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We develop a kinetic equation description of Coulomb drag between ballistic one-dimensional electron systems,
which enables us to demonstrate that equilibration processes between right- and left-moving electrons are
crucially important for establishing dc drag. In one-dimensional geometry, this type of equilibration requires
either backscattering near the Fermi level or scattering with small-momentum transfer near the bottom of the
electron spectrum. Importantly, pairwise forward scattering in the vicinity of the Fermi surface alone is not
sufficient to produce a nonzero dc drag resistivity ρD, in contrast to a number of works that have studied Coulomb
drag due to this mechanism of scattering before. We show that slow equilibration between two subsystems of
electrons of opposite chirality, “bottlenecked” by inelastic collisions involving cold electrons near the bottom of
the conduction band, leads to a strong suppression of Coulomb drag, which results in an activation dependence
of ρD on temperature, instead of the conventional power law. We demonstrate the emergence of a drag regime in
which ρD does not depend on the strength of interwire interactions, while depending strongly on the strength of
interactions inside the wires.
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I. INTRODUCTION

A remarkable property of a system of two conductors placed
in proximity to each other is the occurrence of the phenomenon
of Coulomb drag. This consists of inducing an electric field or
current in one of the conductors by sending a current through
the other, with the friction force being due to electron-electron
interactions, in the absence of transfer of electrons between the
two subsystems. As such, Coulomb drag is a sensitive probe
of electron-electron correlations and, specifically, of inelastic
electron-electron scattering.

The key quantity describing friction is the drag resistivity
ρD conventionally defined for two homogeneous conductors
parallel to each other as

ρD = −E2/j1, (1.1)

where j1 is the electric current density in (“active”) conductor
1 and E2 is the electric field applied to (“passive”) conductor 2
to compensate for the friction force under the condition that no
current flows in the passive conductor. Since its prediction1,2

a third of a century ago, for two-dimensional geometry of
two parallel conducting sheets, Coulomb drag has been exten-
sively studied experimentally in double-layer semiconductor
structures,3–9 also in a transverse magnetic field.10–18 Recent
experimental work has addressed a similar phenomenon in
double-layer graphene.19–21 In one-dimensional geometry, a
number of experiments have explored Coulomb drag between
quantum wires.22–26 Drag experiments have also been done
on electron systems of other geometry: between two- and
essentially three-dimensional electron systems27 or between
quantum-point contacts.28

A. “Orthodox theory”

A great deal of understanding of the mechanism of
Coulomb drag has been achieved by calculating the friction
force perturbatively, at second order, in the dynamically
screened interaction V12(ω,q) between two two-dimensional

electron systems (“orthodox theory”).3,29–32 Within this frame-
work, Coulomb drag is represented as rectification of nonequi-
librium current fluctuations induced in the passive layer and,
consequently, the linear-response resistivity ρD is related to
dynamical correlations in thermal fluctuations of the electron
densities in different layers at equilibrium. Equivalently, ρD

within the orthodox theory is proportional to the rate of
momentum transfer between the layers at order V 2

12. One
important result of the orthodox theory is that ρD at order V 2

12
scales with temperature T in the limit of small T as T 2 (for
ballistic electron systems,3,29–31 or as T 2 ln T in the diffusive
limit30,31). The power-law vanishing of ρD as T decreases is
associated with the constraints on the phase space available
for inelastic electron-electron scattering.

To the best of our knowledge, in all works where Coulomb
drag in two-dimensional systems was studied within the
framework of the orthodox theory, ρD was derived under
the tacit assumption that the intralayer relaxation processes
(determined, e.g., by disorder) are faster than the processes of
momentum transfer between the layers. Within the kinetic
equation approach, which we employ in this paper, this
condition implies that an iterative solution29 of the kinetic
equation (equivalent, in the diagrammatic language, to the
evaluation of the Aslamazov-Larkin–type diagrams31,32) is
justified. A delicate point here is that the resulting drag
resistivity in the presence of disorder does not necessarily
depend on the strength of disorder, which might seem to
imply that the thus obtained ρD describes the clean limit
as well. However, in the absence of relaxation processes
induced by disorder or inelastic intralayer interactions, the
nonequilibrium part of the electron distribution function is
governed by interactions between the layers, so that the
lowest-order expansion in the interlayer collision integral,
assumed in the orthodox theory, is generally not sufficient.
Therefore, the orthodox theory should not be expected to be
generically valid in the clean limit, even for an arbitrarily weak
interaction between the conductors. One particular example
that demonstrates a dramatic departure from the orthodox
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theory in the clean case is Coulomb drag between ballistic
quantum wires, addressed in this paper.

The orthodox theory also explicitly points to the important
role of electron-hole asymmetry in a degenerate Fermi gas,
in the absence of which the electron and hole contributions
to ρD at order V 2

12 cancel each other. The cancellation33 has
the consequence that, in the case of particle-hole asymmetry
produced by a finite curvature 1/m of the electron dispersion
relation, where m is the electron mass, ρD is small in the
parameter (T/εF )2 with εF being the Fermi energy. In the
diffusive case, ρD for sufficiently small transferred momenta
can be directly related at order V 2

12 to the dependence of the
local conductivity on the local electron density,34,35 absent in
the particle-hole-symmetric case.

Apart from a nonzero curvature 1/m, particle-hole asym-
metry can also result from the energy dependence of the
electron density of states in the vicinity of εF . The latter
contribution to Coulomb drag is important in the presence of
a transverse magnetic field35,36 because of the modification
of the density of states by Landau quantization. It is also
important in two-dimensional electron systems with a linear
dispersion relation (1/m = 0), in which the density of states
varies linearly with energy, in particular, in graphene.37

Particle-hole symmetry in two dimensions is realized in
graphene at the charge-neutrality point, where the orthodox
theory gives zero ρD. Therefore, possible deviations from
the orthodox theory in the vicinity of this point in graphene
become particularly important.38 The prevailing notion that
Coulomb drag is entirely due to particle-hole asymmetry is
justified in the case of a disordered two-dimensional electron
system only at order V 2

12. Beyond the golden-rule level, already
at third order in V12, rectification of interaction-induced current
fluctuations in a diffusive double-layer system yields nonzero
ρD even in a particle-hole-symmetric system.39

B. Coulomb drag in one dimension: Backward scattering

In one-dimensional geometry, the connection between
Coulomb drag and particle-hole asymmetry is subtler. Pro-
cesses of electron scattering due to interwire interaction
separate into two classes: backscattering, in which an electron
changes its chirality, and forward scattering, in which it does
not. In a ballistic system with no disorder, the contribution
of interwire forward-scattering processes to Coulomb drag
vanishes if the electron dispersion relation is linearized
(Luttinger-liquid model40); however, the contribution of in-
terwire backscattering processes to ρD remains nonzero even
in the particle-hole-symmetric limit.41–49 Much of the prior
work on Coulomb drag between quantum wires has therefore
focused on the backscattering processes. At the golden-rule
level, ρD induced by backscattering between identical wires is
linearly proportional50,51 to T with

ρD ∼ 2π

e2
β2

b
T

vF

, (1.2)

where βb is the dimensionless coupling constant describing
interwire backscattering at the Fermi level with momentum
transfer 2kF , vF is the Fermi velocity, and 2π/e2 is the
resistance quantum (here and below h̄ = 1). At higher orders
in the strength of interaction, both intrawire and interwire,

a power-law renormalization of the backscattering amplitude
develops as T (or the drive current in the active wire in the
nonlinear response regime) decreases41–45,47,49,52 (a similar
renormalization of ρD in the strongly interacting limit of
a “spin-incoherent” Luttinger liquid has been discussed in
Ref. 48).

Below a characteristic energy scale (at which the renor-
malized amplitude g1 is of the order of unity), electrons
in two wires form a “zigzag-ordered” charge-density wave
and the power-law behavior crosses over into an exponential
growth of ρD with lowering T or, in finite-size systems at
sufficiently low T , into an exponential growth of the drag
resistance with increasing system size.42–44,47 In the limit
T → 0, the resistivity ρD (defined as the linear resistance per
unit length under the condition that the size of the system is
made infinite before any other limit is taken, in particular,
that of zero T ) is infinitely large (“absolute current drag”
in the terminology of Ref. 42). By contrast, the linear drag
resistance between finite-size wires vanishes to zero as T 2 in
the limit of low T , independently of the strength of intrawire
interaction and on whether the wires are long enough to form
the zigzag order or not.44,53 In the former case, however,
there exists a parametrically wide range of T in which the
drive and drag currents are almost equal to each other (almost
absolute current drag) up to an exponentially small unbalance
due to transport of solitons in the charge-density wave. In
the nonlinear-response regime, the drag resistance is finite at
zero T and shows oscillations42,49 as the drive current varies,
related to the interference of plasmon waves reflected from
the boundaries of the wires, which are suppressed49 as T

is increased. If the length of the region in which interwire
backscattering occurs is much smaller than the total length
of the wires, Coulomb drag in the limit of low T and small
bias voltages can be described in terms of backscattering at
effectively pointlike contact.41,45,46,54 In this model, the drag
conductance induced by electron-electron backscattering is
expressible41,45,55 in a particularly simple form in terms of the
conductance of a single wire with a single static backscattering
impurity.

One of the conclusions that follow from the above results
for backscattering-induced Coulomb drag is that, even if the
bare (before the renormalization) backscattering amplitude is
small, the drag effects can be strong in the infrared limit, which
for the linear drag resistivity ρD means sufficiently low T .
However, the backscattering amplitude falls off with increasing
distance a between the wires as exp(−2kF a), where kF is
the Fermi wavelength (assuming the electron densities in the
wires to be equal to each other). As a result, for kF a � 1
the drag effects that originate from backscattering are strongly
suppressed unless T is exponentially small and electrons are
zigzag ordered. Moreover, the effect of backscattering is also
suppressed in the case of nonidentical wires.47

C. Coulomb drag in one dimension: Forward scattering

An alternative mechanism of drag is interwire scatter-
ing with small-momentum transfer.56–58 Despite relying on
electron-hole asymmetry (e.g., a nonlinear dispersion relation
for electrons) or the presence of disorder,59 this mechanism
of drag is expected to be more effective than backscattering if
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quantum wires are sufficiently separated from each other, and
is further favored by an imbalance in the electron densities.

Against this background, it is desirable to explore the
possibility of Coulomb drag due to interwire forward scattering
in the absence of any backward scattering. An important
advance in this direction was made in Ref. 56 which extended
the orthodox theory29–32 for electron systems with a parabolic
dispersion relation to one dimension (see Ref. 60 for a review
of one-dimensional non-Luttinger-liquid models), under the
assumption that electrons are ballistic (no disorder) and can
only exchange momenta much smaller than kF . Specifically,
the calculation in Ref. 56 suggests61 that ρD induced by
forward scattering in the vicinity of the Fermi level for
T � vF /a reads as

ρD
?∼ 2π

e2
β2

f kF

(
T

εF

)2

, (1.3)

where βf is the dimensionless coupling constant describing
interwire forward scattering. The meaning of the question
mark will become clear in the next paragraph. At higher T ,
in the interval vF /a � T � εF (which exists for kF a � 1),
ρD shows a plateau in the dependence on T according to
Ref. 56. Other work57,58 has reached similar conclusions by
employing a bosonic description of the one-dimensional elec-
tron liquid with a nonlinear dispersion relation for electrons,
in particular, reproduced Eq. (1.3). According to Ref. 57,
however, the T 2 scaling of ρD for the case of identical wires
is only valid for βfεF � T � vF /a (provided that vF /a

is larger than βfεF and such an interval of T exists). The
energy scale βfεF describes splitting between symmetric and
antisymmetric plasmon modes in the double-wire system. In
the low-T limit, for T � βfεF , the drag resistivity between
identical wires is predicted57,63 to vanish with decreasing
T as ρD ∼ β−1

f (2π/e2)kF (T/εF )5. Importantly, all the prior
work56–58,64 on Coulomb drag due to interactions with
small-momentum transfer obtained a nonzero drag resistivity
(unless T = 0) from forward scattering in the vicinity of the
Fermi level.

One of the purposes of this paper is to demonstrate that in
fact

ρD(T ) ≡ 0 (1.4)

in the absence of scattering that changes the chirality of
electrons. That is, forward scattering itself can not produce
a nonzero dc drag resistivity.62 As will be shown, the orthodox
theory,29–32 with the use of which (or of its equivalent in the
bosonized formulation of the problem) the nonzero result
was obtained in the earlier works,56–58,64 fails entirely (at
the conceptual level) in one dimension. The basic question
behind this problem is under what conditions the second-order
expansion29–32 of ρD in powers of V12, which constitutes
the essence of the orthodox theory, is justified. Clearly,
this is correct if drag is sufficiently weak. The question is
about how weak. The answer, as we will demonstrate in the
paper, contains a delicate but crucially important point which
does not appear to have been generally appreciated in the
literature.

D. Kinetic-equation approach versus the orthodox theory

The Kubo-type formula for the bulk resistivity62 ρD derived
within the orthodox theory in one dimension reads as

ρD = 1

2e2n1n2T

∫
dω

2π

∫
dq

2π
q2|V12(ω,q)|2

× Im�1(ω,q) Im�2(ω,q)

sinh2(ω/2T )
, (1.5)

where �1,2(ω,q) and n1,2 are the (retarded) polarization
operators and the electron densities, respectively, in wires 1
and 2. The product of the imaginary parts of �1,2(ω,q) results
from the application of the fluctuation-dissipation theorem
to the equilibrium dynamical structure factors for density
fluctuations S1(ω,q) and S2(−ω, − q). The legitimacy of the
use of the lowest (second) order in V12 for ρD is based on the
assumption that the density fluctuations in the active conductor
(wire 1) are equilibrium in the frame moving with the drift
velocity vd = −j1/en1 (throughout the paper the electron
charge is defined as −e, i.e., e > 0). Indeed, as demonstrated
in Ref. 56, the expansion of S1(ω − qvd,q) to first order in
j1 in the cross-correlation function of the electric forces in
two conductors gives65 the linear-response dc electric field
E2 = −ρDj1 in wire 2 (for j2 maintained at zero) with ρD

from Eq. (1.5).
However, the assumption about the density fluctuation

being equilibrium in the moving frame (“drift ansatz”) is by no
means innocent: actually, in one dimension, it strongly limits
the applicability of Eq. (1.5). If one assumes, for definiteness,
that the wires are identical (with the electron density n) and
represents ρD as

ρD = m/e2nτD (1.6)

by introducing the “drag rate” 1/τD which describes momen-
tum exchange between two conductors in the dc limit, the drift
ansatz is only legitimate (as will be shown below) if 1/τD

is much smaller than the thermalization rate.66 In quantum
wires, thermalization means not only energy relaxation within
the same chirality branch, but also “right-left” relaxation. The
latter, however, can only occur if backscattering is allowed,
so that in the model of Refs. 56–58 and 64, in which there
is no backscattering “by construction,” the use of Eq. (1.5) is
not legitimate. At this point, one might think that a deviation
of the exact shape of the distribution function of electrons in
the active wire from equilibrium in the moving frame does not
change the result (1.3) qualitatively, i.e., only the numerical
coefficient in Eq. (1.3) depends on the shape but remains of the
order of unity. This is, however, not the case; on the contrary,
the shape is exactly such that in the absence of backscattering,
ρD is zero [Eq. (1.4)].

E. Drift ansatz and the contact drag resistance

Naively, one might expect that the results of Refs. 56–58
for drag induced by forward scattering are valid for sufficiently
long ballistic wires, namely, for wires whose length L is much
larger than the characteristic scale of the right-left relaxation.
We emphasize, however, that the equilibrium state in the
moving frame in the double-wire system can not be reached
by increasing L beyond this scale (as would be the case67,68 in
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a single wire). Nonzero friction prevents this from happening
by constantly exciting electron-hole pairs, even in the limit of
an infinitely large system size, as follows from our calculation
of ρD.

Although we focus in this paper on the calculation of the
bulk drag resistivity62 ρD, there is one more point worth noting
here: the drag resistance RD(L) of finite-L wires depends on
the setup of the contacts between the wires and the leads,
and thus is not, generally, expressible solely in terms of ρD.
Similar to the resistance of a single wire, one can introduce the
bulk drag resistance and the contact drag resistance. The drag
resistivity ρD is then understood as the drag resistance per unit
length in infinitely long wires. As such, ρD describes the bulk
properties of the wires, not affected by the contacts, and the
emergence of a homogeneous response to current flow.

The largest spatial scale that determines the characteristic
size of the “contact regions” (inside the wires), within which
the distribution function is generically different from that in
the bulk, is the right-left thermalization length lb. As shown
in this paper, lb is, in effect, the elementary scale for the drag
problem in one dimension. This means, in particular, that the
drag resistance measured in the limit L � lb between two
points (potential probes) in the bulk, separated by a distance
Lp, scales linearly with Lp as RD(Lp) = ρDLp. The total
drag resistance RD(L), however, is affected by the relaxation
processes that provide matching between our bulk solution and
the distribution functions in the leads, thus depending on L in
a nonuniversal way.

In fact, the T 2 behavior of the drag resistance [Eq. (1.3)] is
obtainable, perhaps counterintuitively, in the limit of small
L, where RD(L) is given by the contact resistance. It is
important here that Coulomb drag crucially depends, as
demonstrated in this paper, on the relative strength of two
types of relaxation processes that differ in whether they lead
to thermal equilibration of the difference of the distribution
functions in two wires in the moving or stationary frame. The
former tend to establish much stronger drag. As will be shown
in the following, interwire pair collisions tend to equilibrate
the difference of the distribution functions in the stationary
frame, in contrast to the drift ansatz that leads to Eq. (1.3).69

In the limit of small L, however, one can in principle create
the distribution function in the active wire in the form of the
drift ansatz by “preparing” it in this form in the leads, where
interwire interactions are absent.70

If L is so small that the distribution function in the active
wire is only slightly modified by interwire interactions, the
friction force can be calculated perturbatively (similar to
Ref. 51 for the case of backscattering). For the drift-ansatz
distribution function “incident” on the wire from the leads, the
drag resistance is then given by RD(L) ∼ (2π/e2)L/lf , where
lf ∼ (1/β2

f kF )(εF /T )2 (for T � vF /a, and independent of T

for higher T ), in accordance with Eq. (1.3).70,72 The spatial
scale lf characterizes interwire momentum exchange between
particles of the same chirality in the drift-ansatz solution
in the limit of small-momentum transfer.73 Note, however,
that if the incident distribution function is equilibrium in
the stationary frame (Landauer-Büttiker setup with “Fermi
leads”), the perturbative drag resistance in the limit of small
L is exponentially suppressed (in the parameter εF /T ). This
follows directly from Eqs. (B5) and (B6) or, equivalently,

from a golden-rule calculation71,74 of the interwire momentum
transfer rate expressed in terms of the dynamical structure
factors. The comparison of the perturbative results in the above
two setups emphasizes the nonuniversality of the contact drag
resistance.

Thus, forward scattering can contribute to the contact drag
resistance if there is a mismatch between the distribution
function incident from the leads and the distribution function
that describes bulk drag in the limit of large L. The mismatch
in the case of pair collisions is minimized if parallel wires are
directly connected to the Fermi leads. The full description of
the contact drag resistance (also including triple collisions69)
as a function of L, depending on the setup, is out of the scope
of this paper.

F. Outline of the results

Our main results can be described as follows. We demon-
strate that ρD in one-dimensional geometry vanishes in the case
of electrons not changing their chirality in scattering processes.
A key consequence of this is that the drag resistivity is
necessarily suppressed compared to the conventional theories
[epitomized by Eq. (1.5)] if the right-left equilibration is not
fast enough. In the case of energy relaxation being mainly due
to processes with momentum transfer much smaller than kF

(the exact condition depends on T ), the right-left equilibration
is “bottlenecked” by inelastic collisions that involve cold
electrons near the bottom of the electron spectrum. Hence,
ρD acquires the activation factor exp(−εF /T ) in the low-T
limit. The temperature dependence of ρD is shown in Fig. 5
in Sec. III E. Remarkably, the drag resistivity in the activation
regime does not depend on the distance between the wires.

The power-law behavior of ρD with T that follows from
the conventional approaches56–58 is only recovered if the
drag rate 1/τD [Eq. (1.6)] resulting from the drift ansatz
in these approaches is smaller than the equilibration rate,
proportional to exp(−εF /T ) in the case of soft collisions.
At low T � εF , this can only occur if the distance a between
the wires is exponentially large in the parameter εF /T . This
answers the question formulated below Eq. (1.4): the orthodox
theory for the drag resistivity is only justified when drag
is exponentially weak in εF /T . Conversely, for fixed a, the
range of applicability of the orthodox theory is limited to
temperatures which are only “logarithmically smaller” than
εF .

