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Phonon transport is simulated in ultrascaled nanowires in the presence of anharmonic phonon-phonon scat-
tering. A modified valence-force-field model containing four types of bond deformation is employed to describe
the phonon band structure. The inclusion of five additional bond deformation potentials allows us to account for
anharmonic effects. Phonon-phonon interactions are introduced through inelastic scattering self-energies solved
in the self-consistent Born approximation in the nonequilibrium Green’s function formalism. After calibrating
the model with experimental data, the thermal current, resistance, and conductivity of 〈100〉-, 〈110〉-, and
〈111〉-oriented Si nanowires with different lengths and temperatures are investigated in the presence of anharmonic
phonon-phonon scattering and compared to their ballistic limit. It is found that all the simulated thermal currents
exhibit a peak at temperatures around 200 K if phonon scattering is turned on while they monotonically increase
when this effect is neglected. Finally, phonon transport through Si-Ge-Si nanowires is considered.
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I. INTRODUCTION

The recent replacement of conventional planar Si metal-
oxide-semiconductor field-effect transistors (MOSFETs)
by three-dimensional (3D) transistors with a multigate
configuration1 has confirmed the leading role that nanowire-
like structures will play in the future of Moore’s scaling law.2

Ultrascaled nanowires are not only expected to become the
active components of next generation integrated circuits3–7

due to their excellent electrostatic properties, but could also
work as energy harvesters through the Seebeck effect if their
surface is properly engineered.8,9

The main difference between nanowire transistors and ther-
mogenerators resides in the value of their thermal conductivity
κth which measures how efficiently heat can propagate through
a material. While it is crucial to have a high κth for transistors
so that the heat dissipated during ON-OFF switches can be
rapidly evacuated from their active region, thermogenerators
rely on a low κth that allows for an efficient conversion of
the available heat into energy. Measurement techniques have
evolved to the point where they can provide a deep insight into
the thermal conduction of nanowires,10,11 which is essential for
both electronic and thermoelectric applications. At the same
time the theoretical understanding of the thermal properties
of nanowires has kept improving due to the development of
always more complex and more accurate models.12–23 In many
cases, a direct comparison of experimental data and simulation
results is possible.

Due to time constraints, computer aided design tools usually
combine the classical drift-diffusion, energy-balance, and
electrothermal models24 to simulate the thermal properties of a
device. However, at the nanometer scale, such approaches are
no more valid and must be replaced by models treating thermal
transport at the phonon level. Nowadays, most theoretical
investigations of nanoscale thermal transport are based either
(i) on the linearized Boltzmann transport equation with Fermi’s
golden rule15,16,20,21 (phonon quantum confinement neglected),
(ii) on equilibrium molecular dynamics simulations23 (compu-
tationally very intensive and statistical average over long time
periods required), (iii) on first-principles (ab initio) methods19

(limited to very small systems), or (iv) on coherent phonon

nonequilibrium Green’s function (NEGF) approaches12,17,22

(no dissipative interactions).
The versatility and flexibility of NEGF25,26 make it one of

the most widely spread and appreciated formalisms to solve
quantum transport problems. Although NEGF lends itself nat-
urally to the description of various scattering mechanisms,27

taking into account incoherent effects such as the anharmonic
decay of high-energy phonons into two low-energy particles,
as required in thermal transport simulations, still represents
a challenge from a physical and computational point of
view. There have been some successful implementations of
anharmonic phonon-phonon scattering in the framework of
NEGF, but they have been restricted to very small, one-
dimensional, atomic chains or molecular junctions.13,14,18

In this paper, an atomistic phonon transport approach
based on the NEGF formalism, a modified valence-force-field
(VFF) model, including anharmonic phonon-phonon scatter-
ing in the self-consistent Born approximation, and capable
of treating three-dimensional nanowires composed of several
thousands atoms is therefore presented. Realistic harmonic
and anharmonic potential energies are used to construct the
dynamical matrix of the considered systems and to compute the
anharmonic phonon-phonon interactions. Hence, the model
can accurately reproduce the bulk phonon band structure and
lattice thermal conductivity of a given material.

In spite of the computational complexity, ultrascaled
nanowires with a diameter of 3 nm, different crystal orien-
tations (〈100〉, 〈110〉, and 〈111〉), lengths (20, 40, and 60 nm),
temperatures (from 50 to 1000 K), and made of more than
20 000 atoms can be simulated within a couple of hours.
As applications, the thermal current flowing through such
nanowires as well as the resulting thermal resistance and
conductivity are calculated. As key findings, it is shown that
anharmonic phonon-phonon scattering in Si nanowires reduces
their thermal conductivity by a factor 3–5 as compared to
bulk structures and forces the thermal current to decrease
for temperatures larger than 200 K (backscattering effect)
while ballistic simulations predict an increase. The situation
is reversed in heterogeneous Si-Ge-Si nanowires where an-
harmonic phonon scattering can lead to an increase of the
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thermal current by opening additional propagating channels
for phonons.

The paper is organized as follows: The NEGF-based
phonon transport approach, the anharmonic phonon-phonon
scattering self-energies, and the calculation of thermal currents
are introduced in Sec. II. Then, in Sec. III, different types
of Si and Si-Ge-Si nanowires are simulated in the ballistic
limit of phonon transport and in the presence of anharmonic
phonon-phonon scattering. Finally, conclusions are drawn in
Sec. IV and an outlook on future work is presented.

