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Spin-orbit force due to Rashba coupling at the spin resonance condition
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We analyze the effect of Rashba type of spin-orbit (SO) coupling on the electron dynamics and the rf electrical
conductivity. We show that in addition to the momentum current an additional SO current occurs which can be
attributed to a SO contribution to the electric Lorentz force. This Rashba SO force is proportional to the time
derivative of the electron magnetization. Therefore, in a static electromagnetic field SO interaction does not affect
the electric or the spin current. Applying an rf electric current, however, an rf magnetization can be efficiently
induced via the rf Rashba field. Thus, at the Larmor frequency a characteristic current induced electron spin
resonance occurs. There the absorbed electric power is efficiently converted into magnetic energy.
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I. INTRODUCTION

Coupling of momentum and spin of an electron is a
consequence of its moving charge which causes a magnetic
field which in turn affects the moving electron, as it is known
from atomic physics as spin-orbit (SO) coupling. In solids
with lower than mirror symmetry, and/or in the presence
of a built-in electric field, the Hamiltonian contains also an
additional bilinear SO term, proportional to both the spin
and the momentum.1 This Rashba term manifests itself in
various phenomena like Dyakonov-Perel spin relaxation,2–4

spin dephasing,3 a giant anisotropy of the electron spin
resonance (ESR) linewidth,3 a characteristic anisotropy of the
g factor,3 and others.4 One of the most direct exemplifications
of the Rashba field is the shift of the ESR resonance field when
an electric current is applied.5 Spin precession in the Rashba
field has been proposed as the main control mechanism in the
seminal concept of the Datta-Das transistor.6 The intrinsic
spin-Hall effect,7 however, has been excluded after some
discussion, specifically for the Rashba case where the spin
splitting varies linearly with momentum.8–10

A particular SO effect appears when an rf current with a
frequency corresponding to the Larmor frequency is applied:11

In an ESR-like experiment, spin precession can be excited
by a resonant microwave current as predicted by Rashba and
Efros.12 Excitation via this current-induced ESR13 can be by
orders of magnitude more efficient than the usual excitation of
magnetic dipole transitions by a microwave magnetic field.5,12

This may be of practical importance in the context of spin
manipulation.12,14 The dynamic spin-Hall effect is another
effect resulting from the current induced spin precession15

and closely related to the results of this paper.
One of the primary consequences of the Rashba type of SO

coupling is the dependence of the electron velocity on its spin
orientation. Imbalance of spin-up and spin-down populations,
that is, a magnetization of conduction electrons, induces a
“Rashba current” j (R), which occurs in addition to the usual
“momentum” current j (p). The latter is also modified due to
a finite Rashba spin-orbit parameter1 α �= 0. We show that
at thermal equilibrium and even for low frequency currents

(ωτ « 1, where τ is the momentum relaxation time) the Rashba
current is compensated by the change of the momentum
current (j (p)

α − j
(p)
α=0) due to SO interaction. As it turns out,

this is no longer the case for rf fields: With increasing
frequency, momentum relaxation is less and less able to
compensate the Rashba current and a net SO effect on the
current becomes visible, particularly at spin resonance. There
the microwave electric field can effectively induce precession
of the magnetization which results in an oscillating Rashba
current and thus in a net SO-induced current. We show that
the ESR electric power absorption due to this current can
strongly exceed the classical magnetic dipole absorption. This
resonantly absorbed electric power is effectively converted,
via SO coupling, into magnetic energy. The rate for the
latter turns out to exceed the total power absorbed at ESR
conditions, which explains the experimentally observed5,11

negative absorption signal.
In this paper we introduce a formalism to describe the

influence of Rashba-SO interaction on the electric current
and the magnetization. In contrast to Ref. 12, we use a
semiclassical approach which allows us to take into account
different rates of spin and momentum relaxation and the partial
compensation of Rashba and momentum currents. Considering
the electron and spin dynamics, we introduce the term “Rashba
spin-orbit (RSO) force,” and explore its effects. We show
that the RSO force, acting on the electrons in spin-unpaired
states, is proportional to the time derivative of the electronic
magnetization. Therefore it can be applied to a wide class of
spin-galvanic effects where the dynamic magnetization may
have different origin. One can discuss, for example, electric
properties originating not only from magnetic and electric
rf fields but also from the magnetization induced by optical
generation or by spin injection.

