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Design strategies to tailor the narrow plasmon-photonic resonances in arrays
of metallic nanoparticles
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Arrays of metallic nanoparticles can support mixed plasmon-photonic resonances known as lattice surface
modes. Their properties are well known, but a general strategy to control their properties is still lacking. In
this article, we offer a perspective on the formation of these modes and show that their excitation depends on
constructive and destructive interferences between the excitation field and the light scattered by the resonant
nanoparticles. It is therefore possible to design the response of the system through a careful choice of the
excitation conditions and/or by tuning the polarizability of the particles forming the periodic arrays.
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I. INTRODUCTION

Noble metal nanoparticles have been the subject of a
tremendous number of studies due to their ability to sustain
localized surface plasmon resonances (LSPRs) that confine
light at a deep subwavelength scale. These resonances can be
tuned from the infrared to the visible region by a careful choice
of the geometry, metal, and dielectric environment.1–3 Their
linewidth and spectral shape can also be controlled by making
nanoparticles interact, leading to the formation of dark and
bright coupled modes with typical Fano profiles.4 This rich
optical behavior plays a central role in many fields of optics,
including miniaturized sensors, near-field microscopy, solar
energy harvesting, optical metamaterials, and the manipulation
of light produced by molecules and quantum dots.

In addition to LSPRs, metal nanoparticles also support
collective modes when they are arranged into a periodic lattice.
It is known that such plasmonic crystals support a collective
resonance that is broadened and blueshifted or redshifted with
respect to the resonance of an isolated particle.5 Also intriguing
is the fact that certain arrays support a mixed plasmon-
photonic resonance that results from the coupling between the
diffractive Rayleigh anomalies and the individual LSPRs of the
particles. This resonance is the so-called lattice surface mode
(LSM) that propagates along the lattice and is characterized
by extremely narrow line shapes in extinction and scattering.
The existence of LSMs was first reported for an array of silver
nanoparticles in the context of plasmon enhanced Raman scat-
tering from absorbed molecules.6 The potential of this narrow
mode for biosensing applications has been highlighted by sev-
eral studies,7–10 and LSMs have also been discussed in the con-
text of thermal emission and resonant absorption.11 Nowadays,
we observe a renewed interest in this phenomenon,10,12–15 and
more especially in the context of the spontaneous emission
of plasmonic nanostructures.16–18 It is worth noting that
purely photonic LSMs have also been theoretically predicted
for periodic lattices of dielectric cylinders,19,20 dielectric
spheres,21,22 and perfectly conducting disks,23 as well as for
hole arrays in a perfectly conducting screen.24

While LSMs have been discussed in many theoretical and
experimental studies, one can still wonder what is the best
strategy to observe and tune these resonances. In this article, we
argue that controlling the illumination conditions and tailoring

the polarizability of the individual particles are two powerful
means to control the optical properties of LSMs.

II. ELECTROMAGNETIC MODEL AND BASIC
EQUATIONS

We briefly recall the theory of LSMs for an infinite array
of metallic nanoparticles illuminated by a plane wave. This
system can be conveniently modeled using the coupled dipole
(CD) method7–9,13,23,25 when the particles are small compared
to both the wavelength and their separation. Within the
framework of the CD method, the details of which can be found
in a tutorial review,23 a particle at position Rn = (xn,yn,z = 0)
is characterized by an electric polarizability α and responds to
the local field Eloc with an induced dipole

pn = ε0αEloc(Rn), (1)

where ε0 is the permittivity in vacuum. The local field acting
on a particle Eloc consists of the incident field Einc and the
retarded field of other particles that can be expressed in terms
of the dipole-dipole interaction tensor as ω2μ0

∑
n′ �=n

↔
G(Rn −

Rn′ )pn′ . Here
↔
G(Rn − Rn′ ) is the diadic Green function and

μ0 is the permeability in vacuum. With these elements, Eq. (1)
becomes

pn = αε0Einc + αk2
∑
n′ �=n

↔
G(Rn − Rn′ )pn′ , (2)

with k = ω
√

ε0μ0. For a plane wave illuminating the lattice at
normal incidence with an electric field parallel to the x axis,
Einc = e−ikzx̂, the polarization of a particle is pn = px̂, so the
induced dipole of each particle takes the form9

p = ε0

1/α − S
, (3)

where S = k2 ∑
n′ �=n Gxx(Rn − Rn′) is the retarded dipole

sum, Gxx(r − r′) = [1 + 1
k2

∂2

∂x2 ]g(r − r′) is the first diagonal
element of the Green’s tensor,26 and g(r − r′) is the scalar
Green’s function. It is very useful to use the plane-wave
decomposition of g(r − r′) (Ref. 27) to represent the sum S.
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Using this strategy, we obtain the following expression for S:

S = i

2
lim
z→0

{
1

a2

∑
g

eiqz|z|(k2 − g2
x

)
gz

− 1

4π2

∫
dqx dqy

eiqz|z|(k2 − q2
x

)
qz

}
. (4)

Here a is the lattice constant, g = (gx,gy) are the reciprocal-

lattice vectors, gz =
√
k2 − g2

x − g2
y , and qz =

√
k2 − q2

x − q2
y .

The integral in Eq. (4) represents the substraction of the n′ = n

term in the sum S. It can be seen that this integral is actually
the plane-wave decomposition of a single dipole field and can
be calculated directly in real space. Thus, the sum S can be
rewritten as

S = 1

2
lim
z→0

{
i

a2

∑
g

eiqz|z|(k2 − g2
x

)
gz

− eik|z|

2π |z|3 [(kz)2 + ik|z| − 1]

}
. (5)

Once the induced dipole is obtained, the field scattered
from the lattice of particles is calculated as a sum of the
electromagnetic field produced by the lattice of dipoles
with induced dipole moments p = px̂. The reflection and
transmission coefficients are

R = |r0|2
∑

g

k2 − g2
x

kqz

,

(6)
T = R + |1 + r0|2 − |r0|2,

where r0 = ik/[2a2(1/α − S)] and the sum of Eq. (6) is taken
only over the open diffractive channels when k2 > g2

x + g2
y .

The absorption can be calculated as A = 1 − R − T .
Variants of these equations have been obtained and dis-

cussed by several articles in the past.7–9,13,23 The resonances
of the system are given by the zeros of the denominator of r0,
which shows that the contributions of the lattice (S) and of the
particles (α) are separated. The properties of the sum S are
also known: it diverges at Rayleigh anomalies (k2 = q2

x + q2
y )

that are associated with the opening of new diffraction orders
in surrounding media. The polarizability α can be calculated
with analytical or numerical approaches depending on the size
and geometry of the particles. For small spheres, ellipsoids,
cylinders, and disks, it is generally sufficient to calculate α

analytically in the electrostatic limit,28 but the result should
be amended by a radiation-damping correction.29,30 Another
way to calculate the polarizability is to use the Mie theory
through the scattering matrix coefficients.31,32 In the latter case,
the resulting polarizability accounts for radiative damping
and can be used for larger particles when the electrostatic
approximation fails. For more complicated structures, purely
numerical methods are needed. In this article, we calculate
the polarizability α using the boundary element method.33

More precisely, we compute the electric far-field induced by
a single particle illuminated with the incident electric field
Einc = e−ikzx̂. Then, assuming that the contribution of the
dipole mode is dominant, we extract the dipolar moment and
polarizability of the particle.

z x
y
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2rb

z
x

0 ra
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FIG. 1. (Color online) (a) Schematic of the square array of
nanorings illuminated by a plane wave. (b) Geometry of the Au rings.

III. TAILORING LSMs WITH THE INCIDENT FIELD

We begin our study by considering an infinite array of Au
nanorings illuminated with a plane wave at normal incidence
(see Fig. 1). Such particles possess highly tunable plasmonic
resonances in the visible and near infrared.34–36 Figures 2(a)
and 2(d) present the calculations of Re(α) as a function of the
wavelength for two individual rings with radius ra = 60 and
90 nm, respectively. We observe that the polarizability exhibits
a resonant behavior associated with the excitation of the
fundamental plasmon resonance of the ring. The polarizability
of a subwavelength plasmonic nanoring has a Lorentzian form
α = −A/(ω − ωr + iγ ), where A is a positive real constant,
ωr is the frequency of the plasmon resonance for the isolated
particle, and γ is its half-width due to dissipative and radiative
damping. Thus, the resonant wavelength of a single ring is
given by Re(1/α) = 0. The plasmon resonance of a nanoring
is extremely sensitive to its size and shifts by 310 nm to the
blue by reducing the ring’s radius from 90 to 60 nm.

