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Efficient spin injection in graphene using electron optics
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We investigate theoretically spin injection efficiency from the ferromagnetic graphene to normal graphene
(FG/NG) based on electron optics, where the magnetization in the FG is assumed from the magnetic proximity
effect. Based on a graphene lattice model, we demonstrated that one spin-species electron flow from a point
source could be nearly suppressed through the FG-NG interface, when the total internal reflection effect occurs
with the help of an additional barrier masking the Klein tunneling, while the opposite spin-species electron flow
could even be collimated due to the negative refraction under suitable parameters. Not only at the focusing point
is the efficient spin injection achieved, but in the whole NG region the spin injection efficiency can also be
maintained at a high level. It is also shown that the nonideal FG-NG interface could reduce the spin injection
efficiency since the electron optics phenomena are weakened owing to the interfacial backscattering. Our findings
may shed light on making graphene-based spin devices in the spintronics field.
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I. INTRODUCTION

Since the successful fabrication of a single layer of graphite
in laboratory, graphene has become one of the central research
activities in condensed matter physics, nanotechnology, and
material science disciplines.1–3 Graphene is an one-atom-thick
layer of carbon atoms tightly packed into a honeycomb crystal
lattice whose symmetries lead to a linear energy-momentum
relation for the low-energy quasiparticles, which can be
described by the massless relativistic Dirac equation. Owing to
its unique band structure and linear energy dispersion, the bulk
graphene can exhibit many peculiar properties such as Klein
tunneling,4 specular Andreev reflection,3 and unconventional
half-integer quantum Hall effect.5

Graphene is also a particularly promising material for
application to spintronics because it is expected to have a very
long spin-diffusion length due to its weak spin-orbital and
hyperfine interactions.6–8 Similar to the semiconductor-based
spin devices, the principal challenge in making graphene-
based spin devices is to realize efficient spin injection from
a spin resource to graphene. Plenty of experimental works9–11

have been implemented and the spin injection efficiency (SIE)
is not as large as that expected from theoretic calculations
because of the conductivity mismatch between a ferromagnetic
metal and graphene. To overcome it, the tunnel barriers such
as Al2O3 or MgO, by using the molecular beam epitaxy or
atomic layer deposition technique, were grown between ferro-
magnetic metal and graphene, and significant improvement of
SIE was observed in recent experiments.12,13

At theoretic aspects, some novel proposals14–16 were
also put forward to enhance the SIE by means of the
unique properties of graphene, for example, Moghaddam
and Zareyan16 proposed in a normal/ferromagnetic/normal
graphene (NG/FG/NG) device to use the graphene Veselago
lens effect17–19 to collimate one spin-species electrons and
realize a high spin polarization at the focal point. Since at
the low-energy regime, the quasiparticles in graphene have
a linear energy dispersion just like photons, and the electron
and hole have opposite chiralities, the negative refraction Klein
tunneling could occur in a pn graphene interface. In the FG/NG

junction, one spin-species channel can be electrically modu-
lated as a pn junction as long as the ferromagnetic exchange
energy is larger than the Fermi energy. However, it is fairly
difficult for applications to the graphene-based spintronics,
though the high spin polarization could be achieved at the
focusing point. On the one hand, the Veselago lens effect in
graphene is crucially dependent on a precise parameter value
and the spin polarization denoting the SIE can even reverse at
places slightly away from the focal point; on the other hand, the
focusing effect can be weakened when the FG-NG interface
is nonideal and the backscattering is present, so the SIE at the
focal point would be depressed.

To overcome the weakness of such spin lens effect used to
realize a high SIE, we propose to use another phenomenon
of electron optics, the total internal reflection at the FG-NG
interface, to suppress one spin-species electron flow so as to
enhance the SIE. Similar to the E-M waves scattering at the
dielectric interfaces, the quasiparticles passing through the
FG-NG interface need to conserve their transverse momenta,
so that a larger Fermi momentum mismatch between FG and
NG can lead to a smaller critical incident angle, below which
the transmission is allowed, and vice versa. By introducing an
additional tunnel barrier20 blocking the normal incidences and
electrically varying the local Fermi energies, one can realize
simultaneously to block one spin-species electron transport
and collimate the opposite spin-species electron flow in the
NG region. Meanwhile, the linear E-k relation of the low-
energy particles in graphene makes the electron trajectories
nondispersive over a finite energy window imposed by bias
and temperature.

