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Bound and resonant impurity states in a narrow gapped armchair graphene nanoribbon
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An analytical study of discrete and resonant impurity quasi-Coulomb states in a narrow gapped armchair
graphene nanoribbon (GNR) is performed. We employ the adiabatic approximation assuming that the motions
parallel (“slow”) and perpendicular (“fast”) to the boundaries of the ribbon are separated adiabatically. The
energy spectrum comprises a sequence of series of quasi-Rydberg levels relevant to the slow motion adjacent
from the low energies to the size-quantized levels associated with the fast motion. Only the series attributed to
the ground size-quantized subband is really discrete, while others corresponding to the excited subbands consist
of quasidiscrete (Fano resonant) levels of nonzero energetic widths, caused by the coupling with the states of the
continuous spectrum branching from the low lying subbands. In the two- and three-subband approximation the
spectrum of the complex energies of the impurity electron is derived in an explicit form. Narrowing the GNR
leads to an increase of the binding energy and the resonant width both induced by the finite width of the ribbon.
Displacing the impurity center from the midpoint of the GNR causes the binding energy to decrease, while the
resonant width of the first excited Rydberg series increases. As for the second excited series, their widths become
narrower with the shift of the impurity. A successful comparison of our analytical results with those obtained
by other theoretical and experimental methods is presented. Estimates of the binding energies and the resonant
widths taken for the parameters of typical GNRs show that not only the strictly discrete but also some resonant
states are quite stable and could be studied experimentally in doped GNRs.
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I. INTRODUCTION

The electron properties of two-dimensional (2D) graphene,
a single-layer carbon sheet, has attracted much attention
by both theoreticians and experimentalists (see Ref. 1 and
references therein). Along with this, related structures, namely
graphene nanoribbons, are also under intensive investigation.2

One of the reasons for this is that the long electron mean
free path in graphene up to 1 μm opens a field of carbon-
based nanoelectronics, where GNRs are used as interconnects
in nanodevices. The unique electron mobility in graphene
structures is caused by the strong bonding between the carbon
atoms in the honeycomb lattice of graphene. This in turn
prevents the replacing of the carbon atoms by alien ones.
Nevertheless, graphene is not immune to extrinsic disorder
and its transport properties3 are very sensitive to impurities
and defects.4

The theoretical problem of an impurity in 2D graphene
was considered originally in Refs. 5–9. In the vicinity of the
Dirac points in �k space, which are peaks of the double cones
of the Fermi surface, the low-energy electronic excitations
in gapless graphene are described by the equation of the
effective mass approximation, which is formally identical to
the 2D Dirac equation for a massless neutrino, having the
Fermi speed vF = 106 m/c. In the presence of an attractive
impurity center of charge Z screened by a medium of
the effective dielectric constant εeff the electron states are
drastically different for the subcritical Jc < J and supercritical
Jc > J regions of the strength of the Coulomb interaction,
where J = |j |h̄, |j | = 1,2, . . ., and Jc = Ze2/4πε0εeffvF are
the 2D momentum of the impurity electron and that have

the speed vF , respectively. Clearly the super-/subcritical
regime can be reached for the dimensionless Coulomb
potential strength q = Ze2/4πε0εeffh̄vF at q > j or q < j .
The difference of the subcritical and supercritical electron
states is caused by their different behavior in the vicinity of
the impurity center �r −→ 0. The subcritical regime admits
regular solutions to the Dirac equations, while the wave
functions corresponding to the supercritical case oscillate and
do not have any definite limit. The physical reason for this
is that at the subcritical strengths q < |j | the centrifugal
potential barrier prevents the electron “fall to the center,”10

while the supercritical strengths q > |j | provide the collapse.
Clearly the continuum approach based on the Dirac formalism
becomes inapplicable. The lattice-scale physics dominates
which in turn requires a regularization procedure, namely the
cutoff of the Coulomb potential at short distances r0 � a,
where a � 1.42 Å is the C-C distance in graphene. The
physics of the supercritical impurity electron in graphene6

closely resembles that of the relativistic electron in an
atom having the nuclear charge Z > 137.11–14 Since, as it
follows from below, only the supercritical regime is relevant
to the impurity state in GNR, we focus on this case.

Numerical and analytical approaches developed on the
tight-binding model of the graphene lattice and of the Dirac
equation, subject to the regularization procedure, respectively,
undertaken originally by Pereira et al.7 have revealed the infi-
nite number of the quasibound states, having the finite width,
arising, as it was shown quasiclassically,9 from the collapsed
states. If the requirement of the regularity of the wave functions
in the vicinity of the power center is to be replaced by the less
rigorous condition of its square integrability, an infinite number

245404-11098-0121/2012/86(24)/245404(14) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.245404


B. S. MONOZON AND P. SCHMELCHER PHYSICAL REVIEW B 86, 245404 (2012)

of the strictly discrete energy levels were found to occur. The
Coulomb potential cutoff in the gapped15 and no cutoff in
the gapless graphene16 induce the energy series bounded and
unbounded from below, respectively.

In the GNR, which in principle can be treated as a quasi-1D
structure, we can expect completely different results. The
strictly discrete bound states, regular at the impurity center
(�r = 0), are realized without the regularization procedure,
in particular cutoff of the Coulomb potential, preventing
the collapse. Consequential concerns lie in the well known
fact that the reduction of the dimension of the structure
increases the stability of the impurity electron. In units of
the impurity Rydberg constant Ry the binding energy Eb of
the impurity electron in 3D bulk material is Eb = 1, in the
narrow 2D quantum well Eb = 4,17 and in the thin quantum
wire of radius R much less than the impurity Bohr radius
a0, Eb ∼ ln2(R/a0).18 Besides, an extremely weak 3D atomic
potential not providing bound electron states, transforms in the
presence of a magnetic field into a quasi-1D system binding
the electron.19 It is relevant to note that these atomic states
arise under as weak as one likes magnetic fields, that is, the
as large as one likes magnetic lengths playing the same role
as the width of the GNR. Note that the confinement attributed
to the semiconductor thin films20 replaces the 3D Coulomb
potential (∼r−1) by the effective 2D potential of the weaker
singularity of the logarithmic character. It seems that in the
quasi-1D GNR the effect of the attenuation of the potential
singularity preventing the fall to the center exceeds that of the
vanishing of the 2D centrifugal potential barrier promoting the
collapse.

Clearly a study of the impurity electron state in graphene
structures is important for two reasons. First, these structures
provide a realization in solid state physics of remarkable effects
of quantum electrodynamics caused by a large “fine structure
constant” e2/h̄vF � 2.5.8,9,21,22 Second, we expect a strong
impact of impurities on the electronic systems not only for
2D graphene layers possessing an outstanding high electron
mobility6 but in particular for impurity GNRs whose properties
are not widely addressed in the literature yet.

Brey and Fertig23 have shown that the energy spectrum of
the electron in an armchair GNR bounded in the x direction
is the sequence of the subbands formed by the branches
of the continuous energies of the longitudinal unbounded y

motion emanating from the size-quantized energy levels εN

(N is the discrete label), reflecting the ribbons x confinement.
The equation for the components uA,B(y) of the Dirac spinor
relevant to the A and B sublattices of the graphene for the
electron positioned far away from the impurity center has the
form

u′′
A,B(y) + E2 − ε2

N

h̄2v2
F

uA,B(y) = 0,

showing that the armchair GNR manifests itself as gapped
structure entailing the bound/unbound impurity states of the
energies (E2 < ε2

N )/(E2 � ε2
N ).

Of special interest is the narrow GNR of width d for which
d � r0, where r2

0 (d) � h̄2v2
F (E2 − ε2

N )−1 is the radius of the
bound electron state, being induced by the ribbon confinement
d. Such a GNR provides the expected electron binding energy
Eb ∼ εNf (q), where f (q) is some function vanishing at

FIG. 1. (Color online) A schematic form of the potentials VNN (y)
provided in Eqs. (2), (11), and (14) at x0 = 0, quasidiscrete n (23), and
continuous kN (24) spectra adjacent to the ground N = 0 (discrete
states) and first N = 1 and second N = −1 size-quantized levels εN

(7) in the GNR of width d .

q = 0, which is of interest and attractive because of two
aspects. On the one hand, the ribbon provides a considerable
impurity binding energy which could be measured experi-
mentally and, on the other hand, the impurity potential can
be treated perturbatively and an analytical approach to the
problem becomes feasible.