II. THEORY

A. Model derivation

The nonequilibrium Green’s function formalism is used
to solve phonon transport with anharmonic phonon-phonon
scattering. No electronic contribution is taken into account
here because the influence of phonon-electron scattering on the
thermal conductivity of lightly doped nanowires is negligible
as compared to other scattering mechanisms.28 This situation
changes at higher electron concentrations, for which phonon-
electron scattering becomes as important as other interactions.
To avoid any confusion, all the structures considered in this
work are assumed not intentionally doped.

In steady state, in a three-dimensional structure, the
equations for the retarded D

R,ij
nm (ω) and greater/lesser D

≷,ij
nm (ω)

phonon Green’s functions have the following form:13,14,17,18

∑
k

∑
l

[
Mnω

2δikδnl − �ik
nl − �R,ik

np (ω)
]
D

R,kj

lm (ω) = δij δnm,

(1)

D≷,ij
nm (ω) =

∑
k1k2

∑
l1l2

D
R,ik1
nl1

(ω) �
≷,k1k2

l1l2
(ω) D

A,k2j

l2m
(ω).

(2)

In Eqs. (1) and (2), the indices l, l1, l2, m, and n run over atom
positions, i, j , k, k1, and k2 over oscillation directions (x, y, and
z), Mn is the mass of the atom at position Rn, ω the phonon
frequency, and �

R,ij
nm (ω) the retarded self-energy including

both an open boundary component �
RB,ij
nm (ω) calculated as in

Ref. 29 and a scattering component �
RS,ij
nm (ω) derived later

in this paper. Similarly, �
≷,ij
nm (ω) = �

≷B,ij
nm (ω) + �

≷S,ij
nm (ω)

is the sum of the greater/lesser open boundary and scattering
self-energy. The �

ij
nm’s are entries of the dynamical matrix �

of size 3NA, where NA is the number of atoms in the simulation
domain and 3 the number of degrees of freedom per atom, i.e.,
the number of directions along which atoms can oscillate (x,
y, and z). They are defined as

�ij
nm = d2V harm

dRi
ndR

j
m

, (3)

the second derivative of the valence-force-field (VFF) har-
monic potential energy V harm with respect to the ith component
of the atom position Rn and the j th component of the atom
position Rm. A well-parametrized VFF model accurately
describes all the phonon branches of a given material and can
be therefore considered as a full-band approach. To ensure an
accurate reproduction of the phonon band structure of group IV

(a) (b)

(d)(c)

(g)
(f)(e)

(h) (i)

FIG. 1. Schematic representation of the different harmonic [(a)–
(d)] and anharmonic [(e)–(i)] bond interactions included in the
calculation of the phonon band structure and anharmonic phonon-
phonon scattering self-energies, respectively. The term �r describes
bond length deformation, �θ bond angle deformation. The material
constants α, β, τ , κ , α′, β ′, τ ′, δ1, and δ3 are empirical parameters
whose values are determined by fitting available experimental targets.

semiconductors, the VFF potential energy V harm must include
at least four bond interactions, bond stretching, bond bending,
bond cross stretching, and coplanar bond bending, requiring
four material parameters, as depicted in the upper part of
Fig. 1. More information about the construction of � and
the harmonic force constants can be found in Refs. 30 and 31.

The total Hamiltonian operator accounting for harmonic
and anharmonic interactions can be written as13

Ĥ = 1

2

∑
i

∑
n

Mn
ˆ̇ui
n

ˆ̇ui
n + 1

2

∑
ij

∑
mn

�ij
nmûi

nû
j
m

+ 1

3!

∑
ijk

∑
lmn

dV
(3)ijk

lmn ûi
l û

j
mûk

n. (4)

The first term on the right-hand side of Eq. (4) is the kinetic
operator, the second one the harmonic operator, and the
third one the anharmonic operator. The kinetic and harmonic
operators directly appear in Eq. (1) while the anharmonic term
is treated as a perturbation that can be cast into a scattering
self-energy whose form still needs to be determined. The
operator ûi

n represents the quantized displacement of an atom
situated at Rn along the direction i (x, y, or z) measured with
respect to its equilibrium position. The term dV

(3)ijk

lmn contains
the third derivative of the anharmonic potential energy V anh as
function of the ith component of the atom position Rl , the j th
component of the atom position Rm, and the kth component
of the atom position Rn:

dV
(3)ijk

lmn = d3V anh

dRi
l dR

j
mdRk

n

. (5)
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The anharmonic potential energy V anh contains five bond interactions, as shown in the lower part of Fig. 1, leading to the
following expression:30

V anh = 2

3a3
0

∑
mn

α′(|Rmn|2 − ∣∣R0
mn

∣∣2)3 + 2

3a3
0

∑
lmn
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ln

)3 + 2

3a3
0

∑
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lm

∣∣2)2(|Rln|2 − ∣∣R0
ln

∣∣2)

+ 2

3a3
0

∑
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δ1
(
Rlm · Rln − R0

lm · R0
ln

)2(|Rlm|2 − ∣∣R0
lm

∣∣2) + 2

3a3
0

∑
lmn

δ3
(
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lm · R0
ln

)

× (|Rlm|2 − ∣∣R0
lm

∣∣2)(|Rln|2 − ∣∣R0
ln

∣∣2)
, (6)

where Rmn = Rn-Rm is the bond vector connecting atoms m

and n, R0
mn the same bond vector when the atoms m and

n are at their equilibrium position (no oscillation), a0 the
lattice constant of the material under consideration, and α′,
β ′, τ ′, δ1, and δ3 anharmonic force constants whose values are
determined in Sec. III A. As demonstrated in Ref. 30, there
exists more anharmonic interactions than those considered in
Eq. (6), but they play a less important role than the five ones
that are kept here.

