〈v†

−u+〉 + 〈u†
−v+〉)

+ (cos α − sin α)(〈u†
+v−〉 + 〈v†

+u−〉). (32)

The condensate i〈ψ̄γ35ψ〉 is in a sense special, as it leaves
the chiral symmetry intact. However, it does break the
time reversal symmetry. This corresponds to a topologically
nontrivial phase that relates to counter-propagating currents
on the two different types of sublattices.42 In terms of the
one-particle fermion operators, it is written as

i〈ψ̄γ35ψ〉→−〈v†
+v+〉 + 〈v†

−v−〉 + 〈u†
+u+〉− 〈u†

−u−〉. (33)

The identification of the order parameters given here is
equivalent to the one proposed in Ref. 29 where a chiral
representation for the Dirac algebra was used also. A complete
classification of all possible bilinears is given in Refs. 43
and 44.

IV. A SIMPLE MODEL: SPINLESS FERMIONS
ON THE HONEYCOMB LATTICE

Here, we focus on the case of a single flavor Dirac La-
grangian with a local four fermion interaction. This essentially
corresponds to a low-energy theory of spinless fermions on the
honeycomb lattice with a nearest neighbor and next-to-nearest
neighbor coupling.16 In the purely fermionic description, one
may expect that above some critical value for the coupling,
the short-range repulsive interactions give rise to an instability.
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Here, we go beyond a mean-field approach by introducing a set
of composite fields that allows us to follow the system into the
ordered phase. Even for this simple model, there is a complex
phase diagram with different types of order: depending on the
strength of the interactions there is a competition between a
staggered density phase and a topologically nontrivial phase.16

The global symmetry group for this model is U (2) and the
symmetry breaking pattern for the chiral transition is given by
SU (2) → U (1), while the topological phase transition leaves
the U (2) symmetry intact but breaks time reversal invariance.

For this simple model, the relevant dynamics of the
SU (2) → U (1) chiral phase transition is adequately described
by taking into account only the fluctuations in a generalized
Nambu-Jona-Lasinio-type channel (15). To illustrate this
point, we make a Fierz transformation to write the flavor-
singlet four fermion interactions in terms of a vector- and a
NJL-type interaction:

ḡV

2Nf

(ψ̄aγμψa)2 + ḡS

2Nf

(ψ̄aγ35ψ
a)2

= ḡV − ḡS

2Nf

(ψ̄aγμγ a)2 − ḡS

2Nf

[(ψ̄aψb)2 − (ψ̄aγ3ψ
b)2

− (ψ̄aγ5ψ
b)2 + (ψ̄aγ35ψ

b)2]. (34)

One may recognize that line defined by ḡV − ḡS = 0 in the
(ḡV , ḡS)-coupling plane defines a theory where the vectorlike
interaction (ψ̄aγμψa)2 becomes irrelevant and the flavor-
nondiagonal NJL-type interaction dominates. In fact, this
scenario is realized for small numbers of fermion flavors Nf

close to a nonGaussian fixed point as has been demonstrated
in a functional renormalization group investigation of the
generalized Thirring model (17) in three dimensions.30 Thus
we expect that the critical properties of spinless fermions on the
honeycomb lattice in the vicinity of the chiral critical point are
well described by a generalized NJL-model. Of course, strictly
speaking, this model may not be in the same universality class
as the full U (2)-symmetric single flavor model (17), which
is characterized by three different interacting fixed points
that describe very different types of critical behavior. The
continuous chiral phase transition, however, corresponds to
a Thirring-like fixed point, which is very close to being the
pure NJL-type interaction with ḡV = ḡS for Nf = 1 but moves
towards the Thirring axis ḡS = 0 for Nf → ∞.30

To see how the repulsive interactions drive the system into
the broken phase we integrate out the flavor nondiagonal NJL-
type interaction via a Hubbard-Stratonovich transformation. In
this way, we obtain a matrix Yukawa model with a U (N ) sym-
metry for N = 2 species of massless, two-component Weyl
fermions ψa and ψ̄a , a = 1, . . . ,N . For the spinless fermions
on the honeycomb lattice N = 2, which corresponds to a single
Dirac fermion Nf = 1 in the reducible representation as, e.g.,
modeled in microwave photonic crystals.24 The Weyl fermions
couple to a Hermitian matrix field �ab and the action of this
model is given by (we use the notation

∫
x

≡ ∫
ddx for the

space and
∫
p

≡ ddp

(2π)d for the momentum integrals)

S[�,ψ̄,ψ] =
∫

x

(
ψ̄ai∂/ψa + h̄ ψ̄ai�abψ

b + 1

2
m̄2 tr �2

)
,

(35)

where the trace tr(· · · ) acts on the indices of the matrix
field. Here, and in the following, we define ∂/ ≡ σμ∂μ, which
belongs to the irreducible representation γ0 = σ3, and γk = σk ,
k = 1,2. Equation (35) constitutes the starting point for our in-
vestigation in the framework of the functional renormalization
group.

V. FUNCTIONAL RENORMALIZATION GROUP

The full information about the quantum dynamics of a
theory is given by the quantum effective action 	, which is the
generating functional for one-particle irreducible correlation
functions. The functional renormalization group is a nonper-
turbative approach to determine the quantum effective action,
taking into account all quantum fluctuations. Implementing
Wilson’s renormalization group idea,45 the fluctuations are
included successively by integrating out the higher modes.
Thereby one obtains the effective average action 	k with all
the fluctuations included above the characteristic momentum
scale k. The scale dependence is implemented by an infrared
regulatorRk to suppress the fluctuations of the low-momentum
modes in the theory. In the limit k → 0, when all quantum
fluctuations are included, the functional renormalization group
yields the full effective action 	.

The flow equation for the effective average action is given
by21,46–54

∂t	k[χ ] = 1

2
STr

{
∂tRk

(
	

(1,1)
k [χ ] + Rk

)−1}
, (36)

where t = ln k/� defines the scale parameter and � is some
appropriate ultraviolet scale where we impose the microscopic
dynamics. The supertrace STr in Eq. (36) denotes a summation
over fields and possible internal indices, as well as an
integration over momentum, while it provides a minus sign
in the fermionic sector. The second functional derivatives of
the effective average action 	

(1,1)
k define the fluctuation matrix.

