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We develop a kinetic equation description of Coulomb drag between ballistic one-dimensional electron systems,
which enables us to demonstrate that equilibration processes between right- and left-moving electrons are
crucially important for establishing dc drag. In one-dimensional geometry, this type of equilibration requires
either backscattering near the Fermi level or scattering with small-momentum transfer near the bottom of the
electron spectrum. Importantly, pairwise forward scattering in the vicinity of the Fermi surface alone is not
sufficient to produce a nonzero dc drag resistivity pp, in contrast to a number of works that have studied Coulomb
drag due to this mechanism of scattering before. We show that slow equilibration between two subsystems of
electrons of opposite chirality, “bottlenecked” by inelastic collisions involving cold electrons near the bottom of
the conduction band, leads to a strong suppression of Coulomb drag, which results in an activation dependence
of pp on temperature, instead of the conventional power law. We demonstrate the emergence of a drag regime in
which pp does not depend on the strength of interwire interactions, while depending strongly on the strength of

interactions inside the wires.
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I. INTRODUCTION

A remarkable property of a system of two conductors placed
in proximity to each other is the occurrence of the phenomenon
of Coulomb drag. This consists of inducing an electric field or
current in one of the conductors by sending a current through
the other, with the friction force being due to electron-electron
interactions, in the absence of transfer of electrons between the
two subsystems. As such, Coulomb drag is a sensitive probe
of electron-electron correlations and, specifically, of inelastic
electron-electron scattering.

The key quantity describing friction is the drag resistivity
pp conventionally defined for two homogeneous conductors
parallel to each other as

(1.1)

where j is the electric current density in (“active’) conductor
1 and E; is the electric field applied to (“passive”) conductor 2
to compensate for the friction force under the condition that no
current flows in the passive conductor. Since its prediction'-?
a third of a century ago, for two-dimensional geometry of
two parallel conducting sheets, Coulomb drag has been exten-
sively studied experimentally in double-layer semiconductor
structures,> also in a transverse magnetic field.'"'® Recent
experimental work has addressed a similar phenomenon in
double-layer graphene.'®! In one-dimensional geometry, a
number of experiments have explored Coulomb drag between
quantum wires.??"?% Drag experiments have also been done
on electron systems of other geometry: between two- and
essentially three-dimensional electron systems’’ or between
quantum-point contacts.?8

pp = —Es2/j1,

A. “Orthodox theory”

A great deal of understanding of the mechanism of
Coulomb drag has been achieved by calculating the friction
force perturbatively, at second order, in the dynamically
screened interaction Vi,(w,q) between two two-dimensional
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electron systems (“‘orthodox theory”).??°-32 Within this frame-
work, Coulomb drag is represented as rectification of nonequi-
librium current fluctuations induced in the passive layer and,
consequently, the linear-response resistivity pp is related to
dynamical correlations in thermal fluctuations of the electron
densities in different layers at equilibrium. Equivalently, pp
within the orthodox theory is proportional to the rate of
momentum transfer between the layers at order V2. One
important result of the orthodox theory is that pp at order V3,
scales with temperature 7 in the limit of small T as T? (for
ballistic electron systems,*?°=! or as T2 In T in the diffusive
1imit**3"). The power-law vanishing of pp as T decreases is
associated with the constraints on the phase space available
for inelastic electron-electron scattering.

To the best of our knowledge, in all works where Coulomb
drag in two-dimensional systems was studied within the
framework of the orthodox theory, pp was derived under
the facit assumption that the intralayer relaxation processes
(determined, e.g., by disorder) are faster than the processes of
momentum transfer between the layers. Within the kinetic
equation approach, which we employ in this paper, this
condition implies that an iterative solution®® of the kinetic
equation (equivalent, in the diagrammatic language, to the
evaluation of the Aslamazov-Larkin—type diagrams®'3?) is
justified. A delicate point here is that the resulting drag
resistivity in the presence of disorder does not necessarily
depend on the strength of disorder, which might seem to
imply that the thus obtained pp describes the clean limit
as well. However, in the absence of relaxation processes
induced by disorder or inelastic intralayer interactions, the
nonequilibrium part of the electron distribution function is
governed by interactions between the layers, so that the
lowest-order expansion in the interlayer collision integral,
assumed in the orthodox theory, is generally not sufficient.
Therefore, the orthodox theory should not be expected to be
generically valid in the clean limit, even for an arbitrarily weak
interaction between the conductors. One particular example
that demonstrates a dramatic departure from the orthodox
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theory in the clean case is Coulomb drag between ballistic
quantum wires, addressed in this paper.

The orthodox theory also explicitly points to the important
role of electron-hole asymmetry in a degenerate Fermi gas,
in the absence of which the electron and hole contributions
to pp at order V122 cancel each other. The cancellation® has
the consequence that, in the case of particle-hole asymmetry
produced by a finite curvature 1/m of the electron dispersion
relation, where m is the electron mass, pp is small in the
parameter (T /ey)? with €y being the Fermi energy. In the
diffusive case, pp for sufficiently small transferred momenta
can be directly related at order V2 to the dependence of the
local conductivity on the local electron density,>* absent in
the particle-hole-symmetric case.

Apart from a nonzero curvature 1/m, particle-hole asym-
metry can also result from the energy dependence of the
electron density of states in the vicinity of €r. The latter
contribution to Coulomb drag is important in the presence of
a transverse magnetic field*>-*® because of the modification
of the density of states by Landau quantization. It is also
important in two-dimensional electron systems with a linear
dispersion relation (1/m = 0), in which the density of states
varies linearly with energy, in particular, in graphene.’’
Particle-hole symmetry in two dimensions is realized in
graphene at the charge-neutrality point, where the orthodox
theory gives zero pp. Therefore, possible deviations from
the orthodox theory in the vicinity of this point in graphene
become particularly important.®® The prevailing notion that
Coulomb drag is entirely due to particle-hole asymmetry is
justified in the case of a disordered two-dimensional electron
system only at order V3. Beyond the golden-rule level, already
at third order in V5, rectification of interaction-induced current
fluctuations in a diffusive double-layer system yields nonzero
op even in a particle-hole-symmetric system.*’

B. Coulomb drag in one dimension: Backward scattering

In one-dimensional geometry, the connection between
Coulomb drag and particle-hole asymmetry is subtler. Pro-
cesses of electron scattering due to interwire interaction
separate into two classes: backscattering, in which an electron
changes its chirality, and forward scattering, in which it does
not. In a ballistic system with no disorder, the contribution
of interwire forward-scattering processes to Coulomb drag
vanishes if the electron dispersion relation is linearized
(Luttinger-liquid model*’); however, the contribution of in-
terwire backscattering processes to pp remains nonzero even
in the particle-hole-symmetric limit.*'* Much of the prior
work on Coulomb drag between quantum wires has therefore
focused on the backscattering processes. At the golden-rule
level, pp induced by backscattering between identical wires is
linearly proportional®*>! to T with

(1.2)

where By, is the dimensionless coupling constant describing
interwire backscattering at the Fermi level with momentum
transfer 2kr, v is the Fermi velocity, and 271/e2 is the
resistance quantum (here and below 72 = 1). At higher orders
in the strength of interaction, both intrawire and interwire,
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a power-law renormalization of the backscattering amplitude
develops as T (or the drive current in the active wire in the
nonlinear response regime) decreases*' 474952 (a similar
renormalization of pp in the strongly interacting limit of
a “spin-incoherent” Luttinger liquid has been discussed in
Ref. 48).

Below a characteristic energy scale (at which the renor-
malized amplitude g; is of the order of unity), electrons
in two wires form a “zigzag-ordered” charge-density wave
and the power-law behavior crosses over into an exponential
growth of pp with lowering T or, in finite-size systems at
sufficiently low 7, into an exponential growth of the drag
resistance with increasing system size.*”***’ In the limit
T — 0, the resistivity pp (defined as the linear resistance per
unit length under the condition that the size of the system is
made infinite before any other limit is taken, in particular,
that of zero T) is infinitely large (“absolute current drag”
in the terminology of Ref. 42). By contrast, the linear drag
resistance between finite-size wires vanishes to zero as T? in
the limit of low T, independently of the strength of intrawire
interaction and on whether the wires are long enough to form
the zigzag order or not.*53 In the former case, however,
there exists a parametrically wide range of 7 in which the
drive and drag currents are almost equal to each other (almost
absolute current drag) up to an exponentially small unbalance
due to transport of solitons in the charge-density wave. In
the nonlinear-response regime, the drag resistance is finite at
zero T and shows oscillations*>*” as the drive current varies,
related to the interference of plasmon waves reflected from
the boundaries of the wires, which are suppressed* as T
is increased. If the length of the region in which interwire
backscattering occurs is much smaller than the total length
of the wires, Coulomb drag in the limit of low 7" and small
bias voltages can be described in terms of backscattering at
effectively pointlike contact.*!434%3% In this model, the drag
conductance induced by electron-electron backscattering is
expressible*!**3 in a particularly simple form in terms of the
conductance of a single wire with a single static backscattering
impurity.

One of the conclusions that follow from the above results
for backscattering-induced Coulomb drag is that, even if the
bare (before the renormalization) backscattering amplitude is
small, the drag effects can be strong in the infrared limit, which
for the linear drag resistivity pp means sufficiently low 7.
However, the backscattering amplitude falls off with increasing
distance a between the wires as exp(—2kra), where kp is
the Fermi wavelength (assuming the electron densities in the
wires to be equal to each other). As a result, for kpa > 1
the drag effects that originate from backscattering are strongly
suppressed unless 7' is exponentially small and electrons are
zigzag ordered. Moreover, the effect of backscattering is also
suppressed in the case of nonidentical wires.*’

C. Coulomb drag in one dimension: Forward scattering

An alternative mechanism of drag is interwire scatter-
ing with small-momentum transfer.’*>% Despite relying on
electron-hole asymmetry (e.g., a nonlinear dispersion relation
for electrons) or the presence of disorder,”® this mechanism
of drag is expected to be more effective than backscattering if
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quantum wires are sufficiently separated from each other, and
is further favored by an imbalance in the electron densities.

Against this background, it is desirable to explore the
possibility of Coulomb drag due to interwire forward scattering
in the absence of any backward scattering. An important
advance in this direction was made in Ref. 56 which extended
the orthodox theory?°=3? for electron systems with a parabolic
dispersion relation to one dimension (see Ref. 60 for a review
of one-dimensional non-Luttinger-liquid models), under the
assumption that electrons are ballistic (no disorder) and can
only exchange momenta much smaller than kg. Specifically,
the calculation in Ref. 56 suggests®' that pp induced by
forward scattering in the vicinity of the Fermi level for
T < vp/a reads as

2

?
s ﬂ?kF(1> , (1.3)

e €F

where fr is the dimensionless coupling constant describing
interwire forward scattering. The meaning of the question
mark will become clear in the next paragraph. At higher T,
in the interval vp/a < T K €p (which exists for kra > 1),
pp shows a plateau in the dependence on T according to
Ref. 56. Other work®’-*® has reached similar conclusions by
employing a bosonic description of the one-dimensional elec-
tron liquid with a nonlinear dispersion relation for electrons,
in particular, reproduced Eq. (1.3). According to Ref. 57,
however, the T2 scaling of pp for the case of identical wires
is only valid for frep < T <K vp/a (provided that vg/a
is larger than Brer and such an interval of T exists). The
energy scale Brep describes splitting between symmetric and
antisymmetric plasmon modes in the double-wire system. In
the low-T limit, for T < Brer, the drag resistivity between
identical wires is predicted®’®} to vanish with decreasing
T as pp ~ B Y2m /e®)kp(T /er)’. Importantly, all the prior
work>®386% on Coulomb drag due to interactions with
small-momentum transfer obtained a nonzero drag resistivity
(unless T = 0) from forward scattering in the vicinity of the
Fermi level.

One of the purposes of this paper is to demonstrate that in
fact

op(T)=0 1.4)

in the absence of scattering that changes the chirality of
electrons. That is, forward scattering itself can not produce
a nonzero dc drag resistivity.> As will be shown, the orthodox
theory,?®=3? with the use of which (or of its equivalent in the
bosonized formulation of the problem) the nonzero result
was obtained in the earlier works,0-5%6* fails entirely (at
the conceptual level) in one dimension. The basic question
behind this problem is under what conditions the second-order
expansion?’? of pp in powers of Vi, which constitutes
the essence of the orthodox theory, is justified. Clearly,
this is correct if drag is sufficiently weak. The question is
about how weak. The answer, as we will demonstrate in the
paper, contains a delicate but crucially important point which
does not appear to have been generally appreciated in the
literature.
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D. Kinetic-equation approach versus the orthodox theory

The Kubo-type formula for the bulk resistivity®® pp derived
within the orthodox theory in one dimension reads as

1 do (dq , 2
= = 2 2V,
oD 2mmT /271/271 g7 Vi2(w,q)I

ImIT(w,q) ImIT,(w,q)
sinh?(w/2T)

where Il 2(w,q) and n;, are the (retarded) polarization
operators and the electron densities, respectively, in wires 1
and 2. The product of the imaginary parts of I1; »(w,q) results
from the application of the fluctuation-dissipation theorem
to the equilibrium dynamical structure factors for density
fluctuations S;(w,q) and Sy(—w, — q). The legitimacy of the
use of the lowest (second) order in Vj, for pp is based on the
assumption that the density fluctuations in the active conductor
(wire 1) are equilibrium in the frame moving with the drift
velocity vy = —jj/en; (throughout the paper the electron
charge is defined as —e, i.e., ¢ > 0). Indeed, as demonstrated
in Ref. 56, the expansion of S;(w — qvy,q) to first order in
Jj1 in the cross-correlation function of the electric forces in
two conductors gives® the linear-response dc electric field
E> = —ppj; in wire 2 (for j, maintained at zero) with pp
from Eq. (1.5).

However, the assumption about the density fluctuation
being equilibrium in the moving frame (“drift ansatz”) is by no
means innocent: actually, in one dimension, it strongly limits
the applicability of Eq. (1.5). If one assumes, for definiteness,
that the wires are identical (with the electron density n) and
represents pp as

; (1.5

pp = m/e*ntp (1.6)

by introducing the “drag rate” 1/tp which describes momen-
tum exchange between two conductors in the dc limit, the drift
ansatz is only legitimate (as will be shown below) if 1/1p
is much smaller than the thermalization rate.®® In quantum
wires, thermalization means not only energy relaxation within
the same chirality branch, but also “right-left” relaxation. The
latter, however, can only occur if backscattering is allowed,
so that in the model of Refs. 56-58 and 64, in which there
is no backscattering “by construction,” the use of Eq. (1.5) is
not legitimate. At this point, one might think that a deviation
of the exact shape of the distribution function of electrons in
the active wire from equilibrium in the moving frame does not
change the result (1.3) qualitatively, i.e., only the numerical
coefficient in Eq. (1.3) depends on the shape but remains of the
order of unity. This is, however, not the case; on the contrary,
the shape is exactly such that in the absence of backscattering,
pp is zero [Eq. (1.4)].

E. Drift ansatz and the contact drag resistance

Naively, one might expect that the results of Refs. 56-58
for drag induced by forward scattering are valid for sufficiently
long ballistic wires, namely, for wires whose length L is much
larger than the characteristic scale of the right-left relaxation.
We emphasize, however, that the equilibrium state in the
moving frame in the double-wire system can not be reached
by increasing L beyond this scale (as would be the case®”%® in
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a single wire). Nonzero friction prevents this from happening
by constantly exciting electron-hole pairs, even in the limit of
an infinitely large system size, as follows from our calculation
of PD.

Although we focus in this paper on the calculation of the
bulk drag resistivity®> pp, there is one more point worth noting
here: the drag resistance Rp(L) of finite-L wires depends on
the setup of the contacts between the wires and the leads,
and thus is not, generally, expressible solely in terms of pp.
Similar to the resistance of a single wire, one can introduce the
bulk drag resistance and the contact drag resistance. The drag
resistivity pp is then understood as the drag resistance per unit
length in infinitely long wires. As such, pp describes the bulk
properties of the wires, not affected by the contacts, and the
emergence of a homogeneous response to current flow.

The largest spatial scale that determines the characteristic
size of the “contact regions” (inside the wires), within which
the distribution function is generically different from that in
the bulk, is the right-left thermalization length /,. As shown
in this paper, /,, is, in effect, the elementary scale for the drag
problem in one dimension. This means, in particular, that the
drag resistance measured in the limit L >> [, between two
points (potential probes) in the bulk, separated by a distance
L,, scales linearly with L, as Rp(L,) = ppL,. The total
drag resistance Rp(L), however, is affected by the relaxation
processes that provide matching between our bulk solution and
the distribution functions in the leads, thus depending on L in
a nonuniversal way.

In fact, the T2 behavior of the drag resistance [Eq. (1.3)] is
obtainable, perhaps counterintuitively, in the limit of small
L, where Rp(L) is given by the contact resistance. It is
important here that Coulomb drag crucially depends, as
demonstrated in this paper, on the relative strength of two
types of relaxation processes that differ in whether they lead
to thermal equilibration of the difference of the distribution
functions in two wires in the moving or stationary frame. The
former tend to establish much stronger drag. As will be shown
in the following, interwire pair collisions tend to equilibrate
the difference of the distribution functions in the stationary
frame, in contrast to the drift ansatz that leads to Eq. (1.3).%°
In the limit of small L, however, one can in principle create
the distribution function in the active wire in the form of the
drift ansatz by “preparing” it in this form in the leads, where
interwire interactions are absent.”’

If L is so small that the distribution function in the active
wire is only slightly modified by interwire interactions, the
friction force can be calculated perturbatively (similar to
Ref. 51 for the case of backscattering). For the drift-ansatz
distribution function “incident” on the wire from the leads, the
drag resistance is then given by Rp(L) ~ (27/e®)L/l;, where
Iy ~ (1/Btkp)er/ T)* (for T < vr/a, and independent of T
for higher T), in accordance with Eq. (1.3).7%7> The spatial
scale /; characterizes interwire momentum exchange between
particles of the same chirality in the drift-ansatz solution
in the limit of small-momentum transfer.”> Note, however,
that if the incident distribution function is equilibrium in
the stationary frame (Landauer-Biittiker setup with “Fermi
leads”), the perturbative drag resistance in the limit of small
L is exponentially suppressed (in the parameter €r/T). This
follows directly from Egs. (BS) and (B6) or, equivalently,
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from a golden-rule calculation’’* of the interwire momentum

transfer rate expressed in terms of the dynamical structure
factors. The comparison of the perturbative results in the above
two setups emphasizes the nonuniversality of the contact drag
resistance.

Thus, forward scattering can contribute to the contact drag
resistance if there is a mismatch between the distribution
function incident from the leads and the distribution function
that describes bulk drag in the limit of large L. The mismatch
in the case of pair collisions is minimized if parallel wires are
directly connected to the Fermi leads. The full description of
the contact drag resistance (also including triple collisions®)
as a function of L, depending on the setup, is out of the scope
of this paper.

F. Outline of the results

Our main results can be described as follows. We demon-
strate that pp in one-dimensional geometry vanishes in the case
of electrons not changing their chirality in scattering processes.
A key consequence of this is that the drag resistivity is
necessarily suppressed compared to the conventional theories
[epitomized by Eq. (1.5)] if the right-left equilibration is not
fast enough. In the case of energy relaxation being mainly due
to processes with momentum transfer much smaller than kr
(the exact condition depends on T'), the right-left equilibration
is “bottlenecked” by inelastic collisions that involve cold
electrons near the bottom of the electron spectrum. Hence,
pp acquires the activation factor exp(—er/T) in the low-T
limit. The temperature dependence of pp is shown in Fig. 5
in Sec. III E. Remarkably, the drag resistivity in the activation
regime does not depend on the distance between the wires.