Spin-dependent forces have been introduced by Shen16

and Chudnovsky15,17 in general form for a time-independent
Hamiltonian with SO interaction. Here we analyze the specific
case of a two-dimensional (2D) sample placed in an rf electric
field, where spin precession is induced by the Rashba field
originating from the resulting rf current. We show that this
current induced ESR (CI ESR) is characterized by a peculiar
line shape in agreement with experiment.5,11
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II. HAMILTONIAN OF THE SYSTEM

In systems without mirror symmetry, SO interaction causes
the second, the Rashba term, characterized by the unit vector
n and the spin Pauli matrices σ in

H= 1

2m∗

(
p− e

c
A

)2

+vR

(
p − e

c
A

)
× n · σ − g

2
μBB0 · σ .

(1)

Here p is the canonical momentum and m∗ is the effective
electron mass. The parameter vR = α/h̄ in the second term
is the material- and structure-dependent Rashba parameter1 α

divided by h̄. It describes the magnitude of the SO Rashba
coupling. In the case of asymmetric Si quantum wells it
results from the built-in electric field. The last term stands
for the Zeeman energy in an external magnetic field B0. In
contrast to the usual ESR experiment where magnetic dipole
transitions are excited by a microwave magnetic field, we
analyze here the influence of an in-plane rf electric field
E1(t) = Re[E1ω exp(−iωt)]. We consider a two-dimensional
(2D) electron gas choosing the vector potential in the form of
A = 1

2 B0⊥ × r − c
∫ t E1(t ′)dt ′, where B0⊥ is the transverse

component of the static magnetic field applied. The configu-
ration of the external fields relative to the 2D sample is shown
in Fig. 1. Here the unit vector n is perpendicular to the 2D
plane. For Si/SiGe, the Rashba parameter of vR = 4 ms−1

corresponds to a built-in field18 on the order of 2 × 1010 V/m.
Among the direct consequences of the Rashba SO coupling

are the following. The velocity of an electron:

v = ∂H

∂p
= v(p) + v(R), (2)

can be decomposed into the in-plane momentum velocity:

v(p) = 1

m∗

(
p − e

c
A

)
, (3)

and a spin-dependent Rashba component:

v(R) = vRn × σ , (4)

which is oriented in-plane and perpendicular to the spin of an
electron.

Another consequence of Rashba coupling is that the
electron spin is affected by the SO Rashba field as well. The
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FIG. 1. (Color online) Considered geometry: The static magnetic
field B0 and the microwave electric field are parallel and tilted by θ

with respect to the surface normal n. This gives an in-plane field of
E1(t) = −E(t) sin θ .

latter is proportional to the momentum velocity:

BR = vRm∗

μB

n × v(p). (5)

In the new variables Eqs. (2)–(5) the Hamiltonian Eq. (1) has
the simple form

H = 1

2
m∗v(p)2 −

(
BR + g

2
B0

)
μ, (6)

where μ = μBσ is the magnetic moment of an electron.

III. OSCILLATORY SOLUTION OF THE ELECTRON
EQUATION OF MOTION

To analyze the electron dynamics we consider the time
derivative

dv(p)

dt
= 1

ih̄
[v(p),H] + ∂v(p)

∂t

which leads to the equation

dv(p)

dt
= e

m∗

(
E1 + 1

c
v(p) × B0⊥ + 1

c
v(R) × B0⊥

)
. (7a)

The first two terms in Eq. (7a) are the classical Lorentz
force. The third one (c−1 · v(R) × B0⊥) originates from Rashba
coupling. One has to notice here that the one-electron Lorentz
force acting on the momentum velocity is ruled by the total
velocity v × B0⊥/c, defined in Eq. (2) and thus it depends
on the spin orientation entering via Eq. (4). Considering that
the momentum velocity of an electron relaxes much faster
(by a few orders of magnitude) than the spin, we notice that
v(p) converges to the spin-dependent value v(p)

rel = −v(R)(σ ),
which corresponds to the temporary energy minimum defined
by ∂H/∂v(p) = 0. Following the Drude approach, we include
the relaxation term (v(p) − v(p)

rel )/τ in Eq. (7a):

dv(p)

dt
= e

m∗

(
E1 + 1

c
v(p) × B0⊥ + 1

c
v(R) × B0⊥

)

− v(p) − v(p)
rel

τ
. (7b)

Subsequently we add to both sides of (7a) the derivative
dv(R)/dt = (vR/μB ) · n × dμ/dt . Then we get the following
equation for the total electron velocity:

dv
dt

= e

m∗

(
E1 + 1

c
v × B0⊥ + 1

e
F(SO)