In this work we theoretically study the SIE from the
FG into NG by means of the electron optics phenomena of
quasiparticles, and the electrons are injected into the FG by a
point source and collected in the NG by a drain electrode. The
uniform ferromagnetism in the FG is assumed to stem from the
magnetic proximity effect with a magnetic insulator supporting
graphene as shown in Fig. 1(a). Based on a tight-binding lattice
model, we demonstrated both the focusing effect and total
reflection effect of electron flow through the FG-NG interface.
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FIG. 1. (Color online) (a) Plot of a schematic two-terminal
graphene device. Gate voltage Vg1 and Vg2 can control the local
potentials of FG and NG, respectively; a point source angularly
spreads electrons while an extended drain collects those that refract
around the tunnel barrier made from a lattice void. (b) Trajectories
of the spin-up electrons (red solid-line arrows) that are collimated
due to negative refraction and spin-down electrons (blue dotted-line
arrows) that are totaly reflected with the help of a tunnel barrier.

It is shown that by modulating electric gate voltages, one
spin-species electron flow is experiencing the focusing effect,
whereas the opposite spin channel exhibits the total internal
reflection effect, as a result, a high SIE is achieved almost in
the whole NG region not limited to the focal point. When a
smooth FG-NG interface is considered, the high SIE is slightly
suppressed in comparison with the sharp interface case.

The rest of the paper is organized as follows. In Sec. II we
model the FG/NG junction in the tight-binding representation,
and then present the formulas to calculate the local particle
density as well as the spin polarization. In Sec. III the numerical
results and discussions of enhancing SIE are given. Finally, a
brief summary is presented in the last section.

II. MODEL AND FORMALISM

A two-terminal FG/NG device is schematically shown in
Fig. 1(a), where the left semi-infinite graphene nanoribbon is
deposited on a magnetic insulator that can induce the exchange
field h in the FG region, while the right one is the NG on
a normal nonmagnetic substrate. The source electrode injects
electrons into the FG and the drain electrode in the NG collects
them. The two gate voltages Vg1 and Vg2 can, respectively,
control the local chemical potentials in the FG and NG, and
determine the carrier types, holelike or electronlike. For the
FG, two spin channels may have the opposite chiralities when
the exchange energy h is larger than the Fermi energy EF ,
so that the focusing and total internal reflection effects may
simultaneously appear in the circuit. A rectangular lattice
void20 with width d and length l is engineered at the FG-
NG interface to block the nearly perpendicular incidence of

electrons from the source, which makes it possible to block
one spin-species electron flow as illustrated in Fig. 1(b).

We employ a lattice model in the tight-binding representa-
tion to describe the system

H =
∑
lσ

(Uj + σh)C†
lσClσ −

∑
〈lm〉σ

t(C†
lσCmσ + c.c.)

+
∑
α,kσ

[εα,kσ d
†
α,kσ dα,kσ + (γC

†
lασ dα,kσ + c.c.)], (1)

where the first and second terms describe the graphene ribbon,
C

†
lσ (Clσ ) is the creation (annihilation) operator at site l with

spin σ (σ = ± =↑↓), 〈lm〉 denotes the summation over the
nearest-neighbor sites, t is the hopping integral, Uj stands for
the lattice site energies of the FG (j = F ) and NG (j = N )
region, which are controlled by gate voltages Vg1 and Vg2,
respectively; h is the exchange field in the FG region and
vanishes in the NG. The last term in the above equation refers
to the source and drain electrodes described in the k space
with spin σ and their couplings to the graphene lattices lα ,
where α (α = s,d) represents the source and drain electrodes,
and dα,kσ (d†

α,kσ ) is the annihilation (creation) operator of the
electrons in the electrode α with spin σ .