A comment concerning the form of the energy spectrum is
in order. In the zeroth approximation of isolated size-quantized
N subbands, that is, in the single-subband approximation
the slow longitudinal motion parallel to the boundaries is
governed by the 2D Coulomb potential averaged with respect
to the fast transverse N states. The energy spectrum consists
of a sequence of series of quasi-Coulomb discrete Nn

levels and continuous subbands positioned below and above,
respectively, relative to the size-quantized energy levels εN

(see Fig. 1). Only the series of the impurity energy levels
E0n < ε0 adjacent to the ground size-quantized energy level
ε0 is strictly discrete. The Nn series adjacent to the excited
levels N > 0 come into resonance with the states of the
continuous spectra of lower subbands and in fact in the next
multisubband approximation turn into quasidiscrete resonant
states (Fano resonances).24 The corresponding resonant widths
�Nn determine the autoionization rate and lifetime τNn =
h̄/�Nn of the resonant impurity states being of relevance to
an experimental study. Also, to our knowledge, an analytical
approach to the problem of impurities in GNR providing
the explicit dependencies of both discrete and especially
quasidiscrete electron states on the width of the GNR (d)
and the position of the impurity center within the GNR are not
comprehensively available in the literature.

In order to fill the above mentioned gap we perform
an analytical study of the strictly discrete and resonant
impurity states in a narrow armchair GNR. The impurity
center is positioned anywhere within the ribbon bound by the
impenetrable boundaries. The width of the GNR is assumed
to be much less than the radius of the impurity state. The
complete 2D envelope wave function satisfying the massless
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Dirac equation is expanded with respect to the basis formed by
the 1D size-quantized subband wave functions describing the
fast transverse motion bound by the boundaries of the GNR.
The generated set of equations for the 1D quasi-Coulomb wave
functions relevant to the longitudinal slow motion is solved in
the single-, two-, and three-subband approximations, in which
the ground, first, and second excited subbands are involved.
The mathematical method is based on the matching of the
Coulomb wave functions with those obtained by an iteration
procedure at any point within the intermediate region bound
by the ribbon width and the radius of the created Coulomb
state. Both the real and imaginary parts of the complex energy
levels are calculated in a single procedure. The dependencies
of the binding energy and resonant energy shift and width on
the width of the GNR and the position of the impurity center
are obtained in an explicit form. Numerical estimates show that
for a narrow GNR the binding energy and the resonant width
are quite reasonable to render the impurity electron states in
GNR experimentally observable. Our analytical results are
in line with those calculated numerically and revealed in
an experiment. We remark that our aim is to elucidate the
physics of the impurity states in GNR by deriving closed form
analytical expressions for their properties. We do not intend to
compete with the results of computational studies.

The paper is organized as follows. In Sec. II the analytical
approach based on the multisubband approximation is de-
scribed. The real quasi-Coulomb functions of the discrete and
continuous spectrum and the real energy levels determining
the binding energies are calculated in the single-subband
approximation in Sec. III. The complex energies including
the resonant shift and width associated to the first and second
excited subbands are found in the double and three-subband
approximation, respectively, in Sec. IV. In Sec. V we discuss
the obtained results, concentrating mostly on Eqs. (23), (33),
(34), (41), and (42). Section VI contains the conclusions.

According to the above, an analytical description of the
stable and metastable impurity electron states in the narrow
armchair GNR is of significant interest. It elucidates the
underlying basic physics of the carbon-based nanodevices,
in which the highly mobile electrons remain unbound in the
2D graphene monolayers, while in their interconnects, namely
in quasi-1D armchair GNRs, these electrons are trapped by
impurity centers. The latter could modify the overall transport
properties.

II. GENERAL APPROACH

We consider a ribbon of width d located in the x-y plane
and bounded by the lines x = ±d/2. The impurity center of
charge Z is displaced from the midpoint of the ribbon x = 0 by
the distance −d/2 � x0 � d/2. The equation describing the
impurity electron at a position �ρ = (x,y) possesses the form
of a Dirac equation

Ĥ (�̂k, �ρ) ��( �ρ) = E ��( �ρ), �̂k = −i �∇, (1)

where the Hamiltonian Ĥ is given by

Ĥ = p[Ĥ0(k̂x) + Ĥ1(k̂y)] + V ( �ρ)Î , p = h̄v, v = 106 m/c,

with

Ĥ0(k̂x) =
(−σxk̂x 0

0 σxk̂x

)
, Ĥ1(k̂y) =

(−σyk̂y 0
0 −σyk̂y

)
,

composed by the Hamiltonians relevant to the inequivalent
Dirac points �K (+)(−�σ �k) and �K (−)(−�σ ∗�k) [�σ = (σx,σy) are
the Pauli matrices] presented originally in Ref. 23. The matrix
Î in (1) is the unit matrix and

V ( �ρ) = − β√
(x − x0)2 + y2

, β = Ze2

4πε0εeff
(2)

is the 2D Coulomb impurity potential, εeff is the effective
dielectric constant related to the static dielectric constant ε of
the substrate by6,25

εeff = 1

2
(1 + ε + πq0), q0 = e2

4πε0h̄vF

� 2.2.

The envelope wave four-vector �� consists of two vectors
��A,B describing the motion of the electron in sublattices A

and B of graphene

��( �ρ) = ��A( �ρ) + ��B( �ρ), (3)

each determined by the wave functions ψ
(+,−)
A,B ,

��A =

⎧⎪⎪⎨
⎪⎪⎩

ψ
(+)
A

0
ψ

(−)
A

0

⎫⎪⎪⎬
⎪⎪⎭ , ��B =

⎧⎪⎪⎨
⎪⎪⎩

0
ψ

(+)
B

0
ψ

(−)
B

⎫⎪⎪⎬
⎪⎪⎭.

The total A,B state implies the multiplication of the ψ
(+,−)
A,B

functions with the factors exp{i �K (+,−) �ρ}, respectively. The
boundary conditions for the armchair ribbon require the total
wave function to vanish at both edges x = ±d/2 for both A,B

superlattices1

eiKxψ
(+)
A,B( �ρ) + e−iKxψ

(−)
A,B( �ρ) = 0 at x = ±d

2
, (4)

where �K (+,−) = (±K,0), K = 4π/3a0,a0 = 2.46 Å is the
graphene superlattice constant.

The basis wave vectors ��N (x) and the energies εN

describing the transverse size-quantized x states are derived
from equation

Ĥ0(k̂x) ��N (x) = εN
��(x) (5)

to obtain

��N (x) = 1√
2

[ ��NA(x) + ��NB(x)], ��NA(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ
(+)
NA

0

ϕ
(−)
NA

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

��NB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

ϕ
(+)
NB

0

ϕ
(−)
NB

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where

−ϕ
(+)
NA = ϕ

(−)∗
NA = ϕ

(+)
NB = −ϕ

(−)∗
NB = ϕN0, (6)
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with

ϕN0(x) = 1√
2d

exp

{
i

[
x

π

d
(N − σ̃ ) − π

2

(
N +

[
Kd

π

])]}
,

εN = |N − σ̃ |πp

d
, N = 0, ± 1, ± 2, . . . , (7)

σ̃ = Kd

π
−
[
Kd

π

]
.

We consider transverse states with positive energies εN > 0
in the armchair ribbon of width d providing the gapped
(insulator) structure σ̃ �= 0.1 It follows from Eq. (7) that the
energy levels εN as a function of width d are the oscillations
described by parameter σ̃ (d) imposed on the decreasing
curve ∼d−1. Below we ignore these oscillations, keeping
σ̃ = const.

The boundary conditions (4) after substitution of ψ
(+,−)
A,B

by ϕ
(+,−)
NA,B , respectively, are satisfied. The wave vectors ��NA,B

form orthonormal subsets, for which

Ĥ0(k̂x) ��NA(B) = εN
��NB(A), 〈 ��N ′A(B)| ��NB(A)〉 = 0,

(8)
〈 ��N ′A(B)| ��NA(B)〉 = δN ′N, 〈 ��N ′ | ��N 〉 = δN ′N .