To find an expression for the anharmonic phonon-phonon
scattering self-energy in Eqs. (1) and (2), several steps need
to be completed. The idea is to derive an equation of motion
for the time-dependent phonon Green’s function D

ij
nm(t,t ′),

which is proportional to the expectation value 〈ûi
m(t)ûj

n(t ′)〉,
starting from the definition of the Hamiltonian operator Ĥ in
Eq. (4). This leads to the formation of an infinite hierarchy
of coupled equations: The expectation value of two operators
depends on three operators whose expectation value depends
on four operators and so forth. To truncate this infinite
hierarchy, Wick’s decomposition techniques and/or Feynman
diagram expansions32 can be applied. Finally, after Fourier-
transforming the time difference t − t ′, the steady-state form
of the anharmonic phonon-phonon scattering self-energy is
obtained. The greater/lesser components are then defined
as13,14

�≷S,ij
nm (ω) = 2ih̄

∑
k1k2k3k4

∑
l1l2l3l4

∫ ∞

−∞

dω′

2π
dV

(3)ik1k2
nl1l2

dV
(3)k3k4j

l3l4m

×D
≷,k1k3

l1l3
(ω + ω′)D≶,k4k2

l4l2
(ω′). (7)

Knowing that “�<S(ω)D>(ω)” measures the rate at which
phonons with energy h̄ω are generated (in-scattering rate)33

and looking at the definition of �<S(ω) in Eq. (7), it can be
seen that for ω′ >0, the anharmonic decay of a high-energy
phonon with frequency ω + ω′ [D<(ω + ω′)] creates two
lower energy phonons with frequency ω [D>(ω)] and ω′
[D>(ω′)]. This interpretation relies on the fact that lesser
Green’s functions characterize the occupancy of a state while
greater Green’s functions refer to the probability that a
state is available (unoccupied). Hence, at the beginning of
the anharmonic phonon-phonon scattering process described
above, the state with frequency ω + ω′ is occupied while two
states at frequencies ω and ω′ are available. Recalling that
D

<,ij
nm (−ω) = D

>,ji
mn (ω),34 the same kind of interpretation can

be made for the case where ω′ < 0, the difference being that a
high-energy phonon is created from two low-energy particles

through anharmonic interactions. Hence, the scattering self-
energies in Eq. (7) simultaneously describe the anharmonic
decay and creation of high-energy phonons.

The last required component in Eqs. (1) and (2), the retarded
scattering self-energy �RS(ω), is calculated directly from the
lesser �<S(ω) and greater �>S(ω) self-energies with

�RS,ij
nm (ω) = 1

2

[
�>S,ij

nm (ω) − �<S,ij
nm (ω)

]

+ iP
∫

dω′

2π

�
>S,ij
nm (ω′) − �

<S,ij
nm (ω′)

ω − ω′ , (8)

where P denotes the Cauchy principal integral value.
Equations (1), (2), (7), and (8) must be solved iteratively till

convergence between the Green’s functions D<(ω), D>(ω),
and DR(ω) and the anharmonic phonon-phonon scattering
self-energies �<S(ω), �>S(ω), and �RS(ω) is obtained. This
process is called the self-consistent Born approximation. After
convergence is reached, the phonon thermal current Iph,s−>s+1

flowing between the sth and sth+1 unit cell (or slab) of the
simulation domain can be computed as17,37

Iph,s−>s+1 = h̄

2π

∑
n∈s

∑
m∈s+1

∑
ij

×
∫ ∞

0
dω ω

[
�ij

nmD<,ji
mn (ω) − D<,ij

nm (ω)�ji
mn

]
.

(9)

In Eq. (9), the atom position Rn is situated inside the sth unit
cell and Rm inside the sth + 1 one. A unit cell is defined as an
ensemble of N consecutive atomic layers along the direction
of the current flow: N = 4 if phonon transport occurs along the
〈100〉 crystal axis, N = 2 for 〈110〉, and N = 6 for 〈111〉. Due
to current conservation requirements, Iph,s−>s+1 must remain
the same, irrespective of the choice of s and s + 1.

B. Approximations

The expression for the anharmonic phonon-phonon scatter-
ing self-energy in Eq. (7) is exact, but difficult to implement
from a numerical point of view. In effect, it involves the
summation over several indices (4 referring to atom positions
and 4 to oscillation directions), it requires the knowledge
of the entire lesser and greater phonon Green’s function
matrices D<(ω) and D>(ω), respectively, and it couples all
the phonon frequencies together through the integral over ω′.
If no approximation is made to the calculation of the scattering
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self-energies, the simulation of a nanowire structure composed
of 20 000 atoms demands the inversion of full matrices of
size N = 60 000 to solve Eq. (1). The resulting computational
burden is too heavy to make such an approach practical.