The power-law behavior of pp with T that follows from
the conventional approaches®®® is only recovered if the
drag rate 1/tp [Eq. (1.6)] resulting from the drift ansatz
in these approaches is smaller than the equilibration rate,
proportional to exp(—er/T) in the case of soft collisions.
Atlow T < €p, this can only occur if the distance a between
the wires is exponentially large in the parameter €/ T. This
answers the question formulated below Eq. (1.4): the orthodox
theory for the drag resistivity is only justified when drag
is exponentially weak in €r/T. Conversely, for fixed a, the
range of applicability of the orthodox theory is limited to
temperatures which are only “logarithmically smaller” than
E€F.

On a more detailed note, our results show a nontrivial
interplay between triple and pair collisions. The activation
behavior pp o exp(—ep/T) is determined by triple collisions
with one electron scattered near the bottom of the conduction
band and two electrons scattered near the Fermi level. If the
intrawire triple collisions are less effective in the right-left
equilibration than interwire pair collisions between two cold
electrons, there exists a range of 7 in which pp acquires one
more activation factor and behaves as exp(—2¢€/T'), crossing
over into the regime dominated by three-electron scattering
as T decreases. However, in any case, pp is exponentially
suppressed at low 7. One more conclusion that comes from
the comparison of the effect that pair and triple collisions have
on pp is that the orthodox theory of the drag resistivity for the
case of forward scattering is totally unjustifiable if only pair
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collisions are present and hinges entirely on the triple-collision
rate being sufficiently high. Schematically, the dependence of
pp on the rate of three-particle collisions is illustrated in Fig. 4
in Sec. Il E.

Our theory of Coulomb drag is built on the quasiclassical
kinetic equation approach. Although we will focus most of
our attention on scattering with momentum transfer much
smaller than kf, this approach allows us to easily incorporate
backscattering near the Fermi level as well. Throughout the
paper, however, we assume that T is still higher than the
crossover temperature below which interlocked charge-density
waves*> %7 induced by backscattering are formed. In this
paper, we specialize to the case of ballistic quantum wires (no
disorder) and spinless electrons.

The paper is organized as follows. Section II is devoted
to Coulomb drag due to pair collisions. In Sec. ITA, we
introduce the kinetic equation for a double wire and obtain the
high-frequency drag resistivity. In Sec. II B, we formulate and
solve a model which contains interwire forward scattering but
explicitly forbids backscattering (in order to show that there
is no dc drag resistivity in one dimension without backscatter-
ing). In Sec. II C, we obtain the dc drag resistivity induced by
pair collisions with small-momentum transfer and demonstrate
its activation behavior for low temperatures. In Sec. IID, we
discuss drag resulting from direct backscattering at the Fermi
level. Section III deals with Coulomb drag in the presence of
both pair and triple collisions and emphasizes the important
role of the latter. In Sec. IIT A, we write the kinetic equation that
describes triple collisions in a double wire. In Sec. III B, we
discuss singularities that arise in the calculation of the three-
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particle scattering probabilities. In Sec. IIIC, we describe
soft triple collisions within the Fokker-Planck approach. In
Sec. IID, we compare various channels of three-particle
scattering in the double-wire system and identify those that are
most important for Coulomb drag. In Sec. IIT E, we consider the
effect of triple collisions on Coulomb drag induced by soft pair
collisions and show that three-particle scattering dramatically
enhances drag at low temperature. Our results are summarized
in Sec. IV. Some of the technical details are placed in the
Appendixes.

II. COULOMB DRAG IN ONE DIMENSION: PAIR
COLLISIONS

A. Kinetic equation for pair collisions

Our point of departure is the kinetic equation for pair
collisions in a system of two spatially homogeneous quantum
wires. In one dimension and for the quadratic dispersion
relation, this type of scattering does not affect the distribution
function if both electrons are in the same wire, but does lead
to a relaxation of the distribution function if electrons are in
different wires. Throughout the paper we neglect tunneling
between wires, so that the exchange processes for electrons
from different wires are absent. We thus have

O fo (ki) — eEqdy, fo(ki) = Sto{f},

where the symbol o = 1,2 distinguishes wires 1 and 2, E, is
the electric field in wire o, and the collision integral St,{ f}
for the case of pair collisions is given [at the lowest (second)
order in interaction] for o = 1 by

2.1

dky [ dk dko
SG7) = (2”)2/ 2_711/ 2o [ — k)P + ks — ki — k) 8(er + €2 — €1 — €2)

2 2

x { filky) falko)[1 — fitkDI — falka)] — filky) falko)[1 — fi(ki)][1 — falka)]},

2.2)

where €; = kf /2m, etc., and V(q) is the Fourier component of the interaction potential of electrons in different wires with the
momentum transfer g [given, e.g., by V}»2(q) from Appendix A: throughout Sec. II we omit the subscript of V|,]. The superscript
M=2in St(lM){ f}1in Eq. (2.2) is meant to indicate that this is a contribution to the collision integral of two-particle collisions
(M -particle scattering with M > 2 will be discussed in Sec. III). For St;{ f} in Eq. (2.1), the wire indices of f, (k) in Eq. (2.2)
should be transposed (momenta 1 <> 2,1" <> 2'). The product of the delta functions in Eq. (2.2) reduces in the case of quadratic
dispersion to

Ski +ky — ki — k2)8(er + € — €1 — €2) = ﬁ 8(ki — kx)S(ks — k1), 2.3)
which gives
@ dky |V (ky — kp)I?
Sty {f}=m 2 ky k| {fitky) (kD[] — fitkD][1 — folki)] = fitk) folki)[1 — fitk)][1 — fokD]}. (2.4)

In the following, we will focus on the linear response under
the assumption that the wires are identical, in particular, that

where fr = [1 + e~/T]~! is the thermal distribution func-
tion. Linearizing Eq. (2.1) in g,, we then obtain (in the w

their chemical potentials and temperature are the same. It is representation)
then convenient to represent the solution of Eq. (2.1) in terms
of the functions g, (k) as —iwg (k) — eEk — st?(g)
mT ! ’
(2.6)
iwgk) — S @)
Jfo(k) = fr + ()T 0c fr, (2.5) mT bier
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where

dk’ V(' —k)]?
stig) =[5 a0k

4 |k — k|
x [g1(K") + ga2(k) — gi1(k) — g2(K)]  (2.7)
and
¢k) = (2.8)

cosh[(e — €r)/2T]"

By introducing the functions g4 (k) = [ g1(k) & g2(k) 1/2, we
thus have

e(El + Eg)k 1

s+ =T Tieto @9)
—iwg_(k) — “Br = Bk _ stPg},  (2.10)
2mT
where
@ k', V(K —k)]? .
(g} =7 fzn U =g Le- KD = g0l
(2.11)

The electric current in wire 1 [sign 4 in Eq. (2.12)] and wire
2 (—) is given in terms of the functions g (k) by

) e < dk ,
2= / SRk [g (k) £g-(k)].  (2.12)
m J_oo 21

One simple result that follows immediately from Eq. (2.10)
gives the drag conductivity oy; (defined as on = jr/E;
under the condition that £, = 0) in the high-frequency limit.
Iterating Eq. (2.10) in the limit of large w once yields

Reoy >~ —ezn/mwztgo for wt® > 1, where
1 dk 5 ,
=—— | — %k 2.13
dmT ) 27 ¢ ( )

is the electron density in one wire and

1 1 dk
—=—/—¢<)

Pk — k.
T 32nT

s“ 2RIV (K —

(2.14)

The sign oo is intended to emphasize that the scattering
rate (2.14) describes high-frequency drag.”> If the main
contribution to 1/73° comes from momentum transfers with
|k" — k| ~ T /v, then 1/75° T2 [cf. Eq. (1.3)], while if it
comes from backscattering with |k" — k| >~ 2kp, then 1/73°
T [cf. Eq. (1.2)]. Naively, one might think, in the spirit of
the Drude theory or, for that matter, the memory-function
formalism with the memory function expanded to second order
in interaction, that 1/73° determines drag also at @ — 0, with
the dc drag resistivity pp o< 1/75°. As will be seen below, this
assumption is correct for drag induced by backscattering in the
close vicinity of the Fermi level; however, it is totally wrong
for the case of forward scattering.

B. Absence of friction from forward scattering

As mentioned in Sec. I, dc drag resistivity vanishes
[Eq. (1.4)] in the absence of interwire backscattering. To
see this, consider a model in which the interaction matrix
element does not connect electron states with opposite chi-
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rality. In this model, backscattering processes both near the
Fermi level (momentum transfer about 2kr) and near the
bottom of the spectrum (momentum transfer much smaller
than kr) are forbidden by construction. It is important that
the model excludes the latter possibility as well, because
the backscattering processes with small-momentum transfer,
while being exponentially suppressed for 7 < €, still can
lead to a “leakage of current” between the subsystems of right-
and left-moving electrons. For definiteness, let us substitute for
Vir—x in Eq. (2.11) a function of k and &’ that is proportional
to the 0 function of the product kk’, which explicitly forbids
backscattering’®
V(' — k) — V(K — k)O(kk"). (2.15)
The model (2.15) is compatible with those used for studying
Coulomb drag due to forward scattering in Refs. 56-58.
In the Luttinger-liquid formalism, generalized to the finite-
curvature case, it corresponds to retaining only the g4, type of
interaction.*’
Within the model (2.15), the equation for the distribution
function g_(k > 0) of right-moving electrons can be written in
a closed form

. E(E - Ez)k
~log-() - l2m—T

dk’ V(' — k))?
=—/ —E( )| |( |)| [g-(K") — g-(K)],

while the distribution function of left-moving electrons g_ (k <
0) is related to g_(k > 0) by the condition g_(—k) = —g(k)
which follows from the fact that the source term in Eq. (2.10)
is odd in k. Importantly, the collision integral in Eq. (2.16)
is nullified if g_(k > 0) does not depend on & [i.e., g_(k) =
const(k)sgn(k)]. The solution of Eq. (2.16) can therefore be
represented as a sum of two terms

(2.16)

g—(k) = ho + h(k), (2.17)
where the zero-mode term /4 does not depend on k and has a
pole at w = 0,

A(w) e(E| — Ex)vr

ho = , 2.18
o Tiw+0 2T (2.18)

with a residue proportional to a yet unknown constant A(0).
The equation for i(k) then reads as

. e(E) — Ex)vp
—iwh(k) + [A( )~ ] e
_om [¥dk L VK —RP
_5/0 2 U ) — L 219)

Multiplying Eq. (2.19) by (k) and integrating both sides over
k, we eliminate the collision integral to obtain the connection
between A(w) and h(k) in a form that does not contain the
collision kernel explicitly:

o

Alw) = — |4t /oodk 2|, (220
= or on B —E) )y m] &
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where du/dn = 2T/ [;(dk/2m)¢? is the inverse compress-
ibility. For T <« €p,

1 3“~1 n2<T>2

2.21
TVF On 8 \er ( )

The difference of the compressibility from 1/w v at finite T
will be important for the calculation of the singular (at w — 0)
part of 7.

From Eq. (2.20), the closed equation for 4 is written as
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The solution of Eq. (2.22) does not contain, by construction,
a zero-mode part and is regular at @ — 0. It follows from
Eq. (2.20), then, that A(w — 0) is finite (neither diverging
nor vanishing) and determined by the first term in the square
brackets in Eq. (2.20), namely, A(0) = (1/mvp)ou/on. The
solution of Eq. (2.16) can thus be represented as a sum of the
singular (at @ = 0) term and the regular term as follows:

[ Alw) B(w,k) e(E1 — Ex)vp
§-(k) = [—iw—i—O + —iw—i—M(a),k)] 2T ’

(2.24)
. - e(Ey — Ey) - « N
—iw[hk)—h]— ?(k — k) where A(w), the “source renormalization” factor B(w,k), and
m the “memory function” M(w,k) are all regular at ® — 0, and
_om (dK (VK —R)PF M(0,k) > 0.”7 This form of g_, together with Eq. (2.9) for g,
) /0 P 0 k' — k| Lh(k) = ()], (222)  Gictates a very special type of behavior of the conductivity and
resistivity tensors (in the space of the wire indices) as w — 0,
where .
as is seen below.
_ L op (*dk , _ mu Using the relation (2.20) between the singular (hg) and
h= —¢h, k=—— (2.23)  regular (h) parts of g_, the current [Eq. (2.12)] can be expressed
2T an 0 2w
in terms of only the regular part as
|
e? 1 dk , - e [™dk -
2= e | 3 CKE + Bk £ (B — Bkl + o — %k (h — h). 2.25
iz 4m2T_iw+0/0 CHIE + Bk (B~ EDR1 5 [ S ekai— 2.25)
The conductivity matrix resulting from Eq. (2.25) reads as
\ e*ur 1 MAA A 1 -1
gl = [m(xl—xz A1+A)+C( )< 1 1)} (220
where
1 9
A= idad (2.27)
2kp 271vp on’
and
T 0u *dk’ B(w,k) B(w,k")
Clw)=—=— — ¢k Kk —k — . 2.28
@) = T6mT2 on /0 £ )/ 7 £ )|:—ia)+M(a),k) o+ M(w.K) (2.28)

For T « €, the coefficients X, » are given by [cf. Eq. (2.21)]

1 N 2 1 v 2
AI:——H— , xzz-—”— . (229
2 48 2 16

i.e., the diagonal elements of the first matrix in Eq. (2.26)
are close to unity in the limit of small T, whereas the
nondiagonal ones vanish as 7. Note that the singular behavior
of the nondiagonal elements is determined by the 7'-dependent
corrections to the coefficients A; 5 in Eq. (2.27). The function
C(w) in front of the second matrix is also proportional to T2
at T — 0. Indeed, the integrals over k and &’ in Eq. (2.28) are
determined [because of the factors ¢ (k) and ¢ (k)] by the close
vicinity of k = k' = kg, while the integrand contains a product
of two factors each of which is zero at k = k’. The vanishing
of C(w) at T — 0 can also be seen from the sum rule for the
conductivity (see, e.g., Ref. 57), according to which

/OO dw Re é(w) = enf1 0
— Reé(w
o0 2 2m 0 1

(2.30)

independently of the strength of interaction. Equations (2.26)
and (2.30), combined together, tell us that

*dw
/ — Re C(w) =
oo 2T

(o]

l(kl — A2), (2.31)
2
which, in view of Eq. (2.29), means the T2 behavior also for
the integral characteristic of the regular part of 6 (w).

It is instructive to represent the conductivity matrix for
T K efas

2 1— b
6(60):”1”[ il !

T 2 —iw+8|
N 1-3p .22
2 —iw+ 6

+ C(a))flz] . (232
where

(2.33)
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the matrices 21,2 are given by

~ 1 1 & 1 -1
21:(1 1), 222(_] 1>,

and the infinitesimally small frequency shifts i§; and i6, in
the singular terms proportional to 3, and 3, respectively,
are denoted differently to emphasize the different origin of
possible damping in the two terms. Specifically, the singular
term proportional to ¥; comes from the symmetric (in the
wire indices) function g whose singularity is associated with
total-momentum conservation. Hence, §; = 0inhomogeneous
wires, independently of the type and strength of electron-
electron interaction. In contrast, the singular term proportional
to X, stems from the zero-mode function 4y whose singularity
reflects particle-number conservation within each chirality.
That is, 6, = 0 in the model of only forward electron-electron
scattering. The last (nonsingular) term in Eq. (2.32) is the
contribution of both # and the regular part of ko [the last
term in Eq. (2.25)]: its damping is related to the equilibration
between electrons of the same chirality in different wires.
The matrix structure of Eq. (2.32) with §; = 6, = 0 differs
in an essential way from that proposed for the same case of
forward electron-electron scattering in Ref. 57. The crucial
difference is that the prefactor of £, in Eq. (2.32) is singular
at w = 0, i.e., behaves in the limit of small w as 1/(—iw +
8,) with §, =0, whereas in Ref. 57 it is proportional to
1/(—iw + 2/73°), where the scattering rate 1/773°, describing
high-frequency drag, is given by Eq. (2.14). Inversion of the
conductivity matrix in Ref. 57 yielded a nonzero dc drag
resistivity pp = n/eZUFTSO, ie., 1/p [Eq. (1.6)] equal to
1/75°, which also agrees with the result of Refs. 56 and 58. In
contrast, the inverse of the matrix 6 (w) from Eq. (2.32) is

(2.34)

T iw
e2vp (1 — n)(1 —3n — 2iwC)

(—1+2n+iwC
X

plw) =

n+ioC

n+ioC -1 +2n+iwC>’ (2.35)

which at w — 0 gives
(2.36)

That is, in the model of only forward scattering, the dc drag
resistivity

Re pp; >,

pp = —p21(w = 0) (2.37)

is strictly zero [Eq. (1.4)]. Note that the diagonal dissipative
resistivity Re p;; also vanishes with decreasing w as w?, similar
to Re py;. The coefficient in front of w? is, in both cases,
proportional to C(0) which scales as 72 in the low-T limit.

It is worth mentioning that nonzero, in contrast to the
solution of the kinetic equation, drag in the model of forward
scattering was obtained in Refs. 56-58 in two ways. In Ref. 57,
pp # 0 was found as a direct consequence of the conjectured
Lorentzian shape of the w dependence of o,;. On the other
hand, in Refs. 56 and 58, the same expression for the drag
resistivity followed from the one-dimensional version of the
orthodox theory?®=3? at @ = 0. In particular, in Ref. 56 the
orthodox theory was cast in the form of the drift ansatz. The
relation between the two approaches and the step in the solution
of the kinetic equation at which the drift ansatz fails are further
discussed in Appendix B.

PHYSICAL REVIEW B 86, 245402 (2012)

Coulomb drag in the dc limit would only occur if §; # 0 in
Eq. (2.32), namely,

b 52
4e’vp C(0)62 + Ay

We thus see that the scattering processes that change the
chirality of electrons (recall that it is these processes that
yield 8§, # 0) are the only source of nonzero dc Coulomb
drag. As already discussed in Sec. I, one can distinguish two
main types of backscattering: in the vicinity of the Fermi level
and at the bottom of the spectrum. The contribution of the
former to pp is exponentially suppressed, as exp(—4kra), if
the distance a between the wires is much larger than the Fermi
wavelength. The contribution of the latter is also exponentially
suppressed, as exp(—ep/T) [or exp(—2¢r/T), depending on
the parameters], if 7' is much smaller than the Fermi energy. It
follows that the important parameter that controls the relative
weight of these two types of backscattering in pp is the
ratio of a and the “thermal length” vp/T. For a > vp/T,
backscattering with momentum transfer much smaller than k
is expected to provide the main contribution to pp. This type
of backscattering is discussed in Sec. II C.