As usual, the SIE is denoted by the spin polarization of the
source-drain conductance and defined as

P = G↑ − G↓
G↑ + G↓

, (2)

where G↑(↓) denotes the spin-up (spin-down) conductance of
the system. In terms of the nonequilibrium Green’s function
technique, the spin-dependent current flowing to the drain
electrode can be expressed as

Jσ = e

h

∫
dE{Tσ (E)[fd (E) − fs(E)]}, (3)

where Tσ is the spin-dependent electron transmission from
the source to drain electrodes, and fs(d)(E) is the Fermi
distribution function of the source (drain) electrode that is
assumed in local equilibrium. In the linear transport regime and
at zero temperature, the spin-resolved conductance is reduced
to

Gσ = e2

h
Tσ (EF ) = e2

h
T r[�dG

r�sG
a]σσ , (4)

where �s(d) is the linewidth function of the source (drain)
electrode and in the wide-band approximation,21 �s(d) =
i(�r

s(d) − �a
s(d)) = 2πγ 2ρs(d)(EF ) with ρs(d) being the Fermi

density of states of the source (drain) electrode and �r
s(d) (�a

s(d))
being the corresponding retarded (advanced) self-energy; Gr

(Ga) is the retarded (advanced) Green’s function and given by

Gr (E) = [
Eσ0 − H̃ − �r

s − �r
d

]−1
, (5)

where σ0 is a unit matrix, H̃ is the first two terms of Eq. (1)
by excluding the source and drain electrodes as well as the
couplings, which are considered through the self-energies in
the above equation. Actually, the semi-infinite FG and NG
are also denoted by the lead self-energies and the matrix
dimension of Gr is determined by the lattice span between the
source and drain electrodes. Note that the two spin channels
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are independent since there is no spin noncollinearity taken
into account.

To demonstrate the electron optics phenomenon in
graphene like the Veselago lens effect, one usually considers
the response of the local particle density to the electron injected
from the source electrode as done in Refs. 16 and 19. Actually,
in the small bias limit, the variation of the local particle density
per voltage δρσ (l) is given by

δρσ (l) = e2

2π
Tr[Gr�sG

a]lσ lσ , (6)

where the trace, the same as that in Eq. (4), is over the local
lattice sites coupling with the drain electrode. Obviously δρ is
proportional to the local conductance Gσ in Eq. (4) when the
coupling strength γ between the drain electrode and graphene
lattice is a constant, so that the �d is a unit matrix. This is
exactly the assumption of the wideband approximation. As a
result, the local density variation is proportional to the local
conductance distribution and both of them can display the
trajectories of the injected wave packets’ evolution in the
FG/NG junction.

In the following calculations we set both the source and
drain electrodes coupling with a single unit cell of honeycomb
lattice, and the obtained particle density variation δρσ and spin
polarization P could be renormalized to represent the original
six discrete sites of a hexagon, that is, these quantities will
be plotted in a rectangular lattice that is mapped from the
honeycomb lattice. This scheme was also adopted in Ref. 19
to display the focusing effect of electrons in the graphene pn

ribbon junction.

III. RESULTS AND DISCUSSION

According to the formulas presented in the last section, we
shall in this section calculate numerically the local particle
density variation δρσ as well as the spin polarization P , which
are induced by the injected electrons from the source electrode.
The spin polarization P can stand for the SIE in the studied
FG/NG system. As stated earlier, the linear E-k relation of
particles at low energy together with the pseudospin property
give the carriers in graphene a pseudorelativistic chiral nature,
that is, the electron and hole have different chiralities so that
an electronic version of the Veselago lens is expected in a pn

graphene junction. An electronic wave packet emitted from a
point x = (−a,0) in the n-type region shall be focused at the
point x ′ = −xkn/kp in the p-type region with kn (kp) being the
Fermi momenta in the n-type (p-type) region. Certainly this
analysis in the continuum model is based on the assumptions
of the sharp pn interface and no intervalley scattering.

When the electronic wave packet is scattered at the interface
of the graphene junction like nn+ or pp+ not limited to pn, the
conservation of the transverse momenta kF sin θ1 = kN sin θ2

defines a critical incident angle, beyond which the electronic
wave will be totally reflected, where kF (kN ) is the Fermi
momenta at the left (right) side of the junction interface, and
θ1 (θ2) is the incident (transmitted) angle. In the calculations,
the hopping energy is taken as t = 2.75 eV, the temperature
is set T = 0 K, the global Fermi energy is set as EF = 0, and
the nearest-neighbor and the next nearest-neighbor carbon-
carbon bonds are respectively set as a = 0.142 nm and b =
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FIG. 2. (Color online) Distribution of local particle density
variation δρ↓(l) in an armchair FG/NG nanoribbon junction for
UN = −0.1t in (a), UN = −0.07t in (b), and UN = −0.04t in (c)
and (d). A tunnel barrier is considered in (d) with the barrier width
d = 150b and length l = 20 × 3a. Other parameters are the ribbon
width W = 601b, the source position is (−250 × 3a,0), h = 0.1t ,
and UF = −0.06t .