To allow for an efficient solution of Eqs. (1) and (2), only a
small fraction of DR(ω) and D≷(ω) is calculated, their diagonal
and first off-diagonal blocks, based on a recursive Green’s
function (RGF) algorithm.35,36 This implies that the scattering
self-energies in Eq. (7) must be assumed block diagonal, i.e.,
only the self-energy components �

≷S,ij
nm (ω) where the atom

indices n and m are identical are evaluated. As a consequence,
the expression for �≷S(ω) becomes

�≷S,ij
nn (ω) = 2ih̄

∑
k1k2k3k4

∑
lm

∫ ∞

−∞

dω′

2π
dV

(3)ik1k2
nlm dV

(3)k3k4j

lmn

×D
≷,k1k3

ll (ω + ω′)D≶,k4k2
mm (ω′). (10)

Note that in Eq. (10), only summations over the 3 × 3 diagonal
blocks of the phonon Green’s functions D≷(ω) are performed.
To further reduce the computational complexity and the
memory requirement, the three indices l, m, and n of the
third derivative of the anharmonic potential energy, dV

(3)
lmn,

must refer to atoms belonging to the same bond vector. At
least two out of the three indices are therefore identical. As
a last approximation, the principal integral term in Eq. (8) is
neglected.

The simplifications leading to Eq. (10) certainly affect the
simulation results and might lead to an overestimation or
underestimation of the phonon thermal current Iph flowing
through the simulated nanostructures. However, a correction
mechanism can still be introduced: The anharmonic force
constants α′, β ′, τ ′, δ1, and δ3 in Eq. (6) can be fitted so
that available experimental data, for example the bulk lattice
thermal conductivity of a given semiconductor, are accurately
reproduced by the model. By doing so, the errors resulting from
the approximations made to Eq. (10) are partly compensated.
The fitting process is explained in more detail in Sec. III A.

C. Implementation

If multiple central processing units (CPUs) are available,
the solution of Eqs. (1), (2), (8), and (10) can be parallelized
using the message passing interface (MPI)38 standard and the
same work distribution scheme as in Ref. 39: Depending on
the size of the available machine, only a small number of
phonon frequencies is attributed to each CPU, which stores the
corresponding Green’s functions and scattering self-energies.
Then, to compute �≷S(ω) in Eq. (10), data must be exchanged
between the different CPUs storing D≶(ω + ω′) and D≷(ω′).
The nanowire simulations reported in Sec. III were run on
3000 CPUs during 2 to 12 hours.

Typically, an energy vector starting at E = h̄ω = 0 eV and
extending up to the maximum phonon energy of the considered
material (plus a small offset) is generated at the beginning of
each simulation. The distance between two energy points is
constant and amounts to 0.1 meV at most. As can be seen in
the integral boundaries of Eq. (10), the frequency ω′ in D≷(ω′)
can be negative, but for convenience, the selected energy vector
starts at E = 0. The negative frequencies/energies are properly

handled by recalling the property D
<,ij
nm (−ω) = D

>,ji
mn (ω)

already mentioned above.
To check the convergence of the self-consistent Born

iterations between the phonon Green’s function in Eq. (2)
and the anharmonic phonon-phonon scattering self-energies in
Eq. (10), the values of the thermal current Iph,s−>s+1 flowing
between unit cell s and s + 1 are analyzed. Convergence is
reached when Iph,s−>s+1 in Eq. (9) is the same for all the unit
cells s, i.e., when current conservation is satisfied. Usually,
between 10 and 100 iterations are required to reach this
goal, depending on the structure temperature (low temperature
means less scattering and therefore fewer iterations) and length
(the shorter the fewer iterations).

III. RESULTS

A. Model calibration

To compensate for the approximations made to Eq. (10),
the values of the five anharmonic force constants α′, β ′, τ ′,
δ1, and δ3 in Eq. (6) are tuned so that the bulk lattice thermal
conductivity of the considered semiconductors can be repro-
duced by the simulation approach. Here, as an illustration,
the Si parameters are optimized: Instead of adjusting each
anharmonic force constant independently, the values of Ref. 30
are used as initial guesses and then scaled, all by the same
factor Fscal. In this approach, only one single parameter needs
to be determined, Fscal, not five, thus reducing the complexity
of the fitting procedure.

To optimize the value of Fscal, the first challenge consists in
simulating one-dimensional bulk structures instead of three-
dimensional nanowires, as described so far in this paper.
Solving Eqs. (1) and (2) for bulk is relatively straightforward:
The dynamical matrix � must account for the periodicity along
the y and z axis (transport occurs along x), introducing a qy

and qz dependence to the dynamical matrix, � → �(qy,qz),
where the phonon wave vectors qy and qz span the entire first
Brillouin zone (BZ). The thermal current Iph in Eq. (9) is then
obtained by summing up all the qy and qz contributions. To
facilitate the summation, a square unit cell is chosen instead
of the primitive one, making the BZ square too.