)
− v

τ
, (8)

with the RSO force defined by

F(SO) = m∗vR

μB

(
n × dμ

dt

)
. (9)

Equations (8) and (9) allow us to analyze the electric field
effect in spin dynamics, no matter whether the magnetization
is induced by spin injection, by optic excitation, or by
magnetization precession. In other words, the RSO force does
not depend on the mechanism which rules the spin dynamics.
Without the RSO force, Eq. (8) is the classical steady state
equation with a well known solution defining the electric
conductivity tensor19 σ̂ . Equations (8) and (9) show that
SO Rashba coupling causes an additional SO electric field
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F(SO)/e, proportional to the derivative of the magnetization,
which induces a SO contribution to the electric current
j(SO) = j(p)

α − j(p)
α=0 + j(R), in addition to the classic current

density j(p)
α=0. The equations also show that there is no SO

electric current for a static magnetization. The equations thus
imply that an RSO force and the resulting current appear when
momentum relaxation becomes too slow to fully compensate
the Rashba current ruled by a fast spin dynamics.

The oscillating external electric field E1(t) =
E1ω exp(−iωt)20 causes oscillating currents v =
v(p)

0 + v(p)
ω exp(−iωt) and oscillating magnetic moments

μ = μ0 + μω exp(−iωt), where μω is finite only for electrons
in spin unpaired states. In the Drude model, v(p)

0 changes after
each electron scattering event, while v(p)

ω remains constant.
Also the amplitude of the electron magnetic moment μω, and
in particular its phase, do not change in spite of many electron
collisions. This assumption is justified by the fact that for
Si/SiGe the momentum relaxation time (at the Fermi level) is
τ � 10−11 s, while the transverse spin relaxation time T2 is
much longer (10−7–10−6 s).

Following Lax et al.19 we obtain from Eq. (8) the Fourier
amplitudes:

vω = 1

nee
σ̂ (ω)

(
E1ω + 1

e
F(SO)

ω

)
, (10)

where σ̂ (ω) is the familiar SO-independent dynamic electric
conductivity tensor, depending on the external magnetic field,
and ne is the surface density of the free electron gas.

The amplitude of the RSO force,

F(SO)
ω = −iω

αm∗

h̄μB

n × μω, (11)

is proportional to the frequency and the amplitude of the
oscillating magnetic moment (in Si/SiGe for ω = 2π · 9 ×
1010 Hz the value of RSO force is of the order of F (SO)

ω ≈
2.5 × 10−3 eV/cm).

In order to determine the Fourier amplitude μω we have to
analyze the influence of the Rashba interaction on the moving
electron. The Rashba field Eq. (5) is a linear function of v(p)

and it is equal to BR = BR0 + BR(t), with BR0 = (vRm∗/μB) ·
n × v(p)

0 and BR(t) = BRω exp(−iωt), where

BRω = (vRm∗/μB) · n × v(p)
ω . (12)

(The static component BR0 is small compared to the external
constant field B0; for an rf electric field amplitude in a
microwave cavity of the order of 102 V/cm and B0 ≈ 0.3 T
we haveBR0 ≈ 0.03B0.) Because of the Rashba term in the
Hamiltonian Eq. (1) the symmetry of the system in momentum
space is broken. The electron magnetic moment μ can be
decomposed into an isotropic μ(v(p)

0 ,t) and a small anisotropic
part 	μ(v(p)

0 ,t). As it was shown by Duckheim and Loss13 the
equation of spin motion, averaged over all directions of v(p)

0 ,
reads

dμ
(
v

(p)
0 ,t

)
dt

= −γ · μ
(
v

(p)
0 ,t

) × [gB0/2 + BR⊥(t)] , (13)

where the gyroscopic factor is γ = −2μB/h̄ and BR⊥denotes
the Rashba field component perpendicular to B0. The constant

component BR0 of the Rashba field is fixed once and again
after each electron scattering event. This component has been
neglected in Eq. (13) since the contribution of the correction
	μ(v(p)

0 ,t)BR0 to the spin motion is of higher order in the SO
Rashba coupling.