√
3a � 0.25 nm as in a real graphene sample. In following

discussions, the sharp interface is assumed otherwise stated
explicitly between the FG and NG regions.

In Figs. 2 and 3 we plot the evolution processes of the total
reflection for the spin-down carriers in the lattice FG/NG junc-
tion, where both the armchair-edge (Fig. 2) and zigzag-edge
(Fig. 3) nanoribbons were calculated. As is seen, the δρ↓ in the
NG region denoting the transmitted waves become weaker and
weaker, when the local potential UN decreases gradually and
the Fermi momentum kN in the NG decreases correspondingly.
Meanwhile, the reflections are enhanced with UN since the
critical incident angle decreases, θc = sin−1 kN/kF↓, where
kF↓ is the spin-down Fermi momentum in the FG region.
However, the perpendicular injection from the FG into NG
cannot be prohibited unless the Fermi momentum kN = 0,
which implicates zero density of states at the Fermi level.
In order to block entirely small-angle incident carriers from
the source, a tunnel barrier, which could be an engineered
lattice void, should be introduced at the FG-NG interface. The
calculated results are shown in Figs. 2(d) and 3(d), and it is
seen that the transmitted waves are almost vanishing or at least
negligibly small in comparison with those cases without the
barrier in Figs. 2(c) and 3(c). In other words, the spin-down
channel is nearly in the OFF state owing to the manufactured
total internal reflection effect on the FG-NG interface.

One shall not try to close the spin-down channel in the
NG by modulating the local electrostatic potential so as to
realize kN = 0, because at the same time, the spin-up channel
is also closed due to vanishing density of states in the NG.
More importantly, the particle transport in reality is always
allowed in a finite energy window imposed by temperature or
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FIG. 3. (Color online) Distribution of local particle density
variation δρ↓(l) in an zigzag FG/NG nanoribbon junction. Parameters
are exactly the same as the armchair ribbon case shown in Fig. 2.

source-drain bias, therefore, it is meaningless to block the
particle transport by using the zero density of states at the Dirac
point in graphene. Furthermore, the electron-hole puddles22 in
the realistic graphene lattice prohibit one to approach precisely
the Dirac point. It is also seen that there is not much difference
for the total reflection effect between the armchair-edge
(Fig. 2) and zigzag-edge (Fig. 3) FG/NG junction, and the
reflection in the zigzag-edge nanoribbon seems clearer than
that in the armchair-edge case owing to the presence of small
refraction near the barrier in Fig. 2(d). This is different from
the Veselago lens effect in the graphene pn junction studied in
Ref. 19, in which the armchair-edge pn junction was shown to
exhibit a perfect focusing effect since only intraband scattering
occurs at the interface. Similarly, it is this intraband scattering
that makes the transmitted waves in the NG region more
homogeneous in the armchair-edge nanoribbon (Fig. 2) than
the zigzag-edge one (Fig. 3). Therefore, we will focus on
enhancement of the SIE in the armchair-edge nanoribbon by
introducing the total internal reflection at the FG-NG interface
since it is expected that the zigzag-edge ribbon should be more
efficient for SIE than the armchair-edge one.

The spin-up carriers in the FG region UF + h > 0 are
holelike while they are electronlike in the NG region with
UN < 0, the opposite chiralities shall lead to the negative
refraction effect for those spin-up carriers at the FG-NG
interface. In Fig. 4 we present such focusing contour for the
spin-up channel in the armchair-edge FG/NG junction with
the same parameters used in Figs. 2 and 3. When the tunnel
barrier of lattice void is considered, one can see that the

FIG. 4. (Color online) Distribution of spin-up particle density
variation δρ↑(l) in the FG/NG armchair-edge nanoribbon junction
without a barrier (a) and with a barrier (b). Parameters are same as
with those in Fig. 2.

focusing pattern does not vanish but the focusing strength
becomes weaker, because the nearly perpendicular (small
angle) incidence has a larger Klein transmission and dominates
the focusing effect.