The collective resonances of the periodic arrays based on
these two ring geometries are discussed in the remaining panels
of Fig. 2. To analyze the resonant denominator in Eq. (3),
we have calculated separately the real parts of the lattice
sum Re(S) and inverse polarizability Re(1/α), as well as the
imaginary part of the denominator in Eq. (3), Im(1/α − S);
see Figs. 2(b) and 2(e). As expected, the lattice sum diverges
at the diffraction (Rayleigh) thresholds; for a square lattice

in vacuum, their position is given by λ = 2π/
√
g2

x + g2
y , i.e.,

λ = a and λ = a/
√

2. At these positions, the imaginary part
of the denominator Im(1/α − S) exhibits a jump. The same
phenomenon has been reported in Ref. 32 for a chain of
spherical plasmonic particles.

In Figs. 2(c) and 2(f), we present the transmission spectra
through the two structures calculated from Eq. (6). In addition
to CD model calculations [using Eq. (6)], we also show the
transmission obtained rigorously within the framework of
a multiple-scattering layer Korringa-Kohn-Rostoker (KKR)
approach,37,38 where the scattering matrix of a ring has
been calculated separately with the boundary element method
(BEM).33 This combined method includes a converged mul-
tipole expansion on each particle. One can observe a good
quantitative agreement between the model and the rigorous
calculations (for small rings the discrepancy at resonance is
less than 1%), supporting our assumption about the dominant
dipole response of a nanoring.

The transmission spectra exhibit several resonances cor-
responding to the condition Re(1/α − S) = 0. The broad
minima at 890 and 1200 nm in Figs. 2(c) and 2(f), respectively,
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FIG. 2. (Color online) (a) Wavelength dependence of the real
(blue curve) and imaginary parts (green curve) of the resonant polariz-
ability α for Au rings with radius ra = 60 nm and thickness 2rb = 25
nm. (b) Wavelength dependence of Re(1/α) (blue dashed curve),
Re(S) (black curve), and the imaginary part of the denominator of
Eq. (3) (green dashed-dotted curve) when the Au rings form a periodic
structure with a lattice constant a = 1000 nm. (c) Normal-incidence
transmission spectrum of the structure: CD model calculations (black
curve) and multiple-scattering approach (red dashed curve). (d,e,f)
Same as (a,b,c), except that the ring radius is ra = 90 nm. Plots
(a,b,d,e) are normalized to 4πa3.

are associated with the excitation of the plasmon resonances
localized on the rings. Since S is small at these wavelengths,
the position of these peaks are close to the resonant condition
Re(1/α) = 0 of a single ring. The sharp asymmetrical dip seen
in Fig. 2(c) is associated with the excitation of the lattice sur-
face mode that propagates along the lattice. It is characterized
by a narrow but nonzero width8 associated with the imaginary
part of the denominator Im(1/α − S). This mode is only
observed in the spectra of the structure with the smallest rings
and corresponds to the intersection of the Re(1/α) curve with
the diffractive anomaly of Re(S) in Fig. 2(b). As already noted
by others,6,7,10,12,13,39 this condition only occurs when the local-
ized plasmon resonance is blueshifted with respect to a given
Rayleigh anomaly. When the localized surface plasmon reso-
nance is on the red side of the Rayleigh thresholds, the lattice
surface mode cannot be excited and only small dips are visible
in the transmission spectra at these wavelengths; see Fig. 2(f).

To understand how the LSM modes can be tailored in a
systematic way, we note that the salient features of Fig. 2 are
those of a broad, low-quality factor resonance that interacts
with a much narrower one. Thus, we are dealing with Fano
resonances, and their properties can be emulated with a system
of two coupled harmonic oscillators:40

ẍ1 + γ1ẋ1 + ω2
1x1 + κ2

12x2 = a1e
iωt , (7a)

ẍ2 + γ2ẋ2 + ω2
2x2 + κ2

12x1 = a2e
iωt , (7b)

where x1 and x2 describe the movement of the low- and high-Q
oscillators, respectively, γ1 � γ2 are their damping factor, ω1

and ω2 are their eigenfrequencies, and κ12 is the coupling
coefficient. The oscillators are driven by two excitation sources

FIG. 3. (a) Wavelength dependence of Re(1/α) (dashed curve)
and Re(S) (solid curve) for plasmonic crystals with ring radii varying
from ra = 90 to 60 nm with a 5 nm step. The ring thickness is 2rb = 25
nm in all cases and the curves are normalized to 4πa3 (a = 1000 nm).
(b) Transmittance and (c) reflectance spectra at normal incidence.
(d) Transmission spectra according to the generic oscillator model
described by Eqs. (7a) and (7b) for different values of λ1 = 2πc/ω1

as indicated on the graph. Here the transmission is defined as 1 − A,
where A = a1ẋ1 + a2ẋ2 represents the absorption of excitations 1 and
2 by oscillators 1 and 2, respectively. The curves are vertically offset
for clarity. Inset: Relative phase of oscillator 1 (curve 1) and relative
phase of excitation a2 exp(iωt) (curve 2).

a1 exp(iωt) and a2 exp(iωt) to account for the fact that the
diffractive Rayleigh anomaly can be excited independently
from the localized surface plasmon resonance due to the sole
periodicity of the system.