The boundary conditions (4) imposed on the wave vector
��( �ρ) (3) force us to expand the wave vectors ��A,B in
series

��A,B( �ρ) = �NuNA,B(y) ��NA,B(x), i.e.,
(9)

ψ
(+,−)
A,B ( �ρ) = �NuNA,B(y)ϕ(+,−)

NA,B(x),

with respect to the basis functions ϕ
(+,−)
NA,B(x) taking for the

coefficients u
(+)
NA,B(y) = u

(−)
NA,B(y) ≡ uNA,B(y). Substituting

the wave vector �� (3) with the wave vectors ��A,B and the
wave functions ψ

(+,−)
A,B ( �ρ) into Eq. (1) and subsequently using

the properties (8) we obtain by the standard method the set of
equations for the wave functions

v
(1)
N = 1√

2
(uNB + uNA), v

(2)
N = 1√

2
(uNB − uNA),

dv
(1)
N (y)

dy
− 1

p
[E + εN − VNN (y)] v

(2)
N (y)

+ 1

p

∑
N ′ �=N

VN ′N (y)v(2)
N ′ (y) = 0,

(10)
dv

(2)
N (y)

dy
+ 1

p
[E − εN − VNN (y)] v

(1)
N (y)

− 1

p

∑
N ′ �=N

VN ′N (y)v(1)
N ′ (y) = 0,

VN ′N (y) = 1

d

∫ + d
2

− d
2

V ( �ρ) cos

[
(N − N ′)π

(
x

d
− 1

2

)
dx

]
,

(11)

where the potential V ( �ρ) is given by Eq. (2). At |y| � d,

VN ′N (y) = − β

|y|
[
δN ′N + O

(
d2

y2

)
δ|N ′−N |(2s+1)

]
,

s = 0, 1, 2, . . . . (12)

As expected in the limiting case d → 0 Eqs. (10) de-
compose into the sets describing the 1D Coulomb states,
while in the absence of the impurity center (VN ′N = 0) we
arrive at the wave functions uNA,B ∼ exp(±ikyy) and the
energies E2

N (ky) = ε2
N + p2k2

y of free electrons in the armchair
nanoribbon.1,23

Below we solve the set (10) in the adiabatic approxima-
tion implying the longitudinal y motion governed by the
quasi-Coulomb potentials VN ′N (y) to be much slower than
the transverse x motion affected by the boundaries of the
narrow ribbon. The Coulomb potential (2) is assumed to
be small compared to the ribbon confinement. This implies
the condition imposed on the dimensionless strength of the
Coulomb potential q,

q � 1, where q = β

p
= Ze2

4πε0εeffh̄vF

.

In the case of σ̃ < 0.5 the lowest three subbands are speci-
fied by indices N = 0, 1, − 1. The set (10) corresponding to
these subbands becomes

v
(1)′
0 − 1

p
(E + ε0 − V00)v(2)

0 + 1

p

[
V10v

(2)
1 + V−10v

(2)
−1

] = 0,

v
(2)′
0 + 1

p
(E − ε0 − V00)v(1)

0 − 1

p

[
V10v

(1)
1 + V−10v

(1)
−1

] = 0,

v
(1)′
1 − 1

p
(E + ε1 − V11)v(2)

1 + 1

p

[
V01v

(2)
0 + V−11v

(2)
−1

] = 0,

v
(2)′
1 + 1

p
(E − ε1 − V11)v(1)

1 − 1

p

[
V01v

(1)
0 + V−11v

(1)
−1

] = 0,

(13)

v
(1)′
−1 − 1

p
(E + ε−1 − V−1−1)v(2)

−1

+ 1

p

[
V0−1v

(2)
0 + V1−1v

(2)
1

] = 0,

v
(2)′
−1 + 1

p
(E − ε−1 − V−1−1)v(1)

−1

− 1

p

[
V0−1v

(1)
0 + V1−1v

(1)
1

] = 0.

We solve the sets (10) and (13) in the single- (isolated N sub-
band), double- (N,N ′ = 0,1,), and three-subband (N,N ′ =
0,1, − 1) approximation in Secs. III, IV, and V, respectively.
Only an outlook of the cumbersome calculations will be given
in the main body, while their details can be found in the
Appendix.

III. SINGLE-SUBBAND APPROXIMATION

At the first stage we neglect the coupling between the
states corresponding to the subbands with different N. The
reason for this is that in the narrow ribbon of small width
d the diagonal potentials VNN dominate the off-diagonal
terms VN ′N (N ′ �= N ) almost everywhere but for a small region
|y| � d [see Eq. (12)]. In this case VN ′N = VNNδN ′N and the
set (10) decomposes into independent subsets each specified
by an index N . The 1D impurity states are then governed by
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the potential

VNN (y) = β

d
ln

4y2

d1d2(
1 +

√
1 + 4y2

d2
1

)(
1 +

√
1 + 4y2

d2
2

)

=
{

β

d
ln y2

d1d2
,

|y|
d1,2

� 1

− β

|y| ,
|y|
d1,2

� 1,
(14)

d1,2 = d ± 2x0, − d

2
< x0 < +d

2
.

The set (10) for y > 0 with VN ′N = 0 is solved by match-
ing in the intermediate region the corresponding solutions
{v(1)

N ,v
(2)
N }, one of which is valid in the inner region close

to the impurity center and the other represents a solution
of the outer region distant from the center. This method
was originally developed by Hasegava and Howard26 in
studies of excitons subject to strong magnetic fields and then
successfully employed for the investigation of the impurity and
exciton states in quantum wells,27 superlattices,28 and quantum
wires.18

A. Inner region

In the inner region 0 � y � r0 (r0 = p|ε2
N −

E2|−1/2 is the effective size of the Coulomb state) an iteration
procedure is performed. The subsequent integration of the set
(10), in which we neglect the terms consisting of the energies
εN and E, with the trial functions v

(1)
N0 = a

(1)
N , v

(2)
N0 = a

(2)
N

gives (see Appendix A1)

v
(1)
Nin

(y) = RN sin(Q + ζN ), v
(2)
Nin

(y) = RN cos(Q + ζN ),
(15)

Q(y) = q
y

|y|
(

ln
4|y|
D

+ 1

)
,

where

D =
√

d1d2 exp

[
1

4d
(d1 − d2) ln

d1

d2

]
(16)

and where RN and ζN are the arbitrary magnitude and
phase, respectively. Since the potentials (11) satisfy VNN ′ (y) =
VNN ′ (−y) the wave two-vectors �vN {v(1)

N ,v
(2)
N } are classified

with respect to parity. Furthermore, we focus on the even
wave vectors for which �̂�vN = �vN , where �̂ = π̂σz with
π̂v(y) = v(−y) (σz is the Pauli matrix). The condition of
the even parity imposed on the wave vector �vNin formed by
the components (15), implies that the phases ζN are equal
to the half integer of π .

B. Outer region

1. Discrete states

The exact solutions to Eqs. (10) at VN ′N = 0 for N �= N ′ in
the region y � d1,2 with VNN (y) = −βy−1 are calculated by
the same method employed in studies of a relativistic electron
in hydrogen29 and super-heavy atoms with the nuclear charge
number Z > 137,11–14{

v
(1)
N (τ )

v
(2)
N (τ )

}
= AN

{
cosh ψ

2 τ− 1
2
[
Wκ,μ(τ ) + tanh ψ

q
Wκ+1,μ(τ )

]
sinh ψ

2 τ− 1
2
[
Wκ,μ(τ ) − tanh ψ

q
Wκ+1,μ(τ )

]
,

(17)

where

τ = νNy, νN = 2

p

√
ε2
N − E2, tanh ψ = pνN

2εN

,

κ = η − 1

2
, μ = iq, ηN = 2qE

pνN

,

A2
N = νN

2�(ηN )2 cosh ψ
(
1 + η2

N

q2 tanh ψ2
) (1 + δηη0 ),

η0 � 1 is the quantum number labeling the ground state,

and where Wκ,μ(τ ) is the Whittaker function.30 The functions
(17) are normalized to

∫ +∞
−∞ (v(1)2

N + v
(2)2
N )dy = 1.

In the region τ � 1 Eqs. (17), (A2), and (A3) lead to the
expressions

v
(1)
Nout

= PN sin ωN, v
(2)
Nout

= PN cos ωN,
(18)

ωN (τ ) = q ln τ + �N,

where

�N = arg �(−2iq) + arg �(−ηN + iq)

− arctan
ηN

q

(√
1 + q2

η2
N

− 1

)
(19)

and PN are constants.
Matching Eqs. (18) and (15) in the overlapping intermediate

region d � y � r0 we impose the condition

v
(1)
Nin

(y)

v
(2)
Nin

(y)
= v

(1)
Nout

(y)

v
(2)
Nout

(y)
, (20)

which leads for a small parameter q � 1 and for the quantum
numbers ηN = n + δNn, n = 0,1,2, . . . ,δNn < 130 (see also
Refs. 11 and 13 for details) and for ζN = π/2 to equations for
the corrections δNn (A6). The correction δN0 = q/z0 satisfies
the transcendental equation

ln z0 + 1

q

[
arctan z0 − arctan

z0

2

]
+ ln

|N − σ̃ |πD

2d

+C − 1 = 0, (21)

while the corrections δNn for the excited states n = 1,2, . . .

can be calculated in an explicit form

δNn = q cot

{
q

[
− ln q + ln n + 1

2n
− ψ(1 + n)

− ln
|N − σ̃ |πD

2d
− 2C + 1

]}
. (22)

In Eqs. (21) and (22) ψ(1 + n) is the ψ function (logarith-
mic derivative of the � function) and C = 0.577 is the Euler
constant. The corrections δNn calculated from Eqs. (21) and
(22) determine the Rydberg series of the discrete energy levels
ENn adjacent to the size-quantized energy level εN ,

ENn =

⎧⎪⎨
⎪⎩

εN

[
1 − q2

2(n+δNn)2

]
, n = 1,2, . . .