On a more detailed note, our results show a nontrivial
interplay between triple and pair collisions. The activation
behavior ρD ∝ exp(−εF /T ) is determined by triple collisions
with one electron scattered near the bottom of the conduction
band and two electrons scattered near the Fermi level. If the
intrawire triple collisions are less effective in the right-left
equilibration than interwire pair collisions between two cold
electrons, there exists a range of T in which ρD acquires one
more activation factor and behaves as exp(−2εF /T ), crossing
over into the regime dominated by three-electron scattering
as T decreases. However, in any case, ρD is exponentially
suppressed at low T . One more conclusion that comes from
the comparison of the effect that pair and triple collisions have
on ρD is that the orthodox theory of the drag resistivity for the
case of forward scattering is totally unjustifiable if only pair

245402-4



COULOMB DRAG BETWEEN BALLISTIC QUANTUM WIRES PHYSICAL REVIEW B 86, 245402 (2012)

collisions are present and hinges entirely on the triple-collision
rate being sufficiently high. Schematically, the dependence of
ρD on the rate of three-particle collisions is illustrated in Fig. 4
in Sec. III E.

Our theory of Coulomb drag is built on the quasiclassical
kinetic equation approach. Although we will focus most of
our attention on scattering with momentum transfer much
smaller than kF , this approach allows us to easily incorporate
backscattering near the Fermi level as well. Throughout the
paper, however, we assume that T is still higher than the
crossover temperature below which interlocked charge-density
waves42–44,47 induced by backscattering are formed. In this
paper, we specialize to the case of ballistic quantum wires (no
disorder) and spinless electrons.

The paper is organized as follows. Section II is devoted
to Coulomb drag due to pair collisions. In Sec. II A, we
introduce the kinetic equation for a double wire and obtain the
high-frequency drag resistivity. In Sec. II B, we formulate and
solve a model which contains interwire forward scattering but
explicitly forbids backscattering (in order to show that there
is no dc drag resistivity in one dimension without backscatter-
ing). In Sec. II C, we obtain the dc drag resistivity induced by
pair collisions with small-momentum transfer and demonstrate
its activation behavior for low temperatures. In Sec. II D, we
discuss drag resulting from direct backscattering at the Fermi
level. Section III deals with Coulomb drag in the presence of
both pair and triple collisions and emphasizes the important
role of the latter. In Sec. III A, we write the kinetic equation that
describes triple collisions in a double wire. In Sec. III B, we
discuss singularities that arise in the calculation of the three-

particle scattering probabilities. In Sec. III C, we describe
soft triple collisions within the Fokker-Planck approach. In
Sec. III D, we compare various channels of three-particle
scattering in the double-wire system and identify those that are
most important for Coulomb drag. In Sec. III E, we consider the
effect of triple collisions on Coulomb drag induced by soft pair
collisions and show that three-particle scattering dramatically
enhances drag at low temperature. Our results are summarized
in Sec. IV. Some of the technical details are placed in the
Appendixes.

II. COULOMB DRAG IN ONE DIMENSION: PAIR
COLLISIONS

A. Kinetic equation for pair collisions

Our point of departure is the kinetic equation for pair
collisions in a system of two spatially homogeneous quantum
wires. In one dimension and for the quadratic dispersion
relation, this type of scattering does not affect the distribution
function if both electrons are in the same wire, but does lead
to a relaxation of the distribution function if electrons are in
different wires. Throughout the paper we neglect tunneling
between wires, so that the exchange processes for electrons
from different wires are absent. We thus have

∂tfσ (k1) − eEσ ∂k1fσ (k1) = Stσ {f }, (2.1)

where the symbol σ = 1,2 distinguishes wires 1 and 2, Eσ is
the electric field in wire σ , and the collision integral Stσ {f }
for the case of pair collisions is given [at the lowest (second)
order in interaction] for σ = 1 by

St(2)
1 {f } = (2π )2

∫
dk1′

2π

∫
dk2

2π

∫
dk2′

2π
|V (k1′ − k1)|2δ(k1 + k2 − k1′ − k2′ ) δ(ε1 + ε2 − ε1′ − ε2′)

× {f1(k1′)f2(k2′)[1 − f1(k1)][1 − f2(k2)] − f1(k1)f2(k2)[1 − f1(k1′)][1 − f2(k2′)]} , (2.2)

where ε1 = k2
1/2m, etc., and V (q) is the Fourier component of the interaction potential of electrons in different wires with the

momentum transfer q [given, e.g., by V12(q) from Appendix A: throughout Sec. II we omit the subscript of V12]. The superscript
M = 2 in St(M)

1 {f } in Eq. (2.2) is meant to indicate that this is a contribution to the collision integral of two-particle collisions
(M-particle scattering with M > 2 will be discussed in Sec. III). For St2{f } in Eq. (2.1), the wire indices of fσ (k) in Eq. (2.2)
should be transposed (momenta 1 ↔ 2,1′ ↔ 2′). The product of the delta functions in Eq. (2.2) reduces in the case of quadratic
dispersion to

δ(k1 + k2 − k1′ − k2′ ) δ(ε1 + ε2 − ε1′ − ε2′) = m

|k1′ − k1| δ(k1 − k2′ )δ(k2 − k1′), (2.3)

which gives

St(2)
1 {f } = m

∫
dk1′

2π

|V (k1′ − k1)|2
|k1′ − k1| {f1(k1′)f2(k1)[1 − f1(k1)][1 − f2(k1′)] − f1(k1)f2(k1′)[1 − f1(k1′)][1 − f2(k1)]} . (2.4)

In the following, we will focus on the linear response under
the assumption that the wires are identical, in particular, that
their chemical potentials and temperature are the same. It is
then convenient to represent the solution of Eq. (2.1) in terms
of the functions gσ (k) as

fσ (k) = fT + gσ (k)T ∂εfT , (2.5)

where fT = [1 + e(ε−εF )/T ]−1 is the thermal distribution func-
tion. Linearizing Eq. (2.1) in gσ , we then obtain (in the ω

representation)

−iωg1(k) − eE1k

mT
= st(2)

1 {g},
(2.6)

−iωg2(k) − eE2k

mT
= −st(2)

1 {g},
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where

st(2)
1 {g} = m

4

∫
dk′

2π
ζ 2(k′)

|V (k′ − k)|2
|k′ − k|

× [g1(k′) + g2(k) − g1(k) − g2(k′)] (2.7)

and

ζ (k) = 1

cosh[(ε − εF )/2T ]
. (2.8)

By introducing the functions g±(k) = [ g1(k) ± g2(k) ]/2, we
thus have

g+(k) = e(E1 + E2)k

2mT

1

−iω + 0
, (2.9)

−iωg−(k) − e(E1 − E2)k

2mT
= st(2)

− {g}, (2.10)

where

st(2)
− {g} = m

2

∫
dk′

2π
ζ 2(k′)

|V (k′ − k)|2
|k′ − k| [g−(k′) − g−(k)].

(2.11)

The electric current in wire 1 [sign + in Eq. (2.12)] and wire
2 (−) is given in terms of the functions g±(k) by

j1,2 = e

4m

∫ ∞

−∞

dk

2π
ζ 2(k) k [ g+(k) ± g−(k) ]. (2.12)

One simple result that follows immediately from Eq. (2.10)
gives the drag conductivity σ21 (defined as σ21 = j2/E1

under the condition that E2 = 0) in the high-frequency limit.
Iterating Eq. (2.10) in the limit of large ω once yields
Re σ21 � −e2n/mω2τ∞

D for ωτ∞
D � 1, where

n = 1

4mT

∫
dk

2π
ζ 2k2 (2.13)

is the electron density in one wire and

1

τ∞
D

= 1

32nT

∫
dk

2π
ζ 2(k)

∫
dk′

2π
ζ 2(k′)|V (k′ − k)|2|k′ − k|.

(2.14)

The sign ∞ is intended to emphasize that the scattering
rate (2.14) describes high-frequency drag.75 If the main
contribution to 1/τ∞

D comes from momentum transfers with
|k′ − k| ∼ T/vF , then 1/τ∞

D ∝ T 2 [cf. Eq. (1.3)], while if it
comes from backscattering with |k′ − k| � 2kF , then 1/τ∞

D ∝
T [cf. Eq. (1.2)]. Naively, one might think, in the spirit of
the Drude theory or, for that matter, the memory-function
formalism with the memory function expanded to second order
in interaction, that 1/τ∞

D determines drag also at ω → 0, with
the dc drag resistivity ρD ∝ 1/τ∞

D . As will be seen below, this
assumption is correct for drag induced by backscattering in the
close vicinity of the Fermi level; however, it is totally wrong
for the case of forward scattering.

B. Absence of friction from forward scattering

As mentioned in Sec. I, dc drag resistivity vanishes
[Eq. (1.4)] in the absence of interwire backscattering. To
see this, consider a model in which the interaction matrix
element does not connect electron states with opposite chi-

rality. In this model, backscattering processes both near the
Fermi level (momentum transfer about 2kF ) and near the
bottom of the spectrum (momentum transfer much smaller
than kF ) are forbidden by construction. It is important that
the model excludes the latter possibility as well, because
the backscattering processes with small-momentum transfer,
while being exponentially suppressed for T � εF , still can
lead to a “leakage of current” between the subsystems of right-
and left-moving electrons. For definiteness, let us substitute for
Vk′−k in Eq. (2.11) a function of k and k′ that is proportional
to the θ function of the product kk′, which explicitly forbids
backscattering76:

V (k′ − k) → V(k′ − k) θ (kk′). (2.15)

The model (2.15) is compatible with those used for studying
Coulomb drag due to forward scattering in Refs. 56–58.
In the Luttinger-liquid formalism, generalized to the finite-
curvature case, it corresponds to retaining only the g4⊥ type of
interaction.40

Within the model (2.15), the equation for the distribution
function g−(k>0) of right-moving electrons can be written in
a closed form

−iωg−(k) − e(E1 − E2)k

2mT

= m

2

∫ ∞

0

dk′

2π
ζ 2(k′)

|V(k′ − k)|2
|k′ − k| [g−(k′) − g−(k)], (2.16)

while the distribution function of left-moving electrons g−(k<

0) is related to g−(k>0) by the condition g−(−k) = −g(k)
which follows from the fact that the source term in Eq. (2.10)
is odd in k. Importantly, the collision integral in Eq. (2.16)
is nullified if g−(k > 0) does not depend on k [i.e., g−(k) =
const(k)sgn(k)]. The solution of Eq. (2.16) can therefore be
represented as a sum of two terms

g−(k) = h0 + h(k), (2.17)

where the zero-mode term h0 does not depend on k and has a
pole at ω = 0,

h0 = A(ω)

−iω + 0

e(E1 − E2)vF

2T
, (2.18)

with a residue proportional to a yet unknown constant A(0).
The equation for h(k) then reads as

−iωh(k) +
[

A(ω) − k

kF

]
e(E1 − E2)vF

2T

= m

2

∫ ∞

0

dk′

2π
ζ 2(k′)

|V(k′ − k)|2
|k′ − k| [h(k′) − h(k)]. (2.19)

Multiplying Eq. (2.19) by ζ 2(k) and integrating both sides over
k, we eliminate the collision integral to obtain the connection
between A(ω) and h(k) in a form that does not contain the
collision kernel explicitly:

A(ω) = 1

πvF

∂μ

∂n

[
1 + iπω

e(E1 − E2)

∫ ∞

0

dk

2π
ζ 2h

]
, (2.20)
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where ∂μ/∂n = 2T/
∫ ∞

0 (dk/2π )ζ 2 is the inverse compress-
ibility. For T � εF ,

1

πvF

∂μ

∂n
� 1 − π2

8

(
T

εF

)2

. (2.21)

The difference of the compressibility from 1/πvF at finite T

will be important for the calculation of the singular (at ω → 0)
part of σ21.

From Eq. (2.20), the closed equation for h is written as

− iω[ h(k) − h̄ ] − e(E1 − E2)

2mT
(k − k̄)

= m

2

∫ ∞

0

dk′

2π
ζ 2(k′)

|V(k′ − k)|2
|k′ − k| [h(k′) − h(k)], (2.22)

where

h̄ = 1

2T

∂μ

∂n

∫ ∞

0

dk

2π
ζ 2h, k̄ = m

π

∂μ

∂n
. (2.23)

The solution of Eq. (2.22) does not contain, by construction,
a zero-mode part and is regular at ω → 0. It follows from
Eq. (2.20), then, that A(ω → 0) is finite (neither diverging
nor vanishing) and determined by the first term in the square
brackets in Eq. (2.20), namely, A(0) = (1/πvF )∂μ/∂n. The
solution of Eq. (2.16) can thus be represented as a sum of the
singular (at ω = 0) term and the regular term as follows:

g−(k) =
[

A(ω)

−iω + 0
+ B(ω,k)

−iω + M(ω,k)

]
e(E1 − E2)vF

2T
,

(2.24)

where A(ω), the “source renormalization” factor B(ω,k), and
the “memory function” M(ω,k) are all regular at ω → 0, and
M(0,k) > 0.77 This form of g−, together with Eq. (2.9) for g+,
dictates a very special type of behavior of the conductivity and
resistivity tensors (in the space of the wire indices) as ω → 0,
as is seen below.

Using the relation (2.20) between the singular (h0) and
regular (h) parts of g−, the current [Eq. (2.12)] can be expressed
in terms of only the regular part as

j1,2 = e2

4m2T

1

−iω + 0

∫ ∞

0

dk

2π
ζ 2k[(E1 + E2)k ± (E1 − E2)k̄ ] ± e

2m

∫ ∞

0

dk

2π
ζ 2k (h − h̄). (2.25)

The conductivity matrix resulting from Eq. (2.25) reads as

σ̂ (ω) = e2vF

π

[
1

−iω + 0

(
λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

)
+ C (ω)

(
1 −1

−1 1

) ]
, (2.26)

where

λ1 = πn

2kF

, λ2 = 1

2πvF

∂μ

∂n
, (2.27)

and

C(ω) = π

16mT 2

∂μ

∂n

∫ ∞

0

dk

2π
ζ 2(k)

∫ ∞

0

dk′

2π
ζ 2(k′) (k − k′)

[
B(ω,k)

−iω + M(ω,k)
− B(ω,k′)

−iω + M(ω,k′)

]
. (2.28)

For T � εF , the coefficients λ1,2 are given by [cf. Eq. (2.21)]

λ1 � 1

2
− π2

48

(
T

εF

)2

, λ2 � 1

2
− π2

16

(
T

εF

)2

, (2.29)

i.e., the diagonal elements of the first matrix in Eq. (2.26)
are close to unity in the limit of small T , whereas the
nondiagonal ones vanish as T 2. Note that the singular behavior
of the nondiagonal elements is determined by the T -dependent
corrections to the coefficients λ1,2 in Eq. (2.27). The function
C(ω) in front of the second matrix is also proportional to T 2

at T → 0. Indeed, the integrals over k and k′ in Eq. (2.28) are
determined [because of the factors ζ (k) and ζ (k′)] by the close
vicinity of k = k′ = kF , while the integrand contains a product
of two factors each of which is zero at k = k′. The vanishing
of C(ω) at T → 0 can also be seen from the sum rule for the
conductivity (see, e.g., Ref. 57), according to which∫ ∞

−∞

dω

2π
Re σ̂ (ω) = e2n

2m

(
1 0
0 1

)
(2.30)

independently of the strength of interaction. Equations (2.26)
and (2.30), combined together, tell us that∫ ∞

−∞

dω

2π
Re C(ω) = 1

2
(λ1 − λ2), (2.31)

which, in view of Eq. (2.29), means the T 2 behavior also for
the integral characteristic of the regular part of σ̂ (ω).

It is instructive to represent the conductivity matrix for
T � εF as

σ̂ (ω) � e2vF

π

[
1 − η

2

�̂1

−iω + δ1

+ 1 − 3η

2

�̂2

−iω + δ2
+ C(ω)�̂2

]
, (2.32)

where

η = π2

24

(
T

εF

)2

, (2.33)
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the matrices �̂1,2 are given by

�̂1 =
(

1 1
1 1

)
, �̂2 =

(
1 −1

−1 1

)
, (2.34)

and the infinitesimally small frequency shifts iδ1 and iδ2 in
the singular terms proportional to �̂1 and �̂2, respectively,
are denoted differently to emphasize the different origin of
possible damping in the two terms. Specifically, the singular
term proportional to �1 comes from the symmetric (in the
wire indices) function g+ whose singularity is associated with
total-momentum conservation. Hence, δ1 = 0 in homogeneous
wires, independently of the type and strength of electron-
electron interaction. In contrast, the singular term proportional
to �2 stems from the zero-mode function h0 whose singularity
reflects particle-number conservation within each chirality.
That is, δ2 = 0 in the model of only forward electron-electron
scattering. The last (nonsingular) term in Eq. (2.32) is the
contribution of both h and the regular part of h0 [the last
term in Eq. (2.25)]: its damping is related to the equilibration
between electrons of the same chirality in different wires.

The matrix structure of Eq. (2.32) with δ1 = δ2 = 0 differs
in an essential way from that proposed for the same case of
forward electron-electron scattering in Ref. 57. The crucial
difference is that the prefactor of �̂2 in Eq. (2.32) is singular
at ω = 0, i.e., behaves in the limit of small ω as 1/(−iω +
δ2) with δ2 = 0, whereas in Ref. 57 it is proportional to
1/(−iω + 2/τ∞

D ), where the scattering rate 1/τ∞
D , describing

high-frequency drag, is given by Eq. (2.14). Inversion of the
conductivity matrix in Ref. 57 yielded a nonzero dc drag
resistivity ρD = π/e2vF τ∞

D , i.e., 1/τD [Eq. (1.6)] equal to
1/τ∞

D , which also agrees with the result of Refs. 56 and 58. In
contrast, the inverse of the matrix σ̂ (ω) from Eq. (2.32) is

ρ̂(ω) = π

e2vF

iω

(1 − η)(1 − 3η − 2iωC)

×
(−1 + 2η + iωC η + iωC

η + iωC −1 + 2η + iωC

)
, (2.35)

which at ω → 0 gives

Re ρ21 ∝ ω2. (2.36)

That is, in the model of only forward scattering, the dc drag
resistivity

ρD = −ρ21(ω = 0) (2.37)

is strictly zero [Eq. (1.4)]. Note that the diagonal dissipative
resistivity Re ρ11 also vanishes with decreasing ω as ω2, similar
to Re ρ21. The coefficient in front of ω2 is, in both cases,
proportional to C(0) which scales as T 2 in the low-T limit.

It is worth mentioning that nonzero, in contrast to the
solution of the kinetic equation, drag in the model of forward
scattering was obtained in Refs. 56–58 in two ways. In Ref. 57,
ρD = 0 was found as a direct consequence of the conjectured
Lorentzian shape of the ω dependence of σ21. On the other
hand, in Refs. 56 and 58, the same expression for the drag
resistivity followed from the one-dimensional version of the
orthodox theory29–32 at ω = 0. In particular, in Ref. 56 the
orthodox theory was cast in the form of the drift ansatz. The
relation between the two approaches and the step in the solution
of the kinetic equation at which the drift ansatz fails are further
discussed in Appendix B.

Coulomb drag in the dc limit would only occur if δ2 = 0 in
Eq. (2.32), namely,

ρ̂(ω = 0) = π

4e2vF

δ2

C(0)δ2 + λ2
�̂2. (2.38)

We thus see that the scattering processes that change the
chirality of electrons (recall that it is these processes that
yield δ2 = 0) are the only source of nonzero dc Coulomb
drag. As already discussed in Sec. I, one can distinguish two
main types of backscattering: in the vicinity of the Fermi level
and at the bottom of the spectrum. The contribution of the
former to ρD is exponentially suppressed, as exp(−4kF a), if
the distance a between the wires is much larger than the Fermi
wavelength. The contribution of the latter is also exponentially
suppressed, as exp(−εF /T ) [or exp(−2εF /T ), depending on
the parameters], if T is much smaller than the Fermi energy. It
follows that the important parameter that controls the relative
weight of these two types of backscattering in ρD is the
ratio of a and the “thermal length” vF /T . For a � vF /T ,
backscattering with momentum transfer much smaller than kF

is expected to provide the main contribution to ρD. This type
of backscattering is discussed in Sec. II C.