The importance of driving both oscillators can be illustrated
by exploring how the transmission spectrum evolves as
the localized surface plasmon resonance moves through the
Rayleigh anomaly. Figures 3(a) and 3(b) represent the results
of the transmission and reflection calculations given by Eq. (6)
when the size of the rings decreases from 90 to 60 nm, while
Fig. 3(d) shows the predictions given by the modified coupled
oscillator model. In the later case, the calculations have
been performed with excitations a1 = 8, a2 = 0.8, a Rayleigh
anomaly with an angular frequency ω2 = 2π 300 × 1012

rad s−1 (i.e., a resonance wavelength λ2 = 1000 nm), a cou-
pling factor κ12 = 295 × 1012 rad s−1, and the losses have been
set to γ1 = 0.06ω1 and γ2 = 0.8 × 1012 rad s−1, respectively.
With these parameters, the simple oscillator model succes-
sively reproduces the transmission curves of the nanoring
array; in particular, the LSM appears only after the localized
surface plasmon has passed from the red to the blue side of the
Rayleigh anomaly and its width becomes narrower and nar-
rower as the localized plasmon shifts to smaller wavelengths.

The parameters used to generate the curves of Fig. 3(d)
provide valuable insight into the system and how LSMs can
be tuned using the external field. In this graph, the plasmon
resonance (i.e., the lossy resonator) must be driven by a source
with an amplitude a1 roughly 10 times higher than a2 to
reproduce the electromagnetic calculations of Fig. 3(b). Under
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such conditions, the Rayleigh anomaly (represented by the
second oscillator) is excited by two sources of nearly equiv-
alent strength—the incoming excitation a2 exp(iωt) and the
localized plasmon resonance through the coupling parameter
κ12. To understand the influence of these two contributions
on the Rayleigh anomaly, we have plotted their relative phase
as a function of the wavelength in the inset of Fig. 3(d). By
definition, the relative phase of a2 exp(iωt) is always equal
to zero while the phase of the uncoupled surface plasmon
resonance is that of a damped harmonic oscillator and therefore
rapidly shifts from 0 to π in the vicinity of the plasmon
resonance λ1 = 2πc/ω1. When the surface plasmon is on the
blue side of the Rayleigh anomaly, it excites this resonance
with the same phase as a2 exp(iωt) and therefore the two
excitations interfere constructively to form the LSM mode.
The opposite is true when the localized surface plasmon is
on the red side of the Rayleigh anomaly: in this case, the
surface plasmon is π -shifted and negatively interferes with
the incoming light, preventing the formation of the LSM.

Thus, the excitation of LSMs depends on a subtle interplay
between the incoming field and the light scattered by the
nanoparticles. This conclusion implies that the formation of
LSMs can be tuned by tailoring the structure of the incident
field itself. In particular, it is possible to find configurations
where LSMs are excited when the localized surface plasmon is
on either side of the Rayleigh anomaly, for example if the rings
are coupled to a lattice of coherent point-source emitters.41

In contrast to the plane-wave illumination considered in this
section, coherent emitters contribute strongly to the Rayleigh
anomaly, so the destructive interferences caused by the phase
of the localized surface plasmon resonance are not strong
enough to cancel out the formation of LSMs.