In the momentum representation, we have

(
	

(1,1)
k [χ ]

)
IJ

(p,q) ≡
−→
δ

δχT
I (−p)

	k[χ ]
←−
δ

δχJ (q)
, (37)

where the indices I,J label the different components of the
auxiliary field χ that contains the complete field content of our
model: the matrix field �ab and N species of Weyl fermions
ψa and ψ̄a , i.e.,55

χT (−p) ≡ (�T (−p) , ψT (−p) , ψ̄(p)), (38)

and

χ (q) ≡

⎛⎜⎝ �(q)

ψ(q)

ψ̄T (−q)

⎞⎟⎠, (39)

where we have suppressed the flavor indices. Together with the
infrared regulator Rk , it represents the full regularized inverse
propagator (	(1,1)

k + Rk) at the scale k.
The regulator function Rk takes the following form:

Rk(p) =

⎛⎜⎝RB,k(p) 0 0

0 0 RF,k(p)

0 RT
F,k(p) 0

⎞⎟⎠, (40)
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where in the bosonic and fermionic sector, we have

RB,k(p) = ZB,kp
2rB,k(p2), (41)

RF,k(p) = ZF,kp/ rF,k(p2). (42)

Both are fully described by the regulator shape functions
rB,k and rF,k that characterize the scheme dependence of the
renormalization procedure. Since they depend only on the
dimensionless ratio y = p2/k2, we will drop the index k in
the following. The fermion regulator shape function rF is taken
to satisfy the constraint p2(1 + rB) = p2(1 + rF )2 and thus is
completely determined by the choice of rB .

In practice, to solve Eq. (36), one is bound to rely on
approximations for the effective average action 	k where one
truncates the set of possible operators following an expansion
scheme, e.g., in powers of derivatives.56 However, such an
approximation also induces a spurious dependence on the
regulator for the full quantum effective action when the scale
k is sent to zero.57,58 In this work, we therefore employ two
different types of infrared regulators to test the regulator
scheme dependence of our results in the physical limit. We
consider the optimized regulator57

rB(y) =
(

1

y
− 1

)
θ (1 − y) (43)

and also an exponential-type regulator

rB(y) = [exp(y) − 1]−1. (44)

A. Effective average action

Our ansatz for the effective average action is given by

	k[�,ψ̄,ψ] =
∫

x

[
ZF,k ψ̄ai∂/ψa + 1

2
ZB,k tr(∂μ�)2

+ h̄k ψ̄ai�abψ
b + Uk(�)

]
. (45)

In contrast to the microscopic model, we have a kinetic term
for the composite field and a scale-dependent wave-function
renormalization both for the fermions and the bosons. Thus,
we include the bosonic fluctuations that give a nontrivial mo-
mentum structure for the fermion interactions.10,59 Clearly, our
ansatz (45) goes far beyond a simple mean-field approximation
where one neglects the fluctuations from the composite degrees
of freedom.

For the U (N ) matrix model, the effective average potential
Uk(�) is a function of the invariants of the U (N ) symmetry
group. For a system of N = 2 Weyl fermions there are exactly
two invariants, one that is linear σ̄k = tr � and another one that
is quadratic ρ̄k = 1

2 tr �2 in the fields. A nonvanishing vacuum
expectation value for the composite field �ab signals the
dynamical generation of a mass for the fermions. Depending
on the flavor structure of the matrix field we have different
types of order: the chirally broken phase corresponds to a
vacuum configuration that is either nondiagonal or diagonal
nonuniform (so that the trace vanishes, i.e., tr � = 0). On
the other hand, �ab ∼ δab in the nontrivial topological phase,
which we will not consider here. Close to the phase transition,
only those fluctuations of the � field will play a significant

role that give a contribution to the quadratic invariant ρ̄k—
the σ̄k field is irrelevant there. Thus, to investigate the
nature of the chiral phase transition, we may neglect the
fluctuations of the σ̄k field. However, we want to emphasize
that this approximation is no way essential for the following
calculations.

We expand the effective average potential in powers of
ρ̄k around the minimum ρ̄0,k , given by the scale-dependent
vacuum expectation value:

Uk(ρ̄k) = m̄2
k(ρ̄k − ρ̄0,k) +

nmax∑
n=2

λ̄n,k

n!
(ρ̄k − ρ̄0,k)n. (46)

This approximation captures all the relevant fluctuation at the
chiral phase transition. In the symmetric regime, the vacuum
expectation value ρ̄0,k is zero, whereas in the chirally broken
phase ρ̄0,k �= 0 and the mass m̄2

k becomes zero. In our ansatz,
we include the first set of irrelevant operators according to
a naive power counting with respect to the canonical mass
dimension.

B. Flow equation for the effective average potential

To extract the flow equations for the parameters and
couplings in the effective average action (45), one has to project
the functional flow given by the right-hand side of Eq. (36) onto
the corresponding operators. For the couplings that appear in
the effective average potential, this is done by evaluating the
second functional derivative 	

(1,1)
k in a constant background

configuration of the matrix field �ab.
The flow equation for the effective average potential

receives contributions both from the boson and fermion
degrees of freedom:

∂tUk(�) = ∂tUB,k(�) + ∂tUF,k(�). (47)

To keep the notation clear, we will drop the k index in the
following. Where necessary, we will revert to our original
notation.

From Eq. (36), we obtain the boson contribution to the
effective average potential:

∂tUB = 1

2

∫
q

∂tRB

∑
i

PB(M̄Bi), (48)

where the full regularized boson propagator PB is given in
Appendix A. We sum over all mass eigenvalues M̄2

Bi of the
mass matrix as given by the second derivatives of the potential:

M̄2
B(�) ab,cd (p,q) ≡

−→
δ

δ�T ab(−p)

∫
x

Uk(�)
←−
δ

δ�cd (q)
. (49)

In general, this expression will be momentum dependent.
However, for the calculation of the effective average potential
with a constant background configuration �ab, all momentum
dependence in Eq. (49) drops out. The mass matrices are given
in Appendix C.