C. Coulomb drag due to soft pair collisions:
Fokker-Planck description

Let us consider the limit in which the characteristic
momentum transfer in Eq. (2.11) is much smaller than T/vF .
For concreteness, we can think of the interaction potential
given by Eq. (A1) and simplify Eq. (2.11) in the limit
T/vF � |k′ − k| ∼ 1/a [see Eq. (A3)]. In this limit, the
collision integral (2.11) can be written in the differential form

st(2)
− {g} � mc

2

(
∂ζ 2

∂k

∂g−
∂k

+ 1

2
ζ 2 ∂2g−

∂k2

)
= mc

4

1

ζ 2

∂

∂k

(
ζ 4 ∂g−

∂k

)
, (2.39)

where

c =
∫

dq

2π
|q||V (q)|2. (2.40)

In the limit T a/vF � 1, the scattering rate 1/τ∞
D [Eq. (2.14)],

which describes high-frequency drag, and c are related to each
other as follows:

c = 24
εF

τ∞
D

. (2.41)

Being rewritten in terms of the function

f− = (f1 − f2)/2 = g−T ∂εfT = −g−ζ 2/4 (2.42)

(i.e., going back from the “g functions” to the distribution
functions fσ ), Eq. (2.39) can be cast in the form of the Fokker-
Planck equation

−iωf− + e(E1 − E2)ζ 2k

8mT
= −∂J (2)

∂k
, (2.43)

where the current in momentum space J (2)(k) [related to f−(k)
and ∂f−(k)/∂k locally, at one point k] is given by

J (2) = −D
∂f−
∂k

+ f−
∂D

∂k
(2.44)
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with the k-dependent diffusion coefficient in momentum
space78

D(k) = mc

4
ζ 2(k). (2.45)

The solution of Eq. (2.43) in the dc limit can be found
exactly. At ω = 0, J (2)(k) is obtained by integrating Eq. (2.43)
[assuming that limω→0(ωf−) = 0, which will be confirmed by
the solution]:

J (2)(k) = −e(E1 − E2)

8mT

∫ k

−∞
dp pζ 2(p) = 1

4
e(E1 − E2)

[
1 − tanh

(
k2 − k2

F

4mT

) ]
. (2.46)

The boundary condition used in Eq. (2.46) is J (2)(k → ±∞) = 0. Substituting Eq. (2.46) in Eq. (2.44) yields a first-order
equation for f−(k):

∂f−
∂k

+ k

mT
tanh

(
k2 − k2

F

4mT

)
f− = −e(E1 − E2)

mc

1

ζ 2

[
1 − tanh

(
k2 − k2

F

4mT

) ]
, (2.47)

which should be solved for the boundary condition f−(k = 0) = 0. The solution reads as

f− = −e(E1 − E2)

mc
ζ 2

∫ k

0
dp

[
1 − tanh

(
p2 − k2

F

4mT

) ]
1

ζ 4(p)
(2.48)

= −e(E1 − E2)

mc
ζ 2

∫ k

0
dp exp

(
−p2 − k2

F

4mT

)
1

ζ 3(p)
. (2.49)

Using the parameter T/εF � 1, Eq. (2.49) can be simplified
to

f− � −e(E1 − E2)

16mc
(πmT )1/2 e2εF /T ζ 2 �

(
k√
mT

)
, (2.50)

where �(x) = (2/
√

π )
∫ x

0 exp(−t2)dt is the error function.
Equation (2.50) is the asymptotically exact expression valid for
not too large energies ε < ε∗ (more accurately, for ε∗ − ε �
T ), where

ε∗ = 3εF + T

2
ln

εF

T
. (2.51)

For larger energies ε − ε∗ � T , it follows from Eq. (2.49) that
f− falls off as a power law79:

f− � −e(E1 − E2)

2c

T

k
. (2.52)

Specifically, for all energies ε − εF � T , f− is given by the
sum of two contributions to the integral (2.49) coming from
|q| of order (mT )1/2 and from |q| � (2mε)1/2:

f− � −e(E1 − E2)

4

(
πT

mc2

)1/2

×
[

exp

(
3k2

F − k2

2mT

)
sgn(k) + 2(mT/π )1/2

k

]
. (2.53)

The ranges of applicability of Eqs. (2.50) and (2.53) overlap.
For all energies T � ε < ε∗ (which includes momenta around
the peaks of f− at k = ±kF ), the shape of f− as a function of
k is given80 simply by ζ 2:

f− � −e(E1 − E2)

16mc
(πmT )1/2 e2εF /T ζ 2 sgn(k). (2.54)

The electric current

j− = 1

2
(j1 − j2) = − e

m

∫
dk

2π
kf−, (2.55)

calculated by integrating Eq. (2.54), reads as

j− � e2(E1 − E2)n

2mγ
, (2.56)

where

γ = 2c

(
2εF

πT 3

)1/2

e−2εF /T , (2.57)

i.e., the difference of the dc conductivities σ11 − σ21 =
2j−/(E1 − E2) � e2vF /πγ . Taking into account that the sum
σ11 + σ21 = e2vF /π (−iω + 0) [as it follows from Eq. (2.9)]
and inverting the conductivity matrix, we obtain the dc
resistivity matrix in the form

ρ̂(ω = 0) = ρD�̂2, (2.58)

where the matrix �̂2 is given by Eq. (2.34), i.e.,

ρ11 = −ρ21 (2.59)

in the dc limit. Equation (2.58) yields the following
expression81 for the dc drag resistivity ρD [Eq. (2.37)]:

ρD = E1 − E2

4j−
. (2.60)

From Eq. (2.56), we thus have

ρD � πγ

2e2vF

= πc

e2vF

(
2εF

πT 3

)1/2

e−2εF /T . (2.61)

Equation (2.61) is in agreement with the conclusion of
Sec. II B that backscattering (Fig. 1) is the only source of dc
Coulomb drag (and should be contrasted with the result of
the orthodox theory56–58 that yields nonzero ρD from forward
scattering in the absence of any backscattering). The scattering
rate 1/τD [Eq. (1.6)], which describes drag in the dc limit, is
seen to be given by γ /2. This means that 1/τD is much smaller,
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kF−kF

k = 0 k = 0

wire 1 wire 2

FIG. 1. Electron-electron scattering with small-momentum trans-
fer, much smaller than the Fermi momentum kF , in a double-wire
system. Electrons and holes are shown on the parabolic dispersion
curves as full and empty circles, respectively. Scattering in the vicinity
of the Fermi level does not contribute to the bulk drag resistivity ρD

in the dc limit, only scattering that changes the chirality of electrons
does. In the limit of soft scattering, ρD is determined by scattering
processes involving cold electrons near the bottom of the spectrum at
k = 0.

for T � εF , than the scattering rate 1/τ∞
D [Eqs. (2.14) and

(2.41)] describing high-frequency drag:

τ∞
D

τD
� 24

(
2

π

)1/2 (εF

T

)3/2
e−2εF /T . (2.62)

Importantly, the ratio (2.62) does not depend on the strength of
interaction, with both scattering rates being quadratic in V12.

It may be instructive to discuss the origin of the T depen-
dence in Eq. (2.61) in more detail. The factor exp(−2εF /T )
means that the relaxation of f− at the Fermi level in the
dc limit is only due to the diffusion in energy space which
leads to the cooling of an electron in wire 1, starting from
the Fermi surface down to the very bottom at k = 0, due
to the heating of electrons in wire 2 (Fig. 2), followed by
backscattering of the electron at the bottom and its acceleration
in the opposite direction, accompanied by the cooling of
electrons in wire 2. This diffusion cycle, which amounts to
effective backscattering at the Fermi level, is bottlenecked
by electron-electron scattering at k = 0 (requiring two holes,
one in each of the wires, near the bottom), hence the factor
exp(−2εF /T ).

The above picture is also substantiated by the obtained
k dependence of the distribution function. Counting the
exponential factors in Eq. (2.50), we observe that ∂f−/∂k

at k = 0 is proportional to exp(εF /T ) and f− grows with
increasing |k| until it reaches maximum at |k| � kF , at which
point it is proportional to exp(2εF /T ). This behavior of
f− means that the characteristic relaxation rate for f− at
given k is small as exp(−2εF /T ) for all momenta both near
the Fermi level and below it down to the bottom of the
spectrum, i.e., the exponential factor in the relaxation rate
does not depend on k. Moreover, Eq. (2.54) says that the
relaxation rate at ω = 0, including the pre-exponential factor,
is accurately approximated in the vicinity of the Fermi level
for |k − kF | � kF by a k-independent constant. This constant
is precisely γ given by Eq. (2.57). For |k − kF | � kF , the
right-hand side of the kinetic equation (2.43) at ω = 0 can thus
be written as −γf−, with the relaxation rate being independent

wire 1 wire 2 wire 1 wire 2

FIG. 2. Diffusion in energy space due to two-particle scattering
in a double-wire system. An electron (full circle) in one wire and a
hole (empty circle) in the other, both having the same momentum,
move as a whole along the dispersion curve (the same for wires 1
and 2, offset horizontally for clarity). Two consecutive steps in the
diffusion process are shown, resulting in the cooling of the electron in
wire 1 due to the heating of electrons in wire 2. The electron and hole
states that have not yet (left) or have already (right) participated in
scattering are shown as dashed circles. Diffusion of the electron-hole
pair along the dispersion curve between two Fermi points through the
bottom of the spectrum (Fig. 1) amounts to effective backscattering
at the Fermi level.

of k and determined by the slowest scattering processes at the
very bottom.

It is worth noting that the condition T � vF /a, which is
necessary for the justification of the Fokker-Planck description
[Eq. (2.39)] in the whole range of momenta |k| � kF , is
not necessary for scattering within the same chiral branch
to preserve its diffusive character in energy space for cold
particles with |k| � mT a. If T � vF /a, forward scattering
with |k| � mT a is still described by Eq. (2.39). In contrast,
in the range mT a � |k| < kF it is modified in an essential
way by strong asymmetry between hopping up and hopping
down along the energy axis. Specifically, for a particle in this
range of k, the characteristic probability of gaining energy
in an elementary hop is much larger than the probability of
losing energy. The asymmetry factor depends on how fast
|V 2(q)| falls off with increasing |q| for |q|a � 1 compared
to the growth of the thermal factor exp[(k + q)2 − k2]/2mT .
For the case of V (q) from Eq. (A3), the asymmetry factor for
T a/vF � 1 is mainly given82 by exp[(k2

F − k2)/2mT ] � 1.
The right-left relaxation via multiple scattering with small-
momentum transfer is hindered by the asymmetric hopping.
However, for T � vF /a, direct backscattering with momen-
tum transfer 2kF becomes important, as will be discussed in
Sec. II D.

D. Coulomb drag due to backscattering at the Fermi level

In Sec. II C, we have calculated the contribution to ρD

[Eq. (2.61)] that comes for T � vF /a from pair collisions
with momentum transfer much smaller than kF . Friction from
this type of scattering has been shown to be mediated by
effective backscattering at the Fermi level, where “effective”
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means that backscattering is a result of the diffusion in energy
space through the bottom of the spectrum. Let us now turn
to the contribution to ρD from backscattering at the Fermi
level with the momentum 2kF transferred in one transition.
For T � vF /a, this can be calculated from Eq. (2.10)
straightforwardly by removing the ratio |V (k′ − k)|2/|k′ − k|
from under the integral sign in Eq. (2.11) and substituting
|V (2kF )|2/2kF for it. The collision integral (2.11) reduces then
to the out-scattering term (“relaxation-time approximation”),
which gives

g− = e(E1 − E2)k

2mT (−iω + γb)
(2.63)

with

γb = 8πβ2
bT , (2.64)

where βb = V (2kF )/2πvF is the dimensionless amplitude of
backscattering. The simple Lorentzian for the ω dependence
of g− in Eq. (2.63) means that the high-frequency and dc
drag rates for the case of backscattering in the vicinity of the
Fermi level coincide: 1/τD = 1/τ∞

D = γb/2, in stark contrast
to drag induced by scattering with small-momentum transfer
[Eq. (2.62)]. The result for ρD reads as50

ρD � πγb

2e2vF

= 4π2

e2
β2

b
T

vF

. (2.65)

By comparing the contributions to the dc drag resistivity
from backscattering at the Fermi level [Eq. (2.65)] and
effective backscattering due to soft collisions [Eq. (2.61)],

ρD [Eq. (2.65)]

ρD [Eq. (2.61)]
∼

[
V (2kF )

V (1/a)

]2 (
T a

vF

)2 (
T

εF

)1/2

e2εF /T ,

(2.66)

one can see that the latter mechanism of backscattering
provides more friction than the former for83 T � vF /a. That
is, despite the contribution of soft collisions being strongly
suppressed compared to Eq. (1.3), for kF a � 1 there is still a
wide range of temperature, vF /a � T � εF , in which soft
collisions in a degenerate electron gas are more effective
than direct backscattering. It is worth noting that the main
contributions to ρD only come from backscattering at the
Fermi level and from backscattering at the very bottom of
the spectrum, while backscattering at intermediate energies
plays no role. Indeed, the exponential factor exp[ −4|k|a −
2(εF − ε)/T ] that describes (for ε < εF ) direct backscattering
with momentum transfer 2|k| is maximized either at ε = εF

for T < vF /4a or at ε = 0 for larger T with a sharp (for
kF a � 1) crossover of width in T of the order of 1/ma2.
If T � 1/ma2, the main contribution to ρD comes from

direct backscattering at the Fermi level independently of the
parameter kF a.

III. COULOMB DRAG IN ONE DIMENSION:
TRIPLE COLLISIONS

In Secs. II B and II C, we have shown that the processes
of thermal equilibration between electrons with different
(right-left) chirality are absolutely necessary for the bulk
drag effect. Further, in Sec. II C, we have demonstrated
that interwire pair collisions are capable of establishing the
right-left equilibration and that the resulting drag resistivity
is proportional to exp(−2εF /T ). On the other hand, in a
single wire, where pair collisions in the ballistic case do not
change the electron distribution function, energy relaxation
has been known to be associated with triple collisions (see
Refs. 84 and 68,85–89 for the cases of a nondegenerate
and degenerate electron gas, respectively). In the degenerate
case, energy-relaxation processes that do not require changing
the number of electrons with the same chirality86–88 are
much faster than those that do.68,85,89 Specifically, while the
former are characterized by scattering rates that are power-law
functions of the characteristic energy scales, the right-left
equilibration rate due to triple collisions is proportional68,85,89

to exp(−εF /T ).
Despite being exponentially suppressed for T � εF , the

right-left relaxation is qualitatively important because triple
collisions can change electric current (in a finite-size bal-
listic wire connected to the leads) only if they change the
difference between the numbers of right- and left-moving
electrons.67,68,85,89 In particular, it is the right-left equilibra-
tion that determines interaction-induced corrections to the
conductance and to the thermopower: in short wires, whose
length is smaller than the right-left equilibration length,
the corrections68,85,89 are proportional to exp(−εF /T ) (for a
similar consideration in the bosonic formulation, see Refs. 90
and 91). The right-left relaxation plays also a role in the
transport properties of inhomogeneous wires.92

In the following, we study the contribution of triple
collisions to the drag resistivity. As already mentioned in
Sec. I, triple collisions can strongly enhance drag at low T : this
is precisely because of the right-left equilibration rate due to
triple collisions being proportional to exp(−εF /T ), in contrast
to exp(−2εF /T ) in the case of pair collisions in the double
wire.

A. Kinetic equation for triple collisions

The contribution to the collision integral Stσ for the
distribution function fσ (k1) in Eq. (2.1) that comes from triple
collisions reads as (for σ = 1 in Stσ )

St(3)
1 {f } =

∑
σσ ′

1 + δσσ ′

2

∑̃
231′2′3′

′
wσσ ′(1′,2′,3′|1,2,3)δ(ε1 + ε2 + ε3 − ε1′ − ε2′ − ε3′)

× {f1(k1′)fσ (k2′)fσ ′(k3′)[1 − f1(k1)][1 − fσ (k2)][1 − fσ ′(k3)]

− f1(k1)fσ (k2)fσ ′(k3)[1 − f1(k1′)][1 − fσ (k2′)][1 − fσ ′(k3′)]} . (3.1)
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The sign ′ in
∑′ means that the summation over momenta

goes over distinguishable initial and final states [for ease of
presentation, the integration in Eq. (2.2) is changed in Eq. (3.1)
to the summation over quantized momenta: below, L is the size
of either wire 1 or wire 2]. With the three-particle state |1,2,3〉
(anti)symmetrized over permutations of electrons from the
same wire and normalized to unity, this prevents the double
counting of the partial scattering probabilities. The tilde over
the summation sign in Eq. (3.1) denotes one more constraint on
the momentum summation; this will be discussed in Sec. III B.

For spinless electrons, the three-particle state |1,2,3〉 is
written as

|1,2,3〉a = Da(k1,k2,k3), (3.2)

|1,2,3〉b = 1

L1/2
eik1x1 Db(k2,k3), (3.3)

|1,2,3〉c = 1

L1/2
eik3x3 Dc(k1,k2), (3.4)

where we distinguish three cases:

(a) all electrons are in wire 1 [Eq. (3.2)],

(b) electron 1 is in wire 1, electrons 2 and 3 are in wire 2 [Eq. (3.3)],

(c) electrons 1 and 2 are in wire 1, electron 3 is in wire 2 [Eq. (3.4)],

with the normalized three- and two-particle Slater determinants (Da and Db,c, respectively) given by Eq. (C1) in Appendix C. The
indices σ,σ ′ in Eq. (3.1) are then grouped as follows: σ = σ ′ = 1 in case (a) and σ = σ ′ = 2 in case (b). In case (c), identically
equal to each other contributions to St1 come from σ = 1,σ ′ = 2 and σ = 2,σ ′ = 1 [the two contributions are weighted with a
factor of 1/2 each, as is accounted for by the factor (1 + δσσ ′)/2 in Eq. (3.1)]. The kernel wσσ ′ in Eq. (3.1) is given in cases (a),
(b), and (c) by

wa,b,c(1′,2′,3′|1,2,3) = 2π |Airr
a,b,c(1′,2′,3′|1,2,3)|2, (3.5)

where Airr
a,b,c(1′,2′,3′|1,2,3) is the irreducible (not factorizable into independent blocks not connected by interaction) part of the

three-particle amplitude Aa,b,c(1′,2′,3′|1,2,3). At the lowest (second) order in interaction, the amplitude Aa,b,c(1′,2′,3′|1,2,3) is
written as

Aa,b,c(1′,2′,3′|1,2,3) =
∑
456

′ A(1)
a,b,c(1′,2′,3′|4,5,6)A(1)

a,b,c(4,5,6|1,2,3)

(ε1 + ε2 + ε3) − (ε4 + ε5 + ε6) + i0
, (3.6)

where

A
(1)
a,b,c(1,2,3|4,5,6) = 〈1,2,3|v(x1 − x2) + v(x2 − x3) + v(x1 − x3)|4,5,6〉a,b,c. (3.7)

The potential v(x) in Eq. (3.7) is either v11(x) or v12(x), depending on whether it couples electrons in the same wire or in different
wires.

The sign ′ in
∑′ in Eq. (3.6) has the same meaning as in Eq. (3.1). One can remove the constraint on the allowed momenta in

Eq. (3.6) by introducing the following factors:

Aa = 1

6

∑
456

{. . .}, Ab = 1

2

∑
456

{. . .}, Ac = 1

2

∑
456

{. . .}, (3.8)

where {. . .} is the same fraction as in Eq. (3.6). The factor
1/6 = 1/3! in Aa comes from the permutations over all
intermediate states (4,5,6). The factors 1/2 in Ab and Ac

come from the permutations over states (5,6) and over states
(4,5), respectively. Similarly, the restriction on the summation
over momenta in Eq. (3.1) can be lifted after introducing
additional factors in Eq. (3.1). Let us denote St(3a),(3b),(3c)

1 the
contributions to St(3)

1 in Eq. (3.1) from processes (a), (b), and
(c). Then,

St(3a)
1 = 2π

(
1

2
× 1

6

) ∑̃
231′2′3′

∣∣Airr
a

∣∣2
δ(. . .){. . .}, (3.9)

St(3b)
1 = 2π

(
1

2
× 1

2

) ∑̃
231′2′3′

∣∣Airr
b

∣∣2
δ(. . .){. . .}, (3.10)

St(3c)
1 = 2π

1

2

∑̃
231′2′3′

∣∣Airr
c

∣∣2
δ(. . .){. . .}, (3.11)

where δ(. . .) denotes the delta function from Eq. (3.1) and
{. . .} is the sum of the products of the distribution functions as
given by the expression in the curly brackets in Eq. (3.1). The
factors 1/2 and 1/6 in Eq. (3.9) come from the summation
over states (2,3) and (1′,2′,3′), respectively. Two factors 1/2
in Eq. (3.10) come from the summation over states (2,3) and
(2′,3′), respectively. The factor 1/2 in Eq. (3.11) comes from
the summation over states (1′,2′). Note that the combinatorial
factors in the collision integrals in Eqs. (3.9)–(3.11) are absent
in the formalism of Ref. 85, where the three-particle scattering
rate (in a single wire) was plugged into the collision integral
without any restriction on the summation over the initial and
final states [cf. the sign ′ in Eq. (3.1)]. The formalism from
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Ref. 85 was also used in writing the collision integral in
Refs. 68 and 86–89. The irreducible three-particle amplitudes
Airr

a,b,c are given by Eqs. (C5)–(C7) in Appendix C.
Similar to Sec. II A, it is convenient to rewrite the linearized

kinetic equation that includes triple collisions [Eq. (3.1)]
in terms of the functions gσ (k) [Eq. (2.5)]. By explicitly
separating the zero-mode solution g+(k) [given93 by Eq. (2.9)
independently of the number of colliding particles in the col-
lision integral], the linearized kinetic equation is represented

in a closed form for the function g−(k):

−iωg−(k1) − e(E1 − E2)k1

2mT
= st(2)

− {g} + st(3)
− {g}, (3.12)

where the three-particle contribution st(3)
− {g} to the collision

integral depends, similar to st(2)
− {g}, only on g−(k). Specifi-

cally, st(3)
− {g} is written as a sum of three terms associated,

respectively, with processes (a), (b), and (c):

st(3a)
− {g} = 1

12

∑̃
231′2′3′

Wa(1′,2′,3′|1,2,3)

ζ 2(k1)
δ(. . .) [ g−(k1′) + g−(k2′) + g−(k3′) − g−(k1) − g−(k2) − g−(k3) ], (3.13)

st(3b)
− {g} = 1

4

∑̃
231′2′3′

Wb(1′,2′,3′|1,2,3)

ζ 2(k1)
δ(. . .) [ g−(k1′) − g−(k2′) − g−(k3′) − g−(k1) + g−(k2) + g−(k3) ], (3.14)

st(3c)
− {g} = 1

2

∑̃
231′2′3′

Wc(1′,2′,3′|1,2,3)

ζ 2(k1)
δ(. . .) [ g−(k1′) + g−(k2′) − g−(k3′) − g−(k1) − g−(k2) + g−(k3) ], (3.15)

with δ(. . .) having the same meaning as in Eqs. (3.9)–(3.11) and

Wa,b,c(1′,2′,3′|1,2,3) = 2π |Airr
a,b,c(1′,2′,3′|1,2,3)|2 ζ (k1)ζ (k2)ζ (k3)ζ (k1′)ζ (k2′)ζ (k3′)

16
. (3.16)

Note that the contributions to st(3a)
− {g} of the differ-

ences g−(k2′) − g−(k2) and g−(k3′) − g−(k3) are equal in
view of the symmetry of the kernel Wa(1′,2′,3′|1,2,3) =
Wa(1′,3′,2′|1,3,2), and the same is true for channel (b). In
contrast, trading momenta (2,2′) ↔ (3,3′) for given (1,1′)
in channel (c) changes the kernel if V11(q) = V12(q). If one
neglects the difference between V11(q) and V12(q), the contri-
butions to st(3c)

− {g} of g−(k2′) − g−(k2) and g−(k3′) − g−(k3)
cancel each other.