The difficulty to go from nanowire to bulk structures resides
in the treatment of the lesser/greater scattering self-energies in
Eq. (10). Anharmonic phonon-phonon scattering in bulk does
not only couple all the phonon frequency together (integral
over ω′), but also all the qy and qz wave vectors through a
double summation over these parameters. Taking this double
summation into account makes the numerical implementation
of Eq. (10) for bulk cases much more difficult than for
nanowires since many more phonon Green’s functions are
coupled to each other (frequency and momentum coupling).
However, by increasing the size of the selected bulk unit cells
along the y and z axes, the phonon band structure along qy and
qz becomes folded,40 thus automatically coupling different qy

and qz wave vectors together.
Since the folding effect increases with the dimensions of the

bulk unit cell, what remains to be determined is the minimum
size of this unit cell that best mimics the qy and qz coupling
induced by anharmonic phonon-phonon scattering. Practical
tests have shown that increasing the size of the bulk unit
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TABLE I. Temperature-independent value of the anharmonic
force constants in Si and Ge.

α′ (eV/m3) β ′ (eV/m3) τ ′ (eV/m3) δ1 (eV/m3) δ3 (eV/m3)

Si −2.421e10 −1.082e10 −2.338e9 −2.323e9 6.656e9
Ge −2.113e10 −5.323e9 −2.796e9 −1.735e8 1.225e9

cell beyond (4Ly) × (4Lz), where Ly × Lz is the size of the
original square unit cell and 4 the multiplication factor along y

and z, does not affect the results any more. Hence, wave vector
coupling is captured in bulk simulations by working with unit
cells 16× larger than the smallest one with a square shape.
Then the qy- and qz-dependent Brillouin zone can be safely
discretized using 6 points along each wave vector direction for
a total of 36 grid points ranging from 0 to π/Ly and 0 to π/Lz.

As a next step, several simulations are performed to
determine the value of Fscal so that the anharmonic phonon
scattering model gives a room temperature lattice thermal
conductivity of κth ≈ 150 W/K/m for Si. The corresponding
α′, β ′, τ ′, δ1, and δ3 values are reported in Table I. However,
assuming that these parameters are temperature independent
does not allow us to capture the bulk κth of Si at temperatures T

below 200 K and above 400 K. A good reproduction of κth(T )
from 20 to 1000 K is only possible if all the anharmonic force
constants in Table I are multiplied by a temperature-dependent
factor f (T ) defined as

f (T ) =

⎧⎪⎨
⎪⎩

(
T

300

)0.9
, 0 � T � 200,

c1 + c2T + c3T
2 + c4T

3, 200 � T � 400,

1 + 0.2 T −300
300 , 400 � T � 1000,

(11)

and plotted in Fig. 2(a). The coefficients c1 to c4 are given in
Table II. The form of f (T ) has been empirically derived: It has
been first observed that the temperature behavior of the exper-
imental κth(T ) for T > 300 K is different from T < 300 K. By
comparing simulations results to experimental data, the forms
(T/300)0.9 and 1 + 0.2(T − 300)/300 have been determined
for T � 300 and T � 300, respectively. As a last enhance-
ment, the behavior of df (T )/dT in the region 200 � T � 400
is smoothed to prevent discontinuities in the κth(T ) curves.

Making the anharmonic force constants α′, β ′, τ ′, δ1, and δ3

temperature dependent is justified by the fact that the harmonic
V harm and anharmonic V anh potential energies depend on the
temperature, which has not been accounted for anywhere else
in the model and by the fact that higher order anharmonic
potential contributions have been neglected. Other phonon
simulation approaches including anharmonic effects must also
give a temperature dependence to their interaction potentials
in order to reproduce experimental data.16,41,42

Finally, to capture the low-temperature maximum of the
lattice thermal conductivity of bulk Si, boundary and impurity
scattering must be introduced into the model. A single
fitting potential value V bound/imp = 4.7 meV/m2 containing
both effects is used for that purpose. Hence, the following
boundary/impurity scattering self-energy must be added to
Eq. (10):

�≷bound/imp,ij
nn (ω) = |V bound/imp|2D≷,ij

nn (ω). (12)
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FIG. 2. (a) Temperature-dependent scaling function f (T ) for the
anharmonic force constants α′, β ′, τ ′, δ1, and δ3. (b) Comparison
between the experimental lattice thermal conductivity κth of bulk
Si as function of the temperature (solid line) and simulation results
obtained with the model proposed in this paper (dashed line with
stars). (c) Temperature-dependent average phonon mean-free path
for scattering λph in bulk Si extracted from the simulation results in
(b). At 300 K, λph = 160 nm.

Putting together all the requirements described above, κth of
bulk Si can now be computed as a function of the temperature
using the dR/dL method.43 The following steps need to be
performed one after the other to obtain κth:

(1) A small temperature difference �T is applied between
the two ends of bulk structures of length L = 25, 50, and
75 nm.

(2) The length-dependent phonon thermal current Iph(L)
(unit: W/m2) flowing from one side of the structures to the
other is calculated with Eq. (9) including anharmonic phonon-
phonon, boundary, and impurity scattering.

(3) The thermal resistance Rth(L) = �T/Iph(L) (unit:
Km2/W) is extracted. Since phonon transport in bulk structures
is mainly diffusive, Rth(L) increases linearly as a function of L.
Three lengths are always considered to check that this property
is satisfied.