Pl =0)= 3. (2.38)

C. Coulomb drag due to soft pair collisions:
Fokker-Planck description
Let us consider the limit in which the characteristic
momentum transfer in Eq. (2.11) is much smaller than T /vp.
For concreteness, we can think of the interaction potential
given by Eq. (Al) and simplify Eq. (2.11) in the limit
T/vep > |k — k| ~ 1/a [see Eq. (A3)]. In this limit, the
collision integral (2.11) can be written in the differential form

o) me (3¢% g 1 ) 9%g_
t ~ (=g s
st e 2<8k ok 25 e

mc 1 0 [ ,08-
=— == )
4 ¢- ok ok

d
c= /—2" 711V (@)I2.
JT

In the limit Ta/vp > 1, the scattering rate 1/75° [Eq. (2.14)],
which describes high-frequency drag, and c are related to each
other as follows:

(2.39)

where

(2.40)

€F
c=24—:. (2.41)
)
Being rewritten in terms of the function
fo=(h—f)/2=gTdfr=-g /4 (242

(i.e., going back from the “g functions” to the distribution

functions f,), Eq. (2.39) can be cast in the form of the Fokker-

Planck equation

e(E, — En)¢’k  9J®
8mT L

where the current in momentum space J (k) [related to f_(k)
and df_(k)/dk locally, at one point k] is given by

af- aD
JP=-D>— + f —
ok Tk

—iwf_ + , (2.43)

(2.44)
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with the k-dependent diffusion coefficient in momentum

space’®

D(k) = % £2(k). (2.45)

_e(E) — Ey) k

IO = -
—0o0

1 k2_k2
dPPEZ(P)ZZe(El—Ez)[l—tanh( F>:|
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The solution of Eq. (2.43) in the dc limit can be found
exactly. Atw = 0, J® (k) is obtained by integrating Eq. (2.43)
[assuming that lim,,—,o(wf-) = 0, which will be confirmed by
the solution]:

2.46
dmT ( )

The boundary condition used in Eq. (2.46) is J Ok - +o00) = 0. Substituting Eq. (2.46) in Eq. (2.44) yields a first-order

equation for f_(k):

af_ n k tanh kK2 — kf, 7
— 4+ —tanh | ——= | £ =
ok mT AdmT

which should be solved for the boundary condition f_(k = 0) = 0. The solution reads as

__eE\—Ey) sz [ B (pz—k,%)] 1
- = By e Odp 1 — tanh AT )

E,— E k 2 _ 2 1
:—e( 1 2)§‘2/dp exp(_p F)
0

mc

Using the parameter 7' /e < 1, Eq. (2.49) can be simplified

to
e(E; — E3)
fom SR

k
T (an)l/ZezeF/Tg%p(—), (2.50)

~mT

where ®(x) = (2//) [, exp(—t*)dt is the error function.
Equation (2.50) is the asymptotically exact expression valid for
not too large energies € < €* (more accurately, for €* — € >
T), where

T, €
€ =3er + Eln%.
For larger energies € — €* > T, it follows from Eq. (2.49) that
f_ falls off as a power law”°:
e(Ey—E)T

o ——

2c k
Specifically, for all energies € — er > T, f_ is given by the
sum of two contributions to the integral (2.49) coming from
|| of order (mT)'/? and from |q| ~ (2me)'/?:

_e(E — E)) (£>1/2

4 mc?

2.51)

(2.52)

f-x~

3k — k2 2(mT /m)'/?
-=r = [/ P A LA
X |:exp< T >sgn( )+ .
The ranges of applicability of Egs. (2.50) and (2.53) overlap.
For all energies T « € < €* (which includes momenta around
the peaks of f_ at k = £kp), the shape of f_ as a function of
k is given® simply by ¢
_e(E — Ed)
16mc

i| . (2.53)

fo~ (mmT)'? ¥/ T2 sgn(k). (2.54)

The electric current

. 1, . e [dk
J-= 5(11 — )= ——/—kf—, (2.55)
m ) 2w

E\—E) 1 K — k2
_AEmE) L ANE (2.47)
mc 2 4mT
(2.48)
. 2.49
4mT ) &3(p) 249
[
calculated by integrating Eq. (2.54), reads as
XE, - E
jo~ CEL B (2.56)
2my
where
2¢r |2 —2¢p/T
Yy =2c (—HT3) e , (2.57)
i.e., the difference of the dc conductivities oy — 0y =

2j_/(E| — E») >~ e*vy/my. Taking into account that the sum
o1 + 091 = e*vp/m(—iw + 0) [as it follows from Eq. (2.9)]
and inverting the conductivity matrix, we obtain the dc
resistivity matrix in the form

plo = 0) = ppn, (2.58)
where the matrix 3, is given by Eq. (2.34), i.e.,
P11 = —p21 (2.59)

in the dc limit. Equation (2.58) yields the following
expression®! for the dc drag resistivity pp [Eq. (2.37)]:

_E-E
PD = 4
From Eq. (2.56), we thus have

Ty e (2 \'? 2er)T
~ = e it 2.61
o 2¢2vy  e2vp (nT3> 26D

(2.60)

Equation (2.61) is in agreement with the conclusion of
Sec. II B that backscattering (Fig. 1) is the only source of dc
Coulomb drag (and should be contrasted with the result of
the orthodox theory®®8 that yields nonzero pp from forward
scattering in the absence of any backscattering). The scattering
rate 1/tp [Eq. (1.6)], which describes drag in the dc limit, is
seen to be given by y /2. This means that 1/tp is much smaller,
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wire 2

wire 1

C

k=0 k=0

FIG. 1. Electron-electron scattering with small-momentum trans-
fer, much smaller than the Fermi momentum kr, in a double-wire
system. Electrons and holes are shown on the parabolic dispersion
curves as full and empty circles, respectively. Scattering in the vicinity
of the Fermi level does not contribute to the bulk drag resistivity pp
in the dc limit, only scattering that changes the chirality of electrons
does. In the limit of soft scattering, pp is determined by scattering
processes involving cold electrons near the bottom of the spectrum at
k=0.

for T < €F, than the scattering rate 1/75° [Eqs. (2.14) and
(2.41)] describing high-frequency drag:

ﬁ o (E>1/2 <€_F>3/2 -
™ T T
Importantly, the ratio (2.62) does not depend on the strength of
interaction, with both scattering rates being quadratic in V,.
It may be instructive to discuss the origin of the T depen-
dence in Eq. (2.61) in more detail. The factor exp(—2¢r/T)
means that the relaxation of f_ at the Fermi level in the
dc limit is only due to the diffusion in energy space which
leads to the cooling of an electron in wire 1, starting from
the Fermi surface down to the very bottom at k = 0, due
to the heating of electrons in wire 2 (Fig. 2), followed by
backscattering of the electron at the bottom and its acceleration
in the opposite direction, accompanied by the cooling of
electrons in wire 2. This diffusion cycle, which amounts to
effective backscattering at the Fermi level, is bottlenecked
by electron-electron scattering at k = 0 (requiring two holes,
one in each of the wires, near the bottom), hence the factor
exp(—2¢er/T).
The above picture is also substantiated by the obtained
k dependence of the distribution function. Counting the
exponential factors in Eq. (2.50), we observe that df_/dk
at k = 0 is proportional to exp(er/T) and f_ grows with
increasing |k| until it reaches maximum at |k| >~ kp, at which
point it is proportional to exp(2er/T). This behavior of
f— means that the characteristic relaxation rate for f_ at
given k is small as exp(—2¢r/T) for all momenta both near
the Fermi level and below it down to the bottom of the
spectrum, i.e., the exponential factor in the relaxation rate
does not depend on k. Moreover, Eq. (2.54) says that the
relaxation rate at w = 0, including the pre-exponential factor,
is accurately approximated in the vicinity of the Fermi level
for |k — kr| < kp by a k-independent constant. This constant
is precisely y given by Eq. (2.57). For |k — kr| < kf, the
right-hand side of the kinetic equation (2.43) at @ = 0 can thus
be written as —y f_, with the relaxation rate being independent

(2.62)
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wire 2 wire 1 wire 2

wire 1

FIG. 2. Diffusion in energy space due to two-particle scattering
in a double-wire system. An electron (full circle) in one wire and a
hole (empty circle) in the other, both having the same momentum,
move as a whole along the dispersion curve (the same for wires 1
and 2, offset horizontally for clarity). Two consecutive steps in the
diffusion process are shown, resulting in the cooling of the electron in
wire 1 due to the heating of electrons in wire 2. The electron and hole
states that have not yet (left) or have already (right) participated in
scattering are shown as dashed circles. Diffusion of the electron-hole
pair along the dispersion curve between two Fermi points through the
bottom of the spectrum (Fig. 1) amounts to effective backscattering
at the Fermi level.

of k and determined by the slowest scattering processes at the
very bottom.

It is worth noting that the condition T 3> vg/a, which is
necessary for the justification of the Fokker-Planck description
[Eq. (2.39)] in the whole range of momenta |k| < kg, is
not necessary for scattering within the same chiral branch
to preserve its diffusive character in energy space for cold
particles with |k| K mTa. If T <« vg/a, forward scattering
with |k| << mTa is still described by Eq. (2.39). In contrast,
in the range mTa < |k| < kp it is modified in an essential
way by strong asymmetry between hopping up and hopping
down along the energy axis. Specifically, for a particle in this
range of k, the characteristic probability of gaining energy
in an elementary hop is much larger than the probability of
losing energy. The asymmetry factor depends on how fast
|[V2(q)| falls off with increasing |g| for |g|a > 1 compared
to the growth of the thermal factor exp[(k + ¢)> — k*]/2mT.
For the case of V(g) from Eq. (A3), the asymmetry factor for
Ta/vr < 1 is mainly given®? by exp[(k% — k?)/2mT] > 1.
The right-left relaxation via multiple scattering with small-
momentum transfer is hindered by the asymmetric hopping.
However, for T < vg/a, direct backscattering with momen-
tum transfer 2kr becomes important, as will be discussed in
Sec. IID.

D. Coulomb drag due to backscattering at the Fermi level

In Sec. IIC, we have calculated the contribution to pp
[Eq. (2.61)] that comes for T > vp/a from pair collisions
with momentum transfer much smaller than k. Friction from
this type of scattering has been shown to be mediated by
effective backscattering at the Fermi level, where “effective”
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means that backscattering is a result of the diffusion in energy
space through the bottom of the spectrum. Let us now turn
to the contribution to pp from backscattering at the Fermi
level with the momentum 2k transferred in one transition.
For T <« vp/a, this can be calculated from Eq. (2.10)
straightforwardly by removing the ratio |V (k' — k)|?/|k’ — k|
from under the integral sign in Eq. (2.11) and substituting
|V (2kr)|? /2kF for it. The collision integral (2.11) reduces then
to the out-scattering term (“relaxation-time approximation”),
which gives

_ €(E1 — Ez)k (2 63)
8 T T i+ m) '
with
¥ = SupET, (2.64)

where B, = V(2kr)/2mvF is the dimensionless amplitude of
backscattering. The simple Lorentzian for the w dependence
of g_ in Eq. (2.63) means that the high-frequency and dc
drag rates for the case of backscattering in the vicinity of the
Fermi level coincide: 1/tp = 1/75° = /2, in stark contrast
to drag induced by scattering with small-momentum transfer
[Eq. (2.62)]. The result for pp reads as>®

87 4

¢

oD (2.65)

2 5 T

Eoa = b
2e*vp e VF
By comparing the contributions to the dc drag resistivity

from backscattering at the Fermi level [Eq. (2.65)] and

effective backscattering due to soft collisions [Eq. (2.61)],

po [Bq. (2.65)] [V (2kr) 2<Q>2 T )”2 /T
oo [Eq. 2601 [V | \vi) \&) ¢

(2.66)

one can see that the latter mechanism of backscattering
provides more friction than the former for®® T > v /a. That
is, despite the contribution of soft collisions being strongly
suppressed compared to Eq. (1.3), for kra > 1 there is still a
wide range of temperature, vp/a < T <K €p, in which soft
collisions in a degenerate electron gas are more effective
than direct backscattering. It is worth noting that the main
contributions to pp only come from backscattering at the
Fermi level and from backscattering at the very bottom of
the spectrum, while backscattering at intermediate energies
plays no role. Indeed, the exponential factor exp[ —4|k|a —
2(er — €)/ T ]thatdescribes (for e < ep) direct backscattering
with momentum transfer 2|k| is maximized either at € = €f
for T < vp/4a or at € =0 for larger T with a sharp (for
kra > 1) crossover of width in T of the order of 1/ma’.
If Tkl /ma2, the main contribution to pp comes from
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direct backscattering at the Fermi level independently of the
parameter kpa.

III. COULOMB DRAG IN ONE DIMENSION:
TRIPLE COLLISIONS

In Secs. IIB and IIC, we have shown that the processes
of thermal equilibration between electrons with different
(right-left) chirality are absolutely necessary for the bulk
drag effect. Further, in Sec. IIC, we have demonstrated
that interwire pair collisions are capable of establishing the
right-left equilibration and that the resulting drag resistivity
is proportional to exp(—2€g/T). On the other hand, in a
single wire, where pair collisions in the ballistic case do not
change the electron distribution function, energy relaxation
has been known to be associated with triple collisions (see
Refs. 84 and 68,85-89 for the cases of a nondegenerate
and degenerate electron gas, respectively). In the degenerate
case, energy-relaxation processes that do not require changing
the number of electrons with the same chirality®®® are
much faster than those that do.®®33% Specifically, while the
former are characterized by scattering rates that are power-law
functions of the characteristic energy scales, the right-left
equilibration rate due to triple collisions is proportional®83-8%
to exp(—er/T).

Despite being exponentially suppressed for T <K €p, the
right-left relaxation is qualitatively important because triple
collisions can change electric current (in a finite-size bal-
listic wire connected to the leads) only if they change the
difference between the numbers of right- and left-moving
electrons.?”088589 In particular, it is the right-left equilibra-
tion that determines interaction-induced corrections to the
conductance and to the thermopower: in short wires, whose
length is smaller than the right-left equilibration length,
the corrections®®#38% are proportional to exp(—e/T) (for a
similar consideration in the bosonic formulation, see Refs. 90
and 91). The right-left relaxation plays also a role in the
transport properties of inhomogeneous wires.”?

In the following, we study the contribution of triple
collisions to the drag resistivity. As already mentioned in
Sec. I, triple collisions can strongly enhance drag at low T': this
is precisely because of the right-left equilibration rate due to
triple collisions being proportional to exp(—er/T), in contrast
to exp(—2¢€r/T) in the case of pair collisions in the double
wire.

A. Kinetic equation for triple collisions

The contribution to the collision integral St, for the
distribution function f, (k) in Eq. (2.1) that comes from triple
collisions reads as (for o = 1 in St,)

1 800’ <
s =) +2 D wee(112/.3[1,2.3)8(e1 + €2+ € — € — €y — €3)

oo’ 231'2'3

x {f1lky) fo(kz) for (k3)[1 — fi(kDI[1 — fo(kI[1 — for(k3)]

= fitk)) fo(ka) for(k3)[1 = filki)I[1 = fo (k)1 — for(k3)1}.

3.1)
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For spinless electrons, the three-particle state |1,2,3) is
written as

The sign ’ in )" means that the summation over momenta
goes over distinguishable initial and final states [for ease of

presentation, the integration .in Eq. (2.2)is changed iq Eq. (3.. 1) 11,2,3)a = Dalky,ka.k3), (3.2)
to the summation over quantized momenta: below, L is the size

of either wire 1 or wire 2]. With the three-particle state |1,2,3) Sikx

(anti)symmetrized over permutations of electrons from the 11,2,3), = L1/2 "Dy (ka,k3), (3.3)
same wire and normalized to unity, this prevents the double

counting of the partial scattering probabilities. The tilde over 11,2,3). = Ll/2 JRICES ) (k1,k), (3.4)

the summation sign in Eq. (3.1) denotes one more constraint on

the momentum summation; this will be discussed in Sec. III B. where we distinguish three cases:

(a) (3.2)],

(b) electron 1 is in wire 1, electrons 2 and 3 are in wire 2 [Eq. (3.3)],
(©)

with the normalized three- and two-particle Slater determinants (D, and Dy, ., respectively) given by Eq. (C1) in Appendix C. The
indices 0,0’ in Eq. (3.1) are then grouped as follows: 0 = ¢’ = 1 in case (a) and 0 = ¢’ = 2 in case (b). In case (c), identically
equal to each other contributions to St; come from 0 = 1,6’ = 2 and 0 = 2,6’ = 1 [the two contributions are weighted with a
factor of 1/2 each, as is accounted for by the factor (1 + &,,+)/2 in Eq. (3.1)]. The kernel w,, in Eq. (3.1) is given in cases (a),
(b), and (c) by

all electrons are in wire 1 [Eq.

electrons 1 and 2 are in wire 1, electron 3 is in wire 2 [Eq. (3.4)],

wap(1,2,31,2,3) = 2| A, (1,2/,3]1,2,3)]%,

a,b,c

(3.5
where A;”b ~(1',2/,3'[1,2,3) is the irreducible (not factorizable into independent blocks not connected by interaction) part of the

three—partlcle amplitude A, , .(1',2,3']1,2,3). At the lowest (second) order in interaction, the amplitude A, ; (1',2",3'|1,2,3) is

written as

AY (17,2.314,5,6)A" (4,5,6/1,2,3
Aape1,2,311,23) = Y bl 142,00, (4,011,2.3) (3.6)
' yr” (e1+er+e€3)—(ea+e5+€)+i0
where
A, (1,2,3]4,5,6) = (1,2,3|v(x; — x2) + v(x2 — x3) + V(x| — x3)|4,5.6) 0 p.c- 3.7

The potential v(x) in Eq. (3.7) is either v (x) or vi2(x), depending on whether it couples electrons in the same wire or in different

wires.

The sign’ in Y_" in Eq. (3.6) has the same meaning as in Eq. (3.1). One can remove the constraint on the allowed momenta in

Eq. (3.6) by introducing the following factors:

1
Ay = EZ{}7

456

where {...} is the same fraction as in Eq. (3.6). The factor
1/6 =1/3! in A, comes from the permutations over all
intermediate states (4,5,6). The factors 1/2 in A, and A,
come from the permutations over states (5,6) and over states
(4,5), respectively. Similarly, the restriction on the summation
over momenta in Eq. (3.1) can be lifted after introducing
additional factors in Eq. (3.1). Let us denote St(13”)’(3h)’(3c) the

contributions to St(13) in Eq. (3.1) from processes (a), (b), and
(c). Then,
S5 = 2 ( ) S APsC o), (9)
23123
St(3b) _ 27r< ) Z |A‘”| 3.}, (B.10)

231’23

Ap = %Z{---},

456

(3.8)

1
:EZ{'“}’

456

t(%) Z |A1rr ),

231 2'3

@3.11)

where §(...) denotes the delta function from Eq. (3.1) and
{...} is the sum of the products of the distribution functions as
given by the expression in the curly brackets in Eq. (3.1). The
factors 1/2 and 1/6 in Eq. (3.9) come from the summation
over states (2,3) and (1’,2/,3'), respectively. Two factors 1/2
in Eq. (3.10) come from the summation over states (2,3) and
(2',3"), respectively. The factor 1/2 in Eq. (3.11) comes from
the summation over states (1’,2"). Note that the combinatorial
factors in the collision integrals in Eqgs. (3.9)—(3.11) are absent
in the formalism of Ref. 85, where the three-particle scattering
rate (in a single wire) was plugged into the collision integral
without any restriction on the summation over the initial and
final states [cf. the sign ’ in Eq. (3.1)]. The formalism from
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Ref. 85 was also used in writing the collision integral in
Refs. 68 and 86-89. The irreducible three-particle amplitudes
Aiar’rch are given by Egs. (C5)—(C7) in Appendix C.