B. Divergencies in the three-particle scattering rate

We now turn to the meaning of the tilde over the summation
sign in Eqs. (3.1), (3.9)–(3.11), and (3.13)–(3.15). Notice the
energy denominators in the amplitudes Airr

a,b,c [Eqs. (C5)–
(C7)]: being squared in the collision integral [Eq. (3.5) or
(3.16)], they yield a singularity in the kernel of the collision
integral of the type 1/�2, where �, defined for various
scattering processes according to Eq. (C8), is the energy
transferred in a virtual transition to the intermediate state.
The singularity is in general not integrable in the sense that the
numerator does not vanish at � = 0. More specifically, it is not
integrable if electrons possess spin (or pseudospin, as in the
case of different wires); for more details, see Appendix D. The
tilde in Eqs. (3.1), (3.9)–(3.11), and (3.13)–(3.15) is related
to the proper handling of the 1/�2 singularity in the kinetic
theory, as explained in the following.

Let us first recall the relevant aspects of the many-
particle scattering problem in the vacuum as we know them
from quantum mechanical scattering theory. There are two
conceptually important differences between the two-particle
scattering problem and the M-particle scattering problem

with M > 2. One is related to the definition of the scattering
matrix for M > 2. In the former case, one can unambiguously
define the (exact to arbitrary order in the interaction poten-
tial) two-particle scattering operator whose matrix elements
modulus squared, taken on the mass shell in the basis of free
(with respect to the interparticle interaction potential) states,
determine the scattering cross section. In the case of M > 2,
the scattering states may not be definable as asymptotically
free: this happens if particles can form bound states in the
process of scattering.94,95 The M-particle T matrix should then
include the scattering states in which (a part of) interaction
does not disappear at infinity and remains important for
arbitrarily long times after the collision event (or, conversely,
the bound states may exist before the collision event and be
excited in the process of it). A general formalism that accounts
for the proper boundary conditions in the M-particle scattering
problem with arbitrary scattering channels is based on the
Faddeev equations.94,95

For the case of a repulsive interaction (assumed in this
paper), there are no bound states. However, independently of
the sign of interaction, there is another essential difference
between the scattering problems with M = 2 and M > 2,
which resembles the one mentioned above in that it is also
related to scattering processes in which interaction remains
relevant for arbitrarily long times. Specifically, M-particle
collisions with M > 2 occur not necessarily in a compact
region in space and time even for the case of a short-range
interaction potential. For example, three-particle scattering
(contributing to the irreducible part of the scattering amplitude)
occurs when all three particles are simultaneously within
the range of the interaction, but it also includes processes
which consist of two consecutive scattering events in one
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of which only two particles interact with each other and the
other event in which one of those particles interacts with the
third particle.96–98 The time separating the two events may be
arbitrarily long. The 1/�2 singularity96,98 is associated with
this type of scattering, for which the scattering probability
increases not linearly but quadratically in time.

The 1/�2 growth of the differential three-particle cross
section (defined diagrammatically as a sum squared of all
connected diagrams for the three-particle scattering amplitude
at given momenta of the incident and outgoing waves at
infinity) as � → 0 is a no-nonsense singularity which requires,
however, a proper regularization at the point � = 0. Clearly,
there arises a question about the meaning of the cross section
integrated around � = 0. In Ref. 96, a finite density of
particles was introduced to regularize the divergency of the
three-particle T matrix in the collision integral. In effect, a
similar regularization was used in Ref. 97, where the quantum
kinetic equation for triple collisions was derived in terms of
scattering amplitudes in a “medium” (the gas of interacting
particles). In a different approach,98,99 it was pointed out
that the limit � → 0 and the limit of the distance sent to
infinity (in the definition of the T matrix) do not commute.
That is, the infinitesimal neighborhood of the point � = 0
in the differential cross section requires delicate handling,
depending on what quantity is calculated. In particular, the
implications for the intensity of outgoing waves in a three-
beam experiment in three dimensions were discussed in Ref.
98. Most importantly, by taking the limit of an infinitely large
distance after the limit � → 0, the integral of the differential
cross section around the singularity was demonstrated to be
finite.96–98 As follows from the results of Refs. 96 and 97, it is
the latter order of taking the limits that determines the collision
integral in the kinetic formulation. Specifically, 1/�2 in the
kernel of the collision integral should be regularized at � = 0
as the real part of a double pole96–98:

1

|�|2 → �2 − ε2

(�2 + ε2)2
, ε → 0 (3.17)

which yields a finite result for the integral of the differential
cross section over a region that includes � = 0, and not as the
modulus squared 1/|� + iε|2, which would give a divergent
integral.100 The tilde in Eqs. (3.1), (3.9)–(3.11), and (3.13)–
(3.15) denotes the regularization rule (3.17).

The way the singularity at � = 0 is regularized in Eq. (3.17)
has important ramifications for the structure of the collision
integral expanded in a series in the number M � 2 of colliding
particles Stσ = ∑

M St(M)
σ . As follows from Eq. (3.17), a naive

extension of the M = 2 result, assuming that the kernel of St(M)
σ

for given momenta is proportional to the modulus squared of
the corresponding matrix element of the M-particle T matrix,
is incorrect. The thus defined St(M)

σ would be divergent for
M > 2. As pointed out in Refs. 96 and 97 for the case of M =
3, the expansion over M contains additionally counterterms.
Specifically, for M = 3:

St(3)
1 =

∑̃
{. . .} =

∑
{. . .} − I

(3)
1 , (3.18)

where {. . .} is the contribution to St(3)
1 of a given set of momenta

as shown in Eq. (3.1),
∑{. . .} contains 1/|� + iε|2 (modulus

squared of the amplitude) and is thus diverging, and I
(3)
1 is a

counterterm that cancels the divergent contribution to
∑{. . .}

according to the rule (3.17). The term −I
(3)
1 can be considered

as removing from St(3)
1 the contribution of two consecutive

two-particle collisions separated by an infinite time, so that
in between the three-particle system returns to the mass shell
(the independent two-particle collisions are already accounted
for by the term St(2)

1 : subtracting the counterterm thus prevents
double counting).101 The meaning of the tilde in Eq. (3.18)
is thus that one should not include such “real” states in the
summation over virtual states in the three-particle scattering
amplitudes. Ideologically, the subtraction of the counterterm in
Eq. (3.18) bears similarity to the treatment of triple collisions
in classical kinetic theory (§17 in Ref. 102).

The necessity to use the regularization (3.17) in the collision
integral has not been part of the discussion in the recent wave
of interest in three-particle scattering in one dimension.68,85–89

In all these works, the kernel of the collision integral is
written simply as the modulus squared of the T -matrix
element. This omission is, in fact, only justifiable in the case
of spinless electrons [in our problem, this corresponds to
three-particle scattering in channel (a), in which all electrons
are (pseudo)spin polarized]: the collision integral in this
case does not diverge because of a cancellation between the
contributions of direct and exchange scattering. In terms of the
double counting discussed above, the absence of divergencies
in the spinless case can be understood as a consequence of the
fact that two-particle collisions do not affect the distribution
function in a single wire. However, in the case of electrons with
spin (or pseudospin, as is the case for two wires in the drag
problem), it is absolutely necessary to specify in what way the
singularity at � = 0 should be treated [Eq. (3.17)], because
the naive representation of the kernel as the modulus squared
of the three-particle T -matrix element leads to divergency.103

The technical details of how the three-particle scattering
rate behaves in the vicinity of the point � = 0 in the drag
problem are further discussed, in the diagrammatic language,
in Appendix D, where we calculate, as an example, the total
scattering rate for a (pseudo)spinful particle (for a similar
calculation in the spinless case, see Ref. 104).

C. Fokker-Planck description of soft triple collisions

As already noted at the beginning of Sec. III, three-particle
scattering may substantially enhance drag for the case of soft
collisions, when the right-left equilibration is controlled by a
slow diffusion in energy space. We therefore turn now to a
description of three-particle scattering with small-momentum
transfer in terms of a Fokker-Planck equation, similar to
Sec. II C for two-particle scattering. Just as in the case of
pair collisions, the Fokker-Planck approach is justified if T is
much larger than the characteristic energy transfer.

The current in momentum space J (3), induced by triple
collisions, is related to st(3)

− {g} in Eq. (3.12) by

st(3)
− {g} = 4

ζ 2(k1)

∂J (3)(k1)

∂k1
(3.19)

[cf. Eq. (2.43) for the case of pair collisions]. For the
linearized collision integral [Eqs. (3.13)–(3.15)], the contri-
butions J (3a),(3b),(3c) to J (3) of scattering processes (a), (b), (c)
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can be exactly rewritten as

J (3a)(k) = −
∫ ∞

−∞

dq

2π

∫ k

k−q

dk′[Pa(k′,k′ + q)g−(k′) + P̄a(k′,k′ + q)], (3.20)

J (3b)(k) = −
∫ ∞

−∞

dq

2π

∫ k

k−q

dk′[Pb(k′,k′ + q)g−(k′) − P̄b(k′,k′ + q)], (3.21)

J (3c)(k) = −
∫ ∞

−∞

dq

2π

∫ k

k−q

dk′[Pc(k′,k′ + q)g−(k′) + P̄c(k′,k′ + q)], (3.22)

where

Pa(k1,k1′) = 1

12
× 1

4
L

∑̃
232′3′

Wa(1′,2′,3′|1,2,3)δ(. . .), (3.23)

Pb,c(k1,k1′ ) are defined similarly, with the numerical coefficient 1
12 in Eq. (3.23) being changed to 1

4 and 1
2 in cases (b) and (c),

respectively, and

P̄a(k1,k1′ ) = 1

12
× 1

4
L

∑̃
232′3′

Wa(1′,2′,3′|1,2,3)δ(. . .)[g−(k2) − g−(k2′)], (3.24)

P̄b(k1,k1′ ) = 1

4
× 1

4
L

∑̃
232′3′

Wb(1′,2′,3′|1,2,3)δ(. . .)[ g−(k2) − g−(k2′) ], (3.25)

P̄c(k1,k1′) = 1

2
× 1

4
L

∑̃
232′3′

Wc(1′,2′,3′|1,2,3)δ(. . .)
g−(k2) − g−(k3) − g−(k2′) + g−(k3′)

2
. (3.26)

The integral over k′ in each of Eqs. (3.20)–(3.22) is taken over
an interval whose width is the transferred momentum q. At
this point, it is important to realize that it would be incorrect
to simply expand in q in the integrands of Eqs. (3.20) and
(3.22) [channels (a) and (c), respectively] in order to obtain
the collision integral in the diffusive limit. This is because
of the exchange processes in the amplitudes (C5) and (C7)
that exchange k1′ with either k2′ [channels (a) and (c)] or k3′

[channel (c)]. In these processes, the momentum difference
that is small in the diffusive limit is k2′ − k1 or k3′ − k1, but
not k1′ − k1, the characteristic value of which is much larger
than 1/a. The contribution to the collision integral of the
processes with small k2′ − k1 [channels (a) and (c)] or k3′ − k1

[channel (a)] is, however, the same as that of the processes
with small k1′ − k1. Therefore, the current J (3)(k) is obtained
in the diffusive limit by expanding in q in Eqs. (3.20)–(3.22)

and multiplying the result by a factor of 3 in channel (a) and
a factor of 2 in channel (c). More specifically, expanding the
products Pa,b,c(k′,k′ + q)g−(k′) in the integrands to first order
in k′ − k, taking P̄a,b,c(k′,k′ + q) out from under the integral
sign at the point k′ = k, and using the property of the kernel
Pa,b,c(k,k + q),∫ ∞

−∞
dq

∫ k

k−q

dk′ Pa,b,c(k′,k′ + q) = 0, (3.27)

which follows from the vanishing of the collision integral in
Eqs. (3.13)–(3.15) at g−(k) = const(k) and the condition that
the current in momentum space is zero at |k| → ∞, we have

J (3)(k) � D(3)(k)
∂g−(k)

∂k
− C̄(3)(k), (3.28)

where

D(3)(k) = 1

2

∫
dq

2π
q2[ 3Pa(k,k + q) + Pb(k,k + q) + 2Pc(k,k + q) ], (3.29)

C̄(3)(k) =
∫

dq

2π
q [ 3P̄a(k,k + q) − P̄b(k,k + q) + 2P̄c(k,k + q) ]. (3.30)

The collision integral St(3){f } = −∂J (3)(k)/∂k with J (3)(k) from Eq. (3.28) conserves total momentum and total energy.
Note the absence of a drift component [proportional to g−(k) itself, not its derivative ∂g−(k)/∂k] in the contribution to J (3)(k)

that comes from the terms proportional to Pa,b,c(k′,k′ + q). This is a direct consequence of the exact condition (3.27), which can
be represented in the limit of small-momentum transfer (characteristic q → 0) as∫

dq qPa,b,c(k,k + q) = 1

2

∂

∂k

∫
dq q2Pa,b,c(k,k + q). (3.31)
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It is also worth noting that, while expanding Pa,b,c(k′,k′ +
q)g−(k′) in k′ − k in Eqs. (3.20)–(3.22) yields the first
term in Eq. (3.28), expanding P̄a,b,c(k′,k′ + q) would be
beyond the accuracy of the diffusive approximation. Indeed,
doing so would produce the term ∂D̄(3)(k)/∂k in J (3)(k),
where

D̄(3)(k) = 1

2

∫
dq

2π
q2[ 3P̄a(k,k + q)

− P̄b(k,k + q) + 2P̄c(k,k + q) ]. (3.32)

The integrands of P̄a,b,c(k,k + q) [Eqs. (3.24)–(3.26)] for
scattering k → k + q of electron 1 contain as factors the linear
combinations of the differences of the distribution functions
before and after scattering for electrons 2 and 3. For q → 0, the
conservation of momentum and energy gives two solutions for
the pair k2′ − k2 and k3′ − k3: either k2′ = k2 and k3′ = k3 or
k2′ = k3 and k3′ = k2. In the former case, the expansion of the
differences g(k2′) − g(k2) and g(k3′) − g(k3) around the q = 0
solution gives higher powers of q compared to q2 already
present in Eq. (3.32). In the latter case, the expansion yields105

the factor k3 − k2, the characteristic value of which in the
integrand at q → 0 is of the order of the typical momentum
transfer 1/a. In either case, adding ∂D̄(3)(k)/∂k to J (3)(k)
for the characteristic transferred energy qk/m much smaller
than T only gives rise to small corrections to the diffusive
approximation (3.28). Similarly, in Eq. (3.30) for C̄(3)(k), it
suffices to expand g(k2′) − g(k2) and g(k3′) − g(k3) in the
integrands of P̄a,b,c(k,k + q) to first order in k2′ − k2 and
k3′ − k3, provided that the characteristic transferred momenta
are much smaller than T/vF .

In the derivation of the Fokker-Planck equation (3.28),
we assumed that the characteristic change in energy of the
diffusing electron with momentum k in a single scattering
event is much smaller than T . This allowed us to treat g−(k),
Pa,b,c(k,k + q), and P̄a,b,c(k,k + q) as smooth functions of
k on the characteristic scale of q. One model in which this
condition is satisfied for arbitrary k is that of V11(q) and
V12(q) falling off sufficiently rapidly as |q| increases beyond
the same characteristic scale 1/a � T/vF . In the following,
we employ this model for estimating the relative weight of
various scattering processes in Sec. III D and solving the
Fokker-Planck equation analytically in Sec. III E. Recall,
however, that for the case of Coulomb interaction, as can
be seen from Appendix A, the functions V11(q) and V12(q)
behave essentially differently with increasing |q|. Namely,
V12(q) falls off exponentially for |q|a � 1, whereas V11(q)
falls off only logarithmically (for |q|d � 1). In the Coulomb
case, the Fokker-Planck expansion in Eqs. (3.20)–(3.22) is
justified for T a/vF � 1 for scattering processes that involve
the interwire interaction, but is not justified for channel (a).
Importantly, however, the diffusive character of the current
J (3a)(k) remains intact even in the case of Coulomb interaction
for |k| � kF , as will be seen in Sec. III D. Electron scattering
at the bottom of the spectrum (which bottlenecks the right-left
equilibration) can thus be treated in the Coulomb case within
the Fokker-Planck approach also for channel (a). The gradient
expansion of the intrawire contribution to the integral term
C̄(3)(k), on the other hand, would not be justified in the case

of Coulomb interaction. We will return to the Coulomb case
at the end of Sec. III E.

In contrast to the differential Fokker-Planck equation for
the case of two-particle scattering [Eq. (2.43)], J (3)(k) from
Eq. (3.28) gives an integrodifferential equation because the
term ∂C̄(3)(k)/∂k in St(3)(k) is an integral of the distribution
function. With the integral kernel from C̄(3)(k), the equation is
not exactly soluble, even in the diffusive limit.106 To proceed,
we make two approximations, one of which is parametrically
accurate in the drag problem for T/εF � 1, the other for a
particular relation between the strength of the interwire and
intrawire interaction potentials (the exact condition will be
formulated in Sec. III D).

D. Identifying relevant scattering processes

We now simplify the Fokker-Planck equation in the limits
mentioned in the last paragraph of Sec. III C. The first step is
to realize that, similar to the case of pair collisions, the right-
left equilibration due to triple collisions is bottlenecked by
the slowing down of diffusive motion in energy space around
the point k = 0. That is, when the equilibration rate limits
the drag rate 1/τD from Eq. (1.6), it is sufficient to calculate
J (3)(k) for |k| � kF and the momenta k2 and k3 of two other
electrons close to the Fermi surface. This separation of scales
in momentum space is justified in the limit T/εF � 1.

The second step is to compare the contribution to the
equilibration rate, induced by three-particle scattering, of the
region in momentum space in which k2 and k3 belong to the
same chiral branch (k2 � k3 � ±kF ) and the contribution of
the region in which k2 and k3 are on the opposite sides of the
Fermi surface (k2 � −k3 � ±kF ) (see Fig. 3). Specifically, let
us estimate the contributions to the diffusion coefficient of a
hole with k → 0, D(3)

h,++ and D
(3)
h,+−, coming from interactions

with electrons on the Fermi surface with the same (++)
or opposite (+−) chirality. The corresponding terms in the
electron diffusion coefficient D(3)(k → 0) are smaller by a
factor of exp(−εF /T ).