For illustrational purposes, we perform the derivation of the
flow equation in the fermion sector explicitly by integrating out
the fermions in the action. To evaluate the fermion contribution
to the effective average potential, it is useful to write the action
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in terms of the four-component spinors

�(q) =
(

ψ(q)

ψ̄T (−q)

)
, (50)

which is constructed from the two independent degrees of
freedom ψ and ψ̄ . In that case, the fermion bilinear part of the
action takes the form

	k,�� =
∫

q,(q0>0)
�T a(−q)Dab(q)�b(q), (51)

in momentum space. Note that the domain of integration is
restricted to positive frequencies q0 > 0 to counteract the
doubling of degrees of freedom that comes from switching
to the four-component spinors (50). In this basis, the inverse
regularized fermion propagator is given by

Dab(q) = ZF (1 + rF )

(
0 q/T

q/ 0

)
δab + ih̄(q)

(
0 −�T

ab

�ab 0

)
,

(52)

where h̄(q) ≡ h̄(−q,q) denotes the momentum-dependent
Yukawa coupling. (For the momentum dependent Yukawa
coupling h̄(−p,q), the momenta p and q denote the incoming
fermion momenta at the Yukawa vertex.) As for the boson
contribution, we evaluate the inverse propagator Dab(q) in a
constant background field �ab. Performing the integration over
the Grassmann fields, the fermion contribution to the potential
takes the form

UF = −
∫

q,(q0>0)
ln detD(q), (53)

where the determinant acts on the flavor and spinor indices. To
evaluate this expression, we put Dab(q) in standard diagonal
form. That is, by a unitary transformation, we diagonalize
�ab = �aδab, so thatDab(q) = Da(q)δab, and the determinant
in Eq. (53) can be written as

detDa = [
Z2

F (1 + rF )2q2 + h̄(q)2�2
a

]2
. (54)

With this result, the fermion contribution to the flow equation
(47) becomes

∂tUF = −2
∫

q

q2 ZF (1 + rF ) ∂t (ZF rF )
∑

a

P̃F (M̄Fa),

(55)

where P̃F (M̄Fa) = (detDa)−
1
2 . One may easily verify that this

is just the result that is obtained when the supertrace in Eq. (36)
is computed directly, using the definition of the full regularized
propagators (see Appendix A), and the regulator RF . Here, the

masses M̄Fa denote the N eigenvalues of the N × N matrix
h̄(q)�.

Equations (48) and (55) together give the full contribution
to the effective average potential. To investigate the critical
properties at the phase transition, however, it is convenient to
bring the flow equations to a form where one may easily iden-
tify possible fixed point solutions. For that purpose, we switch
to dimensionless renormalized quantities ρ = k2−dZBρ̄ and
u(ρ) = k−dUk(ρ). Then, the flow equation for the potential is
given by

∂tu = −du + k−d∂tUk|ρ̄ + (d − 2 + ηB)ρk−d ∂Uk

∂ρ

∣∣∣∣
t

, (56)

where we have introduced the scalar anomalous dimension
ηB ≡ −∂t ln ZB . Substituting our previous result gives

∂tu = −du + (d − 2 + ηB)ρu′ + 2vd

[
(N2 − 2)l(B)

0 (u′; ηB)

+l
(B)
0 (u′ + 2ρu′′; ηB) − 2Nl

(F )
0

(
2

N
ρh2; ηF

)]
,

(57)

where the prime u′ ≡ ∂u
∂ρ

|t denotes differentiation with re-
spect to the dimensionless renormalized field ρ, and vd =
[2d+1πd/2	(d/2)]−1. Furthermore, ηF ≡ −∂t ln ZF and h2 =
kd−4Z−2

F Z−1
B h̄2 is the dimensionless renormalized Yukawa

coupling. Here, we have introduced the threshold functions
l
(B)
0 and l

(F )
0 that parametrize the boson and fermion one-

loop integrals contributing to the effective average potential.
They are defined in Appendix B where their form is given
explicitly for the optimized regulator (43). The corresponding
expressions for the exponential regulator (44) can be found in,
e.g., Refs. 10 and 21. The threshold functions carry the full
scheme-dependence of the renormalization group equations.
In that sense, the flow equations are universal—only the
dimensionality and symmetries determine the flow and the
regulator dependence resides solely in the threshold functions.

In the symmetric regime, we may derive the flow equations
for the dimensionless renormalized couplings ε = k−2Z−1

B m̄2

and λn = k(n−1)d−2nZ−n
B λ̄n, n = 2, . . . ,nmax, from Eq. (57)

simply by differentiating with respect to field ρ, that is, we have
ε = u′ for the mass parameter and λn = u(n) for the couplings.
The derivatives of the threshold functions are evaluated as

∂

∂w
l(B)
n (w; ηB) = −(n + δn,0)l(B)

n+1(w; ηB) (58)

and, equivalently, for l(F )
n (w; ηF ). Here, we give the flow

equations for the mass parameter ε, and the couplings λ2,
and λ3 in the symmetric phase:

∂tε = (−2 + ηB)ε − 2vd

[
(N2 + 1)λ2 l

(B)
1 (ε; ηB) − 4h2 l

(F )
1 (0; ηF )

]
, (59)

∂tλ2 = (d − 4 + 2ηB)λ2 + 2vd

[
(N2 + 7)λ2

2 l
(B)
2 (ε; ηB) − (N2 + 3)λ3 l

(B)
1 (ε; ηB) − 8

N
h4 l

(F )
2 (0; ηF )

]
, (60)

∂tλ3 = (2d − 6 + 3ηB)λ3 − 2vd

[
2(N2 + 25)λ3

2 l
(B)
3 (ε; ηB) − 3(N2 + 13)λ2λ3 l

(B)
2 (ε; ηB)

+ (N2 + 5)λ4 l
(B)
1 (ε; ηB) − 32

N2
h6 l

(F )
3 (0; ηF )

]
. (61)
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The flow equations for the higher-order couplings can be obtained by a simple differentiation with respect to the field, and are
not given here explicitly.