Similar to Sec. I A, it is convenient to rewrite the linearized
kinetic equation that includes triple collisions [Eq. (3.1)]
in terms of the functions g, (k) [Eq. (2.5)]. By explicitly
separating the zero-mode solution g (k) [given®® by Eq. (2.9)
independently of the number of colliding particles in the col-
lision integral], the linearized kinetic equation is represented

PHYSICAL REVIEW B 86, 245402 (2012)

in a closed form for the function g_(k):

e(Ey — Eb)k;

@) ©)
= st st ,
T g} + st {g}

—iwg_ (k) — (3.12)

where the three-particle contribution st(f){g} to the collision
integral depends, similar to st(,z){g}, only on g_(k). Specifi-
cally, st? {g} is written as a sum of three terms associated,
respectively, with processes (a), (b), and (c):

» 1 & W,(1,2,31,2,3
st® (g} = D Z ( K | )8(---)[g—(kl’)+g—(k2/)+g—(k3’)_g—(kl)_g—(kZ)_g—(kS)]’ (3.13)
23123 ¢k
1 & Wy(1,2,3']1,2,3
gy = - 5 WLEILBI 5 e k) — g k) — g (k) — g ) + 8 (k) + 8 (k)] (3.14)
23123 &k
" 1 & W.(1,2,311,2,3
st®g} = Z ( 3 | )5(~ ) Lg-lkr) + g-(ka) — g-(k3) — g (k1) — g-(k2) + g-(k3) ], (3.15)
231/2/3" ; (kl)
with (. . .) having the same meaning as in Eqgs. (3.9)—(3.11) and
Wa,b.c(1/92,v3/|17293) — 27T|A'zrrb’c(1/’2/’3/|1’2’3)|2 ;(kl)c(kz)é-(k3)§(k1r)§(k2/)€(k3’) (316)

Note that the contributions to st®® {g} of the differ-
ences g_(ky) — g_(ky) and g_(ky) — g_(k3) are equal in
view of the symmetry of the kernel W,(1',2',3'|1,2,3) =
w,(1’,3’,2'|1,3,2), and the same is true for channel (b). In
contrast, trading momenta (2,2") <> (3,3) for given (1,1)
in channel (c) changes the kernel if Vi;(q) # Vi2(g). If one
neglects the difference between V;1(q) and Vi»(g), the contri-
butions to st®{g} of g_(kx) — g_(k») and g_(ky) — g_(k3)
cancel each other.

B. Divergencies in the three-particle scattering rate

We now turn to the meaning of the tilde over the summation
sign in Egs. (3.1), (3.9)—(3.11), and (3.13)—(3.15). Notice the
energy denominators in the amplitudes Ai{fw [Egs. (C5)-
(C7)]: being squared in the collision integral [Eq. (3.5) or
(3.16)], they yield a singularity in the kernel of the collision
integral of the type 1/A%, where A, defined for various
scattering processes according to Eq. (C8), is the energy
transferred in a virtual transition to the intermediate state.
The singularity is in general not integrable in the sense that the
numerator does not vanish at A = 0. More specifically, itis not
integrable if electrons possess spin (or pseudospin, as in the
case of different wires); for more details, see Appendix D. The
tilde in Egs. (3.1), (3.9)—(3.11), and (3.13)—(3.15) is related
to the proper handling of the 1/A? singularity in the kinetic
theory, as explained in the following.

Let us first recall the relevant aspects of the many-
particle scattering problem in the vacuum as we know them
from quantum mechanical scattering theory. There are two
conceptually important differences between the two-particle
scattering problem and the M-particle scattering problem

16

with M > 2. One is related to the definition of the scattering
matrix for M > 2. In the former case, one can unambiguously
define the (exact to arbitrary order in the interaction poten-
tial) two-particle scattering operator whose matrix elements
modulus squared, taken on the mass shell in the basis of free
(with respect to the interparticle interaction potential) states,
determine the scattering cross section. In the case of M > 2,
the scattering states may not be definable as asymptotically
free: this happens if particles can form bound states in the
process of scattering.**+*> The M-particle T matrix should then
include the scattering states in which (a part of) interaction
does not disappear at infinity and remains important for
arbitrarily long times after the collision event (or, conversely,
the bound states may exist before the collision event and be
excited in the process of it). A general formalism that accounts
for the proper boundary conditions in the M -particle scattering
problem with arbitrary scattering channels is based on the
Faddeev equations.”*%>

For the case of a repulsive interaction (assumed in this
paper), there are no bound states. However, independently of
the sign of interaction, there is another essential difference
between the scattering problems with M =2 and M > 2,
which resembles the one mentioned above in that it is also
related to scattering processes in which interaction remains
relevant for arbitrarily long times. Specifically, M-particle
collisions with M > 2 occur not necessarily in a compact
region in space and time even for the case of a short-range
interaction potential. For example, three-particle scattering
(contributing to the irreducible part of the scattering amplitude)
occurs when all three particles are simultaneously within
the range of the interaction, but it also includes processes
which consist of two consecutive scattering events in one
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of which only two particles interact with each other and the
other event in which one of those particles interacts with the
third particle.’**® The time separating the two events may be
arbitrarily long. The 1/A? singularity?®®® is associated with
this type of scattering, for which the scattering probability
increases not linearly but quadratically in time.

The 1/A? growth of the differential three-particle cross
section (defined diagrammatically as a sum squared of all
connected diagrams for the three-particle scattering amplitude
at given momenta of the incident and outgoing waves at
infinity) as A — 01is a no-nonsense singularity which requires,
however, a proper regularization at the point A = 0. Clearly,
there arises a question about the meaning of the cross section
integrated around A = 0. In Ref. 96, a finite density of
particles was introduced to regularize the divergency of the
three-particle 7 matrix in the collision integral. In effect, a
similar regularization was used in Ref. 97, where the quantum
kinetic equation for triple collisions was derived in terms of
scattering amplitudes in a “medium” (the gas of interacting
particles). In a different approach,’®® it was pointed out
that the limit A — 0 and the limit of the distance sent to
infinity (in the definition of the 7 matrix) do not commute.
That is, the infinitesimal neighborhood of the point A =0
in the differential cross section requires delicate handling,
depending on what quantity is calculated. In particular, the
implications for the intensity of outgoing waves in a three-
beam experiment in three dimensions were discussed in Ref.
98. Most importantly, by taking the limit of an infinitely large
distance after the limit A — 0, the integral of the differential
cross section around the singularity was demonstrated to be
finite.?®%8 As follows from the results of Refs. 96 and 97, it is
the latter order of taking the limits that determines the collision
integral in the kinetic formulation. Specifically, 1/A? in the
kernel of the collision integral should be regularized at A = 0
as the real part of a double pole®®3:

1 A? — g2
AR T (ATt e
which yields a finite result for the integral of the differential
cross section over a region that includes A = 0, and not as the
modulus squared 1/|A + ie|?, which would give a divergent
integral.'® The tilde in Egs. (3.1), (3.9)—(3.11), and (3.13)—
(3.15) denotes the regularization rule (3.17).

The way the singularity at A = Oisregularized in Eq. (3.17)
has important ramifications for the structure of the collision
integral expanded in a series in the number M > 2 of colliding
particles St, = >, Sth). As follows from Eq. (3.17), a naive
extension of the M = 2 result, assuming that the kernel of Stf,M )
for given momenta is proportional to the modulus squared of
the corresponding matrix element of the M -particle 7 matrix,
is incorrect. The thus defined St would be divergent for
M > 2. As pointed out in Refs. 96 and 97 for the case of M =
3, the expansion over M contains additionally counterterms.
Specifically, for M = 3:

SO =S = = 1)

where {. . .} is the contribution to St(13) of a given set of momenta
as shown in Eq. (3.1), Y_{. ..} contains 1/|A + i&|* (modulus
squared of the amplitude) and is thus diverging, and [ 1(3) isa

e—>0

(3.17)

(3.18)
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counterterm that cancels the divergent contribution to } {...}
according to the rule (3.17). The term —1 1(3) can be considered

as removing from St(13) the contribution of two consecutive
two-particle collisions separated by an infinite time, so that
in between the three-particle system returns to the mass shell
(the independent two-particle collisions are already accounted
for by the term St(lz): subtracting the counterterm thus prevents
double counting).'®! The meaning of the tilde in Eq. (3.18)
is thus that one should not include such “real” states in the
summation over virtual states in the three-particle scattering
amplitudes. Ideologically, the subtraction of the counterterm in
Eq. (3.18) bears similarity to the treatment of triple collisions
in classical kinetic theory (§17 in Ref. 102).

The necessity to use the regularization (3.17) in the collision
integral has not been part of the discussion in the recent wave
of interest in three-particle scattering in one dimension. %3858
In all these works, the kernel of the collision integral is
written simply as the modulus squared of the 7-matrix
element. This omission is, in fact, only justifiable in the case
of spinless electrons [in our problem, this corresponds to
three-particle scattering in channel (a), in which all electrons
are (pseudo)spin polarized]: the collision integral in this
case does not diverge because of a cancellation between the
contributions of direct and exchange scattering. In terms of the
double counting discussed above, the absence of divergencies
in the spinless case can be understood as a consequence of the
fact that two-particle collisions do not affect the distribution
function in a single wire. However, in the case of electrons with
spin (or pseudospin, as is the case for two wires in the drag
problem), it is absolutely necessary to specify in what way the
singularity at A = 0 should be treated [Eq. (3.17)], because
the naive representation of the kernel as the modulus squared
of the three-particle T-matrix element leads to divergency.'®
The technical details of how the three-particle scattering
rate behaves in the vicinity of the point A =0 in the drag
problem are further discussed, in the diagrammatic language,
in Appendix D, where we calculate, as an example, the total
scattering rate for a (pseudo)spinful particle (for a similar
calculation in the spinless case, see Ref. 104).

C. Fokker-Planck description of soft triple collisions

As already noted at the beginning of Sec. I1I, three-particle
scattering may substantially enhance drag for the case of soft
collisions, when the right-left equilibration is controlled by a
slow diffusion in energy space. We therefore turn now to a
description of three-particle scattering with small-momentum
transfer in terms of a Fokker-Planck equation, similar to
Sec. IIC for two-particle scattering. Just as in the case of
pair collisions, the Fokker-Planck approach is justified if T is
much larger than the characteristic energy transfer.

The current in momentum space J©®, induced by triple
collisions, is related to st(_3){g} in Eq. (3.12) by

4 3I%%)

3) _
S8 = S

(3.19)
[cf. Eq. (2.43) for the case of pair collisions]. For the
linearized collision integral [Egs. (3.13)—(3.15)], the contri-
butions J3®-Gb1G) 1o J3) of scattering processes (a), (b), (c)
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can be exactly rewritten as

PHYSICAL REVIEW B 86, 245402 (2012)

JEO (k) = / / dK'[Po(k' K + q)g-(K') + Pa(k' K + )], (3.20)

k—q
ORI / AR TPy K + - (K) — Pok' K + )], (321)

k—q

(3¢) 0 df] k / ! 1./ ’ D )

T3k = —/ E/ dK'[P(K' K + @)g—(K') + Pk K + )], (3.22)

—00 k—q

where

Pyl k) = % x %L i W, (1,2,3'11,2,3)8(....), (3.23)

232'3

Py, (ky,ky) are defined similarly, with the numerical coefficient lz in Eq. (3.23) being changed to and 5 in cases (b) and (c),

respectively, and

1
Py(ki ki) = — x —L ZW (1,2,.311,2,3)8(. . )[g- (k) — g—(k2)],

12
2323

—_~

_ 1
Py(ky,ky) = X7

-J>|>—‘

232'3

_ 1 1. & o
Pe(ky ki) = 3% L Z We(1',2°,371,2,3)8(. . .)

232'3/

The integral over k' in each of Egs. (3.20)—(3.22) is taken over
an interval whose width is the transferred momentum ¢q. At
this point, it is important to realize that it would be incorrect
to simply expand in ¢ in the integrands of Egs. (3.20) and
(3.22) [channels (a) and (c), respectively] in order to obtain
the collision integral in the diffusive limit. This is because
of the exchange processes in the amplitudes (C5) and (C7)
that exchange ki, with either &k, [channels (a) and (c)] or k3
[channel (c)]. In these processes, the momentum difference
that is small in the diffusive limit is k» — ky or k3 — ki, but
not k- — ky, the characteristic value of which is much larger
than 1/a. The contribution to the collision integral of the
processes with small k»» — k; [channels (a) and (c)] or k3 — k
[channel (a)] is, however, the same as that of the processes
with small k;; — k;. Therefore, the current J® (k) is obtained
in the diffusive limit by expanding in ¢ in Eqgs. (3.20)—(3.22)

D(3)(k) —

_ d
COk) = f 1

The collision integral St®{ f} =

LY Wy(1,2,3[1,2,3)8(.. )l g (ka) —

1 [d
5/% q*[3Pu(k.k + q) + Po(k.k + q) + 2P(k.k + ) 1,

(3.24)
g-(k2)]. (3.25)
g-(k) — g (ky) —g-(ka) + g (ky) (3.26)

2

and multiplying the result by a factor of 3 in channel (a) and
a factor of 2 in channel (c). More specifically, expanding the
products P, , (k' .k’ 4+ q)g_(k’) in the integrands to first order
in k' — k, taking P, -(k',k' + q) out from under the integral
sign at the point k' = k, and using the property of the kernel
Pa,b,c(k9k + 61),

00 k
/ dq / dk/ Pa,b,c(k/sk/ + 61) =
—00 k—q

which follows from the vanishing of the collision integral in
Egs. (3.13)—(3.15) at g_(k) = const(k) and the condition that
the current in momentum space is zero at |k| — oo, we have

(3.27)

JOk) ~ DD (k) =—= g ( ) — C%%), (3.28)
where
(3.29)
[3P,(k.,k + q) — Py(k.,k +q) + 2P.(k.k + q)]. (3.30)

—3J3(k)/dk with J® (k) from Eq. (3.28) conserves total momentum and total energy.

Note the absence of a drift component [proportional to g_ (k) itself, not its derivative dg_(k)/dk] in the contribution to J®)(k)
that comes from the terms proportional to P, ; .(k’,k’ 4+ ¢). This is a direct consequence of the exact condition (3.27), which can
be represented in the limit of small-momentum transfer (characteristic ¢ — 0) as

quunbc(kk+q)

2 9k

dq q* Pap.clk.k + q). (3.31)
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It is also worth noting that, while expanding P, (k' ,k" +
q)g—(k') in k' —k in Egs. (3.20)—(3.22) yields the first
term in Eq. (3.28), expanding P, .(k',k' +q) would be
beyond the accuracy of the diffusive approximation. Indeed,
doing so would produce the term dD®(k)/dk in J(k),
where

_ 1 d _
D) = 5 / N PPk + )

— Py(k,k+q) +2P.(k,k+¢q)]. (3.32)

The integrands of P, .(k,k +q) [Eqs. (3.24)~(3.26)] for
scattering k — k + g of electron 1 contain as factors the linear
combinations of the differences of the distribution functions
before and after scattering for electrons 2 and 3. Forg — 0, the
conservation of momentum and energy gives two solutions for
the pair ky — ky and k3 — k3: either ky = k; and ky = k3 or
ko = k3 and k3 = k. In the former case, the expansion of the
differences g(ko) — g(k») and g(k3) — g(k3) around the g = 0
solution gives higher powers of g compared to g? already
present in Eq. (3.32). In the latter case, the expansion yields'®
the factor k3 — ky, the characteristic value of which in the
integrand at ¢ — 0 is of the order of the typical momentum
transfer 1/a. In either case, adding 9D (k)/dk to J® (k)
for the characteristic transferred energy gk/m much smaller
than 7 only gives rise to small corrections to the diffusive
approximation (3.28). Similarly, in Eq. (3.30) for C®(k), it
suffices to expand g(ky) — g(ky) and g(ks) — g(k3) in the
integrands of I_’aﬁb,c(k,k + gq) to first order in ky — ky and
k3 — ks, provided that the characteristic transferred momenta
are much smaller than 7' /vF.

In the derivation of the Fokker-Planck equation (3.28),
we assumed that the characteristic change in energy of the
diffusing electron with momentum k in a single scattering
event is much smaller than 7. This allowed us to treat g_(k),
P, p.c(k,k+q), and P, .(k,k + q) as smooth functions of
k on the characteristic scale of g. One model in which this
condition is satisfied for arbitrary k is that of Vj;(q) and
Vi2(g) falling off sufficiently rapidly as |g| increases beyond
the same characteristic scale 1/a < T /vr. In the following,
we employ this model for estimating the relative weight of
various scattering processes in Sec. IIID and solving the
Fokker-Planck equation analytically in Sec. IIIE. Recall,
however, that for the case of Coulomb interaction, as can
be seen from Appendix A, the functions Vi;(g) and Vi2(q)
behave essentially differently with increasing |g|. Namely,
Vi2(q) falls off exponentially for |gla > 1, whereas Vi(q)
falls off only logarithmically (for |g|d >> 1). In the Coulomb
case, the Fokker-Planck expansion in Egs. (3.20)—(3.22) is
justified for Ta/vr > 1 for scattering processes that involve
the interwire interaction, but is not justified for channel (a).
Importantly, however, the diffusive character of the current
J B9 (k) remains intact even in the case of Coulomb interaction
for |k| < kp, as will be seen in Sec. III D. Electron scattering
at the bottom of the spectrum (which bottlenecks the right-left
equilibration) can thus be treated in the Coulomb case within
the Fokker-Planck approach also for channel (a). The gradient
expansion of the intrawire contribution to the integral term
C®(k), on the other hand, would not be justified in the case
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of Coulomb interaction. We will return to the Coulomb case
at the end of Sec. IIIE.

In contrast to the differential Fokker-Planck equation for
the case of two-particle scattering [Eq. (2.43)], J®(k) from
Eq. (3.28) gives an integrodifferential equation because the
term dC®(k)/dk in St (k) is an integral of the distribution
function. With the integral kernel from C®(k), the equation is
not exactly soluble, even in the diffusive limit.!°® To proceed,
we make two approximations, one of which is parametrically
accurate in the drag problem for T/er <« 1, the other for a
particular relation between the strength of the interwire and
intrawire interaction potentials (the exact condition will be
formulated in Sec. III D).

D. Identifying relevant scattering processes

We now simplify the Fokker-Planck equation in the limits
mentioned in the last paragraph of Sec. III C. The first step is
to realize that, similar to the case of pair collisions, the right-
left equilibration due to triple collisions is bottlenecked by
the slowing down of diffusive motion in energy space around
the point k£ = 0. That is, when the equilibration rate limits
the drag rate 1/7p from Eq. (1.6), it is sufficient to calculate
J3(k) for |k| <« kp and the momenta k, and k3 of two other
electrons close to the Fermi surface. This separation of scales
in momentum space is justified in the limit 7' /ep < 1.

The second step is to compare the contribution to the
equilibration rate, induced by three-particle scattering, of the
region in momentum space in which k, and k3 belong to the
same chiral branch (k, >~ k3 >~ 4kf) and the contribution of
the region in which k; and k3 are on the opposite sides of the
Fermi surface (k; >~ —k3 >~ £kp) (see Fig. 3). Specifically, let
us estimate the contributions to the diffusion coefficient of a
hole with k — 0, Dﬂr 4+ and D/(,?)Jrf, coming from interactions
with electrons on the Fermi surface with the same (++)
or opposite (+—) chirality. The corresponding terms in the
electron diffusion coefficient D®(k — 0) are smaller by a
factor of exp(—er/T).