The conservation of momentum and energy for |k| �
|k2|,|k3| gives

q3 � q2, q � −2q2 (3.33)

for k2 � −k3 and

q3 � −q2, q � q2
k2′ − k3

k3
(3.34)

for k2 � k3, where q is the transferred momentum for electron
1, q2 = k2′ − k2 and q3 = k3′ − k3. Importantly, while in the
former case all three transferred momenta q,q2,q3 are of the
same order of magnitude, in the latter case |q| � |q2|,|q3|.
Specifically, the characteristic value of |q| is of the order of
the characteristic value of |q2|,|q3| ∼ min{T/vF ,1/a} in the
former case and is smaller by a factor of T/εF in the latter.
This means that, for T a/vF � 1, the typical length of an
elementary step in the diffusion process near k = 0 is of order
1/a for k2 � −k3 and of order T/aεF for k2 � k3.
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a +− b +−

b ++

c +−

c ++

wire 1 wire 2

a ++

FIG. 3. Momentum configurations for three-particle scattering in channels (a), (b), and (c) (first, second, and third columns, respectively)
with two electrons having energies close to the Fermi level and a third electron having energy close to the bottom of the spectrum. The electrons
on the Fermi surface can have the opposite (+−) or same (++) chiralities (first and second rows, respectively). The relative contributions of
the different configurations to the diffusion coefficient (in energy space) of the cold electron are discussed around Eqs. (3.48)–(3.50).

To estimate the scattering rate near k = 0, calculate first the
density of final states

ρ(q; k,k2,k3) =
∫

dq2

2π

∫
dq3 δ(. . .)δ(q + q2 + q3), (3.35)

where δ(. . .) is the delta function that describes the conserva-
tion of energy in Eqs. (3.9)–(3.11), (3.13)–(3.15), and (3.23)–
(3.26) for scattering 2 → 2′ on the surface in momentum
space on which the conservation of both total energy and total
momentum is satisfied for given q,k,k2,k3. For |k| � |k2|,|k3|
and k2 � −k3 � ±kF [Eq. (3.33)], ρ(q; k,k2,k3) � 1/4πvF ,

whereas the characteristic value of ρ(q; k,k2,k3) for momenta
from Eq. (3.34) (and |k2′ − k3| ∼ T/vF ) can be seen to be
a factor of εF /T larger. Next, observe that the characteristic
width of the integration regions in two remaining integrals in
Pa,b,c(k,k + q), over k2 and k3, is T/vF for both k2 � −k3

and k2 � k3. Now, compare the characteristic values of the
kernel Wa,b,c(1′,2′,3′|1,2,3) for momenta given by Eqs. (3.33)
and (3.34). To do so in an efficient manner, it is convenient
to use the following properties of some of the fractions that
appear in Airr

a,b,c(1′,2′,3′|1,2,3) from Eqs. (C5)–(C7) on the
three-particle mass shell:

1

(k3′ − k3)(k3′ − k2)
+ 1

(k1′ − k2)(k1′ − k1)
= − 1

(k3′ − k2)(k1′ − k2)
,

1

(k1′ − k3)(k1′ − k1)
+ 1

(k2′ − k2)(k2′ − k3)
= − 1

(k2′ − k3)(k1′ − k3)
, (3.36)

1

(k2′ − k2)(k2′ − k1)
+ 1

(k3′ − k3)(k3′ − k1)
= − 1

(k3′ − k1)(k2′ − k1)
.

In particular, Eqs. (3.36) show that, for the momenta from both Eqs. (3.33) and (3.34), two terms in each of the sums almost exactly
cancel each other for the case of kF a � 1 (exponentially suppressed direct backscattering at the Fermi level): the characteristic
value of the sum is a factor of kF a smaller than the characteristic value of one of the terms. The use of the characteristic values
of the momenta in the estimates is justified by the regularization rule (3.17).

Let us denote (Airr
a,b,c)dir the amplitudes of direct scattering in Eqs. (C5)–(C7). These are associated with the terms in

Eqs. (C5)–(C7) inside the square brackets. For |k| � |k2| � |k3| � kF and k2 � −k3 [Eq. (3.33)], they simplify significantly:

(
Airr

a

)
dir � m

L2

V11(q/2) [V11(q) − V11(q/2)]

k2
F

, (3.37)

k2 � −k3 :
(
Airr

b

)
dir � m

L2

V11(q/2)V12(q) − V 2
12(q/2)

k2
F

, (3.38)

(
Airr

c

)
dir � m

L2

V12(q/2) [V11(q) + V12(q) − 2V11(q/2)]

2k2
F

. (3.39)
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The main simplification is that the only variable on which the amplitudes in Eqs. (3.37)–(3.39) depend is the momentum transfer
q (with the characteristic value of q of order 1/a, according to the above). For |k| � |k2| � |k3| � kF and k2 � k3 [Eq. (3.34)],
the amplitudes are written as(

Airr
a

)
dir � m

L2

V11(q3) [ V11(q3) − V11(q) ] + q3V
′

11(q3)V11(q)

k2
F

, (3.40)

k2 � k3 :
(
Airr

b

)
dir � m

L2

V 2
12(q3) − V11(q3)V12(q) + q3V

′
11(q3)V12(q)

k2
F

, (3.41)

(
Airr

c

)
dir � m

L2

V12(q3) [V11(q3) − V12(q3)] + q3V
′

12(q3)V11(q)

k2
F

− m

L2

q3

q

V12(q3) [V11(q) − V12(q)]

k2
F

, (3.42)

where V ′
σσ ′(q3) = dVσσ ′(q3)/dq3. It is worth mentioning that

while the product q3V
′
σσ ′(q3) might seem to imply that |q3|

is assumed to be small compared to the characteristic scale
on which Vσσ ′(q3) changes, taking the derivative V ′

σσ ′(q3) in
Eqs. (3.40)–(3.42), in fact, only assumes that the transferred
momentum that is small in this sense is q, which is a much
weaker (in the parameter T/εF � 1) condition in view of
Eq. (3.34).

Note that there are two essentially different types of
strong cancellations between various terms in the derivation
of Eqs. (3.40)–(3.42). One, controlled by the parameter
1/kF a � 1, is described by Eqs. (3.36). The other, controlled
by the parameter T/εF � 1, is related to the destructive
interference between two terms given in case (a) by the
first and second lines in Eq. (C5) and in case (b) by the
first and second lines in Eq. (C6), respectively. Importantly,
the latter type of cancellation does not occur in case (c)
[Eq. (C7)] because of the difference between the interwire and
intrawire interaction potentials, which gives rise to the large
factor q3/q � k3/(k3 − k2′) in the second term in (Airr

c )dir in
Eq. (3.42). The singularity of the amplitude at k3 → k2′ is of
the type discussed in Sec. III A and should be regularized in
the kernel of the collision integral according to Eq. (3.17).
As follows from this regularization rule, the contribution
of (Airr

c )dir to the collision integral can be estimated by
substituting T/vF as a characteristic value of the difference
k3 − k2′ . We see, then, that the characteristic value of the
amplitude in channel (c) contains an additional factor of
εF /T � 1 compared to the amplitudes in channels (a) or (b),
so that, unless V11(q) and V12(q) are very close to each other,
channel (c) gives the main contribution to the collision kernel
for the case of electrons 2 and 3 having the same chirality.

Let us now compare the terms in the diffusion coefficient of
a hole with k → 0, D(3)

h,++ and D
(3)
h,+−, that come from interac-

tions with electrons with k2 � k3 and k2 � −k3, respectively.
Each of the two terms is a sum of the contributions of channels
(a), (b), and (c) (Fig. 3). It is instructive to estimate the relative
weight of the six contributions to the total diffusion coefficient
by splitting each of them into a product 〈q2〉R/2, where 〈q2〉
is the average of q2 in the diffusion process whose elementary
step is momentum transfer q and R is the characteristic
scattering rate for these elementary steps. The scattering rates
include the density of states (3.35) whose characteristic value
was estimated below Eq. (3.35) to be a factor of εF /T larger
for the case of k2 � k3 compared to the case of k2 � −k3.

The characteristic values of q for |k| � kF were discussed
below Eq. (3.34) and the characteristic values of momentum
differences for electrons on the Fermi surface below Eq. (3.35).
Piecing everything together, we estimate the scattering rates
for k2 � −k3 in channels (a), (b), and (c) as

R
(3a)
+− ∼ vF

a

[
V11(1/a)

vF

]4(
T

εF

)2

, (3.43)

R
(3b),(3c)
+− ∼ vF

a

[
V11(1/a)

vF

]2 [
V12(1/a)

vF

]2(
T

εF

)2

. (3.44)

Similarly, for k2 � k3,

R
(3a)
++ ∼ vF

a

[
V11(1/a)

vF

]2 [
V11(T/aεF )

vF

]2(
T

εF

)2

, (3.45)

R
(3b)
++ ∼ vF

a

[
V11(1/a)

vF

]2 [
V12(T/aεF )

vF

]2(
T

εF

)2

, (3.46)

R
(3c)
++ ∼ vF

a

[
V12(1/a)

vF

]2 [
V11(T/aεF ) − V12(T/aεF )

vF

]2

.

(3.47)

In these estimates, we assume that T a/vF � 1. We also
assume the most common behavior of the intrawire and
interwire potentials, namely (as sufficient conditions) that
|V11(1/a)| � |V12(1/a)| and |V11(T/aεF )| � |V11(1/a)|. Here
and in the estimates, the arguments of V11 and V12 are
understood as characteristic scales of transferred momentum.
The estimate for R

(3c)
++ [Eq. (3.47)] is written under the

assumption that |V11(q) − V12(q)|/|V11(q)| � T/εF for |q| ∼
T/aεF . Note that R

(3c)
++ differs from all other scattering rates in

Eqs. (3.43)–(3.47) in that it does not contain the small factor
(T/εF )2.

The hole diffusion coefficient D
(3)
h,+−, which results from

triple collisions with electrons of opposite chirality, is thus
estimated, by substituting 〈q2〉 ∼ 1/a2, as

D
(3)
h,+− ∼ V 4

11(1/a)

(vF a)3

(
T

εF

)2

. (3.48)

Provided V11(1/a) � V12(1/a), the main contribution to
D

(3)
h,+− comes from scattering in channel (a) [Eq. (3.43)].
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The diffusion coefficient D
(3)
h,++, associated with interactions

with electrons of the same chirality and characterized by
〈q2〉 ∼ (T/aεF )2, is determined by two competing terms from
channels (a) and (c):

D
(3a)
h,++ ∼ V 4

11(1/a)

(vF a)3

(
T

εF

)4

, (3.49)

D
(3c)
h,++ ∼ V 2

12(1/a) [V11(T/aεF ) − V12(T/aεF )]2

(vF a)3

(
T

εF

)2

.

(3.50)

Note that, in channel (a), interactions with electrons of
opposite chirality are much more effective than with electrons
of the same chirality because D

(3a)
h,++ in Eq. (3.49) has two

more powers of the small parameter T/εF compared to D
(3)
h,+−

in Eq. (3.48). Therefore, the total diffusion coefficient can be
estimated as a sum of only two terms: D

(3)
h,+− [Eq. (3.48)] and

D
(3c)
h,++ [Eq. (3.50)]. Now, we observe that the term D

(3c)
h,++ is

small in comparison to D
(3)
h,+− in two limiting cases: if the

interaction between the wires is much weaker than inside the
wires, or if the two interaction potentials are very close to
each other. That is, in both limits of a large and small distance
between the wires, interactions of a hole at the bottom of the
spectrum with electrons of the same chirality on the Fermi
surface can be neglected. Moreover, in the crossover regime,
when none of the conditions is satisfied, the contribution
of D

(3c)
h,++ to the total diffusion coefficient is of the same

order of magnitude as that of D
(3)
h,+−, thus not leading to any

qualitatively new features, either.
In Sec. III E, we therefore focus on the contribution of

three-particle scattering with two electrons having opposite
chirality on the Fermi surface. In this case, the Fokker-Planck
equation, upon substitution of Eqs. (3.37)–(3.39) for the

scattering amplitudes, is exactly soluble for the right-left
equilibration rate.

E. Interplay of triple intrawire and pair interwire collisions

Recalling the arguments of the very end of Sec. III D,
we now consider the right-left equilibration due to triple
collisions within the framework of the Fokker-Planck equation
(3.28) with the scattering amplitudes (3.37)–(3.39). These
amplitudes correspond to the momentum configuration in
which two electrons of opposite chirality are close to the Fermi
surface, while the third electron is close to the bottom of the
spectrum. We treat three- and two-particle soft collisions on
an equal footing by adding to the current in momentum space
(3.28), induced by three-particle scattering, the component
induced by two-particle scattering [Eq. (2.44)]. One important
consequence of this is that the mechanisms of drag and
right-left relaxation, rigidly connected to each other in the case
of pair collisions in Sec. II C, may now be disentangled. To
describe the new physics that comes about from the interplay
of triple and pair collisions, the most relevant example is that
of drag mediated by pair collisions only, with triple collisions
occurring between electrons, all of which are from the same
wire [channel (a) in the above]. Since drag is only possible in
the presence of the processes of thermal equilibration between
electrons of opposite chirality (Sec. II B), drag may (as already
noted at the beginning of Sec. III) be strongly enhanced by
intrawire triple collisions. These do not lead to any drag
effect directly, but do affect drag indirectly by providing an
additional channel for the thermalization processes which
enhance friction induced by interwire pair collisions.

In the limit T a/vF � 1, substituting the amplitudes (3.37)–
(3.39) in the kernel of Eq. (3.29), we obtain the terms in
the diffusion coefficient D(3)(k) [Eq. (3.29)] at |k| � kF that
result from interactions with electrons of opposite chirality in
channels (a), (b), and (c):

D(3a)(k) � ζ 2(k)

512(πvF )3

(
T

εF

)2∫
dq q2 V 2

11(q/2)[V11(q) − V11(q/2)]2, (3.51)

D(3b)(k) � ζ 2(k)

512(πvF )3

(
T

εF

)2∫
dq q2 [V11(q/2)V12(q) − V 2

12(q/2)]2, (3.52)

D(3c)(k) � ζ 2(k)

1024(πvF )3

(
T

εF

)2∫
dq q2 V 2

12(q/2)[V11(q) + V12(q) − 2V11(q/2)]2. (3.53)

Without the factor ζ 2(k)/4, Eqs. (3.51)–(3.53) give the
diffusion coefficient for a hole with k → 0, estimated in
Eq. (3.48). Note that the terms corresponding to channels
(a) and (b) have equal contributions of the modulus squared
of the direct scattering amplitude [Eqs. (3.40) and (3.41)], in
which |q2|,|q3| � kF and |k2 − k3| � 2kF , and of the modulus
squared of the exchange amplitude with |k2′ − k3|,|k3′ −
k2| � kF and |k2 − k3| � 2kF . Altogether, taking into account
the factors of 3, 1, 2 in front of Pa,b,c(k,k + q) in Eq. (3.29),
the exchange processes thus lead to multiplication of the
contributions of the processes in which all three transferred
momenta q,q2,q3 are small compared to kF by factors of

6, 2, 2 in channels (a), (b), (c), respectively. In the limit
T a/vF � 1, for the relation between the transferred momenta
from Eq. (3.33), the integral term C̄(3)(k) [Eq. (3.30)] reduces
to a sum of two terms coming from channels (a) and (b), while
the contribution of channel (c) can be neglected:

C̄(3)(k) � Di(k) 〈∂g−/∂k〉, (3.54)

where

Di(k) = D(3a)(k) − D(3b)(k), (3.55)

〈∂g−/∂k〉 =
∫

dk

kT

ζ 2(k)
∂g−(k)

∂k
, (3.56)
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and kT = ∫
dk ζ 2 = 8πT ∂n/∂μ � 8T/vF . In Eq. (3.54), the

function g−(k) only enters C̄(3)(k) through the k-independent
average (3.56), which greatly simplifies the solution of the
Fokker-Planck equation.

Let us rewrite the Fokker-Planck equation

e(E1 − E2)ζ 2(k)k

8mT
= − ∂

∂k

[
Dt(k)

∂g−(k)

∂k
− C̄(3)(k)

]
(3.57)

in an integral form

g−(k) = 1

4

∫ k

0
dp

1

Dt(p)

{
e(E1 − E2)

[
1 − tanh

(
p2 − k2

F

4mT

)]
+ 4C̄(3)(p)

}
, (3.58)

where the total diffusion coefficient

Dt(k) = D(2)(k) + D(3)(k) (3.59)

describes both pair and triple collisions. The term describing pair collisions in Eq. (3.59) is related to the diffusion coefficient D(k)
from Eq. (2.45) by D(2)(k) = ζ 2(k)D(k)/4. Unlike Eq. (2.48) for the case of pair collisions [D(3) → 0, C̄(3) → 0 in Eq. (3.58)],
this is not a solution but an integral equation for g−(k). Substituting Eq. (3.54) in Eq. (3.58) and integrating Eq. (3.58) with a
factor ζ 2(k)∂/∂k, we have an algebraic equation for 〈∂g−/∂k〉, the solution of which gives

〈∂g−/∂k〉 = e

4
(E1 − E2)

∫
dk

kT

ζ 2(k)
1

Dt(k)

[
1 − tanh

(
k2 − k2

F

4mT

) ] / [
1 −

∫
dk

kT

ζ 2(k)
Di(k)

Dt(k)

]
. (3.60)

Using Eq. (3.60) in Eq. (3.54) and substituting the thus obtained C̄(3)(k) back in Eq. (3.58) yields the solution of the Fokker-Planck
equation in terms of two k-dependent combinations of the diffusion coefficients, Dt(k) and Di(k).

To characterize the relative strength of two- and three-particle scattering, we now introduce two constants (independent of k)
D2 and D3 according to D(2)(k) = D2ζ

4(k) and D(3)(k) = D3ζ
2(k), so that

Dt(k) = ζ 2(k)[D2ζ
2(k) + D3 ]. (3.61)

The constant D2 is related to the constant c [Eqs. (2.40) and (2.41)] by D2 = mc/16 = 3k2
F /4τ∞

D . Note that D2 does not depend
on T , whereas D3 is proportional to (T/εF )2 [Eqs. (3.51)–(3.53)]. Similarly, we introduce the constant Di:

Di(k) = Diζ
2(k). (3.62)

The shape of the function g−(k) in Eq. (3.58) and the resulting resistivity ρD will now be parametrized by the “diffusion constants”
D2, D3, Di, and the ratio T/εF � 1. Note that the relation between D2 and D3 can be arbitrary, while Di < D3 [and, depending
on the relative strength of channels (a) and (b), Di can, in general, be of either sign]. In the limit of large separation between the
wires, the main contribution to both D3 and Di comes from channel (a) and Di � D3; in contrast, in the limit of small separation,
Di � D3.

Let us first calculate the average (3.60). The integral in the denominator of Eq. (3.60) can be neglected compared to unity in
the limit D3 � D2, while in the opposite limit it is close to unity, which makes the denominator small, if Di � D3:∫

dk

kT

Diζ
2

D2ζ 2 + D3
� Di

D3

(
1 − 2

3

D2

D3

)
, D2 � D3. (3.63)

The integral in the numerator of Eq. (3.60) behaves differently depending on the parameter D3e
εF /T /D2 for D3 � D2, which

gives rise to three different types of behavior for 〈∂g−/∂k〉:

〈∂g−/∂k〉 � e

4
(E1 − E2)

(εF

T

)1/2
×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1/4D2)

[
ln1/2(D2/D3) + (π1/2/2)eεF /T

]
, D3 � D2e

−εF /T

(1/D3) ln1/2
(
D3e

εF /T /D2
)
, D2e

−εF /T � D3 � D2

(εF /T )1/2/(D3 − Di + 2D2Di/3D3), D2 � D3.

(3.64)

The range of k that gives the main contribution to the integral in
the numerator of Eq. (3.60) and thus determines Eq. (3.64) in
the three regimes is |k| < (2mT )1/2 ln1/2(D2/D3) for the first
term and |k| � (mT )1/2 for the second term in the first line of
Eq. (3.64), |k| < (2mT )1/2 ln1/2(D3e

εF /T /D2) in the second
line, and |k| < kF in the third. The logarithmic divergency as
D3 → 0 in the first line of Eq. (3.64) only occurs within the
diffusive approximation and is cut off79 when the characteristic
|k| ∼ (mT )1/2 ln1/2(D2/D3) becomes of the order of mT a.

We notice from Eq. (3.64) that 〈∂g−/∂k〉 contains the large
factor εF /T to a certain power (different depending on the
relation between D3 and D2). This means that, for thermally
excited electrons in the vicinity of the Fermi surface, the
derivative ∂g−(k)/∂k from Eq. (3.58) is mainly given by the
integral term proportional to C̄(3)(k), unless Di/D3 is small
in the parameter T/εF or, if Di/D3 ∼ 1, the ratio D3/D2 �
(T/εF )1/2e−εF /T . That is, unless the above conditions are
satisfied, two terms in the total current in momentum space
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Dt(k)∂g−(k)/∂k and −C̄(3)(k) almost compensate each other
near the Fermi surface. The current in real space, however, is
much less sensitive to the presence of the integral term in the
diffusion equation for three-particle scattering, as will be seen
in the following.