εN√
1+ q2

δ2
N0

, n = 0, (23)
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which allow us to estimate the size of the Coulomb state in
Eq. (A4) r0 � d/|N − σ̃ |πq for n = 1,2, . . . and

r0 = d

|N − σ̃ |π
√

1 − 1

1+ q2

δ2
N0

for n = 0.

Clearly from equations for r0, the existence of the intermediate
matching region d1,2 � y � r0 is provided for excited states
n = 1,2, . . . by the employed above small parameter q � 1
and for the ground state n = 0 by the condition(

1 ± 2x0

d

)
|N − σ̃ |πz0 � 1, i.e., z0 = q

δN0
� 1.

2. Continuous states

Since our approach to determine the wave function of the
continuous states closely resembles that applied above for the
wave functions of the discrete states only the basic points will
be given below. Setting in Eqs. (17) νN = −2ik we obtain{

v
(1)
N+(t)

v
(2)
N+(t)

}
= BN

{
cos ϕ

2 t−
1
2
[
Wκ̃,μ(t) − i

tan ϕ

q
Wκ̃+1,μ(t)

]
−i sin ϕ

2 t−
1
2
[
Wκ̃,μ(t) + i

tan ϕ

q
Wκ̃+1,μ(t)

]
,

(24)

where

t = −2ikNy, kN = 1

p

√
E2 − ε2

N,

tan ϕ = pk

εN

, κ̃ = i
q

sin ϕ
− 1

2
, μ = iq, (25)

B2
N = q2

2πp tan2 ϕ sin ϕ
exp

(
− πq

sin ϕ

)
.

The wave vectors (24) are normalized to δ(E − E′).
At large distances ky � 1 the wave functions (24) have the

asymptotic form of the outgoing waves

v
(1,2)
N+ (y) ∼ exp

{
ikNy + i

q

sin ϕ
ln 2kNy

}
.

Furthermore, we introduce the real wave functions associ-
ated with the standing waves

v
(1,2)
Nout

(t) = DN

[
ei�N v

(1,2)
N+ (t) + e−i�N v

(1,2)
N− (t)

]
, (26)

where the functions v
(1,2)
N− (t) = v

(1,2)∗
N+ (t) have the asymptotic

form of the ingoing waves ∼exp{−iky − i
q

sin ϕ
ln 2ky} and DN

and �N are the arbitrary magnitude and phase, respectively.
Similar to the case of the discrete states on equating the

ratios v
(1)
N (y)/v(2)

N (y) taken for the iteration (15) and outer
functions (26) setting |t | � 1,q � 1,ϕ � 1 [see Eqs. (A7),
(A8), and (A9)] we obtain Eqs. (A10) and then (27) for the
phase �N ,

cot �N =
π
2

(
1 + coth qπ

ϕ

)
ln 2

kD
− 1

2

[
ψ
(
1 + i

q

sin ϕ

)+ ψ
(
1 − i

q

sin ϕ

)]− 2C + 1
.

(27)

As expected, setting in the functions v
(1,2)
Nout

(26) kN = iνN

2
and then matching these functions taken at |t | � 1 with the

iteration functions v
(1,2)
Nit

(15) we obtain the equation for the
phase �N . Substituting this result into equation cot �N = i

determining the poles of the S matrix with S = exp(2i�N )10,29

we arrive at Eqs. (23), (21), and (22) for the discrete energy
levels.

IV. DOUBLE-SUBBAND APPROXIMATION

Below we consider the coupling between the ground
N = 0 and first excited N = 1 states described by the
system of the four upper Eqs. (13) at V−10 = V−11 = 0.

Applying the iteration method with the trial functions v
(1,2)
0 =

a
(1,2)
0 and v

(1,2)
1 = a

(1,2)
1 we arrive at two particular linear

independent four-vectors, having the components v
(1,2)
0,1 cal-

culated for a
(2)
0 = ia

(1)
0 ,a

(2)
1 = ia

(1)
1 and a

(2)
0 = −ia

(1)
0 ,a

(2)
1 =

−ia
(1)
1 . The linear combination of these vectors taken for

a
(2)
0,1 = R0,1 exp

[
i(ζ0,1 − π

2 )
]

provides the general expression
for the iteration four-vector with the components

v
(1)
0it

(y) = R0 sin(Q + ζ0) + R1qγ01 cos ζ1,
(28)

v
(2)
0it

(y) = R0 cos(Q + ζ0) − R1qγ01 sin ζ1,

where R0,1 and ζ0,1 are an arbitrary constant and phase,
respectively. The parameter

πγ0,1 = cos α0

[
Ci

(π

2
+ α0

)
− Ci

(π

2
− α0

)]
+ sin α0

[
Si
(π

2
+ α0

)
+ Si

(π

2
− α0

)]
, (29)

α0 = πx0

d
,

consisting of the integral sine (Si) and cosine (Ci),30 describes
the coupling induced by the potentials V01 = V10 (11). The
functions v

(1)
1in

(y) and v
(2)
1in

(y) can be obtained from the functions

v
(1)
0in

(y) and v
(2)
0in

(y) (28) by mutual replacing R0 ↔ R1.

Matching the ratios of the iteration functions v
(1)
1in

(y)/v(2)
1in

(y)

and the functions of the discrete states (18) v
(1)
1out

(τ )/v(2)
1out

(τ )
and then equating the ratios of the functions of the continuous
spectrum (26) v

(1)
0out

(t)/v(2)
0out

(t) taken at |t | � 1 and the iteration

functions (28) v
(1)
0in

(y)/v(2)
0in

(y) we obtain the set of equations

R0 [sin(χ0 − Q − ζ0) + c0 tan �0 cos(χ0 − Q − ζ0)]

+R1qγ01 [cos(χ0 − ζ1) + c0 tan �0 sin(χ0 − ζ1)] = 0,

R0qγ01 cos(ω1 − ζ0) − R1 sin(ω1 − Q − ζ1) = 0, (30)

where the functions χN, Q, ωN are defined by Eqs. (A9), (15),
and (18), respectively.

Solving the set (30) by the determinantal method we obtain
the equation for �0, which is then expanded in series with
respect to the parameter q � 1. Keeping at ζN = π/2 the
terms of the first order ∼q we arrive at the equation for the
phase �0 in an explicit form

cot �0 = c0
(
ω1 − Q − π

2

)
(
ω1 − Q − π

2

)(
Q − χ0 + π

2

) − q2γ 2
0,1

, (31)
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where ω1 − Q − π
2 coincides with the left-hand side of

Eq. (A6) with the complex corrections δ1N , while Q − χ0 + π
2

is given by the denominator of Eq. (27).
Substituting Eq. (31) into equation10,29,32

cot �0 = i, (32)

the complex quantum numbers η1 introduced in Eq. (17) can
be calculated, which in turn determine the complex energy
levels E1n adjacent to the size-quantized first excited energy
level ε1 = (1 − σ̃ )πp/d,

E1n = ε1 − ε1
q2

2(n + δ1n)2
+ W1n − i

�1n

2
, n = 0, 1, 2, . . . ,

(33)

where the second term on the right-hand side is the Rydberg
series of the energy levels associated with the quasi-Coulomb
diagonal potential V11(y) (14) (no coupling). The following
notations in Eq. (33) for the resonant shift W1n and resonant
width �1n both induced by the intersubband N = 0,1 interac-
tion are used:

�1n = 2ε1
q2

(n + δ1n)3
Gn(δ1n)qγ 2

0,1B0,1 (34)

and

W1n = −ε1
q2

(n + δ1n)3
Gn(δ1n)q2γ 2

0,1A0,1. (35)

In Eqs. (34) and (35),

A0,1 = B2
0,1

(
ln

k0d

2
+ ln

D

d
+ C − 1

)
, B0,1 = 2ε0

pk0
,

G−1
0 (δ10) = δ−1

10 + (
δ2

10 + q2
)−1 −

(
2δ2

10 + 1

2
q2

)−1

,

Gn(δ1n) = δ2
1n + q2, n = 1, 2, . . . ,

where the corrections δ1n can be calculated from Eqs. (A6),
(21), and (22). In the logarithmic approximation q ln q−1 �
1, G0(δ10) = 2δ2

10,Gn(δ1n) = δ2
1n,n = 1,2, . . . . The quantum

number k0 can be found from equation

E2 = ε2
0 + p2k2

0 = ε2
1

[
1 − q2

(n + δ1n)2

]
,

with (7) for ε0,1.
In conclusion of this section, note that the equations

absolutely identical to Eqs. (33)–(35) can be derived by
matching the real iteration functions v

(1,2)
1in

(y) (15) and complex

functions of the continuous states v
(1,2)
0+ (t) (24) having the

asymptotic form of the outgoing wave.