The conservation of momentum and energy for |k| <
|kal, k3| gives

43> q, q = =2q> (3.33)

for k, >~ —k3 and

ky — ks
k3

G —q, q=q (3.34)

for k, >~ ki3, where g is the transferred momentum for electron
1, g» = ky — ky and g3 = k3 — k3. Importantly, while in the
former case all three transferred momenta ¢,q,,q3 are of the
same order of magnitude, in the latter case |q| < |¢2],]g3]-
Specifically, the characteristic value of |g| is of the order of
the characteristic value of |g»|,|g3| ~ min{T /vp,1/a} in the
former case and is smaller by a factor of 7/ep in the latter.
This means that, for Ta/vF > 1, the typical length of an
elementary step in the diffusion process near k = 0 is of order
1/a for ky >~ —ks3 and of order T /aef for ky =~ k3.
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FIG. 3. Momentum configurations for three-particle scattering in channels (a), (b), and (c) (first, second, and third columns, respectively)
with two electrons having energies close to the Fermi level and a third electron having energy close to the bottom of the spectrum. The electrons
on the Fermi surface can have the opposite (+—) or same (++) chiralities (first and second rows, respectively). The relative contributions of
the different configurations to the diffusion coefficient (in energy space) of the cold electron are discussed around Egs. (3.48)—(3.50).

To estimate the scattering rate near k = 0, calculate first the
density of final states

whereas the characteristic value of p(g; k,k»,k3) for momenta
from Eq. (3.34) (and |ky — k3| ~ T /vF) can be seen to be
a factor of € /T larger. Next, observe that the characteristic
width of the integration regions in two remaining integrals in
P,y (k,k+ q), over ky and ki, is T /vp for both ky >~ —k;3
and k; >~ k3. Now, compare the characteristic values of the
kernel W, 5, .(1',2',3'|1,2,3) for momenta given by Egs. (3.33)
and (3.34). To do so in an efficient manner, it is convenient
to use the following properties of some of the fractions that
appear in AL‘"’rb’c(l’,Z’,S’ll,Zﬁ) from Egs. (C5)-(C7) on the
three-particle mass shell:

d
p(q; k., ky,kz) = /zi]:/d% 8(...)8(qg +q2+q3), (3.35)

where §(. . .) is the delta function that describes the conserva-
tion of energy in Egs. (3.9)—-(3.11), (3.13)—(3.15), and (3.23)—
(3.26) for scattering 2 — 2’ on the surface in momentum
space on which the conservation of both total energy and total
momentum is satisfied for given g,k,k», k3. For |k| < |ka|, k3|
and ky >~ —k3 >~ £kp [Eq. (3.33)], p(q; k,kz,k3) =~ 1/4mvF,

1 1 1
(k3 — k3)(ky — k2) * (ki — k) (ki —ky) (k= ko) (ki — ko)

! + ! = — ! (3.36)
(kv —k3)ky — k1) (ke — ko) ko —k3) (ko — k3) (k1 — k3)’ '

1 1 1

(ko — ko) (ky — k1) " (ky —kn)ky — k1) (ks — ke — k1)’

In particular, Egs. (3.36) show that, for the momenta from both Egs. (3.33) and (3.34), two terms in each of the sums almost exactly
cancel each other for the case of kra > 1 (exponentially suppressed direct backscattering at the Fermi level): the characteristic
value of the sum is a factor of kra smaller than the characteristic value of one of the terms. The use of the characteristic values
of the momenta in the estimates is justified by the regularization rule (3.17).

Let us denote (Aifb,c)dir the amplitudes of direct scattering in Egs. (C5)—(C7). These are associated with the terms in

Egs. (C5)—(C7) inside the square brackets. For |k| < |ky| = |k3| = kr and kr =~ —k3 [Eq. (3.33)], they simplify significantly:

(Airr)dir . mn Vi(g/2) [Vi(g) — V11(6]/2)]’

a 2 k% (3.37)

< v 2)V —V2(q/2
kZ ~ —k3 . (A;]I‘r)dir ~ % II(CI/ ) 125{2) 12(Q/ )’ (338)
(Aicrr) M Via(g/2) [Vii(g) + Vialg) — 2V11(61/2)]. (3.39)

dir — L2 Zk%;
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The main simplification is that the only variable on which the amplitudes in Eqs. (3.37)—(3.39) depend is the momentum transfer
g (with the characteristic value of g of order 1/a, according to the above). For |k| < |ky| = |k3| =~ kr and k, =~ k3 [Eq. (3.34)],

the amplitudes are written as

(Airr)dir ~ le Vii(gs) [ Vii(gz) — Vl;{(f)] +q3 V11(613)V11((I) (3.40)

. V2 -V V v/ %
ky = ks (A};—r)dir ~ % 12(q3) 11(q3) lzk(zq) + q3V],(q3) 12(61) (3.41)
(Airr)dlr ~ % Vi2(g3) [Vii(q3) — Vlzk(gb)] + a3V (@)Vilg) % % Vi2(g3) [Vnk(;l) - V12(¢])]’ (3.42)

where V! (q3) = dV,0(q3)/dgs. It is worth mentioning that
while the product g3V, .(g3) might seem to imply that |g3]
is assumed to be small compared to the characteristic scale
on which V. (g3) changes, taking the derivative V _,(g3) in
Egs. (3.40)—(3.42), in fact, only assumes that the transferred
momentum that is small in this sense is g, which is a much
weaker (in the parameter T /er < 1) condition in view of
Eq. (3.34).

Note that there are two essentially different types of
strong cancellations between various terms in the derivation
of Egs. (3.40)—(3.42). One, controlled by the parameter
1/krpa < 1, is described by Egs. (3.36). The other, controlled
by the parameter T /ep < 1, is related to the destructive
interference between two terms given in case (a) by the
first and second lines in Eq. (C5) and in case (b) by the
first and second lines in Eq. (C6), respectively. Importantly,
the latter type of cancellation does not occur in case (c)
[Eq. (C7)] because of the difference between the interwire and
intrawire interaction potentials, which gives rise to the large
factor g3/q = k3 /(ks — k») in the second term in (A)g;, in
Eq. (3.42). The singularity of the amplitude at k3 — ky is of
the type discussed in Sec. III A and should be regularized in
the kernel of the collision integral according to Eq. (3.17).
As follows from this regularization rule, the contribution
of (AiC”)dir to the collision integral can be estimated by
substituting 7' /vr as a characteristic value of the difference
ks — ky. We see, then, that the characteristic value of the
amplitude in channel (c) contains an additional factor of
€r/T > 1 compared to the amplitudes in channels (a) or (b),
so that, unless V;(g) and V),(g) are very close to each other,
channel (c) gives the main contribution to the collision kernel
for the case of electrons 2 and 3 having the same chirality.

Let us now compare the terms in the diffusion coefficient of
a hole with k — 0, Df 44 and D,(f)Jr , that come from interac-
tions with electrons with k, >~ k3 and k, >~ —kj3, respectively.
Each of the two terms is a sum of the contributions of channels
(a), (b), and (c) (Fig. 3). It is instructive to estimate the relative
weight of the six contributions to the total diffusion coefficient
by splitting each of them into a product (g)R/2, where (g?)
is the average of ¢ in the diffusion process whose elementary
step is momentum transfer ¢ and R is the characteristic
scattering rate for these elementary steps. The scattering rates
include the density of states (3.35) whose characteristic value
was estimated below Eq. (3.35) to be a factor of €x/T larger
for the case of k, ~ k3 compared to the case of k, >~ —k3.

The characteristic values of g for |k| < kr were discussed
below Eq. (3.34) and the characteristic values of momentum
differences for electrons on the Fermi surface below Eq. (3.35).
Piecing everything together, we estimate the scattering rates
for k, >~ —kj in channels (a), (b), and (c) as

RG® L VF Vi(1/a)7* T 2
- a VF €F ’

RGO ; I:V11(1/a):| |:V12(1/a)'2<1)2' (3.44)

Vfr L €F

(3.43)

Similarly, for ky =~ ks,

R UF |:V11(1/a)]2 [VMT/aeF)”(z){ 345)
VF VF €F
ROV~ |:V11(1/a)i| [vu(T/aeF)'2< T )2 3.46)
a [ Vf er) .

VfF Vfr

RO~ |:V12(1/a)] [Vu(T/aGF) - Vlz(T/CléF):|2
a

(3.47)

In these estimates, we assume that Ta/vr 2 1. We also
assume the most common behavior of the intrawire and
interwire potentials, namely (as sufficient conditions) that
[Vii(1/a)| 2 |Vi2(1/a)| and | Vi (T /aer)| 2 |Vii(1/a)|. Here
and in the estimates, the arguments of Vi; and V), are
understood as characteristic scales of transferred momentum.
The estimate for Rfi) [Eq. (3.47)] is written under the
assumption that [Vi1(q) — Vi2(@)I/IVi1(@)| 2 T /er for |q| ~
T /aer. Note that Rfjr) differs from all other scattering rates in
Egs. (3.43)—(3.47) in that it does not contain the small factor
(T/er)*.

The hole diffusion coefficient D,(f)+ , which results from
triple collisions with electrons of opposite chirality, is thus
estimated, by substituting (g2) ~ 1/a?, as

o L Vid/a) (T
h4— " 3 :
(vra)’ \€f
Provided Vi;(1/a) > Vi»(1/a), the main contribution to

D](f)+ comes from scattering in channel (a) [Eq. (3.43)].

(3.48)
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The diffusion coefficient Df:L 4 associated with interactions
with electrons of the same chirality and characterized by
(g*) ~ (T Jaer)?, is determined by two competing terms from

channels (a) and (c):

D(Sa)

VA(1/a) (T \*
i ~ == <—> , (3.49)

(vra)® \er

(o)
Dy iy

_ VE(/a) Vin(T Jaer) — Vio(T faep))® (1)2
(vra)3 o)

(3.50)

Note that, in channel (a), interactions with electrons of
opposite chirality are much more effective than with electrons

of the same chirality because Df’f + in Eq. (3.49) has two

more powers of the small parameter 7' /e compared to DSL7
in Eq. (3.48). Therefore, the total diffusion coefficient can be
estimated as a sum of only two terms: D;fl_ [Eq. (3.48)] and

D;ﬁjr) + [Eq. (3.50)]. Now, we observe that the term D,(fi) 4 is

small in comparison to D;fl— in two limiting cases: if the
interaction between the wires is much weaker than inside the
wires, or if the two interaction potentials are very close to
each other. That is, in both limits of a large and small distance
between the wires, interactions of a hole at the bottom of the
spectrum with electrons of the same chirality on the Fermi
surface can be neglected. Moreover, in the crossover regime,
when none of the conditions is satisfied, the contribution

of D,(fi) + to the total diffusion coefficient is of the same
order of magnitude as that of Dﬂr—’ thus not leading to any

qualitatively new features, either.

In Sec. IIIE, we therefore focus on the contribution of
three-particle scattering with two electrons having opposite
chirality on the Fermi surface. In this case, the Fokker-Planck
equation, upon substitution of Eqs. (3.37)—(3.39) for the

PHYSICAL REVIEW B 86, 245402 (2012)

scattering amplitudes, is exactly soluble for the right-left
equilibration rate.

E. Interplay of triple intrawire and pair interwire collisions

Recalling the arguments of the very end of Sec. IIID,
we now consider the right-left equilibration due to triple
collisions within the framework of the Fokker-Planck equation
(3.28) with the scattering amplitudes (3.37)—(3.39). These
amplitudes correspond to the momentum configuration in
which two electrons of opposite chirality are close to the Fermi
surface, while the third electron is close to the bottom of the
spectrum. We treat three- and two-particle soft collisions on
an equal footing by adding to the current in momentum space
(3.28), induced by three-particle scattering, the component
induced by two-particle scattering [Eq. (2.44)]. One important
consequence of this is that the mechanisms of drag and
right-left relaxation, rigidly connected to each other in the case
of pair collisions in Sec. II C, may now be disentangled. To
describe the new physics that comes about from the interplay
of triple and pair collisions, the most relevant example is that
of drag mediated by pair collisions only, with triple collisions
occurring between electrons, all of which are from the same
wire [channel (a) in the above]. Since drag is only possible in
the presence of the processes of thermal equilibration between
electrons of opposite chirality (Sec. II B), drag may (as already
noted at the beginning of Sec. III) be strongly enhanced by
intrawire triple collisions. These do not lead to any drag
effect directly, but do affect drag indirectly by providing an
additional channel for the thermalization processes which
enhance friction induced by interwire pair collisions.

Inthelimit Ta/vp >> 1, substituting the amplitudes (3.37)—
(3.39) in the kernel of Eq. (3.29), we obtain the terms in
the diffusion coefficient D® (k) [Eq. (3.29)] at |k| < kr that
result from interactions with electrons of opposite chirality in
channels (a), (b), and (c):

Ga) SORNERY 22 2
DV (k) ~ m ; /dqq Vi(g/D[Vii(g) — Vii(g/D]7, (3.51)
2(k T\
DY (k) ~ #(U)FP (;) / dq q* [Vii(q/2)Via(q) — V(g /2T, (3.52)
69 SOENEAY 2 u2 2
DV(k) ~ W . /dqq Vio(q /D[ Vii(g) + Via(g) — 2Vii(g/2)]°. (3.53)

Without the factor {2(k)/4, Egs. (3.51)-(3.53) give the
diffusion coefficient for a hole with k — 0, estimated in
Eq. (3.48). Note that the terms corresponding to channels
(a) and (b) have equal contributions of the modulus squared
of the direct scattering amplitude [Egs. (3.40) and (3.41)], in
which |¢»|,|q3| < kr and |ky — k3| ~ 2k, and of the modulus
squared of the exchange amplitude with |ky — k3|, |ksy —
ko| < kp and |ky — k3| =~ 2kp. Altogether, taking into account
the factors of 3, 1, 2 in front of P, .(k,k + ¢q) in Eq. (3.29),
the exchange processes thus lead to multiplication of the
contributions of the processes in which all three transferred
momenta ¢,q,q3 are small compared to kr by factors of

6, 2, 2 in channels (a), (b), (c), respectively. In the limit
Ta/vp > 1, for the relation between the transferred momenta
from Eq. (3.33), the integral term C® (k) [Eq. (3.30)] reduces
to a sum of two terms coming from channels (a) and (b), while
the contribution of channel (c) can be neglected:

C®(k) ~ Di(k) (9g_/dk), (3.54)
where
Di(k) = DP9 (k) — DY (k), (3.55)
_ [dk ., 38-(K)
(9. /ok) = / Cowt R 6so)
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and kr = [dk ¢ =8nTan/du ~ 8T /vp. In Eq. (3.54), the Let us rewrite the Fokker-Planck equation

function g_(k) only enters C® (k) through the k-independent

E| — E))¢*(k)k ] dg-(k) -
average (3.56), which greatly simplifies the solution of the e(E; 287 (k) =—— |:Dt(k) §-(®) - C(3)(k):|
Fokker-Planck equation. 8mT ok ok
(3.57)
in an integral form
1 [k 1 P> — k> _
k=~ d Ei — E»)|1—tanh | ——F 4C9(p)t, 3.58
g—(k) 4[0 PD[(p){e( 1 2)[ an < AT )}+ (r) (3.58)
where the total diffusion coefficient
Dy(k) = DP(k) + D®(k) (3.59)

describes both pair and triple collisions. The term describing pair collisions in Eq. (3.59) is related to the diffusion coefficient D(k)
from Eq. (2.45) by D® (k) = ¢?(k)D(k)/4. Unlike Eq. (2.48) for the case of pair collisions [D® — 0, C® — 0 in Eq. (3.58)],
this is not a solution but an integral equation for g_(k). Substituting Eq. (3.54) in Eq. (3.58) and integrating Eq. (3.58) with a
factor £2(k)d/0k, we have an algebraic equation for (dg_/dk), the solution of which gives

_e dk ) 1 k2_k% dk 2 Dl(k)
g /ok) = (B~ £ [ ¢ Y [“ta“h( amT )]/[“/Zg (k)mk)]

Using Eq. (3.60) in Eq. (3.54) and substituting the thus obtained C® (k) back in Eq. (3.58) yields the solution of the Fokker-Planck
equation in terms of two k-dependent combinations of the diffusion coefficients, Dy(k) and D;(k).
To characterize the relative strength of two- and three-particle scattering, we now introduce two constants (independent of k)
D, and D5 according to D@ (k) = D,¢*(k) and D® (k) = D;¢%(k), so that
Dy(k) = ([ D2 (k) + D3 1. (3.61)
The constant D; is related to the constant ¢ [Egs. (2.40) and (2.41)] by D, = mc/16 = 3k% /475’ Note that D, does not depend
on T, whereas D; is proportional to (T /er)* [Egs. (3.51)—(3.53)]. Similarly, we introduce the constant D;:

Di(k) = Dig*(k).

(3.60)

(3.62)

The shape of the function g_ (k) in Eq. (3.58) and the resulting resistivity pp will now be parametrized by the “diffusion constants”
D,, D3, Dy, and the ratio T' /ey < 1. Note that the relation between D, and D3 can be arbitrary, while D; < D3 [and, depending
on the relative strength of channels (a) and (b), D; can, in general, be of either sign]. In the limit of large separation between the
wires, the main contribution to both D3 and D; comes from channel (a) and D; =~ Ds; in contrast, in the limit of small separation,
D; < Ds.

Let us first calculate the average (3.60). The integral in the denominator of Eq. (3.60) can be neglected compared to unity in
the limit D3 < D,, while in the opposite limit it is close to unity, which makes the denominator small, if D; >~ Dj:

dk Dié'z Di( 2D2>
— =~ —|1—-=—, D, «KDs.
/ kr Dyc>+D; — D; P

3Ds
The integral in the numerator of Eq. (3.60) behaves differently depending on the parameter Dse*/T /D, for D3 « D,, which
gives rise to three different types of behavior for (dg_/0k):

(1/4Dy) [In'X(D,/D3) + (12 /2)er /T |, D3 < Dye=<r/T

(3.63)

12
(9g-/0k) = S(Ey = E») (S) % § (1/Dy) In'2(Dser/T/Dy), Dyer/T & Dy & Ds (3.64)

(er/T)'? /(D5 — D; + 2D, D;/3D3), D, L Ds.

The range of k that gives the main contribution to the integral in
the numerator of Eq. (3.60) and thus determines Eq. (3.64) in
the three regimes is |k| < (2mT)"/? In'/?(D,/Ds) for the first
term and |k| < (mT)'/? for the second term in the first line of
Eq. (3.64), |k| < 2mT)"/?1n'?(D3e/T /D,) in the second
line, and |k| < kF in the third. The logarithmic divergency as
D3 — 0 in the first line of Eq. (3.64) only occurs within the
diffusive approximation and is cut off’’ when the characteristic
[k| ~ (mT)"/?1n'/?(D,/D5) becomes of the order of mTa.

We notice from Eq. (3.64) that (dg_/dk) contains the large
factor €p/T to a certain power (different depending on the
relation between D3 and D;). This means that, for thermally
excited electrons in the vicinity of the Fermi surface, the
derivative dg_(k)/dk from Eq. (3.58) is mainly given by the
integral term proportional to C®(k), unless D;/D; is small
in the parameter T /e or, if D;/D; ~ 1, the ratio D3 /D, K
(T /er)'/?e=<r/T. That is, unless the above conditions are
satisfied, two terms in the total current in momentum space
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D(k)dg_(k)/dk and —C® (k) almost compensate each other
near the Fermi surface. The current in real space, however, is
much less sensitive to the presence of the integral term in the
diffusion equation for three-particle scattering, as will be seen
in the following.