(4) The derivative of Rth(L) with respect to L, dRth(L)/dL

(unit: Km/W), is finally employed to obtain the lattice thermal

TABLE II. Coefficients to compute the temperature-dependent
factor f (T ) in Eq. (11).

c1 c2 c3 c4

Value −0.2097 5.98e−3 −7.644e−6 1.667e−9
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conductivity κth = [dRth(L)/dL]−1 (unit: W/K/m). The same
process is repeated for different temperatures.

The results for bulk Si are shown in Fig. 2(b). A very
good agreement between experimental44 and simulation data
is obtained for temperatures ranging from 20 to 1000 K.
Furthermore, an average mean-free path (MFP) for scattering
λph can be derived from the simulation results based on the
following equation:45

λph =
(

dRth(L)

dL

)
× Rth,0, (13)

where the length-independent term Rth,0 refers to the ballistic
thermal resistance extracted when all the scattering mech-
anisms are turned off. The average MFP λph is plotted in
Fig. 2(c) as function of the structure temperature. The results
agree well with data calculated with another method.46

B. Homogeneous Si nanowires

After parametrizing the anharmonic force constant in
Eq. (6) and assuming that these parameters are transferable
to nanostructures, the thermal properties of not intentionally
doped Si nanowires, as depicted in Fig. 3, are investigated
in the ballistic limit of transport and in the presence of
anharmonic phonon-phonon scattering. Boundary scattering
is automatically taken into account due to the finite extent
of the simulated structures which have a diameter of 3 nm.
The nanowire length extends from 20 to 60 nm and phonon
transport occurs along the x direction, aligned either with the
〈100〉, 〈110〉, or 〈111〉 crystal axis. The largest simulation
domain considered in this work contains more than 20 000
atoms that can oscillate along the x, y, and z directions. Surface
atoms are also allowed to freely move.31

Before starting with the thermal characteristics of the
nanowires in Fig. 3, the mechanism governing the injection

(b)

(c) (d)

(a)
L

d

y

x

z

y

z

y

z

y

z

FIG. 3. (a) Schematic view of the Si nanowires considered in this
work. The diameter d is set to 3 nm, the length L varies from 20 to
60 nm, the transport direction x is aligned with the 〈100〉 (b), 〈110〉
(c), and 〈111〉 (d) crystal axis. In (b), y = (010), z = (001), in (c),
y = (110), z = (001), and in (d), y = (110), z = (112).

of phonons from semi-infinite contacts into a finite simulation
domain should be analyzed. For that purpose, the thermal cur-
rent and phonon population in a L = 40 nm long Si nanowire
with x = 〈100〉 and a left (right) contact temperature of 300 K
(350 K) are studied. The temperature difference between the
left and right contact is intentionally chosen very high to
magnify what is happening. There are three distinct cases:

(1) Phonon transport is ballistic in the semi-infinite contacts
and in the finite simulation domain (ballistic).

(2) It is ballistic in the semi-infinite contacts, but anhar-
monic phonon-phonon scattering is taken into account in the
finite simulation domain (coherent injection).

(3) Anharmonic phonon-phonon scattering is included in
the semi-infinite contacts and in the finite simulation domain.
This requires defining scattering self-energies in the contacts
and incorporating them into the calculation of the open
boundary conditions (incoherent injection).47,48

The differences between these three scenarios are illustrated
in Fig. 4. In the pure ballistic simulation, the phonon population
is the same all along the nanowire length, although the temper-
ature of the left and right contact is different. When anharmonic
phonon-phonon scattering is turned on, the phonon population
becomes larger at the “hot” contact (T = 350 K) than at the
cold one (T = 300 K), as expected. However, in the coherent
injection case, due to domain mismatch at the contact/device
interface, boundary reflections of the phonon population can
be observed, which is unphysical and should be avoided.
The distribution of the phonon population looks reasonable
(smooth behavior) only when scattering is present in the
nanowire structure and in the contacts. Hence, incoherent
injection is enabled in all the other simulations performed
in this paper.
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FIG. 4. (a) Spatially resolved phonon population in a L = 40 nm
Si nanowire with x = 〈100〉, a left-contact (x = 0) temperature
T = 300 K, and a right-contact (x = 40 nm) temperature T = 350 K.
The phonon population in the ballistic limit of transport (dashed-
dotted line), with anharmonic phonon-phonon scattering and ballistic
contacts (coherent injection, solid gray lines), and with anharmonic
phonon-phonon scattering in the device and contacts (incoherent
injection, dashed line) are plotted. (b) Spatially resolved thermal
current flowing through the same structure and under the same
conditions as in (a).
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FIG. 5. (a) Temperature-dependent ballistic thermal current flow-
ing through L = 40 nm Si nanowires with x = 〈100〉 (gray line
with circles), x = 〈110〉 (dashed line with triangles), and x = 〈111〉
(dashed-dotted line with crosses). A temperature difference �T =
0.1 K is applied between the 2 ends of the nanowires. (b) Same as in
(a), but in the presence of anharmonic phonon-phonon scattering.

A comment about the thermal currents in Fig. 4(b): In all
cases, it is conserved, demonstrating the convergence of the
self-consistent Born iterations between the phonon Green’s
functions and scattering self-energies in Eqs. (1), (2), (8), and
(10). Current conservation has been checked for all the results
presented here. Note also that anharmonic phonon-phonon
scattering decreases the magnitude of the thermal current by a
factor of roughly 2 in Fig. 4(b) and the coherent and incoherent
phonon injection mechanisms deliver about the same current
value.