V. THREE-SUBBAND APPROXIMATION

In this section we consider the coupling between the
discrete states adjacent to the highest size-quantized level
ε−1 and and the continuous states attributed to the low-lying
levels ε0 and ε1. Below we neglect in the set (13) the
off-diagonal potentials V01 and V10 describing the interactions
of the N = 0,1 subbands. Extending the iteration proce-
dure employed above for the single- and double-subband
approximation to the present stage with the trial functions

v
(1,2)
N = aN1,2 we arrive at two particular linear indepen-

dent sixfold vectors �V+,−(v(1)
0 ,v

(2)
0 ,v

(1)
1 ,v

(2)
1 ,v

(1)
−1,v

(2)
−1) calcu-

lated for a
(2)
N+,− = ±ia

(1)
N+,−,N = 0,1, − 1. Taking a

(2)
N+,− =

RN exp[±i(ζN − π
2 )], we obtain the components v

(1,2)
N of the

total iteration sixfold vector �Vin = �V+ + �V−,

v
(1)
0in

(y) = R0 sin(Q + ζ0) + R−1qγ0,−1 cos ζ−1,

v
(1)
1in

(y) = R1 sin(Q + ζ1) + R1qγ1,−1 cos ζ−1,
(36)

v
(1)
−1in

(y) = R−1 sin(Q + ζ−1) + R0qγ0,−1 cos ζ0

+R1qγ1,−1 cos ζ1,

where Q(y) is determined in Eq. (15) and RN and ζN are
arbitrary constants and phases, respectively. The parameter
γ0,−1 = γ0,1 (29), while

2πγ1,−1 = cos 2α0 [−Si(π + 2α0) − Si(π − 2α0)]

+ sin 2α0 [Ci(π + 2α0) − Ci(π − 2α0)] , (37)

α0 = πx0

d

describes the coupling induced by the potentials V−11 =
V1−1 (11). The functions v

(2)
Nit

(y) can be obtained from the

functions v
(1)
Nit

(y) (36), respectively, by replacing sin(Q +
ζN ) by cos(Q + ζN ), cos ζN by sin ζN, and q by − q.

As mentioned above, we match the wave functions of the
continuous spectrum v

(1,2)
N (y), N = 0,1 having the asymptotic

form of the outgoing wave v
(1,2)
N+ (24) to give in turn at |t | � 1

the sixfold vector �Vout with the components

v
(1)
Nout

(y) = (1 + cN ) exp [i (q ln 2kNy + ξ+)]

− (1 − cN ) exp [−i (q ln 2kNy + ξ−)] , (38)

N = 0, 1,

where cN and ξ+,− are given in Eqs. (A9) and (A7),
respectively. The wave functions v

(2)
Nout

(y), N = 0, 1 can be

obtained from the functions v
(1)
Nout

(y) (38), respectively, by

replacing ξ+,− by ξ+,− + π
2 . The wave functions v

(1,2)
−1out

(y) have
the form (18), in which νN (17) and �N (19) are calculated
for N = −1.

Matching the sixfold wave vectors �Vin and �Vout within the
intermediate region by imposing the conditions

v
(1)
Nout

v
(2)
Nout

= v
(1)
Nin

v
(2)
Nin

, N = 0, 1, − 1, (39)

where v
(1,2)
Nout

are given by Eqs. (38) and (17) and v
(1,2)
Nin

by
Eqs. (36) we obtain the set of algebraic equations (A11) for
the coefficients RN,N = 0, 1, − 1 analogous to set (30).

Solving this set (A11) by the determinantal method we
obtain the equation for the complex quantum numbers η−1 =
2qE/pν−1 (17), in which we take for the phases ζN = π

2 , N =
0, 1, − 1 and keep the terms of the first order of q � 1,

ω−1 − Q − π

2
= q2

∑
N=0,1

γN,−1(qAN,−1 + iBN,−1), (40)

with

AN,−1 = B2
N,−1

(
ln

kNd

2
+ ln

D

d
+ C − 1

)
, BN,−1 = 2εN

pkN

,
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and the quantum numbers k0,1 obtained from

E2 = ε2
0 + p2k2

0 = ε2
1 + p2k2

1 = ε2
−1

[
1 − q2

(n + δ−1n)2

]
,

with (7) for ε−1.
The complex quantum numbers η−1 calculated from

Eq. (40) lead to the complex impurity energy levels adjacent
to the size-quantized second excited subband ε−1,

E−1n = ε−1 − ε−1
q2

2(n + δ−1n)2
+ W−1n − ı

�−1n

2
,

(41)
n = 0, 1, 2, . . . ,

where the resonant width �−1n and shift W−1n have the form

�−1n = 2ε−1
q2

(n + δ−1n)3
Gnq

(
γ 2

1,−1B1,−1 + γ 2
0,−1B0,−1

)
(42)

and

W−1n = −ε−1
q2

(n + δ−1n)3
Gnq

2
(
γ 2

1,−1A1,−1 + γ 2
0,−1A0,−1

)
.

(43)

The coefficients Gn are defined in Eqs. (34) and (35).

VI. DISCUSSION

A. The binding energies

We define the binding energy of the electron E
(b)
Nn in the

nth quasi-Coulomb state associated with the N size-quantized
subband as the real part of the difference between the size-
quantized energy εN (7) of the free electron and the energy
of the impurity electron ENn given by Eqs. (23), (33), and
(41) for the ground N = 0, first N = 1, and second N = −1
excited subbands, respectively. Since the resonant shifts WNn

(35) and (43) are of the order of q2 � 1 (W0n = 0) with respect
to the Rydberg energies determined by the second terms on
the right-hand side of Eqs. (23), (33), and (41) the binding
energies read

E
(b)
Nn =

⎧⎪⎪⎨
⎪⎪⎩

εN
q2

2(n+δNn)2 , n = 1, 2, . . . ,

εN

[
1 − 1√

1+ q2

δ2
N0

]
, n = 0,

(44)

where the corrections δNn can be calculated in the single-
subband approximation from Eqs. (21) and (22) for the ground
n = 0 and excited n = 1, 2, . . . impurity states, respectively.
It follows from Eqs. (44) and (7) that the binding energy
E

(b)
Nn ∼ εN ∼ d−1 oscillating decreases with increasing the

ribbon width d. The oscillations are caused by the dependence
σ̃ (d) in (7). In an effort to render our calculations close to
an experimental setup, we take below for the estimates of
the expected values the parameters q = 0.13 (ε � 25)33 and
q = 0.24 (ε � 10) corresponding to the HfO2 and sapphire,
respectively, employed as substrates for GNR.34 The latter
parameter q is close to the limit caused by the condition z0 � 1
[see below Eq. (23)]. Furthermore, we focus on the monotonic
dependence ∼d−1 and keep the the parameter σ̃ in Eq. (7) for
the levels εN to be σ̃ � 0.3.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

FIG. 2. (Color online) The binding energy E
(b)
0n (44) of the ground

state n = 0 calculated for (q = 0.13, 0.24) as a function of the
reciprocal width 1

d
of the GNR. Impurity is placed symmetrically

to the boundaries (x0 = 0). The parameter σ̃ = 0.3.

The dependencies of the binding energies on the width
of the GNR d for the ground state for different strengths
of the impurity potential are given in Fig. 2. These graphs,
while ignoring the oscillations, are qualitatively completely
in line with the data of the numerical calculations and
experimental observations recently performed with the related
Coulomb systems. The exciton effects in the armchair GNRs
were studied in frame of the tight-binding model35 and
density functional theory,36 while Han et al.34 investigated
experimentally the influence of the localized states in GNRs
on the electron transport. The relation E(b) ∼ d−1 including
oscillations35,36 have been found to occur. The differences
between the impurity states considered here and the exciton
and localized states prevent us from a detailed quantitative
comparison.