As the system goes over into the broken phase, the scale-dependent mass parameter ε goes to zero, and the field assumes a
nonvanishing expectation value ρ0 �= 0, defined by u′(ρ0) = 0. Due to the scale dependence of ρ0, which is given by

∂tρ0 = − 1

λ2
∂tu

′(ρ0), (62)

we get an additional contribution to the flow (57) in the broken phase:

∂tλn = ∂tλn|ρ0 + λn+1∂tρ0. (63)

There, the flow equations for ρ0, and the couplings λ2, and λ3 are given by

∂tρ0 = (2 − d − ηB)ρ0 + 2vd

[
(N2 − 2)l(B)

1 (0; ηB) +
(

3 + 2ρ0λ3

λ2

)
l
(B)
1 (2ρ0λ2; ηB) − 4

λ2
h2 l

(F )
1

(
2

N
ρ0h

2; ηF

)]
, (64)

∂tλ2 = (d − 4 + 2ηB)λ2 + 2vd

[
(N2 − 2)λ2

2 l
(B)
2 (0; ηB) + (3λ2 + 2ρ0λ3)2l

(B)
2 (2ρ0λ2; ηB) −

(
2λ3 + 2ρ0λ4 − 2ρ0λ

2
3

λ2

)
× l

(B)
1 (2ρ0λ2; ηB) − 8

N
h4 l

(F )
2

(
2

N
ρ0h

2; ηF

)
− 4

λ3

λ2
h2 l

(F )
1

(
2

N
ρ0h

2; ηF

)]
, (65)

∂tλ3 = (2d − 6 + 3ηB)λ3 − 2vd

{
(N2 − 2)

[
2λ3

2 l
(B)
3 (0; ηB) − 3λ2λ3 l

(B)
2 (0; ηB)

] + 2(3λ2 + 2ρ0λ3)3l
(B)
3 (2ρ0λ2; ηB)

− 3(3λ2 + 2ρ0λ3)(5λ3 + 2ρ0λ4)l(B)
2 (2ρ0λ2; ηB) +

(
4λ4 + 2ρ0λ5 − 2ρ0λ3λ4

λ2

)
l
(B)
1 (2ρ0λ2; ηB)

− 32

N2
h6 l

(F )
3

(
2

N
ρ0h

2; ηF

)
+ 4

λ4

λ2
h2 l

(F )
1

(
2

N
ρ0h

2; ηF

)}
. (66)

The flow equations for the higher order couplings can easily
be obtained via Eq. (63).

Recall that the relevant symmetry breaking pattern for the
simple model (see Sec. IV) is given by SU (2) → U (1). This is
in direct correspondence to the O(3) → O(2) transition in the
three-component vector model.60,61 Building on our previous
remark concerning the universality of the renormalization
group flow, we observe that in the bosonic sector (neglecting
the fermion contributions), the flow equations for the effective
potential are identical to the flow equations for the three-
dimensional O(3) vector model.61 We want to emphasize that
this is a simplification that occurs only for the special case
where N = 2. In the general case, the flow equations for the
effective potential correspond to the matrix Yukawa model
with U (N ) symmetry.

C. Boson anomalous dimension

For the computation of the boson anomalous dimension
ηB = −∂t ln ZB , we first evaluate the flow equation (36) in a
spatially varying field configuration �(x). This is necessary
for the projection onto the kinetic term and the wave-function
renormalization ZB . In particular, we consider a distortion
around the nondiagonal vacuum configuration �ab = �̂0�ab

characterized by a nonvanishing momentum Q, i. e.,

�ab(x) = �̂0�ab + (δ�e−iQx + c.c.)︸ ︷︷ ︸
≡ �(x)

�ab, (67)

where the Hermitian matrices � and � satisfy the properties
�T = −� and �T = �. Clearly, the fluctuations in the
� direction are orthogonal to the ground state orientation.
Though we take only one of the possible orthogonal directions

for the fluctuations into account, this still yields a complete
description of those contributions coming from the Goldstone
modes. Of course, in the broken phase, we also have fluctu-
ations ∼�′(x)�ab from the radial mode that give additional
contributions to the boson anomalous dimension.

In momentum space, the configuration (67) reads

�ab(p) = �̂0δ(p,0)�ab + �(p,Q)�ab, (68)

where we define δ(p,q) ≡ (2π )dδ(d)(p − q), and the am-
plitude is given by �(p,Q) = (δ�δ(p,Q) + δ�∗δ(−p,Q)).
Taking the ansatz (67), one may easily verify that

∂tZB ≡ 1

N
lim
Q→0

∂

∂Q2

[
lim

δ�→0

∂

∂(δ�δ�∗)
∂t	k

]
(69)

gives us the flow equation for the momentum-independent part
of the wave-function renormalization ZB . Here, we neglect all
momentum dependence of the wave-function renormalization.
Equation (69) defines a projection of the flow equation (36)
onto the flow of the wave-function renormalization, i.e.,
∂t	k|ZB

≡ ∂tZB . In the following, we will use this notation
frequently.

To evaluate Eq. (69), we make use of a series expansion of
the flow equation. Using the decomposition of the full inverse
regularized propagator

	
(1,1)
k + Rk = P−1

k + Fk, (70)

which is written in terms of Fk containing all field-dependent
fluctuations around the background field configuration, and
the inverse background field propagator P−1

k that carries the
explicit regulator dependence, we may write the flow equation
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(36) as a series expansion in powers of the fields:

∂t	k = 1
2 STr ∂tRk Pk + 1

2 STr ∂̂t (PkFk)

− 1
4 STr ∂̂t (PkFk)2 + O(F3

k ). (71)

Here, we have defined the formal derivative operator

∂̂t ≡ ∂tRk

∂

∂
(
P−1

k

) (72)

that acts on the inverse regularized matrix propagator P−1
k (see

Appendix A). In terms of Eq. (67), the leading contribution to
the fluctuation is Fn

k ∼ O(�n) and for the calculation of the
anomalous dimension, only the second-order term δ(2)	k in the
fluctuation Fk is important. Clearly, the lowest-order term will
not contribute, as it is independent of δ� and δ�∗ and thus
yields a vanishing contribution to Eq. (69). The δ(1)	k term
does include combinations of the type ∝ δ�δ�∗, however,
they are independent of momentum Q2. Thus the lowest-order
term relevant in (69) is the second-order term δ(2)	k in the
series expansion, and specifically, we will need those terms
in Fk that are of linear order in the amplitude �. Apart from
the bosonic background �ab, we need to specify the fermionic
background configuration, where we take

ψ = ψ̄ = 0. (73)

Then, the matrix of second functional derivatives 	
(1,1)
k

becomes block-diagonal in the boson and fermion subspaces,
and we may treat the boson and fermion contributions to
Eq. (69) separately.