In Fig. 5, the thermal current Iph (unit: W) flowing through
L = 40 nm long Si nanowires with transport along the 〈100〉,
〈110〉, and 〈111〉 crystal axes is reported for temperatures
ranging from 0 to 1000 K, in the ballistic limit of transport
(left) and with anharmonic phonon-phonon scattering (right).
A temperature difference �T = 0.1 K is applied between the
two ends of the nanowires. Irrespective of the simulation model
(without scattering), the 〈110〉-oriented nanowire exhibits
the largest thermal current; the 〈100〉- and 〈111〉-oriented
structures have similar characteristics.

While the ballistic thermal currents keep increasing as the
temperature increases, anharmonic phonon-phonon scattering
leads to a maximum of Iph at temperatures around 200 K
followed by a current decrease. A similar behavior is reported
in Refs. 13 and 18 where the thermal conductance of 1D
Si atomic chains is calculated: A conductance maximum
occurs at temperatures around 200 K. The fact that scattering
becomes more important at high temperatures explains the
current decrease after T = 200 K. Hence, below 100 K, the
ballistic model captures relatively well the thermal properties
of the nanowires, but above this temperature, it significantly
overestimates Iph, by a factor of 1.7 at room temperature and
4 at 1000 K. It is worthwhile noting here that the thermal
current shows a maximum at around T = 200 K even when
the anharmonic force constants α′, β ′, τ ′, δ1, and δ3 in Eq. (6)
have no temperature dependence.

As for the bulk structures in Sec. III A, the thermal
resistance Rth(L) (unit: K/W) of the Si nanowires in Fig. 3
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FIG. 6. (a) Thermal resistance through Si nanowires with L =
20, 40, and 60 nm, T = 100 (line with circles), 300 (dashed line
with triangles), 500 (dashed-dotted line with stars), and 750 K (gray
line with crosses), �T = 0.1 K, x = 〈100〉, and in the presence of
anharmonic phonon-phonon scattering. (b) Same as (a), but for x =
〈110〉. (c) Same as in (a) and (b), but for x = 〈111〉. (d) Anharmonic
phonon-phonon limited thermal conductivity κth in Si nanowires as
function of the temperature for x = 〈100〉 (gray line with circles),
x = 〈110〉 (dashed line with triangles), and x = 〈111〉 (dashed-dotted
line with crosses). The inset shows κth around T = 300 K.

can be calculated for different structure lengths (L = 20, 40,
and 60 nm) and temperatures varying from 50 to 1000 K.
The corresponding results are shown in Figs. 6(a)–6(c). As
a consequence of the larger thermal current observed when
phonons flow along the 〈110〉 crystal axis, nanowires with this
configuration have the smallest thermal resistances, at low and
high temperatures.

Due to the diffusive nature of phonon transport in nanowires
with anharmonic phonon-phonon scattering, their thermal
resistance Rth(L) increases linearly with their length: The
resistance values at L = 20, 40, and 60 nm all lie on a single
line as can be seen in Figs. 6(a)–6(c). This allows us to
compute a phonon-phonon scattering limited lattice thermal
conductivity κth = (1/A)[dRth(L)/dL]−1, where A is the area
of the nanowire cross section. In Fig. 6(d), κth is given as
function of the nanowire temperature and crystal orientation.
The highest value is obtained for the 〈110〉-oriented nanowire.
At low temperatures, the 〈100〉 nanowire exceeds its 〈111〉
counterpart, but this trend is reversed at high temperatures.

It can also be observed that under the influence of
anharmonic phonon-phonon scattering, κth severely drops in
nanowires as compared to bulk structures, from 148 W/K/m
at room temperature down to 57, 29, and 28 W/K/m in
〈110〉, 〈111〉, and 〈100〉 nanowires, respectively. By comparing
these simulation results with available experimental data, it
appears that the phonon-phonon scattering limited thermal
conductivities in Fig. 6(d) are considerably larger than the
values reported in Ref. 8 (2 W/K/m at room temperature)
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FIG. 7. (a) Schematic view of a Si-Ge-Si double heterojunction
nanowire with x = 〈100〉 and d = 3 nm. The Ge region measures
LGe = 2.2 nm, the Si extensions vary from LSi = 2.2 to 10.9 nm.
(b) Bulk Si (solid lines) and Ge (dashed lines) phonon band structure.
(c) Ballistic spectral thermal current through a LSi = 4.3 nm Si-Ge-Si
nanowire in the energy range 37 � E � 64 meV at T = 300 K
with �T = 10 K. (d) Same as in (c), but in the presence of
anharmonic phonon-phonon scattering. Dark regions indicate high
current concentrations, white no current.

although the considered diameters are much smaller (3 vs
50 nm). Hence, anharmonic phonon-phonon scattering alone
cannot explain the results of Ref. 8, for which surface
roughness must be added.16

C. Si-Ge-Si Nanowires

As a second application, the double heterojunction Si-
Ge-Si nanowires schematized in Fig. 7(a) are considered.
Such devices, if the Si-Ge periods are repeated as in super-
lattices, could exhibit very low thermal conductivities20,49

while keeping relatively good electronic properties, thus
fulfilling two important criteria needed for high-performance
thermogenerators. Since the maximum phonon energy in Ge is
smaller than in Si (37 vs 64 meV with the harmonic parameters
of Ref. 30), as illustrated in Fig. 7(b), the high-energy phonons
propagating through Si are blocked when they try to enter the
Ge middle layer. This energy filtering effect leads to a reduction
of the lattice thermal conductivity of Si-Ge-Si nanowires.