T 1+ e (€7er)/T

PHYSICAL REVIEW B 86, 245402 (2012)

Substituting Eq. (3.58) in Eq. (2.55) for the electric current
Jj— [using the relation (2.55) between g_ and f_], we obtain
j— as a double integral which is reducible, by integration by
parts, to a single one. Using further Eq. (2.60), we thus have

_1 _
Pp = Tor

D, + D;cosh’[(e — ef)/2T]

(3.65)

[1 + e /T L 8D, (0g—/0k) } ’

e(Ey — E»)

where (dg_/0dk) is given by Egs. (3.60) and (3.64). From Egs. (3.60) and (3.65), pp is represented as ,05' = ,051' + pgzl, where

B €2T [l + ef(éfér)/T]Z
Ppt = —— > (3.66)
167 D, 4+ D3 cosh”[(e — €)/2T]
is a direct generalization of the result for pair collisions and
an [ (dg_/ok)\" dk 1
pD21=32T2Di—n<—<g / >) {1— ,-/— 5 } (3.67)
ou \ E| — E; kr D, + D3 cosh*[(e — €F)/2T]

comes from the integral term of the Fokker-Planck equation.
The integral in the curly brackets in Eq. (3.67) is discussed
above [Eq. (3.63)].

In the limit D3 — 0 and D; — 0, we reproduce Eq. (2.61)
for pp induced by pair collisions [note that the integration
in Egs. (3.65) and (3.66) is understood”® as limited by
k| < mTa]. Now, we observe that the integral (3.65) is
determined by € < T in a wide range of the ratio D3/D; (the
exact condition is specified below) because of the exponential
functions e~ =€/ in the numerator that rapidly decay away
from the bottom of the spectrum. It follows that triple collisions
become essentially important already for Dz > Dye /T,
when the second term in the denominator of the integrand
of Eq. (3.65) at ¢ = 0 becomes much larger than the first one,
i.e., when the scattering rate for an electron at the bottom of
the spectrum is strongly enhanced by triple collisions.

Inspection of Eqgs. (3.65)—(3.67) shows that pp is given by
pp1 for all D3 <« Drer/T (T /ep)*?, and for D3 > Dye /T
reads as

’

o =~ 47D; ( €r )1/267“_”
e’ky \nT3

(3.68)
Dye™ /T &« Dy & Dye!T (T /er)¥?.

Recall that D3 oc T2, so that the pre-exponential factor in
Eq. (3.68) scales with T as T''/2. Notice that both conditions on
the ratio D3 /D, in Eq. (3.68) are very weak for T /ep < 1.The
one that limits D3 /D, from above comes from a comparison
of pp1 and ppy: for larger D3 /D;, pp is mainly given by pp;.
To see this, let us write pp, for D, < Ds, by substituting the
last line in Eq. (3.64) together with Eq. (3.63) in Eq. (3.67).
The result is

T 1 D3 2D2Di
£D2 <D3 D; + 3D,

~ s D Ds.
kr er D, ) h L D3

(3.69)

Equation (3.69) shows that pp, can only be smaller than pp; in
Eq. (3.68) if the wires are sufficiently far away from each other,
so that D3 — D; K D, < Ds. In this limit, (D3/Dl)(p3 —

D; + 2D, D;/3D3) — 2D, /3 and friction from pp, becomes
much larger than that from pp; if Dyecr/T (T/eF)S/ lk Ds.
That is,

2 D2
Pp = -

o~ , Dyt T (T Jep)*/* « Ds.
3%ks <r 2 (T/ep)”” L D3

(3.70)

The behavior of pp as a function of D3/D, with Ds held
fixed is illustrated in Fig. 4. Note a highly nontrivial point:
even if Dj is entirely due to interactions inside the wires and
thus does not lead to any drag directly, pp shows a plateau in

Pp

" DD, |

Pp
. i NI

| i
exp(—€g/T) exp(egp/T)

D3/Dy

FIG. 4. Schematic behavior of the drag resistivity pp as a function
of D5 /D, for fixed Ds, where D, and D; characterize the strength of
two- and three-particle scattering, respectively. Only the exponential
factors are shown in the characteristic scales on the horizontal
axis. Increasing the distance between the wires for the case of
Coulomb interaction leads to a similar behavior of pp. In the
plateau regime, pp does not depend on the strength of interwire
interactions. The dependence of pp on 7 in three regimes labeled
in the figure for Ta/vy > 1: (I) T—32e72¢/T [Eq. (2.61)], (II)
T'2e=<r/T [Eq. (3.68)], (III) const(T) [Eq. (3.70)]. Inset: pp as a
function of D;/D, for fixed D, illustrates the growth of pp with
increasing strength of interactions inside the wires. The characteristic
scales of D5 /D, in the inset are the same as in the main figure.
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I exp(—2ep/T)

“orthodox
i theory”

Pp III

1/€x 1/T

FIG. 5. Schematic behavior of the drag resistivity pp as a function
of 1/T on the log-linear scale for two distances between the
wires: larger (solid line) and smaller (dashed line). Regimes I,
I, III are labeled similar to Fig. 4. Drag is hindered by slow
thermal equilibration between two electron subsystems with opposite
chiralities, which results in the activation behavior of pp (regime II:
op o e~ F/T regime I: pp o< e 2/T). In regime II, pp does not
depend on the distance between the wires. In the low-7 regime
(labeled with “2kr "), drag is due to direct backscattering on the Fermi
surface. For T < €, the conventional contribution to pp (labeled with
“orthodox theory,” regime III) is not suppressed only in the case of
sufficiently strong interactions inside the wires in a narrow range of
T right below the Fermi energy €.

the dependence on D;, i.e., the drag resistivity in this regime
does not depend on the strength of interwire interactions
[Eq. (3.68)]. In particular, this means that varying the distance
between the wires in this regime does not change pp. On the
other hand, pp in the plateau regime grows with increasing rate
of three-particle scattering inside the wire, although this type
of scattering by itself does not lead to any friction between
electrons in different wires. Note also that the width of the
plateau in the dependence on D3 /D, in Fig. 4 is exponentially
large in the parameter €/ 7. The inset in Fig. 4 illustrates the
behavior of pp with increasing Dj for fixed D, [from Eq. (2.61)
to Eq. (3.68) to Eq. (3.70)].

The T dependence of pp is shown schematically in Fig. 5.
In a wide range of T, the drag resistivity follows the Arrhenius
plot with the activation energy equal to either €r or 2ep. If
D3> D, at T ~ €5 (recall that D; scales as T?), there is a
range of T below €y within which the T -independent result of
the orthodox theory [Eq. (3.70)] is valid. As T is lowered, pp
starts to behave as e /T [Eq. (3.68)]. If D3 K Dy at T ~ €f,
there is no room for the orthodox theory for 7 below €p.
Instead, pp behaves as e~2¢*/T [Eq. (2.61)] in a range of T
right below €, before crossing over into the e~<*/7 regime.
Eventually, drag crosses over into a low-7 regime in which it
is associated with direct backscattering on the Fermi surface
[Eq. (2.64)].

Another important point to note is that pp in Eq. (3.70)
coincides with the result of the orthodox theory”® for T'a /vy >
1, i.e., Eq. (3.70) can be represented as pp =~ n/evar]‘)"’,
where 1137 is given by Egs. (2.14) and (2.41) [see also Eq. (B9)].
The reason for this is that Eq. (3.70) describes the limit in
which three-particle scattering is strong enough to produce
the right-left relaxation rate that is larger than the drag rate
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1/tp [Eq. (1.6)]. In our formalism, pp that results from the
application of the drift ansatz is thus associated with pp;
[Eq. (3.67)]. The condition requiring that the equilibration
be sufficiently fast severely restricts the range of parameters
in which the orthodox theory is valid: for given T < €, the
orthodox theory is only justified if the distance a between
the wires is exponentially large in €/T, i.e., if drag is
exponentially weak in this parameter [cf. the condition in
Eq. (3.70), where D, decreases with increasing a, whereas
D3 in the limit of large a is due to triple collisions inside the
wires].

One more point worth discussing is the difference in the
characteristic momenta k that give the main contribution to the
integral in Eq. (3.65) in two transport regimes, one described
by Eqgs. (2.61) and (3.68) and the other described by Eq. (3.70).
These are momenta at the very bottom of the spectrum, |k| <
(mT)"/2, in the former case and all momenta below the Fermi
surface, |k| < kp, in the latter. We emphasize, however, that
the distribution function f_(k) is sharply peaked at the Fermi
surface and the integral over k£ in Eq. (2.55), in contrast to
Eq. (3.65), is determined by |k — kr| ~ T /vF in both cases.
What is different between the two regimes is the range of k for
the scattering processes that give the main contribution to the
relaxation rate at |k| =~ kp. In the case of drag limited by the
slow right-left relaxation in Egs. (2.61) and (3.68), this range
of k is |k| < (mT)'/?, as was already discussed in a similar
context (for the case of pair collisions) in Sec. IIC. A subtle
difference in the shape of the distribution function f_(k) =
—g_(k)/4 cosh?[(e — €r)/2T] in the two transport regimes is
that g_(k) ~ const(k)sgn(k) for all k| > (mT)'/? in the case
of Egs. (2.61) and (3.68), whereas g_(k) oc k at |k| ~ kg in
the case of Eq. (3.70). This means that, near the Fermi surface,
electrons with the same chirality are at equilibrium in the
stationary frame in the former case and in the moving frame
in the latter.

The reconstruction of g_(k) with increasing Ds, with other
parameters fixed, is illustrated in Fig. 6. Specifically, represent
g_(k) as

g (k) ~ 1‘46(& — E)GI(K)+ Gk, (371

where G (k) and G, (k) describe the contributions to g_(k) of
the first and second terms in the curly brackets in Eq. (3.58),
respectively. For G (k), we have

Gi(k) ~ VamT
2ep /T k —er
o q’(ﬁ)’ Dy « D
X (3.72)

er/T
Lo (G
where ®(x) is the error function [as defined below Eq. (2.50)].
The term G (k) determines g_(k) in regimes I and II in Fig. 6,
with G,(k) < G1(k) for all k. Regime I corresponds to the
first line in Eq. (3.72), regime 1II to the second.

The term G, (k) for D, <« D; is given by

) , Dyer/'T « Dy

6 €r

Gotk) ~ ——

2(k) Dy T

As Dj increases, the crossover from regime II to regime II1
occurs at Go(kr) ~ Gi(kp), i.e., at D3 ~ Dyer/T (T Jep)>/?.

k, D, < Ds. (3.73)
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11Ib

(mT)'7? ‘ ke

FIG. 6. Schematic evolution of the distribution function g_(k)
at and below the Fermi surface with increasing (I—II— Illa— IIIb)
strength of three-particle scattering. In regimes I and I1, electrons with
the same chirality are at equilibrium [except for k < (mT)'/? near the
bottom of the spectrum] in the stationary frame. In regimes Illa and
IIIb, electrons near the Fermi surface are equilibrated in the moving
frame. In regime IIIb, equilibrium in the moving frame extends down
tok =0.

In regime Illa in Fig. 6, the function g_(k) below the
Fermi surface is equilibrated in the moving frame for k >
ky = kp(D2/D3)(T Jep)¥?eF/T | while for k < k, it is still
equilibrated in the stationary frame. Equilibrium in the moving
frame extends down to k = O (regime IIIb in Fig. 6) at larger
D3, namely, D3 > D¢/ T T /ep.

The behavior of pp with varying 7 [Ds(T) can be
represented as Ds(ep)(T/er)?] and strength of interwire
and intrawire interactions (D, parametrizes the strength of
interwire interactions and decreases as the distance a between
the wires is increased, whereas Dj in the limit of large a is
determined by interactions inside the wires) is conveniently
summarized in the following form:

48 (€r\3/2 —2¢p/T
2 ,D2 V27 T) 3/62 (D
~ = - 6 Dy (er _
=S e e () e/ ap (T

[y

1I),

where regimes I, II, III correspond to those in Figs. 4 and
5. Note that regime III, when present, is always separated
by regime II from the “2kr” regime (Fig. 5) in the limit of
kra > 1 since in this limit (1/kra) In[D3(efr)/D,] is small
compared to unity. This is because Ds(ep)/Ds ~ BEk:a?,
where S parametrizes the strength of forward scattering [cf.
Eq. (1.3)]. As a result, for kra > 1, the drift-ansatz regime
for the case of drag dominated by forward scattering can only
be realized if Ta/vr > 1, when the orthodox theory yields
T -independent drag [Eq. (3.74), regime III; Eq. (14) and the
plateau regime in Fig. 2 in Ref. 56]. In the opposite limit
of kra < 1, drag is determined by backward scattering on
the Fermi surface (regime ‘“2kz” in Fig. 5) for all T < ep
considered in this paper. This implies, in turn, that there is no
room for the 72 drag resistivity [Eq. (1.3)] even if the thermal
equilibration is strong enough to establish the drift-ansatz
regime.
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We are now in a position to return to the case of Coulomb
interaction (recall the discussion at the end of Sec. IIIC).
As we see from the calculation for Ta/vg > 1 [where
1/a was assumed to be a single scale characterizing both
functions Vj;(q) and Vi,(q), beyond which they fall off fast
enough to neglect momentum transfer with |g|la > 1], the
main contribution to o " in the whole range of D3/D, <
er/'T(T Jer)*? comes from ,0511, with the integral term in the
current in momentum space producing only a small correction
to pp. The resulting drag resistivity is determined by scattering
of cold electrons with |k| < kp. The characteristic energy
transfer for these electrons is much smaller than T even if that
for electrons on the Fermi surface is of the order of 7', as is the
case for the intrawire three-particle scattering due to Coulomb
interaction. It follows that the Fokker-Planck description of
drag for D3/D, < e*/T(T /er)*? is also accurate for the
Coulomb case. However, the diffusion coefficient in channel
(a), DGD(k) [Eq. (3.29)], should be calculated in the Coulomb
case [Vi1(g) from Eq. (A2)] without treating the thermal
factors in Eq. (3.16) as smoothly changing functions of ¢
compared to the matrix elements, in contrast to Eq. (3.51).
Assuming that D3 is mainly due to three-particle scattering
inside the wires, we obtain

7(n2)? T \! »f VF
D; = — ) In°{ — 3.75
T 2 o) T\ T4 ©-73)

€rVF

for Td/vp > 1, while for smaller T the diffusion coefficient
in channel (a) acquires four more powers of 7. In the opposite
limit of fast equilibration in the frame moving with the drift
velocity, i.e., for D3/D, > e*/T(T /er)>/?, the three-particle
rate drops out from the expression for pp, independently of
the character of three-particle scattering. Therefore, Eq. (3.70)
describes the Coulomb case as well.

IV. SUMMARY

We have presented a theory of Coulomb drag between clean
(no disorder) quantum wires based on the kinetic-equation
approach. One conceptually important aspect of Coulomb
drag that we have highlighted in this paper is an inherent
link between this phenomenon and the processes of thermal
equilibration. We have demonstrated that the dc drag resistivity
pp is exactly zero in the absence of equilibration between
right- and left-moving electrons. Another way to state this
is that forward scattering near the Fermi surface with small-
momentum transfer is not sufficient to produce a nonzero drag
resistivity.

We have given a detailed discussion of the equilibration
processes in quantum wires. Crucially, in one-dimensional
geometry, the right-left equilibration requires backscattering,
either directly in the vicinity of the Fermi surface or via
diffusion in energy space with small energy transfer in one
scattering event. The latter type of backscattering is favored
if the wires are not too close to each other. We have shown
that the slow diffusion in energy space is bottlenecked by
scattering of cold electrons at the bottom of the spectrum, as
a result of which pp shows an activation behavior, in contrast
to the conventional for the drag-effect power-law dependence
on the temperature, with the activation energy equal to the
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Fermi energy € or 2ef for the cases of three- or two-particle
scattering, respectively. We have demonstrated a nontrivial
interplay between the pair and triple collisions; in particular,
pp in a wide range of the parameters of the problem does
not depend on the strength of interwire interactions, while
depending strongly on the strength of interactions inside the
wires.
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APPENDIX A: INTERWIRE INTERACTION POTENTIAL

Let us denote as vjj(x) and vip(x) the potentials of
interaction between electrons residing in one wire and in
different wires, respectively. They are expressed in terms of
the potential v(r) created by a charge in the plane of the wires
(where r is the distance in this plane) as vi;(x) = v(|x|) and
vi2(x) = v(v/x2 4 a?), where a is the distance between the
wires. The potential v(r) is determined by the polarization
properties of the medium around the wires, in particular, by the
position and dimensions of a nearby metallic gate. In general,
the relation between the characteristic spatial scales of v(r)
and vi»(x) depends in an essential way on the shape of v(r).
For instance, if v(r) is a monotonically decaying function
characterized by a single spatial scale d, the characteristic
radius of vi,(x) is given by d for d > a, while for d < a it
may be either larger or smaller than d, depending on whether
v(r) decreases slower or faster than the Gaussian function.
Note also that vi(x) is not necessarily characterized by a
single scale even if v(r) is a single-scaled function.

For definiteness, let us consider v(r) in the presence of a
perfectly screening metallic plate located at a distance d from
the wires (parallel to them). Then,

1
vii(x) = ¢e* - ,

Jord e+ A

(AD)

where dj is the “radius of the wire” (which is supposed to be
the smallest spatial scale in the problem) and the dielectric
constant of the medium in which the wires are imbedded is
set to be equal to 1. The Fourier component of v;;(x) from

|

2m (Al VK =B [fr®) = friP
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Eq. (A1) is given by

Vii(g) = 2¢° |:K0(61d0) - Ko (%/W) ]

1
~2% | —— ),
max{lq|.d~"}do

where Ko(x) is the Macdonald function. The Fourier compo-
nent V,(q) of the potential vi,(x) is given by Eq. (A2) with the
change dj — d + a* ~ a” in the argument of the Macdonald
functions and shows the following behavior depending on
whether the distance to the gate is larger or smaller than the
distance between the wires:

(A2)

2¢%In(d/a), lgl < 1/d < 1/a,
2¢*In(1/|gla),  1/d < |g| < 1/a,
Via(q) = { 4ed*/a?, lgl < 1/a < 1/d, (A3)

(21 /|qla)' el

x(1 — e 24y 1/a <« |ql.

Note the emergence of the characteristic scale || ~ a/d” in
the factor in the last line of Eq. (A3). One can see, however,
that the characteristic scale of |g| on which Vi,(g) starts to
decay exponentially with increasing |¢| is the inverse distance
between the wires 1/a, independently of the ratio a/d.

APPENDIX B: RELATION BETWEEN EQS. (2.10) AND
(2.11) AND THE ORTHODOX THEORY

The drift ansatz of Ref. 56 [see the discussion in Sec.  below
Eq. (1.5)] is the result of an extension of the orthodox theory
of drag®~*? to one dimension. As shown in Secs. II B and I C,
this approach fails totally in one dimension for the description
of bulk drag due to forward scattering. In this appendix, we
rewrite the kinetic equation (2.10) in the form that allows
one to explicitly identify the approximation that is made in
the orthodox theory but contradicts the solution of the kinetic
equation. To this end, let us represent the collision integral
(2.11) in terms of the equilibrium polarization operators

dk frtk+q) — fr(k)
27 w+i0 — [(k + ¢)* — k2]/2m

for two wires [cf. Eq. (1.5)], the imaginary parts of which are
given by

Im M(w,q) = _% [fT (% + %) - fr <? - %)] .