We start with the bosonic sector. For matrix-valued fields,
it is convenient to work in the nondiagonal basis for the
propagators and the fluctuations.62 We follow the outline
given above and evaluate the second-order term δ(2)	B =
− 1

4 STr ∂̂t (PBFB)2 in the series expansion, where the index
B denotes the corresponding quantities in the bosonic sector
where we have dropped the k index for clarity, i.e., 	B,k ≡ 	B ,
PB,k ≡ PB , etc. For that, we need the boson propagator in the
constant background configuration �ab = �̂0�ab, which takes
the following form:

(PB)ab,cd (p) = 1

A(p)

[
δacδbd − B

A(p) + NB
�ab�

T
cd

]
, (74)

where we have introduced the quantities

A(p) = ZB(1 + rB)p2 + ∂Uk

∂ρ̄
, B = �̂2

0
∂2Uk

∂ρ̄2
. (75)

Furthermore, we need the contribution from the fluctuations
to linear order in �, which is given by

(FB)ab,cd (p,q) = �(p − q,Q) �̂0
∂2Uk

∂ρ̄2

(
�ab�

T
cd + �ab�

T
cd

)
+O(�2). (76)

With these results we can immediately compute the trace in
δ(2)	B and evaluate the projection onto the kinetic term:

δ(2)	B |ZB
= −N�̂2

0

(
∂2Uk

∂ρ̄2

)2

× lim
Q→0

∂

∂Q2

∫
p

∂̂t [PB1(p)PB2(p + Q)] . (77)

The indices on the propagators PB refer to the corresponding
eigenvalues of the mass matrix M̄2

B , i.e., PB1 ≡ PB(M̄B1), etc.,
that are given by (see Appendix C)

M̄2
B1 = ∂Uk

∂ρ̄
, M̄2

B2 = ∂Uk

∂ρ̄
+ N�̂2

0
∂2Uk

∂ρ̄2
. (78)

These propagators PB1 and PB2 belong to the Goldstone modes
and radial mode, respectively. We want to emphasize that the
derivative operator ∂̂t appearing in Eq. (77) is different from
the one defined in Eq. (72). That is, we slightly abuse the
notation and take

∂̂t ≡ ∂tRB

∂

∂
(
P −1

B

) + 2

ZF

P̃ −1
F (0)

1 + rF

∂t (ZF rF )
∂

∂
(
P̃ −1

F

) , (79)

from now on, where it is understood that P̃ −1
F (0) is simply the

kinetic part of P̃ −1
F (evaluated at zero mass). Since Eq. (72)

is a matrix operator, there is no risk of confusion. Notice that
Eq. (77) is proportional to the vacuum amplitude �̂0 and, thus,
the boson contribution to the wave-function renormalization
vanishes in the symmetric regime.

We evaluate the contribution to the flow equivalently
in the fermion subspace. For the nondiagonal background
configuration (67), the fermion propagator is given by

(PF )ab =
(

0
(
P

(+)
F

)
ab(

P
(−) T
F

)
ab

0

)
, (80)

where the components

(P (±)
F )ab(p) = P̃F (p)[ZF (1 + rF )p/ δab ∓ ih̄(p)�̂0�ab] (81)

and

P̃F (p) = [
Z2

F (1 + rF )2p2 + h̄(p)2�̂2
0

]−1
. (82)

In the fermion subspace, the fluctuations take the form

(FF )ab(p,q) = ih̄(−p,q)�(p − q,Q)

(
0 −�T

ab

�ab 0

)
+O(�2). (83)

Going through the same steps as above, that is, computing the
trace in δ(2)	F , and evaluating the projection (69), we obtain

δ(2)	F |ZB
= −2 lim

Q→0

∂

∂Q2

∫
p

[h̄(−p,p + Q)]2

× ∂̂t

{
ZF (p)[1 + rF (p)]P̃F (p)

×ZF (p + Q)(1 + rF (p + Q))P̃F (p + Q)

+ �̂2
0 h̄(p)h̄(p + Q)P̃F (p)P̃F (p + Q)

}
, (84)

where [h̄(−p,p + Q)]2 ≡ h̄(−p,p + Q)h̄(−p − Q,p).
Putting both results (77) and (84) together, ∂tZB =
δ(2)	B |ZB

+ δ(2)	F |ZB
, and using the definition ηB =

−∂t ln ZB , we obtain the evolution equation for the boson
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anomalous dimension:

ηB = 16
vd

d

[
ρ0 λ2

2 m
(B)
2,2 (ε,ε + 2ρ0λ2; ηB)

+h2 m
(F )
4

(
2

N
ρ0h

2; ηF

)
+ 2

N
ρ0h

4 m
(F )
2

(
2

N
ρ0h

2; ηF

)]
. (85)

Here, we have introduced the threshold functions m
(B)
2,2 , m

(F )
2 ,

and m
(F )
4 that define the one-loop contribution appearing in

the calculation of the wave-function renormalization. They
are given explicitly in Appendix B.

In the broken phase, the wave-function renormalization
will get additional contributions from the radial mode.60,61 In
principle, these terms should be taken into account, however,

since most of the running takes place in the symmetric regime,
we do not expect them to play any major role.

D. Fermion anomalous dimension and Yukawa coupling

The derivation of the flow equation for the fermion anoma-
lous dimension ηF ≡ −∂t ln ZF and the Yukawa coupling h2

proceeds in the same way as explained in Sec. V C. Here, the
only difference is that we need to choose a nonhomogeneous
configuration for the fermion fields, where in the momentum
representation, we have

ψ(q) = ψδ(q,Q), ψ̄(q) = ψ̄δ(q,Q). (86)

The matrix field is evaluated in the constant background
configuration �ab = �̂0�ab, where the boson and fermion
propagators are given by Eqs. (74) and (81), respectively.