IV. TAILORING LSMs WITH THE POLARIZABILITY OF
THE PARTICLES

Having discussed the role of the excitation conditions, we
now investigate how LSMs can be tuned with the different
parameters defining the system. It is well documented in
the literature that the LSM excitation conditions can be
controlled by the particle volume, particle form, periodicity,
filling factor, and type of metal. From Eq. (3) we see that
these parameters act upon two factors—the dipole sum S

and the individual particle polarizability α. As we know,9

the dipole sum S is a purely geometrical factor, while all
the other properties are essentially defined by α. This point
can be discussed in more detail by examining the transition
between large and small rings in Figs. 3(a) and 3(b). As the
ring radius decreases, the inverse polarizability Re(1/α) passes
through the first Rayleigh anomaly of the S curve [Fig. 3(a)],
generating a splitting of the transmission resonance for ring
radii smaller than 70 nm [Figs. 3(b) and 3(c)]. This splitting is
of course the signature of the coupling between the localized
plasmon resonance and the Rayleigh anomaly. The strength
of the coupling is given by the gap between the two modes
at the anticrossing point. As shown in Fig. 3(a), this gap
can be controlled by the slope of the inverse polarizability
Re(1/α)—for particles with inverse polarizabilities that are
flatter than those shown here, the anticrossing would be larger
because the intersection points between the Re(1/α) and the
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FIG. 4. (Color online) (a) Wavelength dependence of Re(S)
(black curve) and Re(1/α) for three nanoparticle arrays with the same
period a = 1000 nm. Blue curve: Au rings with radius and thickness
equal to 64 and 25 nm, respectively; red curve: Au shells with a core
of SiO2 and inner and outer radii equal to 70 and 75 nm, respectively;
green curve: Au rods with length and thickness equal to 182 and
20 nm. The curves are normalized to 4πa3. (b) Wavelength
dependence of Im(1/α) for the three types of particles. (c) and (d)
Transmittance and reflectance spectra for the three arrays.

S curves would be set farther apart. Note that gaining control
over the anticrossing point provides an opportunity to change
the lifetime of both the surface plasmon resonance and the
LSM because of the mixing of the two modes in this region.

The extent to which the inverse polarizability Re(1/α) of
individual nanoparticles can be tuned depends on how many
geometrical and material parameters (e.g., particle form/shape,
permittivity, and environment) are accessible in practice.
Generally, these different contributions are interdependent,
complicating the design of the structures. This behavior is
apparent in Fig. 3(a), where it can be seen that reducing the
size of the rings not only shifts the Re(1/α) curve but also
makes it steeper because of the dispersion of Au. To modify
the slope of Re(1/α), it is necessary to replace the Au rings
with nanoparticles having approximately the same resonance
wavelength but other scattering properties.

Figure 4 illustrates this point by presenting the optical
properties of plasmonic crystals made of Au rings, Au
nanorods, and Au nanoshells with a SiO2 core, respectively.
All three particles are highly tunable because of their rela-
tively complex geometry. In this example, we adjusted their
dimensions and aspect ratio so that their inverse polarizability
Re(1/α) crosses the peak of the lattice sum Re(S) at the same
wavelength [Fig. 4(a)]. As expected, this condition ensures
that the LSMs supported by the different arrays have the same
spectral position; see the transmission and reflection spectra
of Figs. 4(c) and 4(d). In contrast, the broad localized plasmon
resonances are positioned at very different wavelengths (926,
905, and 884 nm for nanorings, nanoshells, and nanorods,
respectively) and their width and shape also vary. This behavior
arises because the three types of particles interact with light
differently; their inverse polarizabilities have distinct slopes
and therefore the localized plasmon resonance condition is not
satisfied at the same wavelengths. One can see that the strength
of the LSMs is directly related to the losses, and more precisely
to the absorption properties of the individual particles, because
all three arrays have the same period. Figure 4(b) plots
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the imaginary part of the inverse polarizability of the three
different nanoparticles and shows that the rods have the
smallest material losses in this wavelength range, leading to
the strongest resonance.

Similar spectral changes can also be obtained by modifying
the permittivity of the nanoparticles rather than their geometry.
For example, the localized plasmon resonance of the ring array
of Fig. 4 can be blueshifted by about 50 nm by working with Ag
rather than Au (results not shown here). Thus, several levers
are readily at hand to tune the optical response of particle
arrays, and these different approaches may be combined to
optimize the design of a given structure.

V. CONCLUSIONS

The narrow plasmon-photonic resonances associated with
the excitation of lattice surface modes in nanoparticle

arrays can be tuned with great flexibility by tailoring the
excitation condition and by engineering the polarizability
of the particles. We have discussed the influence of the
polarizability for lattices of plasmonic nanorings, nanoshells,
and nanorods, and this conclusion can be extrapolated for other
structures as well. Since the polarizability is directly related
to the metal properties, the environment, the dimensions,
and the shape of the particles, it is preferable to consider
relatively complex geometries because they offer more de-
grees of freedom for tuning the resonant properties of the
system.
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