(w.q) = (B

st_{g} =

¢2k) J 2w K — k|

Combining Eqgs. (B2) and (B4) and changing variables to g = k — k' and w = € — €', we get

2 dq 1q1IV(@)P [Im TI(w,q) 1 < kq qz)
_ =———— |d —_— (k—qg)—g_(k)] 6§ - 4+ — ).
s-led m;z(k)/ w/2n sinh?(w,/27) ls-tk=gq)— -1\ 0=+

(B2)
Using the identity
/ _ &)= fro

JrOll — frk)] = = expl(@ — e/ T]" (B3)

Eq. (2.11) is rewritten as
(k") — g_(k)]. B4
it —oyar 18- %) -0 (B4)
. (BS)
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Substituting Eq. (B5) into (2.10), multiplying the kinetic equation by ek¢?/4m, and integrating over k, we have the equation for

j_ of the form

T 2

Ciwi _ez(El—_Eﬁ”_i/d_‘”/
/- 2m “um ]2

The result for the dc drag resistivity obtained in Ref. 56
corresponds to the drift-ansatz replacement

mao’ mao’ )
g_< +1>—g_ (——1>»i1_ (B7)
q en

in Eq. (B6) [i.e., g_(k) — kj_/enT]atw — 0.If one employs
the drift ansatz (B7) for finite w as well, this leads to

XE, - E
i= e( 1 2)11OO (BS)
2m (—iw +2/75)
with
1 /da) /dq CVQ@P ImNwgl oy
> 8nmT J 27 ) 2% sinh?(w/2T)

[Eq. (B9) coincides with Eq. (2.14)]. The Lorentzian shape of
the w dispersion for j_ in Eq. (BS8), with the w-independent
damping rate (B9), was posited in Ref. 57. In fact, however,

d_quV(q)lz[ImH(w’,q)]z[ <m_w’_g)_ (ma) 2)]
sinh?(w'/2T) =\ 2) 8\ VAR (B6)

as discussed in Sec. II B, the damping rate shows a strong
dependence on w, vanishing in the dc limit within the model
of Refs. 56-58.

It is also instructive to note that Eq. (BS) clearly demon-
strates that the contact drag resistance, discussed in Sec. IE,
depends on the setup. Indeed, in the limit of short wires
(in which the distribution function is only slightly modified
by drag), one can substitute in the collision integral the
“unperturbed” distribution function incident from the leads.
The result depends in an essential way on whether the
leads supply the drift-ansatz distribution function [Eq. (B7)],
corresponding to equilibrium in the moving frame, or the
distribution function that is equilibrium in the stationary frame.
In the latter case (Fermi leads), g_ (k) o sgn(k) and thus drops
out of Eq. (BS) for all ¢ such that k£ and k — g in Eq. (BS)
belong to the same chiral branch (forward-scattering drag).
This leads to a strong suppression of drag compared to the
orthodox theory.

APPENDIX C: THREE-PARTICLE SCATTERING AMPLITUDE

Explicitly, the normalized determinants in Egs. (3.2)—(3.4) read as

eik]X] eiklxz eik])Cg

Dy (ki,kz,k3) =

1
(L2)1/2

eikzxz e[kz)c}

Dy (k2 ,k3) =

eikgxz ek3X3

The matrix elements (3.7) are written as

ikle eikzxz eikQJC3
(6L3)1/2 eik3X1 eik},xz eik3X3

’

1
AD(1,2,3]4,5,6) = Z{[3k3,k65k,+k2,k4+k5 Vit(kr — ka) + 8k, ky Ska ks ks ks V11 (k2 — ks)

1
ALI)(1,2,3|4,5,6) = Z[5k3.k63k1+k2.k4+k5 Via(ky — k4) + Ok, ky Oky+ks ks+ks V11 (k2 — ks)

+ Oky ks Oty ks katks V12(k3 — k)] — (k2 <> k3),

1
AN(1,2,314,5,6) = 718k koSt bts Vi (k1 = Ka) + 8 kB b ot Vi (ko = k)

‘ . (C1)
1 elk]X] etklxz
D.(ki,k2) = QLY | eftn gl
+ Oty ks Okty ks k+hs V11 (k3 — ko) — (ko <> k3)} — (ki < ko) — (ki <> k3), (C2)
(C3)
(C4)

+ Ok ks Oky ks ka+ho V12(k3 — ko)] — (k1 <> k2)

(the terms in the third line for A(" are understood to exchange momenta in the whole expression within the curly brackets, i.e.,
for 3 “direct” terms there are 15 exchange terms). The irreducible parts of the amplitudes A, ;. [Eq. (3.6)] are given by

. 1
AM(1',2',311,2,3) = ﬁ8k1+k2+k3,k,/+k2/+k3/ {|: Vii(ks — k3)Vii(ky — ki) (

1 4 1 )
Axy Aoy

1 1
+ Vil — ki)V, (kz—kz,)( + )
11\R1 1 11 A311/ A322/

+ Viitka — k) Vii(ks — k3) (

—(ky < ky) — (ki < k3),

1 1
+ — (ky < k‘/)}
Aoy A133’>] ? ’

(C5)
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i /Al Al 1 1 1
Ay (1,27,3'1,2,3) = — 8k ko ks ky ko +ky |:V11(k3 — k3)Vialky — kyv) < + )
Apny Ay

L2

+ Via(ky — ki) Vig(ka — ko) (

i YL l
A(1,2,31,2,3) = §8k|+k2+k3,k|r+k2r+ky |:V12(k3 — k3)Vii(ky — ky) <

1 n 1 )
Az Az

1 1
+ Vialky — ki) Vio(k —k,)< + >
12\] 1 12\R2 2 A311, A322/

+ Viilky — ko) Via(ks — k3) (

where

Apy =€ +€ — €y — €33

1 1
+ Vialka — ko) Via(ks — k3) ( + > ] — (ky < k3), (Co6)
Apy Ay
1 n 1 )
Axzy  Agyy
S ) ] (k<> k) &)
— ;<> ),
Ay Apy 1 ?
1
—E(ky — k3)(ks — k), etc., (C8)

€243_3 = (ko + k3 — k3)>/2m. The sign (k, <> k3) means that
only the momenta k, and k3 are transposed (but ky and k3
are not). The amplitudes Agfb.c(l’,Z’,3’|1,2,3) in Egs. (C5)-
(C7) coincide with those derived in Ref. 85 (see also Refs.
88 and 89). It is worth mentioning once more, however, that
while the amplitude of three-particle scattering is the same
in our work and in Refs. 85, 88, and 89, the corresponding
contributions to the collision integral are not. This is because
the combinatorial factors in Egs. (3.9)—(3.11), necessary to
prevent double counting of the initial and final states in the
collision integral, are missing in Refs. 85, 88, and 89.

Note that if it were not for the difference between vy (x) and
vi2(x), the “direct” terms (as opposed to the exchange terms)
in the amplitudes A"(1,2',3(1,2,3) and AI™(1',2',3|1,2,3)
[those shown in Egs. (C6) and (C7) with the positive sign]
would be expressible as series resulting from the cyclic
permutations (k1 k;y — kyky — k3kzy — kiky). Moreover, the
direct terms would then become the same in Aibrr (1,2,311,2,3)
and A?‘(l’,Z/,3’|1,2,3). In fact, the whole kinetic problem
for three-particle scattering of spinless electrons in a double
wire would then become identical to that for three-particle
scattering of spinful electrons in a single wire with spin-
independent interaction. Our drag problem, in which gener-
ically vi1(x) # vi2(x) and the structure of A},‘T(l/,2’,3’|1,2,3)
and A(1',2',3'|1,2,3) is therefore less symmetric, can be
viewed as a generalization of the spinful problem in a single
wire to the case of Ising-type anisotropy of the interaction
potential in spin space.

APPENDIX D: CANCELLATION OF THREE-PARTICLE
SINGULARITIES IN ONE DIMENSION

As discussed in Sec. III B, one of the important differences
between two- and three-particle scattering is the occurrence
of nonintegrable singularities in the differential cross section
in the three-particle case. These occur if the cross section
is written as the modulus squared of (the connected part of)
the three-particle 7 matrix; this would be a straightforward
extension of the conventional formalism for the two-particle

case. In fact, the finite collision integral that describes triple
collisions in the kinetic equation contains a counterterm
[Eqg. (3.18)] that cancels the contribution of the singularities.
The purpose of this appendix is to provide technical details that
explicitly demonstrate the cancellation between the essential
singularities in the cross sections of many-particle scattering.
Specifically, we focus here on the singular behavior of three-
particle scattering in the case of one-dimensional electrons.

The amplitude of three-particle scattering in Eqs. (C5)—(C7)
shows a pole-type singularity as a function of momenta each
time the energy A, endowed with indices according to the
definition in Eq. (C8), transferred in the virtual transition into
the intermediate state is equal to zero. In the case of scattering
of type (a), when all colliding electrons are in the same wire,
the residue of each of the poles can be shown to vanish linearly
in A, i.e., the singularity is, in fact, absent, provided the initial
and final momenta of the three-particle amplitude conserve
total momentum and total energy as A varies. Importantly, the
regular behavior of the amplitude in channel (a) at A =0
results from a compensation of the direct and exchange
processes in the residue (for a calculation of the total scattering
rate in the spinless case, see Ref. 104). For the amplitude of
three-particle scattering that involves electrons from different
wires, the compensation is not complete, because the exchange
interaction in the absence of tunneling between the wires
is only allowed within the same wire, and the residue does
not vanish (a similar situation occurs for spinful electrons
in a single wire). Thus, triple collisions between electrons
belonging to different wires yield a nonintegrable singularity
in the modulus squared of the three-particle 7 matrix: at
second order in the interaction potential for the amplitude,
the singularity in the differential cross section is of the type
1/A2.

There is one more important aspect of the divergency of
the thus defined triple-collision rate that is specific to one
dimension. The divergency does not rely on a particular form of
the dispersion law; in particular, the singularity is present, and
remains nonintegrable, in the limit 1/m — 0. The divergent
triple-collision rate for electrons with a linear dispersion
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i W%+%@

FIG. 7. (a) Self-energy of the fourth order in the interwire interaction in channel (c) for direct scattering processes. (b) Effective interaction
(thick wavy line) expressed in terms of the bare interwire interaction (thin wavy lines). The electron lines for different wires are labeled by the

upward and downward arrows.

relation in one dimension raises the question as to how the
kinetic equation approach relates to the Dzyaloshinskii-Larkin
theorem*>!%7 which says that, at thermal equilibrium, the
one-dimensional electron system with a linear dispersion
relation is exactly described in terms of the random-phase
approximation. This approximation includes pair collisions
only. That is, according to the theorem (and the whole
bosonization approach® for that matter), triple collisions are
“exactly absent” at equilibrium. The condition of equilibrium
is important; however, the divergency occurs at the level of
the structure of the kernel of the collision integral, so that,
e.g., the out-scattering rate from Eqgs. (C5)-(C7) diverges
in the linear-response limit as well, similar to the inverse
lifetime of a particle due to triple collisions at equilibrium.
In the following, we resolve the apparent conflict between
the Dzyaloshinskii-Larkin theorem and the divergency in the
three-particle scattering channel by calculating the scattering
rate at order V/, “by brute force” diagrammatically for an
arbitrary dispersion relation &.

The singularity at zero A in the matrix elements in either
channel (b) or (¢) is not related to the difference between V;;(q)
and Vj»(g) (the singularity survives when the difference is
neglected) but is only due to the “lack” of exchange processes
in these channels compared to channel (a). Since the singularity
is entirely associated with scattering of electrons belonging to
different wires, we neglect intrawire interactions throughout
Appendix D. Moreover, since our purpose in this appendix is
to illustrate the principle (discussed in Sec. III A) on which
the cancellation of the 1/ A2 divergencies is based, we do not
calculate here the full set of out- and in-scattering nonequilib-
rium self-energies for two- and three-particle scattering, but
focus on the simplest quantity that exemplifies the problem.
This is the inverse electron lifetime in an equilibrium electron

bath, expanded in V},(g) to fourth order. In this calculation, the
inverse lifetime will be seen to be a well-behaved scattering
rate that experiences no infrared divergency from the vicinity
of the point A = 0. The quantities of interest are thus the
inverse lifetimes for an electron with momentum k in channels
(b) and (c):

1/t (k) = —2Im Xy, (i€, = & +i0,k), D1)

where ¥, .(i€,,k) are the corresponding electron self-energies
in the Matsubara representation, at order V{“Z and zeroth order
in V] 1-

One can separate the contributions of direct (H) and
exchange (F') processes in the self-energy in Eq. (D1),

e =Zp 4+ 2L, (D2)

For the case of triple collisions, the H term comes from the
sum squared of the terms with sign + in Egs. (C6) or (C7)
[for channels (b) and (c), respectively] plus the sum squared
of the terms with sign —, while the F term is given by twice
the product of the two sums. In fact, the self-energy X, .
contains also a contribution of pair collisions at order V},,
for which one can similarly separate the direct and exchange
processes. The role of pair collisions will be discussed below
Eq. (D26). Since in channels (b) and (c) the H and F terms
do not compensate each other, it suffices (for the purpose of
describing the divergency of the triple-collision rate) to focus
on one of the terms: below, we write down details of the
calculation for the H term only.

Let us begin with channel (c) by calculating the scattering
rate for an electron in wire 1 due to interaction with two other
electrons, one of which is in wire 1 and the other is in wire
2. The self-energy £/ of fourth order in interaction for the
case Vi1 = 0 is given by the diagram in Fig. 7(a), where the

FIG. 8. Sum of the four-leg loops from the effective interaction in Fig. 7(b). The legs are labeled with the incoming frequencies.
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thick wavy line is the effective interaction V (i€2,,,q), shown Here, the polarization operator I1(i €2,,,q) is the generalization
in Fig. 7(b) and written as of Eq. (B1) to arbitrary &,

nee )_/'% frkk+q) — frk)
N B N T

and A(i2,,,q|i2u,q") is a sum of the four-leg loops in Fig. 8

do’ (D4)
V(i) = [Vi@PT Y. / T Vi)l

X A i g VTR ,q"). (D3)  over all nonequivalent insertions of one of the legs:
|
dk 1
AR qli @ g') = —TZ/—[ . — — —
" 2w | (iep — & )i€n — iy — Ek—q)(l € — 182,y — Ek—q’)(l € — Iy — Sk—q—q’)
1

+ — — —

(ien — &) (i€, — 82, — §qu)(l€n — 02, — équ')

1

+ — - . 5 - ] (D5)

(i€, — &€, —i2, — ék—q) (i€p —iQpy_m — Ek—q—q’)

For the case of a linear dispersion relation, A vanishes (apart from the uncertainty at i<2,, — & + i0 and similarly for i €2,,/) in
agreement with the loop cancellation (Dzyaloshinskii-Larkin) theorem.**!%7 However, as already mentioned above, the divergency
of the integral of the modulus squared of the three-particle 7-matrix elements over A around A = 0 survives the limit of the
linearized dispersion law.

Summing over €, in Eq. (D5) and €2,y in Eq. (D3), V(i2,,,q) reads as

dk’[ Y Y " dk 1
b Srk) — fr( +Q)/Em

d /
V(iQu,q) = [Via(q))? / 2—q [Via(g))? /
T

x {[fr(k —q)— frlk =gz + [ frtk —q —q') — frk — @lza + [fr (k) — fr(k — q)]z3

n Afr(k) c(€x — §x—q) — cCrrg —8k)  fr(k —q) c(Ex—g —Ek—g—q) — cGryq — Ek')} ’ D6)
08k Ay &y Ay
where c(w) = (1/2) coth(w/2T),
A =& +& —& g — by, Ao =& g+ & —bigyg —bbiq» (D7)
and the functions z » 3 are given by
= - [_M n €k — k—q) — cGrvg =) k=g = bk—q) — cEk+q — &) ]
A oo lo=t—&_, Ay iQn +& g — &g —byg tE0
4 1 c(Er—g = Ek—g) — c(Ex — Er—q')
Ay ISy + k—g — &
n 1 [C(ék —&k—q') = Grvg —8k) kg = k—q) — g — &) } , DS8)
12 + Ek—q—q’ - Sk—q/ Ay Q2 + Sk—q - Ek—q’ - Ek’-&-q’ + &k
= RS [_ dc(w) n €k —&k—q) = cGryg =) €k = Sr—q—q) = cErq — &) ]
A dw o=t g—&_,_y Ay —iQu + & — &g g — Ekrg T b1
el — &r—g—q) — ciq — &)
Ay 12, + &g — &
B 1 |:C(§kq —bk—q—q) = g — &) (Ek—g = bk—q) — c(Ektq — k) ] (DY)
iQn+& g g — &y Ay =i+ & — &k gg — Ekrg T b1
o 1 [_M n &k —bi—g) — cCryg — Ek’)i|
i Al Jw w=E—&_y A]
_ 1 |:C(‘§k —&k—q) = CGrrg —8) i = Ek—g—¢) — cGryg — 1) j|
i + &g — & A —iQun +& —&—g—g — kg +E0
_ 1 [C(ékq —&k—q—q) = CErig —&) &k —Ek—g—q) = cErig — &) } . D10)
iQy + &k—g—q — k—g Ay —1Q + & —E—g—g — Ertqg + &0
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The terms with 8 f7(k)/0&, = —¢2(k)/4T in Eq. (D6) arise from the double poles in the fermionic summation over €,,. The terms
with dc(w)/dw = —1/4T sinh?(w/2T) in Egs. (D8)—(D10) arise from the double poles in the bosonic summation over £2,,,. The
terms in the second lines in Eqs. (D8)—(D10) are proportional to (i€2,, + &—4 — &)~ and produce, together with the same factor
in the first line in Eq. (D6), double poles in £2,,.