Here, what will be investigated is the influence of an-
harmonic phonon-phonon scattering on the thermal current
flowing through Si-Ge-Si nanowires with a diameter of 3 nm, a
Ge layer thickness of 2.2 nm, and Si extension lengths varying
from LSi = 2.2 to 10.9 nm. The same scattering model is
used for Ge as for Si with the anharmonic force constants
of Ge given in Table I. They were obtained by scaling the
values of Ref. 30 by the same amount as the Si constants. No
temperature-dependent coefficient f (T ) has been defined for
Ge since all the S-Ge-Si nanowire simulations are performed
at room temperatures. Interface scattering is included by
default since each material region is explicitly described in the
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FIG. 8. (a) Spatially resolved thermal current through Si-Ge-Si
nanowires with T = 300 K, �T = 10 K, LSi = 2.2 (solid line), 4.3
(dashed line), 6.5 (solid line with dots), 8.7 (dashed-dotted line), and
10.9 nm (solid gray line with crosses) in the presence of anharmonic
phonon-phonon scattering. (b) Thermal current flowing through Si-
Ge-Si nanowires with T = 300 K, �T = 10 K, and varying LSi.
The thermal currents in the ballistic limit of transport (dashed gray
line with circles) and in the presence of anharmonic phonon-phonon
scattering (solid line with stars) are compared.

simulation domain (different atomic masses, harmonic, and
anharmonic force constants). Strain is also taken into account
and no roughness is introduced at the Si/Ge interfaces, which
are sharp.

In the ballistic model, a phonon with an energy larger than
37 meV cannot move through a Si-Ge-Si structure because
of the absence of propagating channels in Ge in this energy
range. When anharmonic phonon-phonon scattering is turned
on, the same phonon can penetrate into the Si extensions,
then decay into two low-energy particles that can finally
propagate through the Ge layer. These two situations are
plotted in Figs. 7(c)–7(d), where the energy- and position-
resolved thermal current flowing through a Si-Ge-Si nanowire
is reported for energies larger than 37 meV. As can be seen,
the presence of anharmonic phonon-phonon scattering creates
additional current trajectories at high energy that do not exist
in the ballistic model.

As a last numerical experiment, the length of the Si
extensions, LSi, in Si-Ge-Si nanowires is varied to study
how anharmonic phonon-phonon scattering influences the
thermal current value. The results are shown in Fig. 8. In
the left subplot, current conservation is demonstrated and
in the right one, the thermal currents with and without
anharmonic phonon-phonon scattering are compared. For
short Si extensions, the thermal current with scattering is
higher than the ballistic one, but it decreases as LSi increases.
The ballistic current remains constant. Two competing effects
explain this behavior: Anharmonic phonon-phonon scattering
opens additional transport channels for phonons, as depicted
in Figs. 7(c)–7(d), but it can also change the direction of
propagation of one of the two low particles created through
the decay of a high-energy phonon, thus reducing the current
magnitude. This is known as backscattering.45 While the first
effect (additional channels) does not depend on the Si length,
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the second one (backscattering) increases with LSi, explaining
the current characteristics in Fig. 8(b).

IV. CONCLUSION AND OUTLOOK

A simulation approach including anharmonic phonon-
phonon scattering in the framework of the valence-force-field
method and the nonequilibrium Green’s function formalism
has been presented in this paper. After the calibration of
anharmonic force constants using the temperature-dependent
lattice thermal conductivity of Si as a target, the thermal
properties of ultrascaled nanowires with different lengths,
material composition, and crystal orientations have been
studied. The thermal current, resistance, and conductivity
of these structures have been extracted in the presence of
anharmonic phonon-phonon scattering and in the ballistic limit
of transport. It has been found that neglecting anharmonic
phonon-phonon scattering at high temperatures can lead to
a significant overestimation of the thermal current flowing
through nanowires. Furthermore, it has also been demonstrated
that in heterogeneous Si-Ge-Si nanowires, two competing
effects induced by anharmonic phonon-phonon scattering
face each other: an increase of the thermal current through
the presence of additional phonon paths and a decrease of
this current through backscattering effects. The first effect
dominates in short devices, the second in long ones. This
means that accurate studies about the figure of merit of

thermogenerators or the thermal efficiency of nanotransistors
should go beyond the ballistic limit of phonon transport and
include anharmonic phonon-phonon interactions.

As a future work, the approach proposed here should be
combined with an atomistic electron transport model taking
electron-phonon scattering into account.39 By simultaneously
driving the electron and phonon populations out of equilib-
rium, self-heating and phonon drag effects could be introduced
into the model. This will require the derivation of additional
self-energies to control the energy flow between electrons and
phonons and ensure energy conservation within the simulation
domain.
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