Starting from the ansatz for the fermions (86), we evaluate
the fluctuation matrix

Fk(p,q) =

⎛⎜⎝ 0 ih̄(p − q,q) ψ̄b(q − p)δac′ −ih̄(q, − q + p) ψT
a (−q + p)δbc′

−ih̄(−q + p, − p) ψ̄T
a′ (q − p)δb′c 0 0

ih̄(−p,p − q) ψb′ (−q + p)δa′c 0 0

⎞⎟⎠, (87)

where we indicate the flavor indices on the right-hand side explicitly. Recall that the fluctuation is defined as the field-dependent
part of the second functional derivative of the effective average action. The functional derivative from the left is taken with
respect to the fields (�T

ab,ψ
T
c ,ψ̄c), which defines the row indices. The primed column indices are defined equivalently via

the right-hand functional derivative. Together with the background field propagator Pk (see Appendix A), we evaluate the
second-order contribution δ	

(2)
k = − 1

4 STr ∂̂t (PkFk)2 in the series expansion. A short calculation yields

δ	
(2)
k = 1

2

∫
p,q

∂̂t

{
[h̄(p − q,q)]2(PB)ab,cd (p)ψ̄d (q − p)(P (+)

F )ca(q)ψb(q − p) + [h̄(q,p − q)]2(PB)ab,dc(p)

×ψT
d (−q + p)(P (−)

F )Tcb(q)ψ̄T
a (p − q)

}
. (88)

Inserting the expressions the boson and fermion propagators (74) and (81), this can be written in the form

δ	
(2)
k = 1

N

∫
p

∂̂t ([h̄(Q,p)]2P̃F (p){ZF (1 + rF ) ψ̄a p/[(N2 − 2)PB1(p − Q) + PB2(p − Q)]ψa

+ ih̄(Q) ψ̄a �̂0�ab[2PB1(p − Q) − PB2(p − Q)]ψb}). (89)

Projecting this equation onto the corresponding operators in the ansatz for the effective average action, we obtain the evolution
equation for the fermion anomalous dimension

ηF = 8

N

vd

d
h2

[
(N2 − 2)m(FB)

1,2

(
2

N
ρ0h

2,ε; ηF ,ηB

)
+ m

(FB)
1,2

(
2

N
ρ0h

2,ε + 2ρ0λ2; ηF ,ηB

)]
(90)

and the flow equation for the momentum-independent part of the Yukawa coupling:

∂th
2 = (d − 4 + 2ηF + ηB)h2 − 8

N
h4vd

[
2 l

(FB)
1,1

(
2

N
ρ0h

2,ε; ηF ,ηB

)
− l

(FB)
1,1

(
2

N
ρ0h

2,ε + 2ρ0λ2; ηF ,ηB

)]
+ 16

N
ρ0h

4vd

[
2λ2 l

(FB)
1,2

(
2

N
ρ0h

2,ε; ηF ,ηB

)
− (2λ2 + 2ρ0λ3)l(FB)

1,2

(
2

N
ρ0h

2,ε + 2ρ0λ2; ηF ,ηB

)]
+ 32

N2
ρ0h

6vd

[
2 l

(FB)
2,1

(
2

N
ρ0h

2,ε; ηF ,ηB

)
− l

(FB)
2,1

(
2

N
ρ0h

2,ε + 2ρ0λ2; ηF ,ηB

)]
. (91)

Here, we have defined the threshold functions m
(FB)
1,2 , l

(FB)
1,1 ,

l
(FB)
1,2 , and l

(FB)
2,1 that are given explicitly in Appendix B.

Together with the flow equations for the parameters and

couplings of the effective average potential and the anomalous
dimension for the bosons, they constitute a closed set of
differential equations that can be solved numerically.
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VI. RESULTS FOR THE QUANTUM PHASE TRANSITION

We evolve the flow equations starting from an appropriate
ultraviolet scale � to the physical limit k → 0. The following
results have been obtained for the set of initial conditions:
ZB,� = 10−10, ZF,� = 1, h̄2

� = �, where the mass at the ultra-
violet scale m̄2

� is taken as a free parameter, and all higher order
couplings are set to zero, i.e., λ̄n,� = 0, n = 2, . . . ,nmax. By
varying the dimensionless mass ε� at the ultraviolet scale, we
may tune the system across a quantum phase transition. Here,
δε = |ε� − ε�,(cr)| measures the deviation of the parameter ε�

from its critical value ε�,(cr). Close to ε�,(cr), we find a fixed
point solution for the dimensionless renormalized parameters
and couplings. That is, the parameters and couplings stay
nearly constant over a wide range of scales as illustrated in
Fig. 2. This is a clear indication for the presence of a continuous
phase transition where the system displays a universal scaling
behavior. For δε > 0, where the mass parameter ε� is above the
critical value ε�,(cr), the solution stays in the symmetric regime.
However, starting just below ε�,(cr), the scale-dependent mass
eventually becomes negative which signals the transition into
the broken phase. This result does not depend on the special
choice of initial conditions, that is, we have checked the
stability of our results for different initial values of ZB,�, h̄2

�,
and λ̄n,�. Furthermore, the fixed point solution exists for all
considered truncations of the effective average potential (see
Table IV), where we have taken the Taylor series expansion
of the effective potential up to the tenth order in the field
�. The independence of the scaling solution both on the
initial conditions and higher-order operators in the effective
potential is a manifestation of universality near a continuous
phase transition.

In the symmetric phase, both the wave-function renormal-
ization ZB and the renormalized mass m2

R = Z−1
B m̄2 at the

scale k receive large contributions from the massless fermions.
That is ηB → 1 for k → 0 even far from the phase transition
which can be clearly seen in Fig. 2(b) where the boson
anomalous dimension assumes a value close to one in the
symmetric phase. To compute the critical scaling, we introduce
the renormalized mass m̃2

R at a fixed scale kc:

m̃2
R(kc,δε) = k2

c

[
u′

kc
(0) − u′

kc,(cr)(0)
]
. (92)

It is given in terms of the first derivatives of the effective
average potential in the symmetric phase, where the scale kc =
rcm̃R is defined via the parameter rc in a standard way.63

The critical exponent ν characterizes the divergence of the
correlation length at the critical point. Here, the correlation
length is identified with the inverse renormalized mass21,61 as
given in Eq. (92) and the critical exponent ν is defined as63

ν = 1

2
lim
δε→0

∂ ln m̃2
R(kc,δε)

∂ ln δε
= lim

δε→0
[ν̂(kc,δε) + ν̃(kc,δε)ν],

(93)

where

ν̂(k,δε) = 1

2

∂ ln m̃2
R(k,δε)

∂ ln δε

∣∣∣∣
t

, (94)

ν̃(k,δε) = 1

2

∂ ln m̃2
R(k,δε)

∂t

∣∣∣∣
δε

. (95)

The value for the critical exponent ν is independent of the
parameter rc, as long as rc � 1. This essentially corresponds
to the requirement that the scale kc is sufficiently close to
the limiting value k → 0. In our calculations, we have taken
rc � 0.01.