The Coulomb pattern of the energy levels (23) enables us to
introduce the effective Rydberg constant RyN , the Bohr radius
a0N , and the mass MN for the impurity electron in GNR

RyN = q2|N − σ̃ |πp

2d
, a0N = d

π |N − σ̃ |q ,

MN = |N − σ̃ |πh̄2

pd
.

which additionally illustrate the physical reason of the bonding
of the impurity electron, namely the quasi-1D geometry of
the GNR. Note that the bound states arise at any finite
width d < ∞. This result is qualitatively analogous to the
effect of antidiamagnetism caused by the influence of the
magnetic field on the weakly bound atomic state. Demkov and
Drukarev19 considered the 3D potential well of small radius
and depth to provide the capturing of the electron. It was
shown that the arbitrarily weak magnetic field B induces the
bound electron state with the binding energy E(b) ∼ a−2

B [aB =
(h̄/eB)1/2 is the magnetic length]. The common reason for
this is that the finite width d < ∞ and magnetic length aB <

∞ transform the graphene monolayer and atomic structure,
respectively, into the quasi-1D systems, which are more favor-
able to generate bound states. The dependencies E(b) ∼ a−2

B
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FIG. 3. (Color online) The dimensionless binding energy Ẽ
(b)
N0 =

E
(b)
N0/πpd−1 calculated from (44), (21), and (7) with q = 0.20 for

the ground state (n = 0) plotted as a function of the effective index
of the corresponding subband v = |N − σ̃ | and the relative impurity
position s = 2x0

d
in the GNR of width d .

and E(b) ∼ d−1 correspond to the different dispersion laws,
namely E(b) ∼ p2 and E(b) ∼ p (p � h̄/r is the momentum)
for the atomic (r � aB) and GNR (r � d) electron,
respectively.

The dependence of the binding energy E
(b)
Nn (44) on the

displacement of the impurity center x0 from the midpoint of the
ribbon x = 0 is contained in the corrections δNn(x0), namely
in the term ln Dd−1 in Eqs. (21) and (22), while E

(b)
Nn as a

function of the effective number of the subband |N − σ̃ | is
given by the subband threshold εN (7) mainly and the term
ln |N − σ̃ | in the correction δNn. The dimensionless binding
energy E

(b)
N0/πpd−1 as a function of the effective quantum

number |N − σ̃ | and relative displacement x0/(d/2) for the
ground n = 0 state is depicted in Fig. 3. Clearly the higher
the subband, that is, the greater the value |N − σ̃ | is, the less the
binding energy E

(b)
N0. Also the binding energy decreases when

the impurity shifts from the midpoint of the ribbon towards
the boundaries. The latter conclusion coincides with those
obtained for the quantum well in Refs. 37–41.

B. The resonant widths

The interband coupling shifts the strictly discrete excited
Rydberg series ENn (N �= 0) (23) calculated in single-subband
approximation by an amount WNn (35) N = 1, and (43)
N = −1 and transforms them to the quasidiscrete levels
of width �Nn (34) N = 1, and (42) N = −1. Note that
the conclusions made on the base of the first and second
excited subbands can be qualitatively extended to others. Since
the resonant shifts WNn ∼ q2 first are much less than the
resonant widths �Nn ∼ q at q � 1 (WNn � �Nn) and second
the resonant shifts do not change the discrete character of
the energy spectrum (23) we focus on the widths �Nn. It is
clear from Eqs. (34) and (42) that the widths �Nn ∼ εN ∼ d−1

increase with decreasing the ribbons width d. Note that this
dependence is opposite to that in a semiconductor narrow
quantum well: The narrower the well is the less are the resonant
widths.27,38,42 The reason for this is that in the quantum

0.0 0.1 0.2 0.3 0.4 0.5
0.000

0.010

0.020

0.030

FIG. 4. (Color online) The resonant width �10 (34) of the ground
impurity state (n = 0) relative to the corresponding threshold ε1 (7)
(�̃10 = �10/ε1) versus the relative impurity position s = 2x0

d
in the

GNR of width d providing the parameter σ̃ = 0.3. The parameter q

is taken to be q = 0.13,0.24.

well the resonant width �Nn ∼ E
(b)
Nn(E(b)

Nn/�εN )2, where the
impurity Rydberg constant Ry � E

(b)
Nn and the binding energy

E
(b)
Nn do not depend on the well width d, while the interband

energy distance �εN ∼ d−2 increases and consequently the
resonant width decreases with the narrowing of the quantum
well. For the ribbon E

(b)
Nn ∼ εN ∼ �εN ∼ d−1 (44) and the

intersubband coupling do not depend on the ribbon width d

and �Nn ∼ E
(b)
Nn ∼ εN ∼ d−1.

The dependence of the resonant widths �1n(x0) (34),
calculated in the double-subband approximation, on the
position of the impurity center x0 is described by the coupling
parameter γ01 (29) and the corrections δ1n (21) and (22).
The dependencies of the relative resonant widths �1n/ε1 (34)
on the dimensionless shift s = 2x0/d for the ground n = 0
state are presented in Fig. 4, in which the limitation on the
parameter s are caused by the condition imposed on z0 placed
below Eq. (23). For the impurity positioned at the midpoint
of the ribbon x0 = 0 the resonant width and shift both vanish
[�1n(0) = W1n(0) = 0] because of the even x parity of the
Coulomb potential V ( �ρ) (2) in Eq. (11) and opposite parities
of the neighboring N = 0,1 transverse x states to give V01 =
γ0,1 = 0. Both in the quantum well and in the ribbon the shift of
the impurities from their midpoints eliminates the even x parity
of the potential V ( �ρ) (2) in Eq. (11), that leads to the coupling
between the N = 0 and N = 1 subbands. If the impurity
displaces from the midpoint towards the boundaries |x0| =
d/2 the resonant widths �1n (34) monotonically increases.
This correlates completely with the analogous dependence
found for the impurity states in the semiconductor quantum
well.27,38,42 For small shifts α0 � 1 in Eq. (29) we obtain for
the parameter γ0,1 in Eqs. (34) γ0,1 = ( 2

π
)Si( π

2 )α0 � 1, while
for the impurity positioned close to the ribbon edge x0 � d

2 we
obtain γ0,1 = 1

π
Si(π ) with Si(π

2 ) = 1.37, Si(π ) = 1.85. Note
that the zeroth width of the first excited (N = 1)n series in case
of the symmetrical x0 = 0 impurity position is a consequence
of the double-subband approximation. In the multisubband
approximation the levels of the above mentioned series would
acquire finite widths.

The dependence of the resonant widths (42) of the impurity
states corresponding to the second excited subband N = −1
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FIG. 5. (Color online) The resonant width �−10 (42) of the ground
impurity state (n = 0) relative to the corresponding threshold ε−1 (7)
(�̃−10 = �−10/ε−1) versus the relative impurity position 2x0

d
in the

GNR of width d using the parameter value σ̃ = 0.3. The parameter
q is taken to be q = 0.13, 0.24.

on the position of the impurity center is completely differ-
ent from that related to the first excited subband N = 1.
Equation (42) shows that contributions to the resonant widths
�−1n are caused by the coupling with the subbands N =
0 (∼γ 2

0,−1) (29) and N = 1 (∼γ 2
1,−1) (37). Note that the

estimated contribution to the resonant width �−1n caused
by the neglected coupling between the N = 0 and N =
1 subbands is of the order of qγ 2

01 � 1. In the vicinity
of the midpoint (|x0| � d/2,α0 � 1) the subband N =
1 contributes mostly [γ0,−1 � 0,γ1,−1 � − 1

π
Si(π )], while

for |x0| � d/2,α0 � π/2 both subbands contribute γ0,−1 �
1
π

Si(π ),γ1,−1 � 1
2π

Si(2π ). The position of the impurity x̄0 =
d
π
ᾱ0, at which the effects of the subbands N = 0 and N = 1

on the resonant width �−1n are in balance, is determined by
the root ᾱ0 of the equation

γ 2
1,−1B1−1 = γ 2

0,−1B0−1,

to give the result ᾱ0 = 0.58,x̄0 = 0.37 d
2 . The coupling be-

tween the subbands N = −1 and N = 1 provides the nonzero
widths �−1n and shifts W−1n for any positions x0 of the
impurity. The width �−10 as a function of the impurity shift
x0 is given in Fig. 5 demonstrating the monotonic drop within
the same regions as those corresponding to Fig. 4.

Our results related to the resonant widths completely
correlate with those derived from the Fano theory.24 Following
the Fano method the resonant widths of the impurity states
adjacent to the first excited subband N = 1 can be calculated
from

�1n = 2π |〈 �V0|V̂10| �V1〉|2,
where V̂10(y) = iσyV10(y) [see set (13) and Eq. (11) for V10(y)]
and where �V0(y) (24) and �V1(y) (17) are the twofold vectors
describing the initially degenerate continuous and discrete
states, respectively. It is found that the resonant width �1n

derived from the Fano approach coincides with that given by
Eq. (34) to the insignificant numerical factor of the order of
unity.