Substituting Eq. (3.58) in Eq. (2.55) for the electric current
j− [using the relation (2.55) between g− and f−], we obtain
j− as a double integral which is reducible, by integration by
parts, to a single one. Using further Eq. (2.60), we thus have

ρ−1
D = e2T

16π

∫
dk

1 + e−(ε−εF )/T

D2 + D3 cosh2[(ε − εF )/2T ]

[
1 + e−(ε−εF )/T + 8Di

〈∂g−/∂k〉
e(E1 − E2)

]
, (3.65)

where 〈∂g−/∂k〉 is given by Eqs. (3.60) and (3.64). From Eqs. (3.60) and (3.65), ρD is represented as ρ−1
D = ρ−1

D1 + ρ−1
D2 , where

ρ−1
D1 = e2T

16π

∫
dk

[1 + e−(ε−εF )/T ]2

D2 + D3 cosh2[(ε − εF )/2T ]
(3.66)

is a direct generalization of the result for pair collisions and

ρ−1
D2 = 32 T 2 Di

∂n

∂μ

( 〈∂g−/∂k〉
E1 − E2

)2 {
1 − Di

∫
dk

kT

1

D2 + D3 cosh2[(ε − εF )/2T ]

}
(3.67)

comes from the integral term of the Fokker-Planck equation.
The integral in the curly brackets in Eq. (3.67) is discussed
above [Eq. (3.63)].

In the limit D3 → 0 and Di → 0, we reproduce Eq. (2.61)
for ρD induced by pair collisions [note that the integration
in Eqs. (3.65) and (3.66) is understood79 as limited by
|k| � mT a]. Now, we observe that the integral (3.65) is
determined by ε � T in a wide range of the ratio D3/D2 (the
exact condition is specified below) because of the exponential
functions e−(ε−εF )/T in the numerator that rapidly decay away
from the bottom of the spectrum. It follows that triple collisions
become essentially important already for D3 � D2e

−εF /T ,
when the second term in the denominator of the integrand
of Eq. (3.65) at ε = 0 becomes much larger than the first one,
i.e., when the scattering rate for an electron at the bottom of
the spectrum is strongly enhanced by triple collisions.

Inspection of Eqs. (3.65)–(3.67) shows that ρD is given by
ρD1 for all D3 � D2e

εF /T (T/εF )3/2, and for D3 � D2e
−εF /T

reads as

ρD � 4πD3

e2kF

( εF

πT 3

)1/2
e−εF /T ,

(3.68)
D2e

−εF /T � D3 � D2e
εF /T (T/εF )3/2 .

Recall that D3 ∝ T 2, so that the pre-exponential factor in
Eq. (3.68) scales with T as T 1/2. Notice that both conditions on
the ratioD3/D2 in Eq. (3.68) are very weak for T/εF � 1. The
one that limits D3/D2 from above comes from a comparison
of ρD1 and ρD2: for larger D3/D2, ρD is mainly given by ρD2.
To see this, let us write ρD2 for D2 � D3, by substituting the
last line in Eq. (3.64) together with Eq. (3.63) in Eq. (3.67).
The result is

ρD2 � π

e2kF

1

εF

D3

Di

(
D3 − Di + 2D2Di

3D3

)
, D2 � D3.

(3.69)

Equation (3.69) shows that ρD2 can only be smaller than ρD1 in
Eq. (3.68) if the wires are sufficiently far away from each other,
so that D3 − Di � D2 � D3. In this limit, (D3/Di)(D3 −

Di + 2D2Di/3D3) → 2D2/3 and friction from ρD2 becomes
much larger than that from ρD1 if D2e

εF /T (T/εF )3/2 � D3.
That is,

ρD � 2π

3e2kF

D2

εF

, D2e
εF /T (T/εF )3/2 � D3. (3.70)

The behavior of ρD as a function of D3/D2 with D3 held
fixed is illustrated in Fig. 4. Note a highly nontrivial point:
even if D3 is entirely due to interactions inside the wires and
thus does not lead to any drag directly, ρD shows a plateau in

exp(− F/T)ε

ρD

exp(εF/T)
3 D/ 2D

3 D/ 2D

ρD

IIIIII

FIG. 4. Schematic behavior of the drag resistivity ρD as a function
of D3/D2 for fixed D3, where D2 and D3 characterize the strength of
two- and three-particle scattering, respectively. Only the exponential
factors are shown in the characteristic scales on the horizontal
axis. Increasing the distance between the wires for the case of
Coulomb interaction leads to a similar behavior of ρD. In the
plateau regime, ρD does not depend on the strength of interwire
interactions. The dependence of ρD on T in three regimes labeled
in the figure for T a/vF � 1: (I) T −3/2e−2εF /T [Eq. (2.61)], (II)
T 1/2e−εF /T [Eq. (3.68)], (III) const(T ) [Eq. (3.70)]. Inset: ρD as a
function of D3/D2 for fixed D2 illustrates the growth of ρD with
increasing strength of interactions inside the wires. The characteristic
scales of D3/D2 in the inset are the same as in the main figure.
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ρD

1/T1/εF

I

III

II

theory”
“orthodox 

exp (−ε

exp (−2 /T)ε

F

F

/T)

“2k ”F

FIG. 5. Schematic behavior of the drag resistivity ρD as a function
of 1/T on the log-linear scale for two distances between the
wires: larger (solid line) and smaller (dashed line). Regimes I,
II, III are labeled similar to Fig. 4. Drag is hindered by slow
thermal equilibration between two electron subsystems with opposite
chiralities, which results in the activation behavior of ρD (regime II:
ρD ∝ e−εF /T , regime I: ρD ∝ e−2εF /T ). In regime II, ρD does not
depend on the distance between the wires. In the low-T regime
(labeled with “2kF ”), drag is due to direct backscattering on the Fermi
surface. For T � εF , the conventional contribution to ρD (labeled with
“orthodox theory,” regime III) is not suppressed only in the case of
sufficiently strong interactions inside the wires in a narrow range of
T right below the Fermi energy εF .

the dependence on D2, i.e., the drag resistivity in this regime
does not depend on the strength of interwire interactions
[Eq. (3.68)]. In particular, this means that varying the distance
between the wires in this regime does not change ρD. On the
other hand, ρD in the plateau regime grows with increasing rate
of three-particle scattering inside the wire, although this type
of scattering by itself does not lead to any friction between
electrons in different wires. Note also that the width of the
plateau in the dependence on D3/D2 in Fig. 4 is exponentially
large in the parameter εF /T . The inset in Fig. 4 illustrates the
behavior of ρD with increasingD3 for fixedD2 [from Eq. (2.61)
to Eq. (3.68) to Eq. (3.70)].

The T dependence of ρD is shown schematically in Fig. 5.
In a wide range of T , the drag resistivity follows the Arrhenius
plot with the activation energy equal to either εF or 2εF . If
D3 � D2 at T ∼ εF (recall that D3 scales as T 2), there is a
range of T below εF within which the T -independent result of
the orthodox theory [Eq. (3.70)] is valid. As T is lowered, ρD

starts to behave as e−εF /T [Eq. (3.68)]. If D3 � D2 at T ∼ εF ,
there is no room for the orthodox theory for T below εF .
Instead, ρD behaves as e−2εF /T [Eq. (2.61)] in a range of T

right below εF , before crossing over into the e−εF /T regime.
Eventually, drag crosses over into a low-T regime in which it
is associated with direct backscattering on the Fermi surface
[Eq. (2.64)].

Another important point to note is that ρD in Eq. (3.70)
coincides with the result of the orthodox theory56 for T a/vF �
1, i.e., Eq. (3.70) can be represented as ρD � π/e2vF τ∞

D ,
where τ∞

D is given by Eqs. (2.14) and (2.41) [see also Eq. (B9)].
The reason for this is that Eq. (3.70) describes the limit in
which three-particle scattering is strong enough to produce
the right-left relaxation rate that is larger than the drag rate

1/τD [Eq. (1.6)]. In our formalism, ρD that results from the
application of the drift ansatz is thus associated with ρD2

[Eq. (3.67)]. The condition requiring that the equilibration
be sufficiently fast severely restricts the range of parameters
in which the orthodox theory is valid: for given T � εF , the
orthodox theory is only justified if the distance a between
the wires is exponentially large in εF /T , i.e., if drag is
exponentially weak in this parameter [cf. the condition in
Eq. (3.70), where D2 decreases with increasing a, whereas
D3 in the limit of large a is due to triple collisions inside the
wires].

One more point worth discussing is the difference in the
characteristic momenta k that give the main contribution to the
integral in Eq. (3.65) in two transport regimes, one described
by Eqs. (2.61) and (3.68) and the other described by Eq. (3.70).
These are momenta at the very bottom of the spectrum, |k| �
(mT )1/2, in the former case and all momenta below the Fermi
surface, |k| < kF , in the latter. We emphasize, however, that
the distribution function f−(k) is sharply peaked at the Fermi
surface and the integral over k in Eq. (2.55), in contrast to
Eq. (3.65), is determined by |k − kF | ∼ T/vF in both cases.
What is different between the two regimes is the range of k for
the scattering processes that give the main contribution to the
relaxation rate at |k| � kF . In the case of drag limited by the
slow right-left relaxation in Eqs. (2.61) and (3.68), this range
of k is |k| � (mT )1/2, as was already discussed in a similar
context (for the case of pair collisions) in Sec. II C. A subtle
difference in the shape of the distribution function f−(k) =
−g−(k)/4 cosh2[(ε − εF )/2T ] in the two transport regimes is
that g−(k) � const(k)sgn(k) for all |k| � (mT )1/2 in the case
of Eqs. (2.61) and (3.68), whereas g−(k) ∝ k at |k| ∼ kF in
the case of Eq. (3.70). This means that, near the Fermi surface,
electrons with the same chirality are at equilibrium in the
stationary frame in the former case and in the moving frame
in the latter.

The reconstruction of g−(k) with increasing D3, with other
parameters fixed, is illustrated in Fig. 6. Specifically, represent
g−(k) as

g−(k) � e

16
(E1 − E2)[ G1(k) + G2(k)], (3.71)

where G1(k) and G2(k) describe the contributions to g−(k) of
the first and second terms in the curly brackets in Eq. (3.58),
respectively. For G1(k), we have

G1(k) �
√

πmT

×

⎧⎪⎪⎨⎪⎪⎩
e2εF /T

4D2
�

(
k√
mT

)
, D3 � D2e

−εF /T

√
2eεF /T

D3
�

(
k√

2mT

)
, D2e

−εF /T � D3

(3.72)

where �(x) is the error function [as defined below Eq. (2.50)].
The term G1(k) determines g−(k) in regimes I and II in Fig. 6,
with G2(k) � G1(k) for all k. Regime I corresponds to the
first line in Eq. (3.72), regime II to the second.

The term G2(k) for D2 � D3 is given by

G2(k) � 6

D2

εF

T
k, D2 � D3. (3.73)

As D3 increases, the crossover from regime II to regime III
occurs at G2(kF ) ∼ G1(kF ), i.e., at D3 ∼ D2e

εF /T (T/εF )3/2.
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I

II

IIIa

IIIb

FIG. 6. Schematic evolution of the distribution function g−(k)
at and below the Fermi surface with increasing (I→II→IIIa→IIIb)
strength of three-particle scattering. In regimes I and II, electrons with
the same chirality are at equilibrium [except for k � (mT )1/2 near the
bottom of the spectrum] in the stationary frame. In regimes IIIa and
IIIb, electrons near the Fermi surface are equilibrated in the moving
frame. In regime IIIb, equilibrium in the moving frame extends down
to k = 0.

In regime IIIa in Fig. 6, the function g−(k) below the
Fermi surface is equilibrated in the moving frame for k �
k∗ = kF (D2/D3)(T/εF )3/2eεF /T , while for k � k∗ it is still
equilibrated in the stationary frame. Equilibrium in the moving
frame extends down to k = 0 (regime IIIb in Fig. 6) at larger
D3, namely, D3 � D2e

εF /T T /εF .
The behavior of ρD with varying T [D3(T ) can be

represented as D3(εF )(T/εF )2] and strength of interwire
and intrawire interactions (D2 parametrizes the strength of
interwire interactions and decreases as the distance a between
the wires is increased, whereas D3 in the limit of large a is
determined by interactions inside the wires) is conveniently
summarized in the following form:

ρD � 2

3

π

e2kF

D2

εF

×

⎧⎪⎪⎨⎪⎪⎩
48√
2π

(
εF

T

)3/2
e−2εF /T (I)

6√
π

D3
D2

(
εF

T

)3/2
e−εF /T (II)

1 (III),

(3.74)

where regimes I, II, III correspond to those in Figs. 4 and
5. Note that regime III, when present, is always separated
by regime II from the “2kF ” regime (Fig. 5) in the limit of
kF a � 1 since in this limit (1/kF a) ln[D3(εF )/D2] is small
compared to unity. This is because D3(εF )/D2 ∼ β2

f k2
F a2,

where βf parametrizes the strength of forward scattering [cf.
Eq. (1.3)]. As a result, for kF a � 1, the drift-ansatz regime
for the case of drag dominated by forward scattering can only
be realized if T a/vF � 1, when the orthodox theory yields
T -independent drag [Eq. (3.74), regime III; Eq. (14) and the
plateau regime in Fig. 2 in Ref. 56]. In the opposite limit
of kF a � 1, drag is determined by backward scattering on
the Fermi surface (regime “2kF ” in Fig. 5) for all T � εF

considered in this paper. This implies, in turn, that there is no
room for the T 2 drag resistivity [Eq. (1.3)] even if the thermal
equilibration is strong enough to establish the drift-ansatz
regime.

We are now in a position to return to the case of Coulomb
interaction (recall the discussion at the end of Sec. III C).
As we see from the calculation for T a/vF � 1 [where
1/a was assumed to be a single scale characterizing both
functions V11(q) and V12(q), beyond which they fall off fast
enough to neglect momentum transfer with |q|a � 1], the
main contribution to ρ−1

D in the whole range of D3/D2 �
eεF /T (T/εF )3/2 comes from ρ−1

D1 , with the integral term in the
current in momentum space producing only a small correction
to ρD. The resulting drag resistivity is determined by scattering
of cold electrons with |k| � kF . The characteristic energy
transfer for these electrons is much smaller than T even if that
for electrons on the Fermi surface is of the order of T , as is the
case for the intrawire three-particle scattering due to Coulomb
interaction. It follows that the Fokker-Planck description of
drag for D3/D2 � eεF /T (T/εF )3/2 is also accurate for the
Coulomb case. However, the diffusion coefficient in channel
(a), D(3a)(k) [Eq. (3.29)], should be calculated in the Coulomb
case [V11(q) from Eq. (A2)] without treating the thermal
factors in Eq. (3.16) as smoothly changing functions of q

compared to the matrix elements, in contrast to Eq. (3.51).
Assuming that D3 is mainly due to three-particle scattering
inside the wires, we obtain

D3 = π (ln 2)2

15

T 5

ε2
F v2

F

(
e2

vF

)4

ln2

(
vF

T d0

)
(3.75)

for T d/vF � 1, while for smaller T the diffusion coefficient
in channel (a) acquires four more powers of T . In the opposite
limit of fast equilibration in the frame moving with the drift
velocity, i.e., for D3/D2 � eεF /T (T/εF )3/2, the three-particle
rate drops out from the expression for ρD, independently of
the character of three-particle scattering. Therefore, Eq. (3.70)
describes the Coulomb case as well.

IV. SUMMARY

We have presented a theory of Coulomb drag between clean
(no disorder) quantum wires based on the kinetic-equation
approach. One conceptually important aspect of Coulomb
drag that we have highlighted in this paper is an inherent
link between this phenomenon and the processes of thermal
equilibration. We have demonstrated that the dc drag resistivity
ρD is exactly zero in the absence of equilibration between
right- and left-moving electrons. Another way to state this
is that forward scattering near the Fermi surface with small-
momentum transfer is not sufficient to produce a nonzero drag
resistivity.

We have given a detailed discussion of the equilibration
processes in quantum wires. Crucially, in one-dimensional
geometry, the right-left equilibration requires backscattering,
either directly in the vicinity of the Fermi surface or via
diffusion in energy space with small energy transfer in one
scattering event. The latter type of backscattering is favored
if the wires are not too close to each other. We have shown
that the slow diffusion in energy space is bottlenecked by
scattering of cold electrons at the bottom of the spectrum, as
a result of which ρD shows an activation behavior, in contrast
to the conventional for the drag-effect power-law dependence
on the temperature, with the activation energy equal to the
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Fermi energy εF or 2εF for the cases of three- or two-particle
scattering, respectively. We have demonstrated a nontrivial
interplay between the pair and triple collisions; in particular,
ρD in a wide range of the parameters of the problem does
not depend on the strength of interwire interactions, while
depending strongly on the strength of interactions inside the
wires.

ACKNOWLEDGMENTS

We thank D. Aristov, D. Bagrets, L. Glazman, V. Gurevich,
A. Ioselevich, V. Kachorovskii, M. Muradov, B. Narozhny,
P. Ostrovsky, and M. Pustilnik for interesting discussions.
The work was supported by the DFG/CFN, the DFG-RFBR
project within the framework of the DFG/SPP “Halbleiter
Spintronik,” GIF Grant No. 965, the RFBR, Rosnauka Grant
No. 02.740.11.5072, and RF President Grant No. NSh-
5442.2012.2.

APPENDIX A: INTERWIRE INTERACTION POTENTIAL

Let us denote as v11(x) and v12(x) the potentials of
interaction between electrons residing in one wire and in
different wires, respectively. They are expressed in terms of
the potential v(r) created by a charge in the plane of the wires
(where r is the distance in this plane) as v11(x) = v(|x|) and
v12(x) = v(

√
x2 + a2), where a is the distance between the

wires. The potential v(r) is determined by the polarization
properties of the medium around the wires, in particular, by the
position and dimensions of a nearby metallic gate. In general,
the relation between the characteristic spatial scales of v(r)
and v12(x) depends in an essential way on the shape of v(r).
For instance, if v(r) is a monotonically decaying function
characterized by a single spatial scale d, the characteristic
radius of v12(x) is given by d for d � a, while for d � a it
may be either larger or smaller than d, depending on whether
v(r) decreases slower or faster than the Gaussian function.
Note also that v12(x) is not necessarily characterized by a
single scale even if v(r) is a single-scaled function.

For definiteness, let us consider v(r) in the presence of a
perfectly screening metallic plate located at a distance d from
the wires (parallel to them). Then,

v11(x) = e2

⎛⎝ 1√
x2 + d2

0

− 1√
x2 + d2

0 + 4d2

⎞⎠ , (A1)

where d0 is the “radius of the wire” (which is supposed to be
the smallest spatial scale in the problem) and the dielectric
constant of the medium in which the wires are imbedded is
set to be equal to 1. The Fourier component of v11(x) from

Eq. (A1) is given by

V11(q) = 2e2

[
K0(qd0) − K0

(
q

√
d2

0 + 4d2

)]
� 2e2 ln

(
1

max{|q|,d−1}d0

)
, (A2)

where K0(x) is the Macdonald function. The Fourier compo-
nent V12(q) of the potential v12(x) is given by Eq. (A2) with the
change d2

0 → d2
0 + a2 � a2 in the argument of the Macdonald

functions and shows the following behavior depending on
whether the distance to the gate is larger or smaller than the
distance between the wires:

V12(q) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2e2 ln(d/a), |q| � 1/d � 1/a,

2e2 ln(1/|q|a), 1/d � |q| � 1/a,

4e2d2/a2, |q| � 1/a � 1/d,

e2(2π/|q|a)1/2e−|q|a

×(1 − e−2|q|d2/a), 1/a � |q|.

(A3)

Note the emergence of the characteristic scale |q| ∼ a/d2 in
the factor in the last line of Eq. (A3). One can see, however,
that the characteristic scale of |q| on which V12(q) starts to
decay exponentially with increasing |q| is the inverse distance
between the wires 1/a, independently of the ratio a/d.

APPENDIX B: RELATION BETWEEN EQS. (2.10) AND
(2.11) AND THE ORTHODOX THEORY

The drift ansatz of Ref. 56 [see the discussion in Sec. I below
Eq. (1.5)] is the result of an extension of the orthodox theory
of drag29–32 to one dimension. As shown in Secs. II B and II C,
this approach fails totally in one dimension for the description
of bulk drag due to forward scattering. In this appendix, we
rewrite the kinetic equation (2.10) in the form that allows
one to explicitly identify the approximation that is made in
the orthodox theory but contradicts the solution of the kinetic
equation. To this end, let us represent the collision integral
(2.11) in terms of the equilibrium polarization operators

�(ω,q) =
∫

dk

2π

fT (k + q) − fT (k)

ω + i0 − [(k + q)2 − k2]/2m
(B1)

for two wires [cf. Eq. (1.5)], the imaginary parts of which are
given by

Im �(ω,q) = − m

|q|
[
fT

(
mω

q
+ q

2

)
− fT

(
mω

q
− q

2

)]
.