The critical exponent γ determines the divergence of the
susceptibility, which is encoded in the nonrenormalized mass
m̄2 = ZBm2

R .21,61 Although it is evaluated in the symmetric
phase, it is not affected by the fluctuations of the fermions. We
have

γ = lim
δε→0

∂ ln m̄2(δε)

∂ ln δε
. (96)

Finally, the critical exponent β measures the fluctuations
of the renormalized order parameter ρ0,k and is defined in the
broken phase:

β = 1

2
lim
δε→0

∂ ln ρ2
0

∂ ln δε
. (97)

We extract the anomalous dimensions ηB and ηF the same
way as the critical couplings. Close to the critical parameter
ε�,(cr) the renormalization group flow approaches the fixed
point solution where the system is scale invariant. That is, the

10 1 Λ2
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10 2 Λ3

(a)
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(b)
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t

FIG. 2. (Color online) Renormalization group flow (a) for the dimensionless renormalized parameter ε, the (rescaled) dimensionless
renormalized couplings 10−1λ2, and 10−2λ3, and (b) for the boson and fermion anomalous dimensions ηB and ηF as a function of the scale
parameter t = ln k/� close to the critical trajectory. The full and dashed curves refer to initial conditions just above and below the critical
parameter ε�,(cr), respectively.
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TABLE III. N = 2 critical exponents for different orders in the
series expansion.

4th order 6th order 8th order 10th order

ηB 0.989 0.999 1.003 1.000
ηF 0.223 0.211 0.207 0.210
ν 1.922 1.936 1.791 1.874
γ 1.942 1.939 1.786 1.875
ν(2 − ηB ) 1.942 1.939 1.786 1.875
β 1.911 1.935 1.793 1.874
1
2 ν(d − 2 + ηB ) 1.911 1.935 1.793 1.874

solutions to the flow equation stay constant over a wide range
of scales where we may extract the corresponding quantities.
The values of the anomalous dimensions ηB and ηF are defined
at the critical point in the window where we have a plateau
(see Fig. 2). Our results are summarized in Table III where
we show the values of the critical exponents. They are given
for different orders of the series expansion for the effective
average potential and were obtained using the optimized
regulator (43). We have also calculated the critical exponents
for the exponential regulator. For that calculation, however,
we neglect the dependence on the anomalous dimensions
in the threshold functions. Since the anomalous dimensions
are of order one, this gives a very rough estimate of the
systematic error for our results. We find an agreement of the
critical exponents on the 10% level. The scaling relations γ =
ν(2 − ηB) and β = 1

2ν(d − 2 + ηB) for the critical exponents
provide a consistency check of our calculations and are also
given in Table III. We see that our results show a reasonable
convergence in the series expansion.

In Table IV, we give the values of the critical parameters
and couplings, where the asterisk denotes the fixed point
values, i.e., ε∗ ≡ u′

∗, λ2,∗ ≡ u
(2)
∗ , etc. These quantities are not

universal and depend on the particular renormalization group
scheme. It is important to comment on their behavior in the
series expansion of the effective average potential. Taking
into account only the relevant operators, that is, expanding
the potential to fourth order, yields a reasonably good result
for the scaling exponents. This can also be seen directly
in Table IV where the inclusion of higher order irrelevant
operators does not significantly alter the values for the relevant
critical couplings, in contrast to the higher order couplings,
that vary strongly for different orders of the expansion.
The relevant couplings are completely stable and show that
the important physical information is captured already in the
lowest truncation with all relevant operators included.

VII. CONCLUSIONS

We have calculated the critical exponents at the quantum
critical point for the three-dimensional matrix Yukawa type

TABLE IV. N = 2 fixed point values for different orders in the
series expansion.

4th order 6th order 8th order 10th order

ε∗ 0.4842 0.5242 0.5424 0.5288
λ2,∗ 10.7678 10.3744 10.1573 10.3210
λ3,∗ − 48.5405 − 73.0962 − 54.6552
λ4,∗ − 1956.82 − 485.084
λ5,∗ 219713

h2
∗ 12.8622 12.9203 12.9438 12.9264

model with U (2) symmetry, which describes N = 2 species of
Weyl fermions. This theory captures the relevant fluctuations
close to the chiral phase transition for a low-energy effective
model of spinless fermions on the honeycomb lattice. We have
shown that the calculated critical exponents at the continuous
quantum critical point define a new universality class distinct
from Gross-Neveu or Neveu-Yukawa type models. In particu-
lar, this system is special in the sense that it is characterized
by large values of the anomalous dimensions. Similar results
have been obtained in a single Dirac cone model where
the semimetal-superfluid transition was investigated using
functional renormalization group techniques.64 There, also a
second-order phase transition was found with large values for
the anomalous dimensions, both for the anomalous dimensions
of composite and fermion fields. In the context of compact
three-dimensional QED, one also observes a large value for
the anomalous dimension of the gauge field ηA = 1, where
the result holds exactly due to gauge invariance.65,66 Whether
these nontrivial properties can be found in suspended graphene
is still an important open question. To see if these results
are indeed relevant for graphene, requires us to include the
long-range Coulomb interactions. In that case, one has to ask
whether the instantaneous interaction is relevant for the critical
dynamics, or if one has an effective restoration of Euclidean
rotational symmetry. Although there are indications for such a
behavior in the critical region of a Gross-Neveu-Yukawa fixed
point for the semimetal-insulator transition,14,19 until now, this
is an open issue.
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APPENDIX A: DEFINITION OF PROPAGATORS

In our calculations, we frequently need the full regularized
propagator Pk evaluated in a constant background field. For
the inverse regularized propagator, we have

P−1
k (p) =

⎛⎜⎝ZB(1 + rB)p2 + M̄2
B 0 0

0 0 ZF,k(1 + rF )p/T − iM̄F

0 ZF (1 + rF )p/ + iM̄F 0

⎞⎟⎠, (A1)
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where M̄2
B and M̄F define the scale-dependent mass matrices

that depend on the particular background field configuration
(see Appendix C).