As mentioned above, the presented method is valid under
the conditions q � 1 for the excited impurity states n =
1,2, . . . and z0(q) � 1 (21) for the ground state n = 0. Under
these conditions the radius of the impurity state considerably

exceeds the width of the GNR so that the ribbon is narrow
compared to the impurity size. However, the previous calcula-
tions related to the ground state of the quasi-1D diamagnetic
exciton43 and present estimates show that a reasonably small
parameter q leads to values z0 < 1, which provide a quite
accurate and adequate description of the ground impurity state
in GNR.

Taking into account possible experiments we estimate the
expected electron binding energy for the impurity center
placed at the middle point of the GNR of width 1 nm
on the sapphire substrate as E

(b)
00 � 160 meV and on the

HfO2 substrate as E
(b)
00 � 68 meV. This is less than the data

attributed to the SiO2 substrate (ε = 3.9) because of the
relatively small screening of the impurity potential. Also an
estimate of the lifetimes τNn = h̄/�Nn yields for the impurity
positioned at the midpoint of the GNR τ−10 � 0.21 and
0.049 ps for the HfO2 and sapphire substrate, respectively.
For the SiO2 substrate the screening of the impurity attraction
is less, the lifetime is reduced, and therefore less favorable
for a corresponding experimental observation. A shift of the
impurity center |x0| � 0.4d/2 generates lifetimes τ10 of the
same order as τ−10 at x0 = 0. The electrons captured onto
such short-lived trap states will most likely contribute to the
dc transport. However, the high-frequency response of such
electrons may reveal the signatures of localization.

Clearly the above considered quasi-Rydberg series (23) do
not cover the total set of discrete states. The oscillations of the
wave functions (15) and (18) caused by the logarithmic term
are an indicator of additional energy levels positioned below
the series (23). Since the possible strong shift of these levels
away from the threshold εN is against the spirit of the employed
adiabatic perturbation theory (q � 1) describing the shallow
energy levels, we are limited to qualitative estimates based on
the quasiclassical relativistic approach9 and Ref. 44.

In an effort to elucidate the origin of this additional series let
us consider the so called “logarithmic” energy levels governed
by the logarithmic potential (14) taken for d1 = d2 = d (x0 =
0). These levels can be calculated from the Bohr-Sommerfeld
quantization rule

∫ y0

0
P(y)dy = πh̄

(
n + 1

2

)
, n = 0,1,2, . . . , (45)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.0

0.2

0.4

0.6

FIG. 6. (Color online) The dimensionless binding energy Ẽ
(b)
00 =

E
(b)
00 /ε0 of the quasiclassical ground state (N = n = 0) found from

(47) for E00 and from (7) with σ̃ = 0.3 for ε0 versus the parameter q.

245404-10



BOUND AND RESONANT IMPURITY STATES IN A . . . PHYSICAL REVIEW B 86, 245404 (2012)

where P(y) and y0 � d are the classical relativistic momen-
tum and turning point, respectively, with

P2(y) = 1

v2
F

[(
E − 2

β

d
ln

y

d

)2

− ε2
N

]
,

(46)
P(y0) = 0.

Equation (45) admits an exact solution which provides for
the energies

ENn = 2p

d
q

[
ln

(n + 1
2 )

|N − σ̃ | − ln K1(sN )

]
,

(47)

sN = εNd

2pq
= |N − σ̃ |π

2q
,

where K1(s) is the modified Bessel function.30

The binding energy E
(b)
Nn = εN − ENn with ENn calculated

from (47) reads E
(b)
Nn ∼ q ln q both for q � 1 (sN � 1) and

for q � 1 (sN � 1,| ln q| � 1). It follows that the weakness
of the logarithmic singularity and smallness of the strength
of the impurity potential (q � 1) seems not to provide the
bonding of the quasiclassical relativistic electron (E(b)

Nn < 0),
while a sufficiently strong attraction (q � 1) could produce
a localized impurity state (E(b)

Nn > 0). The dependence of the
binding energy of the quasiclassical ground state (N = n = 0)
found from (47) on the parameter q is depicted in Fig. 6.
The ground logarithmic level arises at the critical value
q0 � 0.48 and shifts towards lower energies to provide for
the binding energy 0.1 < E

(b)
00 /ε0 < 0.5 for 0.54 < q < 0.74.

The above can be considered as no more than only a qualitative
evidence of existence of such additional states in GNR that
have transformed from the collapsed states in the graphene
monolayer governed by the 2D impurity potential ∼−r−1.9

Though the logarithmic and quasi-Rydberg levels in principle
correspond to the same region of the parameter q < 1, any
numerical comparison between the results for the quasi-
Rydberg series based on the Dirac equation and those for
the logarithmic levels derived from the quasiclassical method
applied moreover to the ground state seems to be incorrect. The
total set of the impurity states in GNR requires a further study
of Eqs. (10) with the potential (11), having the logarithmic
singularity in the vicinity of the impurity center.

Below we demonstrate that the method developed above
and the obtained results can be extended to various related
problems. In particular, the transmission probability of the
impurity electron determining the conductance in GNR is
calculated by solving the problem of the 1D scattering of the
electron of the energy E in the presence of the potentials (11).
On matching the wave vector having at y < 0 the asymptotic
forms of the sum of the ingoing (24) and reflected waves
with the wave vector (28) continued to the region y < 0 and
the wave vector of the outgoing wave (24) with the wave
vector (28) at y > 0 we arrive at the transmission coefficient
T = 1

2 (S − 1), where S = exp(2i�0) is given by Eq. (31).
For the energies ε0 < E < ε1 between the ground ε0 and first
excited ε1 size-quantized energy levels (7) except the very
narrow region E − ε0 � q2ε0 slightly above the energy ε0 the

probability of transmission |T |2 reads

|T |2 = 1 − sin2 �
(0)
0 +

(
�1n

2

)2

(�E)2 + (
�1n

2

)2

− �1n

(
�E sin �

(0)
0 + �1n

2 cos �
(0)
0

)
(�E)2 + (

�1n

2

)2 cos �
(0)
0 . (48)

Since the adiabatic parameter q � 1 provides the small phase
�

(0)
0 < 1 we have to set in Eq. (48)

sin �
(0)
0 � �

(0)
0 = E

pk
2q

(
ln

2

kD
+ 1 − C

)
, cos �

(0)
0 � 1,

E2 = ε2
0 + p2k2,

and �E = E − E1n is the deflection of the energy E from
the resonant impurity level E1n � ε1[1 − q2/2(n + δ1n)2],n =
0,1 . . . (33) having the width �1n (34). In Eq. (48) the term
1 − sin2 �

(0)
0 corresponds to the potential scattering, the next

term describes the resonant Breit-Wigner scattering on the
quasidiscrete state (33) and the latest one contributes to their
interference.

Equation (48) allows us to elucidate the dependence of
the probability of transmission |T |2 on the energy E of the
electron. At the exact resonance of the quasidiscrete state
(�1n �= 0,�E = 0) the probability |T |2 � �

(0)2
0 is minimal,

while for the resonance on the strictly discrete state (�1n =
0,�E = 0) Eq. (48) gives considerable probability |T |2 �
1 − �

(0)2
0 . Note that the last case corresponds to the position

of the impurity at the midpoint x0 = 0 of the ribbon for which
the resonant widths �1n = 0. Thus the resonant character
of the impurity states modifies strongly the transport properties
of the GNRs. Small deviations from the resonant energy �E �
1
2�1n increase the probability up to the value |T |2 � 1

2 − �
(0)
0 .

Moderate deflection �E � 1
�

(0)
0

�1n leads to the growth of the

probability |T |2 � 1 − (�(0)
0 + �1n

2�E
)2. For the energies close

to the ground size-quantized level ε0 and positioned far away
from the resonant levels E1n (�E � 1

�
(0)
0

�1n) the scattering

has potential character with the significant probability |T |2 �
1 − �

(0)2
0 . In summary, if the energy of the impurity electron

E > ε0 increases the probability of transmission |T (E)|2
decreases and then transforms into the sequence of the
oscillations, having the resonant minima of widths �1n at the
energies E1n.