(B2)

Using the identity

fT (k′)[ 1 − fT (k) ] = fT (k′) − fT (k)

1 − exp[(ε′ − ε)/T ]
, (B3)

Eq. (2.11) is rewritten as

st−{g} = 2m

ζ 2(k)

∫
dk′

2π

|V (k′ − k)|2
|k′ − k|

[fT (k′) − fT (k)]2

sinh2[(ε′ − ε)/2T ]
[g−(k′) − g−(k)]. (B4)

Combining Eqs. (B2) and (B4) and changing variables to q = k − k′ and ω = ε − ε′, we get

st−{g} = 2

mζ 2(k)

∫
dω

∫
dq

2π

|q||V (q)|2 [ Im �(ω,q) ]2

sinh2(ω/2T )
[ g−(k − q) − g−(k) ] δ

(
ω − kq

m
+ q2

2m

)
. (B5)
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Substituting Eq. (B5) into (2.10), multiplying the kinetic equation by ekζ 2/4m, and integrating over k, we have the equation for
j− of the form

−iωj− − e2(E1 − E2)n

2m
= e

4m

∫
dω′

2π

∫
dq

2π

q|V (q)|2[ Im�(ω′,q) ]2

sinh2(ω′/2T )

[
g−

(
mω′

q
− q

2

)
− g−

(
mω′

q
+ q

2

) ]
. (B6)

The result for the dc drag resistivity obtained in Ref. 56
corresponds to the drift-ansatz replacement

g−

(
mω′

q
+ q

2

)
− g−

(
mω′

q
− q

2

)
→ q

enT
j− (B7)

in Eq. (B6) [i.e., g−(k) → kj−/enT ] at ω → 0. If one employs
the drift ansatz (B7) for finite ω as well, this leads to

j− = e2(E1 − E2)n

2m
(−iω + 2/τ∞

D

) (B8)

with

1

τ∞
D

= 1

8nmT

∫
dω

2π

∫
dq

2π

q2|V (q)|2 [Im �(ω,q)]2

sinh2(ω/2T )
(B9)

[Eq. (B9) coincides with Eq. (2.14)]. The Lorentzian shape of
the ω dispersion for j− in Eq. (B8), with the ω-independent
damping rate (B9), was posited in Ref. 57. In fact, however,

as discussed in Sec. II B, the damping rate shows a strong
dependence on ω, vanishing in the dc limit within the model
of Refs. 56–58.

It is also instructive to note that Eq. (B5) clearly demon-
strates that the contact drag resistance, discussed in Sec. I E,
depends on the setup. Indeed, in the limit of short wires
(in which the distribution function is only slightly modified
by drag), one can substitute in the collision integral the
“unperturbed” distribution function incident from the leads.
The result depends in an essential way on whether the
leads supply the drift-ansatz distribution function [Eq. (B7)],
corresponding to equilibrium in the moving frame, or the
distribution function that is equilibrium in the stationary frame.
In the latter case (Fermi leads), g−(k) ∝ sgn(k) and thus drops
out of Eq. (B5) for all q such that k and k − q in Eq. (B5)
belong to the same chiral branch (forward-scattering drag).
This leads to a strong suppression of drag compared to the
orthodox theory.

APPENDIX C: THREE-PARTICLE SCATTERING AMPLITUDE

Explicitly, the normalized determinants in Eqs. (3.2)–(3.4) read as

Da(k1,k2,k3) = 1

(6L3)1/2

∣∣∣∣∣∣
eik1x1 eik1x2 eik1x3

eik2x1 eik2x2 eik2x3

eik3x1 eik3x2 eik3x3

∣∣∣∣∣∣ ,
(C1)

Db(k2,k3) = 1

(2L2)1/2

∣∣∣∣ eik2x2 eik2x3

eik3x2 ek3x3

∣∣∣∣ , Dc(k1,k2) = 1

(2L2)1/2

∣∣∣∣ eik1x1 eik1x2

eik2x1 ek2x2

∣∣∣∣ .
The matrix elements (3.7) are written as

A(1)
a (1,2,3|4,5,6) = 1

L
{[δk3,k6δk1+k2,k4+k5V11(k1 − k4) + δk1,k4δk2+k3,k5+k6V11(k2 − k5)

+ δk2,k5δk1+k3,k4+k6V11(k3 − k6)] − (k2 ↔ k3)} − (k1 ↔ k2) − (k1 ↔ k3), (C2)

A
(1)
b (1,2,3|4,5,6) = 1

L
[δk3,k6δk1+k2,k4+k5V12(k1 − k4) + δk1,k4δk2+k3,k5+k6V11(k2 − k5)

+ δk2,k5δk1+k3,k4+k6V12(k3 − k6)] − (k2 ↔ k3), (C3)

A(1)
c (1,2,3|4,5,6) = 1

L
[δk3,k6δk1+k2,k4+k5V11(k1 − k4) + δk1,k4δk2+k3,k5+k6V12(k2 − k5)

+ δk2,k5δk1+k3,k4+k6V12(k3 − k6)] − (k1 ↔ k2) (C4)

(the terms in the third line for A(1)
a are understood to exchange momenta in the whole expression within the curly brackets, i.e.,

for 3 “direct” terms there are 15 exchange terms). The irreducible parts of the amplitudes Aa,b,c [Eq. (3.6)] are given by

Airr
a (1′,2′,3′|1,2,3) = 1

L2
δk1+k2+k3,k1′+k2′+k3′

{[
V11(k3 − k3′)V11(k1 − k1′)

(
1

�233′
+ 1

�211′

)
+ V11(k1 − k1′)V11(k2 − k2′ )

(
1

�311′
+ 1

�322′

)
+ V11(k2 − k2′ )V11(k3 − k3′)

(
1

�122′
+ 1

�133′

) ]
− (k2′ ↔ k3′)

}
− (k1′ ↔ k2′) − (k1′ ↔ k3′), (C5)
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Airr
b (1′,2′,3′|1,2,3) = 1

L2
δk1+k2+k3,k1′+k2′+k3′

[
V11(k3 − k3′)V12(k1 − k1′)

(
1

�233′
+ 1

�211′

)
+V12(k1 − k1′)V11(k2 − k2′)

(
1

�311′
+ 1

�322′

)
+V12(k2 − k2′)V12(k3 − k3′)

(
1

�122′
+ 1

�133′

) ]
− (k2′ ↔ k3′), (C6)

Airr
c (1′,2′,3′|1,2,3) = 1

L2
δk1+k2+k3,k1′+k2′+k3′

[
V12(k3 − k3′)V11(k1 − k1′)

(
1

�233′
+ 1

�211′

)
+V12(k1 − k1′)V12(k2 − k2′)

(
1

�311′
+ 1

�322′

)
+V11(k2 − k2′)V12(k3 − k3′)

(
1

�122′
+ 1

�133′

) ]
− (k1′ ↔ k2′), (C7)

where

�233′ = ε2 + ε3 − ε3′ − ε2+3−3′ = − 1

m
(k3′ − k3)(k3′ − k2), etc., (C8)

ε2+3−3′ = (k2 + k3 − k3′)2/2m. The sign (k2 ↔ k3) means that
only the momenta k2 and k3 are transposed (but k2′ and k3′

are not). The amplitudes Airr
a,b,c(1′,2′,3′|1,2,3) in Eqs. (C5)–

(C7) coincide with those derived in Ref. 85 (see also Refs.
88 and 89). It is worth mentioning once more, however, that
while the amplitude of three-particle scattering is the same
in our work and in Refs. 85, 88, and 89, the corresponding
contributions to the collision integral are not. This is because
the combinatorial factors in Eqs. (3.9)–(3.11), necessary to
prevent double counting of the initial and final states in the
collision integral, are missing in Refs. 85, 88, and 89.

Note that if it were not for the difference between v11(x) and
v12(x), the “direct” terms (as opposed to the exchange terms)
in the amplitudes Airr

b (1′,2′,3′|1,2,3) and Airr
c (1′,2′,3′|1,2,3)

[those shown in Eqs. (C6) and (C7) with the positive sign]
would be expressible as series resulting from the cyclic
permutations (k1k1′ → k2k2′ → k3k3′ → k1k1′). Moreover, the
direct terms would then become the same in Airr

b (1′,2′,3′|1,2,3)
and Airr

c (1′,2′,3′|1,2,3). In fact, the whole kinetic problem
for three-particle scattering of spinless electrons in a double
wire would then become identical to that for three-particle
scattering of spinful electrons in a single wire with spin-
independent interaction. Our drag problem, in which gener-
ically v11(x) = v12(x) and the structure of Airr

b (1′,2′,3′|1,2,3)
and Airr

c (1′,2′,3′|1,2,3) is therefore less symmetric, can be
viewed as a generalization of the spinful problem in a single
wire to the case of Ising-type anisotropy of the interaction
potential in spin space.

APPENDIX D: CANCELLATION OF THREE-PARTICLE
SINGULARITIES IN ONE DIMENSION

As discussed in Sec. III B, one of the important differences
between two- and three-particle scattering is the occurrence
of nonintegrable singularities in the differential cross section
in the three-particle case. These occur if the cross section
is written as the modulus squared of (the connected part of)
the three-particle T matrix; this would be a straightforward
extension of the conventional formalism for the two-particle

case. In fact, the finite collision integral that describes triple
collisions in the kinetic equation contains a counterterm
[Eq. (3.18)] that cancels the contribution of the singularities.
The purpose of this appendix is to provide technical details that
explicitly demonstrate the cancellation between the essential
singularities in the cross sections of many-particle scattering.
Specifically, we focus here on the singular behavior of three-
particle scattering in the case of one-dimensional electrons.

The amplitude of three-particle scattering in Eqs. (C5)–(C7)
shows a pole-type singularity as a function of momenta each
time the energy �, endowed with indices according to the
definition in Eq. (C8), transferred in the virtual transition into
the intermediate state is equal to zero. In the case of scattering
of type (a), when all colliding electrons are in the same wire,
the residue of each of the poles can be shown to vanish linearly
in �, i.e., the singularity is, in fact, absent, provided the initial
and final momenta of the three-particle amplitude conserve
total momentum and total energy as � varies. Importantly, the
regular behavior of the amplitude in channel (a) at � = 0
results from a compensation of the direct and exchange
processes in the residue (for a calculation of the total scattering
rate in the spinless case, see Ref. 104). For the amplitude of
three-particle scattering that involves electrons from different
wires, the compensation is not complete, because the exchange
interaction in the absence of tunneling between the wires
is only allowed within the same wire, and the residue does
not vanish (a similar situation occurs for spinful electrons
in a single wire). Thus, triple collisions between electrons
belonging to different wires yield a nonintegrable singularity
in the modulus squared of the three-particle T matrix: at
second order in the interaction potential for the amplitude,
the singularity in the differential cross section is of the type
1/�2.

There is one more important aspect of the divergency of
the thus defined triple-collision rate that is specific to one
dimension. The divergency does not rely on a particular form of
the dispersion law; in particular, the singularity is present, and
remains nonintegrable, in the limit 1/m → 0. The divergent
triple-collision rate for electrons with a linear dispersion
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(a) (b)

FIG. 7. (a) Self-energy of the fourth order in the interwire interaction in channel (c) for direct scattering processes. (b) Effective interaction
(thick wavy line) expressed in terms of the bare interwire interaction (thin wavy lines). The electron lines for different wires are labeled by the
upward and downward arrows.

relation in one dimension raises the question as to how the
kinetic equation approach relates to the Dzyaloshinskii-Larkin
theorem40,107 which says that, at thermal equilibrium, the
one-dimensional electron system with a linear dispersion
relation is exactly described in terms of the random-phase
approximation. This approximation includes pair collisions
only. That is, according to the theorem (and the whole
bosonization approach40 for that matter), triple collisions are
“exactly absent” at equilibrium. The condition of equilibrium
is important; however, the divergency occurs at the level of
the structure of the kernel of the collision integral, so that,
e.g., the out-scattering rate from Eqs. (C5)–(C7) diverges
in the linear-response limit as well, similar to the inverse
lifetime of a particle due to triple collisions at equilibrium.
In the following, we resolve the apparent conflict between
the Dzyaloshinskii-Larkin theorem and the divergency in the
three-particle scattering channel by calculating the scattering
rate at order V 4

12 “by brute force” diagrammatically for an
arbitrary dispersion relation ξk .

The singularity at zero � in the matrix elements in either
channel (b) or (c) is not related to the difference between V11(q)
and V12(q) (the singularity survives when the difference is
neglected) but is only due to the “lack” of exchange processes
in these channels compared to channel (a). Since the singularity
is entirely associated with scattering of electrons belonging to
different wires, we neglect intrawire interactions throughout
Appendix D. Moreover, since our purpose in this appendix is
to illustrate the principle (discussed in Sec. III A) on which
the cancellation of the 1/�2 divergencies is based, we do not
calculate here the full set of out- and in-scattering nonequilib-
rium self-energies for two- and three-particle scattering, but
focus on the simplest quantity that exemplifies the problem.
This is the inverse electron lifetime in an equilibrium electron

bath, expanded in V12(q) to fourth order. In this calculation, the
inverse lifetime will be seen to be a well-behaved scattering
rate that experiences no infrared divergency from the vicinity
of the point � = 0. The quantities of interest are thus the
inverse lifetimes for an electron with momentum k in channels
(b) and (c):

1/τb,c(k) = −2 Im �b,c(iεn → ξk + i0,k), (D1)

where �b,c(iεn,k) are the corresponding electron self-energies
in the Matsubara representation, at order V 4

12 and zeroth order
in V11.

One can separate the contributions of direct (H ) and
exchange (F ) processes in the self-energy in Eq. (D1),

�b,c = �H
b,c + �F

b,c. (D2)

For the case of triple collisions, the H term comes from the
sum squared of the terms with sign + in Eqs. (C6) or (C7)
[for channels (b) and (c), respectively] plus the sum squared
of the terms with sign −, while the F term is given by twice
the product of the two sums. In fact, the self-energy �b,c

contains also a contribution of pair collisions at order V 4
12,

for which one can similarly separate the direct and exchange
processes. The role of pair collisions will be discussed below
Eq. (D26). Since in channels (b) and (c) the H and F terms
do not compensate each other, it suffices (for the purpose of
describing the divergency of the triple-collision rate) to focus
on one of the terms: below, we write down details of the
calculation for the H term only.

Let us begin with channel (c) by calculating the scattering
rate for an electron in wire 1 due to interaction with two other
electrons, one of which is in wire 1 and the other is in wire
2. The self-energy �H

c of fourth order in interaction for the
case V11 = 0 is given by the diagram in Fig. 7(a), where the

Ωm Ωm ΩmΩm −Ωm −Ωm

−Ωm −Ωm −Ωm

−Ωm Ωm Ωm

FIG. 8. Sum of the four-leg loops from the effective interaction in Fig. 7(b). The legs are labeled with the incoming frequencies.
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thick wavy line is the effective interaction V (i�m,q), shown
in Fig. 7(b) and written as

V (i�m,q) = |V12(q)|2T
∑
m′

∫
dq ′

2π
|V12(q ′)|2

×A(i�m,q|i�m′ ,q ′)�(i�m′ ,q ′). (D3)

Here, the polarization operator �(i�m,q) is the generalization
of Eq. (B1) to arbitrary ξk ,

�(i�m,q) =
∫

dk

2π

fT (k + q) − fT (k)

i�m − ξk+q + ξk

, (D4)

and A(i�m,q|i�m′ ,q ′) is a sum of the four-leg loops in Fig. 8
over all nonequivalent insertions of one of the legs:

A(i�m,q|i�m′ ,q ′) = −T
∑

n

∫
dk

2π

[
1

(iεn − ξk)(iεn − i�m − ξk−q)(iεn − i�m′ − ξk−q ′)(iεn − i�m−m′ − ξk−q−q ′ )

+ 1

(iεn − ξk)2(iεn − i�m − ξk−q)(iεn − i�m′ − ξk−q ′ )

+ 1

(iεn − ξk)(iεn − i�m − ξk−q)2(iεn − i�m−m′ − ξk−q−q ′ )

]
. (D5)

For the case of a linear dispersion relation, A vanishes (apart from the uncertainty at i�m → ξk + i0 and similarly for i�m′ ) in
agreement with the loop cancellation (Dzyaloshinskii-Larkin) theorem.40,107 However, as already mentioned above, the divergency
of the integral of the modulus squared of the three-particle T -matrix elements over � around � = 0 survives the limit of the
linearized dispersion law.

Summing over εn in Eq. (D5) and �m′ in Eq. (D3), V (i�m,q) reads as

V (i�m,q) = |V12(q)|2
∫

dq ′

2π
|V12(q ′)|2

∫
dk′

2π
[fT (k′) − fT (k′ + q ′)]

∫
dk

2π

1

i�m + ξk−q − ξk

×
{

[fT (k − q) − fT (k − q ′)]z1 + [fT (k − q − q ′) − fT (k − q)]z2 + [fT (k) − fT (k − q)] z3

+ ∂fT (k)

∂ξk

c(ξk − ξk−q ′ ) − c(ξk′+q ′ − ξk′)

�1
− ∂fT (k − q)

∂ξk−q

c(ξk−q − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�2

}
, (D6)

where c(ω) = (1/2) coth(ω/2T ),

�1 = ξk + ξk′ − ξk−q ′ − ξk′+q ′ , �2 = ξk−q + ξk′ − ξk−q−q ′ − ξk′+q ′ , (D7)

and the functions z1,2,3 are given by

z1 = 1

�1

[
−∂c(ω)

∂ω

∣∣∣
ω=ξk−ξk−q′

+ c(ξk − ξk−q ′) − c(ξk′+q ′ − ξk′)

�1
− c(ξk−q − ξk−q ′) − c(ξk′+q ′ − ξk′)

i�m + ξk−q − ξk−q ′ − ξk′+q ′ + ξk′

]
+ 1

�1

c(ξk−q − ξk−q ′) − c(ξk − ξk−q ′)

i�m + ξk−q − ξk

+ 1

i�m + ξk−q−q ′ − ξk−q ′

[
c(ξk − ξk−q ′) − c(ξk′+q ′ − ξk′)

�1
− c(ξk−q − ξk−q ′) − c(ξk′+q ′ − ξk′)

i�m + ξk−q − ξk−q ′ − ξk′+q ′ + ξk′

]
, (D8)

z2 = 1

�2

[
−∂c(ω)

∂ω

∣∣∣
ω=ξk−q−ξk−q−q′

+ c(ξk − ξk−q ′) − c(ξk′+q ′ − ξk′)

�1
− c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

−i�m + ξk − ξk−q−q ′ − ξk′+q ′ + ξk′

]
− 1

�2

c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

i�m + ξk−q − ξk

− 1

i�m + ξk−q−q ′ − ξk−q ′

[
c(ξk−q − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�2
− c(ξk−q − ξk−q ′) − c(ξk′+q ′ − ξk′)

−i�m + ξk − ξk−q−q ′ − ξk′+q ′ + ξk′

]
, (D9)

z3 = 1

�1

[
−∂c(ω)

∂ω

∣∣∣
ω=ξk−ξk−q′

+ c(ξk − ξk−q ′ ) − c(ξk′+q ′ − ξk′)

�1

]
− 1

i�m + ξk−q − ξk

[
c(ξk − ξk−q ′) − c(ξk′+q ′ − ξk′)

�1
− c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

−i�m + ξk − ξk−q−q ′ − ξk′+q ′ + ξk′

]
− 1

i�m + ξk−q−q ′ − ξk−q ′

[
c(ξk−q − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�2
− c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

−i�m + ξk − ξk−q−q ′ − ξk′+q ′ + ξk′

]
. (D10)
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The terms with ∂fT (k)/∂ξk = −ζ 2(k)/4T in Eq. (D6) arise from the double poles in the fermionic summation over εn. The terms
with ∂c(ω)/∂ω = −1/4T sinh2(ω/2T ) in Eqs. (D8)–(D10) arise from the double poles in the bosonic summation over �m′ . The
terms in the second lines in Eqs. (D8)–(D10) are proportional to (i�m + ξk−q − ξk)−1 and produce, together with the same factor
in the first line in Eq. (D6), double poles in �m.