The background field propagator takes the form

Pk(p) ≡

⎛⎜⎝PB(p) 0 0

0 0 P
(+)
F (p)

0 P
(−) T
F (p) 0

⎞⎟⎠, (A2)

where the boson propagator is given by

PB(p) = [
ZB(1 + rB)p2 + M̄2

B

]−1
(A3)

and the fermion propagator

P
(±)
F (p) = P̃F (M̄F )[ZF (1 + rF )p/ ∓ iM̄F ], (A4)

with
P̃F (p) = [

Z2
F (1 + rF )2p2 + M̄2

F

]−1
. (A5)

Since the propagators are functions of the mass matrices M̄B

and M̄F , they do not necessarily have to be diagonal in flavor
space. While it is easy to evaluate the flow equation for the
effective potential in the diagonal basis, it is useful to keep
the propagators in their nondiagonal form for the computation
of flow equations for the anomalous dimensions and Yukawa
coupling.

APPENDIX B: THRESHOLD FUNCTIONS

For generic regulators, the threshold functions are defined
by

l(B)
n (w; ηB) = δn,0 + n

2

∫ ∞

0
dy y

d
2 −1 1

ZB

∂RB

∂t
[ZBPB(ZBw)]n+1, (B1)

l(F )
n (w; ηF ) = (δn,0 + n)

∫ ∞

0
dy y

d
2 ZF (1 + rF )

∂

∂t
(ZF rF )

[
Z2

F P̃F

(
Z2

F w
)]n+1

, (B2)

l(FB)
n1,n2

(w1,w2; ηF ,ηB) = −1

2

∫ ∞

0
dy y

d
2 −1 ∂̂

∂t

{[
Z2

F P̃F

(
Z2

F w1
)]n1 [ZBPB(ZBw2)]n2

}
, (B3)

m
(F )
2 (w; ηF ) = −1

2

∫ ∞

0
dy y

d
2 −1 ∂̂

∂t

{[
Z2

F P̃F

(
Z2

F w
)]2 ∂

∂y

[
Z2

F P̃F

(
Z2

F w
)]}2

, (B4)

m
(F )
4 (w; ηF ) = −1

2

∫ ∞

0
dy y

d
2 +1 ∂̂

∂t

{
∂

∂y

[
(1 + rF )Z2

F P̃F

(
Z2

F w
)]}2

, (B5)

m(FB)
n1,n2

(w1,w2; ηF ,ηB) = −1

2

∫ ∞

0
dy y

d
2

∂̂

∂t

{
(1 + rF )

[
Z2

F P̃F

(
Z2

F w1
)]n1 [ZBPB(ZBw2)]n2

∂

∂y
[ZBPB(ZBw2)]

}
, (B6)

where we have defined the dimensionless quantity y = q2/k2.
Here, it is understood that the regulators and propagators are
taken as functions of y, i.e., RB(y) ≡ RB(q2)/k2, PB(y) ≡
PB(q2)k2, etc., and the parameters w, w1, and w2 denote
dimensionless renormalized quantities. Furthermore, we use
the formal scale derivative,

∂̂

∂t
≡ ∂tRB

∂t

∂

∂
(
P −1

B

) + 2

ZF

P̃ −1
F (0)

1 + rF

∂

∂t
(ZF rF )

∂

∂
(
P̃ −1

F

) ,

(B7)

that includes the scale dependence of the regulator
functions.

For the three-dimensional optimized regulator, the shape
functions are given by

rB(y) =
(

1

y
− 1

)
θ (1 − y), (B8)

rF (y) =
(

1√
y

− 1

)
θ (1 − y), (B9)

and the threshold functions can be calculated analytically. They
take the following form:

l(B)
n (w; ηB) = 2(δn,0 + n)

d

(
1 − ηB

d + 2

)
1

(1 + w)n+1
, (B10)

l(F )
n (w; ηF ) = 2(δn,0 + n)

d

(
1 − ηF

d + 1

)
1

(1 + w)n+1
, (B11)

l(FB)
n1,n2

(w1,w2; ηF ,ηB) = 2

d

1

(1 + w1)n1 (1 + w2)n2

[
n1

1 + w1

(
1 − ηF

d + 1

)
+ n2

1 + w2

(
1 − ηB

d + 2

)]
, (B12)

m
(F )
2 (w; ηF ) = 1

(1 + w)4
, (B13)
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m
(F )
4 (w; ηF ) = 1

(1 + w)4
+ 1 − ηF

d − 2

1

(1 + w)3
−

(
1 − ηF

2d − 4
+ 1

4

)
1

(1 + w)2
, (B14)

m(FB)
n1,n2

(w1,w2; ηF ,ηB) =
(

1 − ηB

d + 1

)
1

(1 + w1)n1 (1 + w2)n2
. (B15)

APPENDIX C: MASS MATRICES

The mass matrix M̄B is defined via the second functional
derivatives of the effective average potential:

M̄2
B(�) ab,cd (p,q) ≡

−→
δ

δ�T ab(−p)

∫
x

Uk(�)
←−
δ

δ�cd (q)
.

(C1)

For the effective average potential Uk , we consider only the
dependence on the quadratic invariant ρ̄ = 1

2 tr �2. To evaluate
Eq. (C1), we need the following functional derivatives of ρ̄,
which are given given by

δρ̄(p′)
δ�T ab(−p)

= �ab(p + p′), (C2)

δρ̄(p′)
δ�ab(q)

= �T
ab(p′ − q), (C3)

δ2ρ̄(p′)
δ�T ab(−p)δ�cd (q)

= δacδbdδ(p′, − p + q). (C4)

We obtain

M̄2
B(�) ab,cd (p,q)

=
∫

x,p′,q ′

δ2Uk

δρ̄(p′)δρ̄(q ′)
δρ̄(p′)

δ�T ab(−p)

δρ̄(q ′)
δ�cd (q)

+
∫

x,p′

δUk

δρ̄(p′)
δ2ρ̄(p′)

δ�T ab(−p)δ�cd (q)
. (C5)

In the nondiagonal constant background configuration �ab =
�̂0�ab, the above expression simplifies:

M̄2
B(�) ab,cd (p,q) =

(
∂Uk

∂ρ̄
δacδbd + �̂2

0
∂2Uk

∂ρ̄2
�ab�

T
cd

)
δ(p,q).

(C6)

The eigenvalues of this matrix are given by

M̄2
B1 = ∂Uk

∂ρ̄
, M̄2

B2 = ∂Uk

∂ρ̄
+ N�̂2

0
∂2Uk

∂ρ̄2
, (C7)

and correspond to the masses of the Goldstone and radial
modes.

In the background configuration �ab = �̂0�ab, the fermion
mass matrix is given by

M̄Fab(p,q) = h̄(q)�̂0 �abδ(p,q). (C8)
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