The Coulomb dimensionless parameter q = 0.24 and
a GNR of width d = 1 nm containing an impurity dis-
placed from the center at x0 = 0.5 1

2d are chosen for the
estimates of the expected experimental values |T (�E)|2
in the vicinity of the ground quasidiscrete level E10. We
find that |T |2min = |T (0)|2 = 0.01, |T (�10

2 )|2 = 0.40 (�10 �
45 meV), |T (3.3�10

2 )|2 = 0.85, and for the energies E � ε0

away from the resonant impurity level E10 |T |2 � 0.96. It is
intuitively clear that Eq. (48) in principle can be extended
to describing resonant transmission with the probability
|T (El)|2 = 1. The corresponding resonant energies extracted
from the continuous spectrum ε0 < E < E1n can be found
from the condition �

(0)
0 = lπ, l = 1,2, . . . . It requires the

extension of the phase �
(0)
0 < 1 calculated in the adiabatic
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approximation (q � 1) to the resonant values �
(0)
0 � π . An

adequate approach taking into account comparable effects due
to the ribbon confinement and the impurity potential q � 1 is
of interest to further investigations.

VII. CONCLUSION

We have developed an analytical adiabatic approach to
the problem of bound and metastable (Fano resonances)
quasi-Coulomb impurity states in a narrow gapped armchair
graphene nanoribbon (GNR). The width of the GNR is taken
to be much less than the radius of the impurity. This adiabatic
criterion implies a variable width of the GNR and simulta-
neously the smallness of the Coulomb interaction relative to
the size-quantized energy induced by the GNR. The energy
spectrum of the impurity electron is a sequence of the series of
the quasi-Rydberg discrete and resonant states adjacent to the
ground and excited size-quantized subbands, respectively. The
binding energies and the resonant widths and shifts attributed
to the intersubband coupling are calculated in an explicit form
in the single- and multisubband approximation, respectively.
The binding energies and the resonant widths both increase
with decreasing the GNR width. As the impurity center
displaces from the midpoint of the GNR the binding energies
decrease, while the resonant widths of the quasi-Rydberg
series associated with the first/second excited subbands in-
crease/decrease, respectively. Our analytical results are in
complete agreement with those found by other theoretical
approaches and in particular numerical studies. Estimates
of the expected values show that the bound and metastable
impurity states in GNR can be observed experimentally.
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APPENDIX

1. Inner region

The first integration of the set (10), in which we neglect
the terms consisting of the energies εN and E, with the trial
functions v

(1)
N0 = a

(1)
N , v

(2)
N0 = a

(2)
N gives

v
(1)
N1(y) = a

(1)
N − a

(2)
N

q

2d
[d1F (f1) + d2F (f2)] , f1,2 = 2y

d1,2
,

(A1)

where

F (f ) = f ln

√
1 + f 2 − 1

f
− arshf

=
{

f
(

ln |f |
2 − 1

)
, |f | � 1

− f

|f | (ln 2|f | + 1), |f | � 1,

and where

q = β

p
= Ze2

4πε0εeffh̄vF

(q � 1).

The function v
(2)
N1(y) can be obtained from Eq. (A1) by

replacing a
(1)
N by a

(2)
N and a

(2)
N by −a

(1)
N . Subsequent integration

leads to the two independent particular solutions {v(1)
N+,v

(2)
N+}

and {v(1)
N−,v

(2)
N−} corresponding to the relationships a

(2)
N =

±ia
(1)
N . The linear combination of these solutions provides the

general iteration functions, which read in the region y � d1,2

acquires the form (15).
Obviously an alternative way to derive Eq. (15) is to solve

Eqs. (10) for VNN (y) = −β|y|−1, εN = E = 0 and then to
compare the resulting solutions v

(1,2)
N+,−(y) ∼ Ay±iq , expanded

in series up to the terms of the first order of q, with those
given by Eqs. (A1). The calculated constant A leads to the
functions (15).

2. Single-subband approximation: Discrete states

The Whittaker function Wκ,μ can be expressed in terms of
the Kummer function U 30

Wκ,μ(τ ) = e− τ
2 τ

1
2 +μU (a,c,τ ),

(A2)
a = 1

2 + μ − κ, c = 1 + 2μ,

with31

U (a,c,τ )

=
{

τ−a, τ � 1
�(1−c)

�(a−c+1) + �(c−1)
�(a) τ 1−c, Rec = 1, c �= 1, τ � 1.

(A3)

The asymptotic behavior of the outer functions (17) at large
distances y � r0 follows from Eqs. (17), (A2), and (A3)

v
(1,2)
N (y) ∼ exp

(
− y

r0
+ ηN ln

2y

r0

)
, r0 = 2

νN

. (A4)

The matching condition (20) yields

ωN − Q − ζN = sπ, s = 0, ± 1, ± 2, . . . . (A5)

Using the properties of the arguments of the � functions in
Eq. (19) for a small parameter q � 1 and for the quantum
numbers ηN = n + δNn, n = 0,1,2, . . . ,δNn < 130 (see also
Refs. 11 and 13 for details) and choosing ζN = π/2 we arrive
at the equations for the corrections δNn,

ln q + 1

q

[
arctan

q

δNn

− arctan
q

2(n + δNn)

]
− ln(n + δNn)

+ψ(1 + n) + ln
|N − σ̃ |πD

2d
+ 2C − 1 = 0, (A6)

which in turn leads to Eqs. (21) and (22).

3. Single-subband approximation: Continuous states

In the region |t | � 1 Eqs. (24), (A2), and (A3) lead to

v
(1)
Nout

(t) = DN

[
eq π

2
M(ϕ)

|�+| cos (�N + q ln |t | + ξ+)

− e−q π
2
M(−ϕ)

|�−| cos (−�N + q ln |t | + ξ−)

]
, (A7)
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where

�+,− = �

[
−iq

(
1

sin ϕ
± 1

)]
,

ξ+,− = arg �(−2iq) ∓ arg �+,−,

M(ϕ) = sin ϕ

2 + cos ϕ

2

1 + sin ϕ
.

The wave functions v
(2)
Nout

(t) can be obtained from Eq. (A7) by
replacing DN by −DN and ξ+,− by ξ+,− − π/2.

For q � 1,ϕ � 1 the wave functions (A7) read

v
(1)
Nout

(t) = DN [sin χN − cN cot �N cos χN ] ,
(A8)

v
(2)
Nout

(t) = DN [cos χN + cN cot �N sin χN ] ,

with

χN = q ln |t | + 1
2 (ξ− + ξ+), �N = �N − 1

2
(ξ− − ξ+),

(A9)

cN = q
π

2

(
1 + coth

qπ

ϕ

)
.

Similar to the case of the discrete states on equating the
ratios v

(1)
N (y)/v(2)

N (y) taken for the iteration (15) and outer (26)
functions for |t | � 1, q � 1, ϕ � 1 we obtain the equation
for the phase �N ,

cot �N = 1

cN

tan(χ − Q − ζN ). (A10)

Since30

1

2
(ξ− − ξ+) = π

2
− �(0), �(0) =

∞∑
j=1

(
q

jϕ
− arctan

q

jϕ

)
,

Eq. (A10) acquires for ζN = π/2 an explicit form (27).
Since at q � 1 the phase �(0) = 1

3ζ (3) q3

ϕ3 [ζ (s) is the Riemann
ζ function with ζ (3) = 1.20] is the value of the higher order
of smallness ∼q3 � 1 we set in Eq. (27) �(0) = 0.

4. Multisubband approximation

Matching the sixfold wave vectors �Vin and �Vout within the
intermediate region by imposing the conditions (39), where
v

(1,2)
Nout

are given by Eqs. (38) and (17) and v
(1,2)
Nin

by Eqs. (36)
we obtain the set of algebraic equations:

R0[A(−)
0 cos(Q + ζ0) − iA

(+)
0 sin(Q + ζ0)]

−R−1qγ0,−1[A(−)
0 sin ζ−1 + iA

(+)
0 cos ζ−1] = 0,

R1[A(−)
1 cos(Q + ζ1) − iA

(+)
1 sin(Q + ζ1)]

(A11)
−R−1qγ1,−1[A(−)

1 sin ζ−1 + iA
(+)
1 cos ζ−1] = 0,

R−1 sin(ω−1 − Q − ζ−1) − R1qγ1,−1 cos(ω−1 − Q

−ζ1) − R0qγ0,−1 cos(ω−1 − Q − ζ0) = 0.

In Eqs. (A11)

A
(+,−)
N = (1 + cN ) exp[i(q ln 2kNy + ξ+)]

± (1 − cN ) exp[−i(q ln 2kNy + ξ−)]

and Q(y) and ω−1(y) are introduced by Eqs. (15) and (18)
for N = −1, respectively. Solving the set (A11) by the
determinantal method we obtain Eq. (40) for the complex
quantum numbers ηN = 2qE/pν−1 (17), in which we took
for the phases ζN = π

2 , N = 0, 1, − 1 and kept the terms of
the first order of q � 1.
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