The self-energy in Fig. 7(a) reads as

) dq V(iQum.q)
H _ m
x! (zen,kl)——T§ /Eien—iﬂm—&qq' (D11)

Doing the summation over £2,, in the terms of X, that are proportional to z; » 3 gives

<1
T
; (ien - lQm - 'S;:k]fq)(iQm + %-qu - g:k)

= Ail [_ 82(63)) e G Sl 20 ;lc(ék/+q' ~ Sk’)i| 1Gi€n,6x,—g|Ek—g — &)
k=g — Ek—q’)A—z c(rvq — Sk/)[l(ienfkl—qlgk—q — &) — L(i€n g Erg + E0 — Ergr — Evg)]
_ (Ek—g — k") N c(E — Ecg) A (i€n.Er_g|00)
A1 da o=t~
N c(é — ékz/()A—z c_(ékAT]) - Ek*l]')[I(ienafklfq@:k*II*q’ — Eg) — L(i€n 8 —g|E—g — E0)]
N c(k—q — Ek—q;; ;(Ek/w - Sk/)[l (i€n.6k—q|8k—g—g' — Ek—q) — 1(€n.E,—glk—g + & — Ek—g — Ek4g)],  (D12)

22
T
; (ien - iQm - éklfq)(igm + Squ - %-k)

_ L _ ac(w) C(%‘qu - %_qufq’) - c(%-kurq’ - ék’) . .
= [ 20 ot + A i|1(lfnv§qu|ékq &)
i T "5"*4*‘1’; CCsa =8 ey ey — £0) — Tiensb—glEegg + Ery — & — 8]
2
+ c(ér — Equfq’) - C(équ - ";:qufq’) 3I(i6n1§k1 —q |w)‘
Az aw w=§k—q_$k
Gryg — bk—q—q) — cCrrgy — &), . )
_ k= kA:(qu - Zl)k ' k Genbx,—glék—g—g — Ek—q) — 1(i€n,Ex —glE—q — &1)]
Gk —Er—g—q) — cGrvg — &) . )
+ ok kAql(qu _CAf;—q £ [ (i€n,5k—q|5k—g—g' — Ek—gq') — 1(i€n,68—q|Ek—g — 1))
4 S = Been) 2O =B e gyl — 80— e malig-g + s — & — 8] (DY

23

T
; (€n = iQm — & —g)EQ2m + S—g — &)

_ L[ () c(x — &k—g) — g — &1r) . _
- AI [ dw w=&—&_y * A1 :|I(l€"’$kl—q|$k—q ék)

4 SO Sima) S e 80 e 6y — 50— T liiogy + Eere — 5~ )

2
11 A1 (i€n, 6k —gl@)
+ (A_1 - A_z) [cGr — Ek—q—q') — cGrvg — Sk/)]%)w:&ﬁ_&
Gk — Sk—q') — ¢ — Ex—g—¢) . .
— Sk kAql(Azc— kA]) ] [I(lemékl—q'ék—q - ";:k) - ](16117Sk1—q|'§k—‘1_‘1/ - Sk—q/)]

&k = r—g—q) = cErig — &)
AA,

L (G€n r—glsk—g — &) — 1(i€n,50—gl5k—g—g + Ektq — 5k — E)],  (D14)
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2 K+ 2 The imaginary part of the retarded self-energy =7 comes
4 4 from the functions /:
2 K 2 KMid . .
Y kg 2 & ImI(ie, — &, +i0,&, _4|w)
l ¢ = —Z[C(gkl,q _Skl)_ t(sklfq)]s(gkl _gk]—q +w) (D16)
3 k—q 3 k—q—¢ 2
1 ki—gq ' ki—gq Triple collisions are associated with the terms in Egs. (D12)—
4 4 (D14) that contain the functions I with six electron energies in
1k 1k the denominator [i.e., six electron energies in the delta function
(a) (b) inEq. (D16)], namely, I (i€, ,6x,—q|6x—q + Ex — Sk—g' — x+q')

. . _ . and I(i€,, &, —gl&k—g—q' + Ev+g — & — Er). These are only
FIG. 9. Three-particle scattering amplitudes at second order in present in the contributions to % CH coming from the functions
the bare interwire interaction (wavy lines). They contribute to the Z12.3. More specifically, they are absent in the combination

first (a) and second (b) terms in the kernel of the triple-collision rate 72 + 23, so that regrouping the terms proportional to z; 5 3 in
in Eq. (D18). The electron lines for different wires are labeled by the Eq (Dé) as -

upward and downward arrows.
[frtk—q) = frk =gz + [ frk—q —q)

where —fr)lz + [frk) — frk — @l(z2 +z3), (D17)
. c(w) — t(§) only the first two differences fr(k —q) — fr(k —q’) and
I(i€y . §|w) = e —fto (D15 fr(k — g — q') — fr(k) describe the rate of triple collisions.
" Thus, we obtain the contribution 1/ 16173 (ky) to the triple-
and £(£) = (1/2) tanh(£/2T). collision rate in channel (c) from direct scattering:
|
1

d dg’ dk’
2 f 2_q Via(g)2 / L \ingh? f ey — &) — tE—) I Fr (K +q) — fr (k)]
T 2 2

Tcl:[3(k1) a

dk | 1 1 1
: / 2 {AT (AT B A_) (g — ) — Gy — 8 1L Frlk =) — frik —q")]
X 05k, +Ek—g + & — Eki—g — Er—g' — Err4q)

1 1 1
A_z (A_z - A_l) [c(&r — Equfq’) — g — &) 11 frtk —q — 61/) — fr(k)]

X 8k, + Ek—gg t Evq — k=g — &k — Sk/)}- (D18)

Two different delta functions in Eq. (D18) correspond to two different amplitudes: the one proportional to AI_I(AI_1 — A5 b
comes from the process shown in Fig. 9(a), the other from the process shown in Fig. 9(b). The energy denominators A; and A,
for the processes in Figs. 9(a) and 9(b) are then identified in terms of the energies in Eq. (C8) as follows:

Fig. 3(@): A1 =—Asr, Ay = Az, (D19)

Fig. 3(b): A1 = Az, Ay =—Asp. (D20)

The sum of the contributions of the two processes to Eq. (D18) gives the cross section proportional to

( Loyt )2 (D21)
Az Az

[cf. Eq. (C7)]. This is because the factor
[c(Ei—q — k) — tE-DILf (K + ') — FUDLf(k — q) — flk — g)lc(Ei—g — Ek—g) — cEkrg — )] (D22)
from the process in Fig. 9(a) and its counterpart from the process in Fig. 9(b),

[cCt—g — &) — tE-DILf K +q') = FEDIfk —q — q") — fFEONcE — Ek—g—g) — cCErrq — &), (D23)

become identically equal to each other when written in terms of the energies €; 5 3 1,23 in Fig. 9. Specifically, each of them is
written as

%[coth(l — 1) + tanh(1")][tanh(2) — tanh(2")][tanh(3) — tanh(3")][coth(3 — 3') + coth(2 — 2')], (D24)
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(1-3 1 22

FIG. 10. Cuts labeled 2-2 and 1-3 in this particular term in
the three-particle self-energy contribute to the total three-particle
scattering rate and to a reduction of it that comes from two consecutive
two-particle scattering events, respectively. Each of the contributions
is diverging (with opposite signs), their sum is finite.

where coth(1 — 1) = coth[(e; — €1/)/2T], etc. Further, for
€1+ €+ €3 =€+ ex + €y, Eq. (D24) can be reduced to

cosh(1)
16 cosh(2) cosh(3) cosh(1”) cosh(2’) cosh(3")’

(D25)

which is recognized as the factor that appears in the collision
integral (3.1) for the scattering rate 1 — 1’, namely,

S ko) f(k3)[1 = fkiD[T — flka)][1 — f(k3)]

+ f ki) f (k) f(ka)ll = flk)I[1 = f(k3)], (D26)

taken at thermal equilibrium. We have thus reproduced the
inverse lifetime due to triple collisions diagrammatically.
|

PHYSICAL REVIEW B 86, 245402 (2012)

Cio &

FIG. 11. Two contributions to the self-energy of the fourth order
in the interwire interaction (wavy lines) in channel (b) for direct
scattering processes. The electron lines for different wires are labeled
by the upward and downward arrows.

The scattering rate in Eq. (D18) diverges because of the
factors 1/A? and 1/A2. But, as can be seen from Egs. (D12)-
(D14), the factors 1/ A% and 1/ A% are present in the self-energy
(D1) not only in the part associated with triple collisions [six
fermionic energies in the argument of the delta function in
Eq. (D16)], but also in the part that contains the delta function
of a sum of four fermionic energies and is therefore identified
with the contribution of pair collisions at order Vf"z. These
scattering processes are associated with the product of two
amplitudes in which one is of order V,, the other of order V132.
For example, if one considers the diagram for the three-particle
self-energy in Fig. 10, the two-particle processes correspond
to the cut labeled 1-3 (one amplitude is of the first order in
interaction, the other of the third order), in contrast to the
cut labeled 2-2 which contributes to 1/ rCH3(k1) in Eq. (D18).
Specifically, we have for the sum Rc,z(l’q) of the terms in
1/7.(ky) that originate from direct scattering in pair collisions
and are proportional to either 1/A? or 1/A3:

d dqg’ dk’
Really) = 27 f O / 29 )P f g — &) — 1E ) W oK + ) — frK)]
T 2 2

dk 1
. / ax {p[c@k ) — g — B Lk — @) — frlk— )]
1

2

1
+ p[C(Ek = &k—q) — g — EOILf(K) — frk —q)]
1

1
+ p[c(%‘qu - squfq’) - C(ék - %-qufq’)] [fT(k —q — q/) - fT(k - Q)]
2

1
+ P[C(Ek —&kqq) — g —EDILfr k) — frk — 6])]}
2

X 8(%_1{1 + ‘i:qu - %-klfq - ";:k)a

(D27)

which diverges in the same manner as 1/ 10173 (k1). To see how the sum of the two contributions to 1 /7. behaves, compare the factors
in front of I/A% inEgs. (D18) and (D27). Importantly, the delta functions 6 (&, + &x—g + & — &k,—g — &k—¢' — &k+¢/) InEq. (D18)
and 8(&x, + &x—q — &k, —q — &) in Eq. (D27) become identical at A; = 0. Further, the difference c(§, — &—y') — c(Ex4g — &r)
in the third line of Eq. (D27) vanishes at A; = 0, while the remaining factor in front of 1/A? in Eq. (D27) and its counterpart
in Eq. (D18) exactly cancel each other. A similar cancellation occurs with the terms proportional to 1/ A%. We thus arrive at the
conclusion that, in channel (c), the divergency in the total triple-collision rate, defined via the integral of the modulus squared
of the matrix elements of the three-particle 7' matrix, is exactly canceled by the divergency associated with pair collisions. How
this happens diagrammatically in the above calculation of the inverse lifetime at equilibrium exemplifies the subtraction of the

counterterm (3.18) in the three-particle collision integral.
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Let us now turn to channel (b), where the self-energy X ,f’ (i€, k1) is given (at order V142 and zeroth order in Vy;, similar to the

above) by the sum of two diagrams in Fig. 11:

. dg dq’ N2 Rt . . N . '
s enk) =T /E Via(g)I? fg IVia(g ) Bli€n k1 li Qg5 i Qo 1q VTG Qo )TIG Qg ),

where

B(i6n7k1 |lQm’q; iQm”q,) =

(D28)
1
(i€p — 82y — %_kl 7q)(i6n — Qo — Skl 7q7q’)
1 1
. D29
x (ien_igm’_%‘kl—q’ +i€n_iQm_$kl—q> ( )

As far as the singularities are concerned, the structure of £/ is much simpler than that of £ because the nonintegrable
singularities of the type 1/ A%_Z encountered separately for triple and double collisions in Eq. (D11) are absent in Eq. (D28).

Specifically, the only'® term in X/ (i€, k) that contains a factor similar to 1/A7 , in channel (c) is

d dqg’ dk dk’ 1
/ 2 W) / L WP / )~ frik—g)) f T Ur K+ 0) = Fr1 et~ by

— g — S €8k —g—g'|Ek—g + E — Ek — Ewrtg) — 1 €0, 8k —g1Ek—g + 1)),

where A3 =& _,_y + kg — Ek—g — & However, in con-
trast to channel (c), the difference of the bosonic distribution
functions c(&,—g — &x—g—¢') — c(x4q — &) in Eq. (D30)
vanishes at A3 = 0, so that the singularity reduces to 1/A3
and the integral (taken in the principal value sense for the
scattering rate) is finite.

Note that, at order V142 and zeroth order in V, the electron
self-energy contains more terms than the diagrams with two
electron loops, shown in Figs. 7 and 11, and their exchange
counterparts (with one loop less). These come from further
renormalizations of the two-particle 7 matrix (with one loop
and three loops) not included in the exchange counterparts of
Figs. 7 and 11; in particular, from the diagram with a chain of
three loops, which corresponds to the effective interaction in
the random-phase approximation. Summing up contributions
of two-particle cuts of higher-order self-energy diagrams will
give the modulus squared of the matrix elements of the exact

(D30)

(in Vyy, in this particular case) two-particle T matrix. For the
precise meaning of an M-particle cut, see Ref. 97.

As seen from the above calculation, the divergencies in the
triple- and pair-collision contributions to the scattering rate and
their cancellation occur for an arbitrary form of the dispersion
relation of colliding particles. In particular, this means that
the nonintegrable singularity in the differential cross section
for triple collisions that comes from the modulus squared
of the three-particle 7 matrix is present in the Luttinger-
liquid model (linear dispersion) as well. The three-particle
singularity is, however, canceled by the other one that comes,
in the kinetic-equation formalism, from those two-particle
collisions in which a given particle participates twice. This
resolves the apparent conflict, mentioned at the beginning of
this appendix, between the divergency of the triple-collision
rate and the Dzyaloshinskii-Larkin theorem for the linear
dispersion law.
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also without the formation of interlocked charge-density waves.
Note, however, that the mechanisms of the current equalization
between the active and passive wires in Refs. 42 and 44 on the
one hand and in Refs. 41 and 45 on the other are distinctly
different. The former relies on the formation of the zigzag-ordered
charge-density wave inside the region in which backscattering
occurs, whereas the latter is solely due to the (conventional for
the Luttinger-liquid model) power-law renormalization of the local
backscattering amplitude.
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voltage applied to the passive wire to maintain j, = 0. An implicit
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different Fermi velocities vp; # vp; in the presence of intrawire
interactions. For nonidentical wires, Ref. 57 gives the T3 scaling of
pp with a prefactor depending on the difference Avy = vp| — v
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as (Avp)~2, which is parametrically larger, for small Avp, than
the prefactor proportional to (Avy)~! in Ref. 56.
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does not necessarily imply the equilibrium state in the moving
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electrons (for which the boundary condition fixes it in the form of
the drift ansatz for distances from the drag region larger than /)
is modified by drag already in the leads. This feedback effect can,
however, be neglected in the calculation of Ry, if the correction to
the distribution function induced by interwire interactions is small.

31t is worth noting that equilibration in the stationary frame between
particles of the same chirality, induced by pair collisions in the
double-wire system, is characterized by a relaxation length /, that
is much shorter than /; for T < € [the spatial scales [ and [, are
associated, respectively, with the time scales 75° from Eq. (2.14)
and 1/M(0,kp) from Eq. (2.24)]. Specifically, Iy ~ (T /er)?,
independently of the parameter T'a/vr. In particular, Iy ~ 1/8%kr
for T < vp/a doesnotdepend on 7' [assuming, similar to Eq. (1.3),
that Bre < T]. More precisely, the scale [y describes equilibration
of the difference of the distribution functions in two wires for
particles of the same chirality whose momenta are within a distance
of the order of 7' /vy from *kj. Spreading of the equilibrated part
of the distribution function down to the bottom of the spectrum
is characterized by the much larger scale /,, with the scale /y
in-between (/y < [y < [) in the limit of small-momentum transfer.

74See also a relevant remark at the end of Sec. IV in A. M. Lunde,
K. Flensberg, and A.-P. Jauho, Phys. Rev. B 71, 125408 (2005).

75Note that, unless the wires are identical [as is the case in Eq. (2.14)],

the phenomenon of drag, in general, is not characterized at given
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by a single scattering rate (“drag rate”) for electrons in both
wires (the asymmetry of the drag rates in nonidentical wires is a
direct consequence of the symmetry property o, = 07 of the drag
components of the conductivity matrix, which holds independently
of the possible difference o|; # 02, of the diagonal components).
However, the conceptual framework developed here, highlighting
the close link between Coulomb drag and thermal equilibration,
remains intact in the case of drag between nonidentical conductors.
In particular, pp = 0 in the absence of right-left equilibration
independently of whether the wires are identical or not.

"For the Born matrix element, the presence of the 6 function
in Eq. (2.15) would not conform to the condition of spatial
homogeneity in Eq. (2.1) because homogeneity implies that the
Fourier component of the interaction potential depends only on
the difference k' — k. However, at the model level, Egs. (2.1) and
(2.4) with the collision kernel proportional to 6(kk”) can be viewed
as describing homogeneous wires at higher orders in interaction,
where the scattering matrix depends on k and k' separately.

""The relevant properties of g_ in Eq. (2.24) can be established on
rather general grounds. The entropy density for the double-wire
system in the absence of tunneling between the wires is given
by the sum s = s; + 5, where s, = — f(dk/Zn)[fU Inf, +(1—
f-)In(1 — f;)]. The H theorem says that the total entropy of a
closed macroscopic system prepared in a nonequilibrium state can
only grow in time, i.e., in the spatially homogeneous case ds /9t >
0, with the sign =realized only at equilibrium. Calculating ds /97 to
second order in g,, we have ds /0t ~ —(1/4) [(dk/2m);*dg> /ot,
i.e., in the absence of an external driving force, the solution of
the linearized equation for g_ in the limit # — oo must decay (for
any given k) to a constant of time. For the case of Eq. (2.10), this
constant of time is also a constant of k£ because the only zero mode
of the collision integral (2.11) (the only integral of motion in the
g_ subspace) is the number of particles with the same chirality.
After the subtraction of the zero mode Ay, the eigenfunctions of
the collision integral from Eq. (2.22) must all decay at t — oo
to zero. It follows that the solution (k) to the inhomogeneous
equation (2.22), also vanishing to zero at t — 00, behaves in the
w representation at w — 0 slower than 1/w. As a result, solely
on the basis of the H theorem, A(0) is given by the first term in
Eq. (2.20) for an arbitrary interaction potential. More specifically,
the eigenvalues of the integral operator in Eq. (2.22) can be shown
to be separated from zero by a hard gap, i.e., h(k) is a regular
function of w around w = 0. The width of the gap is of order
mV2(0) for T < vp/a, where 1/a is the width of the function
V(q), and decreases as 1/ T? for larger T.

"8Note that f_ is zero at thermal equilibrium, so that the condition
J® =0 at equilibrium is satisfied trivially, without invoking
the Einstein relation. The nonzero solution f_ oc ¢2, which also
nullifies J®, describes nonidentical wires each of which is at
equilibrium within itself, and corresponds to a shift of the chemical
potentials in the wires with respect to each other.

The 1/k dependence of f_ in the limit of large k is an artifact of
the Fokker-Planck approximation, i.e., only valid for |k| < mTa,
where this approximation is accurate. For a > vp/T (which
is the condition of the calculation in Sec. IIC), the range of
momenta |k| < mTa includes |k| < kp, i.e., the Fokker-Planck
description only breaks down for |k| much larger than k. Note
that in the limit of large a, the main contribution to the current
(2.55) does come from the 1/k tail of f_ at |k| > kr; however,
this requires that a be exponentially large in €r/T, namely,
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a > (vp/TXT /er)*exp(2ex/T), which we exclude from the
consideration.

80Note, however, that if f_ were given exactly by Eq. (2.54)
for arbitrary k, it would lead to J® (k) o 8(k) [cf. Eq. (2.44)],
vanishing for any k # 0. That is, the finite stationary value of f_
in Eq. (2.54) is only due to the fact that f_, given exactly by
Eq. (2.49), is not exactly proportional to ¢2.

81The expression pp o 1/j_ emphasizes the Galilean invariance of
pp in our problem. In particular, it gives pp in the case of j, # 0.
Note also that if the drag problem is formulated for given j; and
J2, Eq. (2.58) yields E; = —E, for arbitrary j ;.

82For the case of V (g) that falls off with increasing |¢| faster than an
exponential function of |g|, the asymmetry factor is exponentially
large in the parameter |k|/mTa > 1.

83More accurately, in view of the exponential behavior of pp in
both Eqgs. (2.65) and (2.61), the crossover between two regimes
for kpa > 1 is sharp; moreover, in the case of V(g) « e lala
[Eq. (A3)], the crossover at T ~ T, = vr/2a has the form of a
steep jump of width in T of the order of T.[In(kra)/kra]'/?.
The appearance of the jump is related to the suppression of the
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