Two spin channels are independent in the FG/NG junction,
so the focusing effect and total reflection effect in each spin
channel may simultaneously appear by modulating the local
potentials UF and UN . The focusing effect in the spin-up
channel does not play a decisive role in our scheme to enhance
the SIE from the FG to the NG since the efficient SIE is feasible
as long as the total reflection occurs and blocks the spin-down
carriers. In Fig. 5 we plot the spin polarization P distribution
in the NG region. It is seen that the SIE is high only at the
focal point in the absence of the tunnel barrier in the junction
[Figs. 5(a) and 5(c)], and the spin polarization can even be
reversed when the drain electrode deviates from the focal point.
As is expected, the spin polarization P can be maintained at a
high level in the whole NG regions when the tunnel barrier is
introduced at the FG-NG interface [Figs. 5(b) and 5(d)]. We
have also studied the case of the smooth interface between the
FG and NG, in which the linear variation of the magnetization
h and electrostatic potential UF − UN is considered within the
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FIG. 5. (Color online) Spin polarization P in the armchair-edge
FG/NG junction without a barrier in (a) and (c), and with a barrier in
(b) and (d). A smooth FG-NG interface was considered in (c) and (d)
instead of the sharp interface in (a) and (b). Parameters are the ribbon
width W = 601b, the source position at (−250 × 3a,0), h = 0.1t ,
and UF = −0.06t , UN = −0.04t , the barrier width d = 127b, and
length l = 20 × 3a.
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FIG. 6. (Color online) Spin polarization P1 and P2 in the
armchair-edge FG/NG junction as a function of the barrier width
d in (a) and the local potential UN . The lattice size is the width
W = 601b and length 450 × 3a in the NG region. Parameters are
h = 0.1t , UF = −0.06t , and UN = −0.04t in (a), d = 0 in (b).

barrier length l. Such nonideal interface can weaken both the
focusing effect and total reflection effect due to the presence of
backscattering, so the spin polarization is also reduced a little
as shown in Figs. 5(c) and 5(d). Even so, the average SIE can
be kept on a high level in comparison with that only resulting
from the focusing effect.

In Fig. 6 we proceed to examine the barrier width
dependence of the spin polarization P1 and P2, which denote,
respectively, the average spin polarization over all the NG
regions and the spin polarization at the focal point. It is shown
that P1 increases linearly with the increase of the width d since
the spin-down channel was gradually closed. Oppositely, the
focal spin polarization P2 is kept at a high level and increases
a little. As is expected, when the total reflection occurs,

the average polarization P1 should exhibit a saturation value
P1 � 0.48 at the critical barrier width dc = 2L tan(θc) ≈ 127b,
which is denoted by the platform in Fig. 6(a). The further
increase of P1 at d > dc may relate to the definition of the SIE
that would increase when both two spin-species conductances
decrease owing to the increase of the tunnel barrier strength,
which is an usual method to enhance the SIE from the
ferromagnetic metals into semiconductors by using a tunnel
barrier. In Fig. 6(b) P1 and P2 are plotted as a function of the
local potential UN in the absence of the tunnel barrier. It is
clearly shown that the P2 can reach its maximum at an unique
parameter value UN = −(UF + h) so that the spin-up carriers
can be precisely collimated through the negative refraction
effect, whereas the average spin polarization P1 maintains a
negative value. Therefore, only focusing effect in the FG/NG
junction shall not be an efficient way to enhance the SIE.

IV. CONCLUSION

In conclusion, we have demonstrated numerically the
electron optics phenomena, the Veselago lens effect and
total internal reflection effect in a single FG/NG nanoribbon
junction. By use of these two effects, we found that an
efficient spin polarization can be obtained in the NG region
by using a point source injecting electrons into FG, because
one spin-species channel could be nearly closed due to the
total internal reflection at the FG-NG interface with the help
of an introduced tunnel barrier, while the opposite spin-species
carriers can even exhibit the focusing effect by controlling the
local potentials. The high SIE is thus achieved not only at the
focal point but also in the whole NG region. It is also found that
a sharp FG-NG interface is desirable for the graphene electron
optics and the SIE.
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