The self-energy in Fig. 7(a) reads as

�H
c (iεn,k1) = −T

∑
m

∫
dq

2π

V (i�m,q)

iεn − i�m − ξk1−q

. (D11)

Doing the summation over �m in the terms of �c that are proportional to z1,2,3 gives

T
∑
m

z1

(iεn − i�m − ξk1−q)(i�m + ξk−q − ξk)

= 1

�1

[
−∂c(ω)

∂ω

∣∣∣
ω=ξk−ξk−q′

+ c(ξk − ξk−q ′ ) − c(ξk′+q ′ − ξk′)

�1

]
I (iεn,ξk1−q |ξk−q − ξk)

− c(ξk−q − ξk−q ′ ) − c(ξk′+q ′ − ξk′)

�2
1

[I (iεn,ξk1−q |ξk−q − ξk) − I (iεn,ξk1−q |ξk−q + ξk′ − ξk−q ′ − ξk′+q ′ )]

− c(ξk−q − ξk−q ′ ) − c(ξk − ξk−q ′)

�1

∂I (iεn,ξk1−q |ω)

∂ω

∣∣∣
ω=ξk−q−ξk

+ c(ξk − ξk−q ′ ) − c(ξk−q − ξk−q ′)

�1(�2 − �1)
[I (iεn,ξk1−q |ξk−q−q ′ − ξk−q ′ ) − I (iεn,ξk1−q |ξk−q − ξk)]

+ c(ξk−q − ξk−q ′ ) − c(ξk′+q ′ − ξk′)

�1�2
[I (iεn,ξk1−q |ξk−q−q ′ − ξk−q ′) − I (iεn,ξk1−q |ξk−q + ξk′ − ξk−q ′ − ξk′+q ′ )], (D12)

T
∑
m

z2

(iεn − i�m − ξk1−q)(i�m + ξk−q − ξk)

= 1

�2

[
−∂c(ω)

∂ω

∣∣∣
ω=ξk−q−ξk−q−q′

+ c(ξk−q − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�2

]
I (iεn,ξk1−q |ξk−q − ξk)

− c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�2
2

[I (iεn,ξk1−q |ξk−q − ξk) − I (iεn,ξk1−q |ξk−q−q ′ + ξk′+q ′ − ξk − ξk′)]

+ c(ξk − ξk−q−q ′ ) − c(ξk−q − ξk−q−q ′ )

�2

∂I (iεn,ξk1−q |ω)

∂ω

∣∣∣
ω=ξk−q−ξk

− c(ξk−q − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�2(�2 − �1)
[I (iεn,ξk1−q |ξk−q−q ′ − ξk−q ′) − I (iεn,ξk1−q |ξk−q − ξk)]

+ c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�1(�2 − �1)
[I (iεn,ξk1−q |ξk−q−q ′ − ξk−q ′) − I (iεn,ξk1−q |ξk−q − ξk)]

+ c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�1�2
[I (iεn,ξk1−q |ξk−q − ξk) − I (iεn,ξk1−q |ξk−q−q ′ + ξk′+q ′ − ξk − ξk′)], (D13)

T
∑
m

z3

(iεn − i�m − ξk1−q)(i�m + ξk−q − ξk)

= 1

�1

[
−∂c(ω)

∂ω

∣∣∣
ω=ξk−ξk−q′

+ c(ξk − ξk−q ′ ) − c(ξk′+q ′ − ξk′)

�1

]
I (iεn,ξk1−q |ξk−q − ξk)

+ c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�2
2

[I (iεn,ξk1−q |ξk−q − ξk) − I (iεn,ξk1−q |ξk−q−q ′ + ξk′+q ′ − ξk − ξk′)]

+
(

1

�1
− 1

�2

)
[c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)]

∂I (iεn,ξk1−q |ω)

∂ω

∣∣∣
ω=ξk−q−ξk

− c(ξk − ξk−q ′) − c(ξk − ξk−q−q ′ )

�1(�2 − �1)
[I (iεn,ξk1−q |ξk−q − ξk) − I (iεn,ξk1−q |ξk−q−q ′ − ξk−q ′)]

− c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)

�1�2
[I (iεn,ξk1−q |ξk−q − ξk) − I (iεn,ξk1−q |ξk−q−q ′ + ξk′+q ′ − ξk − ξk′)], (D14)
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FIG. 9. Three-particle scattering amplitudes at second order in
the bare interwire interaction (wavy lines). They contribute to the
first (a) and second (b) terms in the kernel of the triple-collision rate
in Eq. (D18). The electron lines for different wires are labeled by the
upward and downward arrows.

where

I (iεn,ξ |ω) = c(ω) − t(ξ )

iεn − ξ + ω
(D15)

and t(ξ ) = (1/2) tanh(ξ/2T ).

The imaginary part of the retarded self-energy �H
c comes

from the functions I :

Im I (iεn → ξk1 + i0,ξk1−q |ω)

= −π

2
[c(ξk1−q − ξk1 )− t(ξk1 − q)]δ(ξk1 − ξk1−q + ω). (D16)

Triple collisions are associated with the terms in Eqs. (D12)–
(D14) that contain the functions I with six electron energies in
the denominator [i.e., six electron energies in the delta function
in Eq. (D16)], namely, I (iεn,ξk1−q |ξk−q + ξk′ − ξk−q ′ − ξk′+q ′ )
and I (iεn,ξk1−q |ξk−q−q ′ + ξk′+q ′ − ξk − ξk′). These are only
present in the contributions to �H

c coming from the functions
z1,2,3. More specifically, they are absent in the combination
z2 + z3, so that regrouping the terms proportional to z1,2,3 in
Eq. (D6) as

[fT (k − q) − fT (k − q ′)]z1 + [fT (k − q − q ′)
−fT (k)]z2 + [fT (k) − fT (k − q)](z2 + z3), (D17)

only the first two differences fT (k − q) − fT (k − q ′) and
fT (k − q − q ′) − fT (k) describe the rate of triple collisions.
Thus, we obtain the contribution 1/τH

c,3(k1) to the triple-
collision rate in channel (c) from direct scattering:

1

τH
c,3(k1)

= 2π

∫
dq

2π
|V12(q)|2

∫
dq ′

2π
|V12(q ′)|2

∫
dk′

2π
[ c(ξk1−q − ξk1 ) − t(ξk1−q) ][ fT (k′ + q ′) − fT (k′)]

×
∫

dk

2π

{
1

�1

(
1

�1
− 1

�2

)
[ c(ξk−q − ξk−q ′) − c(ξk′+q ′ − ξk′) ] [ fT (k − q) − fT (k − q ′)]

× δ(ξk1 + ξk−q + ξk′ − ξk1−q − ξk−q ′ − ξk′+q ′ )

+ 1

�2

(
1

�2
− 1

�1

)
[ c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′) ] [ fT (k − q − q ′) − fT (k)]

× δ(ξk1 + ξk−q−q ′ + ξk′+q ′ − ξk1−q − ξk − ξk′)

}
. (D18)

Two different delta functions in Eq. (D18) correspond to two different amplitudes: the one proportional to �−1
1 (�−1

1 − �−1
2 )

comes from the process shown in Fig. 9(a), the other from the process shown in Fig. 9(b). The energy denominators �1 and �2

for the processes in Figs. 9(a) and 9(b) are then identified in terms of the energies in Eq. (C8) as follows:

Fig. 3(a) : �1 = −�311′ , �2 = �322′ , (D19)

Fig. 3(b) : �1 = �311′ , �2 = −�322′ . (D20)

The sum of the contributions of the two processes to Eq. (D18) gives the cross section proportional to(
1

�311′
+ 1

�322′

)2

(D21)

[cf. Eq. (C7)]. This is because the factor

[c(ξk1−q − ξk1 ) − t(ξk1−q)][f (k′ + q ′) − f (k′)][f (k − q) − f (k − q ′)][c(ξk−q − ξk−q ′) − c(ξk′+q ′ − ξk′)] (D22)

from the process in Fig. 9(a) and its counterpart from the process in Fig. 9(b),

[c(ξk1−q − ξk1 ) − t(ξk1−q)][f (k′ + q ′) − f (k′)][f (k − q − q ′) − f (k)][c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)], (D23)

become identically equal to each other when written in terms of the energies ε1,2,3,1′,2′,3′ in Fig. 9. Specifically, each of them is
written as

1

16
[coth(1 − 1′) + tanh(1′)][tanh(2) − tanh(2′)][tanh(3) − tanh(3′)][coth(3 − 3′) + coth(2 − 2′)], (D24)
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1−3 2−2

FIG. 10. Cuts labeled 2–2 and 1–3 in this particular term in
the three-particle self-energy contribute to the total three-particle
scattering rate and to a reduction of it that comes from two consecutive
two-particle scattering events, respectively. Each of the contributions
is diverging (with opposite signs), their sum is finite.

where coth(1 − 1′) = coth[(ε1 − ε1′)/2T ], etc. Further, for
ε1 + ε2 + ε3 = ε1′ + ε2′ + ε3′ , Eq. (D24) can be reduced to

cosh(1)

16 cosh(2) cosh(3) cosh(1′) cosh(2′) cosh(3′)
, (D25)

which is recognized as the factor that appears in the collision
integral (3.1) for the scattering rate 1 → 1′, namely,

f (k2)f (k3)[1 − f (k1′)][1 − f (k2′)][1 − f (k3′)]

+ f (k1′)f (k2′)f (k3′)[1 − f (k2)][1 − f (k3)], (D26)

taken at thermal equilibrium. We have thus reproduced the
inverse lifetime due to triple collisions diagrammatically.

FIG. 11. Two contributions to the self-energy of the fourth order
in the interwire interaction (wavy lines) in channel (b) for direct
scattering processes. The electron lines for different wires are labeled
by the upward and downward arrows.

The scattering rate in Eq. (D18) diverges because of the
factors 1/�2

1 and 1/�2
2. But, as can be seen from Eqs. (D12)–

(D14), the factors 1/�2
1 and 1/�2

2 are present in the self-energy
(D1) not only in the part associated with triple collisions [six
fermionic energies in the argument of the delta function in
Eq. (D16)], but also in the part that contains the delta function
of a sum of four fermionic energies and is therefore identified
with the contribution of pair collisions at order V 4

12. These
scattering processes are associated with the product of two
amplitudes in which one is of order V12, the other of order V 3

12.
For example, if one considers the diagram for the three-particle
self-energy in Fig. 10, the two-particle processes correspond
to the cut labeled 1–3 (one amplitude is of the first order in
interaction, the other of the third order), in contrast to the
cut labeled 2-2 which contributes to 1/τH

c,3(k1) in Eq. (D18).
Specifically, we have for the sum Rc,2(k1) of the terms in
1/τc(k1) that originate from direct scattering in pair collisions
and are proportional to either 1/�2

1 or 1/�2
2:

Rc,2(k1) = 2π

∫
dq

2π
|V12(q)|2

∫
dq ′

2π
|V12(q ′)|2

∫
dk′

2π
[ c(ξk1−q − ξk1 ) − t(ξk1−q) ][ fT (k′ + q ′) − fT (k′)]

×
∫

dk

2π

{
1

�2
1

[c(ξk − ξk−q ′ ) − c(ξk−q − ξk−q ′)] [fT (k − q) − fT (k − q ′)]

+ 1

�2
1

[c(ξk − ξk−q ′ ) − c(ξk′+q ′ − ξk′)] [fT (k) − fT (k − q)]

+ 1

�2
2

[c(ξk−q − ξk−q−q ′ ) − c(ξk − ξk−q−q ′ )] [fT (k − q − q ′) − fT (k − q)]

+ 1

�2
2

[ c(ξk − ξk−q−q ′ ) − c(ξk′+q ′ − ξk′)] [fT (k) − fT (k − q) ]

}
× δ(ξk1 + ξk−q − ξk1−q − ξk), (D27)

which diverges in the same manner as 1/τH
c,3(k1). To see how the sum of the two contributions to 1/τc behaves, compare the factors

in front of 1/�2
1 in Eqs. (D18) and (D27). Importantly, the delta functions δ(ξk1 + ξk−q + ξk′ − ξk1−q − ξk−q ′ − ξk′+q ′ ) in Eq. (D18)

and δ(ξk1 + ξk−q − ξk1−q − ξk) in Eq. (D27) become identical at �1 = 0. Further, the difference c(ξk − ξk−q ′ ) − c(ξk′+q ′ − ξk′)
in the third line of Eq. (D27) vanishes at �1 = 0, while the remaining factor in front of 1/�2

1 in Eq. (D27) and its counterpart
in Eq. (D18) exactly cancel each other. A similar cancellation occurs with the terms proportional to 1/�2

2. We thus arrive at the
conclusion that, in channel (c), the divergency in the total triple-collision rate, defined via the integral of the modulus squared
of the matrix elements of the three-particle T matrix, is exactly canceled by the divergency associated with pair collisions. How
this happens diagrammatically in the above calculation of the inverse lifetime at equilibrium exemplifies the subtraction of the
counterterm (3.18) in the three-particle collision integral.

245402-31



A. P. DMITRIEV, I. V. GORNYI, AND D. G. POLYAKOV PHYSICAL REVIEW B 86, 245402 (2012)

Let us now turn to channel (b), where the self-energy �H
b (iεn,k1) is given (at order V 4

12 and zeroth order in V11, similar to the
above) by the sum of two diagrams in Fig. 11:

�H
b (iεn,k1) = T 2

∑
mm′

∫
dq

2π
|V12(q)|2

∫
dq ′

2π
|V12(q ′)|2B(iεn,k1|i�m,q; i�m′ ,q ′)�(i�m,q)�(i�m′ ,q ′), (D28)

where

B(iεn,k1|i�m,q; i�m′ ,q ′) = 1

(iεn − i�m − ξk1−q)(iεn − i�m+m′ − ξk1−q−q ′ )

×
(

1

iεn − i�m′ − ξk1−q ′
+ 1

iεn − i�m − ξk1−q

)
. (D29)

As far as the singularities are concerned, the structure of �H
b is much simpler than that of �H

c because the nonintegrable
singularities of the type 1/�2

1,2 encountered separately for triple and double collisions in Eq. (D11) are absent in Eq. (D28).
Specifically, the only108 term in �H

b (iεn,k1) that contains a factor similar to 1/�2
1,2 in channel (c) is∫

dq

2π
|V12(q)|2

∫
dq ′

2π
|V12(q ′)|2

∫
dk

2π
[fT (k) − fT (k − q)]

∫
dk′

2π
[fT (k′ + q ′) − fT (k′)]

1

�2
3

[c(ξk1−q − ξk1−q−q ′ )

− c(ξk′+q ′ − ξk′)][I (iεn,ξk1−q−q ′ |ξk−q + ξk′ − ξk − ξk′+q ′ ) − I (iεn,ξk1−q |ξk−q + ξk)], (D30)

where �3 = ξk1−q−q ′ + ξk′+q ′ − ξk1−q − ξk′ . However, in con-
trast to channel (c), the difference of the bosonic distribution
functions c(ξk1−q − ξk1−q−q ′ ) − c(ξk′+q ′ − ξk′) in Eq. (D30)
vanishes at �3 = 0, so that the singularity reduces to 1/�3

and the integral (taken in the principal value sense for the
scattering rate) is finite.

Note that, at order V 4
12 and zeroth order in V11, the electron

self-energy contains more terms than the diagrams with two
electron loops, shown in Figs. 7 and 11, and their exchange
counterparts (with one loop less). These come from further
renormalizations of the two-particle T matrix (with one loop
and three loops) not included in the exchange counterparts of
Figs. 7 and 11; in particular, from the diagram with a chain of
three loops, which corresponds to the effective interaction in
the random-phase approximation. Summing up contributions
of two-particle cuts of higher-order self-energy diagrams will
give the modulus squared of the matrix elements of the exact

(in V12, in this particular case) two-particle T matrix. For the
precise meaning of an M-particle cut, see Ref. 97.

As seen from the above calculation, the divergencies in the
triple- and pair-collision contributions to the scattering rate and
their cancellation occur for an arbitrary form of the dispersion
relation of colliding particles. In particular, this means that
the nonintegrable singularity in the differential cross section
for triple collisions that comes from the modulus squared
of the three-particle T matrix is present in the Luttinger-
liquid model (linear dispersion) as well. The three-particle
singularity is, however, canceled by the other one that comes,
in the kinetic-equation formalism, from those two-particle
collisions in which a given particle participates twice. This
resolves the apparent conflict, mentioned at the beginning of
this appendix, between the divergency of the triple-collision
rate and the Dzyaloshinskii-Larkin theorem for the linear
dispersion law.
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also without the formation of interlocked charge-density waves.
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between the active and passive wires in Refs. 42 and 44 on the
one hand and in Refs. 41 and 45 on the other are distinctly
different. The former relies on the formation of the zigzag-ordered
charge-density wave inside the region in which backscattering
occurs, whereas the latter is solely due to the (conventional for
the Luttinger-liquid model) power-law renormalization of the local
backscattering amplitude.
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independently of the parameter T a/vF . In particular, l0 ∼ 1/β2
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for T � vF /a does not depend on T [assuming, similar to Eq. (1.3),
that βfεF � T ]. More precisely, the scale l0 describes equilibration
of the difference of the distribution functions in two wires for
particles of the same chirality whose momenta are within a distance
of the order of T/vF from ±kF . Spreading of the equilibrated part
of the distribution function down to the bottom of the spectrum
is characterized by the much larger scale lb, with the scale lf

in-between (l0 � lf � lb) in the limit of small-momentum transfer.
74See also a relevant remark at the end of Sec. IV in A. M. Lunde,

K. Flensberg, and A.-P. Jauho, Phys. Rev. B 71, 125408 (2005).
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the phenomenon of drag, in general, is not characterized at given
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ω by a single scattering rate (“drag rate”) for electrons in both
wires (the asymmetry of the drag rates in nonidentical wires is a
direct consequence of the symmetry property σ12 = σ21 of the drag
components of the conductivity matrix, which holds independently
of the possible difference σ11 = σ22 of the diagonal components).
However, the conceptual framework developed here, highlighting
the close link between Coulomb drag and thermal equilibration,
remains intact in the case of drag between nonidentical conductors.
In particular, ρD = 0 in the absence of right-left equilibration
independently of whether the wires are identical or not.

76For the Born matrix element, the presence of the θ function
in Eq. (2.15) would not conform to the condition of spatial
homogeneity in Eq. (2.1) because homogeneity implies that the
Fourier component of the interaction potential depends only on
the difference k′ − k. However, at the model level, Eqs. (2.1) and
(2.4) with the collision kernel proportional to θ (kk′) can be viewed
as describing homogeneous wires at higher orders in interaction,
where the scattering matrix depends on k and k′ separately.

77The relevant properties of g− in Eq. (2.24) can be established on
rather general grounds. The entropy density for the double-wire
system in the absence of tunneling between the wires is given
by the sum s = s1 + s2, where sσ = − ∫

(dk/2π )[fσ ln fσ + (1 −
fσ ) ln(1 − fσ )]. The H theorem says that the total entropy of a
closed macroscopic system prepared in a nonequilibrium state can
only grow in time, i.e., in the spatially homogeneous case ∂s/∂t �
0, with the sign = realized only at equilibrium. Calculating ∂s/∂t to
second order in gσ , we have ∂s/∂t � −(1/4)

∫
(dk/2π )ζ 2∂g2

−/∂t ,
i.e., in the absence of an external driving force, the solution of
the linearized equation for g− in the limit t → ∞ must decay (for
any given k) to a constant of time. For the case of Eq. (2.10), this
constant of time is also a constant of k because the only zero mode
of the collision integral (2.11) (the only integral of motion in the
g− subspace) is the number of particles with the same chirality.
After the subtraction of the zero mode h0, the eigenfunctions of
the collision integral from Eq. (2.22) must all decay at t → ∞
to zero. It follows that the solution h(k) to the inhomogeneous
equation (2.22), also vanishing to zero at t → ∞, behaves in the
ω representation at ω → 0 slower than 1/ω. As a result, solely
on the basis of the H theorem, A(0) is given by the first term in
Eq. (2.20) for an arbitrary interaction potential. More specifically,
the eigenvalues of the integral operator in Eq. (2.22) can be shown
to be separated from zero by a hard gap, i.e., h(k) is a regular
function of ω around ω = 0. The width of the gap is of order
mV2(0) for T � vF /a, where 1/a is the width of the function
V(q), and decreases as 1/T 2 for larger T .

78Note that f− is zero at thermal equilibrium, so that the condition
J (2) = 0 at equilibrium is satisfied trivially, without invoking
the Einstein relation. The nonzero solution f− ∝ ζ 2, which also
nullifies J (2), describes nonidentical wires each of which is at
equilibrium within itself, and corresponds to a shift of the chemical
potentials in the wires with respect to each other.

79The 1/k dependence of f− in the limit of large k is an artifact of
the Fokker-Planck approximation, i.e., only valid for |k| � mT a,
where this approximation is accurate. For a � vF /T (which
is the condition of the calculation in Sec. II C), the range of
momenta |k| � mT a includes |k| � kF , i.e., the Fokker-Planck
description only breaks down for |k| much larger than kF . Note
that in the limit of large a, the main contribution to the current
(2.55) does come from the 1/k tail of f− at |k| � kF ; however,
this requires that a be exponentially large in εF /T , namely,

a � (vF /T )(T/εF )1/2exp(2εF /T ), which we exclude from the
consideration.

80Note, however, that if f− were given exactly by Eq. (2.54)
for arbitrary k, it would lead to J (2)(k) ∝ δ(k) [cf. Eq. (2.44)],
vanishing for any k = 0. That is, the finite stationary value of f−
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