Adding to the right-hand side of Eq. (13) the incoherent
terms we recognize the Bloch equations which in the linear
limit lead to the familiar solution:

Mω = χ̂(ω)BR⊥ω, (14)

where Mω = δne · μω is the electron gas magnetization and
δne is the surface density of electrons in spin-unpaired states
[the number of electron states with uncompensated spins per
unit area is δne ≈ D(E)μBB0, where D(E) = m∗/πh̄2 is the
density of states for 2D electron gas]. The susceptibility tensor

χ̂ = 1

2

[
(χ+ + χ−) cos2 θ −i(χ+ − χ−) cos θ

i(χ+ − χ−) cos θ χ+ + χ−

]
(15)

connects the in-plane coordinates of the Rashba field with the
in-plane coordinates of the magnetization Mω. In the rotating
coordinate system (x̂ ± iŷ)/

√
2 (with ẑ parallel to B0) χ̂ is

diagonal with the components χ± = ∓γM0/(ω ∓ ωL + i/T2)
and Eq. (14) has the simple form μω± = (δne)−1χ±(ω)BRω±,
where for the vector μω (and likewise for BRω) μω± = (μωx ∓
iμωy)/

√
2.

The static magnetization M0 = χ0B0 is defined by the Pauli
paramagnetic susceptibility constant which for a 2D electron
gas is equal to χ0 = D(E) · μ2

B . The Larmor frequency is ωL =
γgB0/2.

For the oscillatory solution of the problem of the electron
motion we need the dependence of BRω [Eq. (12)] and
subsequently of v(p)

ω on the external electric field E1ω and
then we express the RSO force [see Eq. (11)] in terms of
E1ω. We find this dependence from Eq. (10) by subtracting
v(R)

ω = α
h̄μB

n × μω on both sides or from the oscillatory part
of Eq. (7b) and we obtain

v(p)
ω = 1

nee
σ̂ (ω) · [

E1ω − neeρ̂(0)v(R)
ω

]
. (16)

Here the resistivity tensor ρ̂(ω) [defined as the inverse of the
conductivity tensor ρ̂(ω) = σ̂−1(ω)] for the 2D sample in the
external fields (depicted in Fig. 1) has the form

ρ̂(ω) = σ−1
0

[
1 − iωτ ωcτ cos θ

−ωcτ cos θ 1 − iωτ

]
, (17)

with the Drude conductivity σ0 = nee
2τ/m∗ and the cyclotron

frequency ωc = −eB0/m∗c.
Taking the above into account, we obtain the equation

v(p)
ω = (nee)−1σ̂ (ω)

[
E1ω − nee	̂(ω)v(p)

ω

]
with 	̂(ω) = (δne)−1(α/h̄μB)2m∗ρ̂(0)n̂χ̂(ω)n̂ (n̂ is propor-
tional to the Pauli spin matrix n̂ = −iσy). Then, using the
iteration method we can express v(p)

ω , at least in principle, as a
function of E1ω. In the linear approximation we get the solution
for electrons in spin-unpaired states:

v(p)
ω = 1

nee
σ̂ (ω) · [Î − 	̂(ω)σ̂ (ω)]E1ω. (18)
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The Rashba coupling thus contributes to the electron mo-
mentum current by the term 	̂ which is proportional to
α2. For Si/SiGe the correction 	̂(ω)σ0 is of the order of
m∗(v(R))2T2/h̄ ≈ 0.3 × (10−2 − 10−1).

IV. ELECTRIC POWER ABSORPTION AND ENERGY
TRANSFER VIA THE RASHBA FIELD

The momentary power absorbed by an electron is the time
derivative of the one-electron HamiltonianP (t) = ∂H/∂t . If
the oscillating electric field is the only external time-dependent
field, then ∂H/∂t = eE1(t)v(t) and the time averaged value
of the electric power absorption (per unit area of the sample)
is given by the oscillatory amplitudes by

PE(ω) = (1/2)Re{E∗
1ωjω}, (19)

with the electron current jω = nee〈vω〉:
jω = σ̂ (ω)

(
E1ω + e−1 〈

F(SO)
ω

〉 )
, (20)

where 〈X〉 means the averaged value of X over all occupied
electron states. In the Drude (spin-free) model we get 〈vω〉 =
vω, while in the presence of the RSO force a difference
appears, 〈vω〉 �= vω, where vω is defined by Eq. (10). This
is a consequence of the fact that only some of the electrons,
namely those in spin-unpaired states, contribute to the electron
magnetization Mω = ne〈μω〉 ≈ δneμω. The electric current
Eq. (20) is the sum of two parts, the classical j(p)

α=0,ω = σ̂ (ω)E1ω

and the SO part j(SO)
ω = e−1σ̂ (ω)〈F(SO)

ω 〉, where 〈F(SO)
ω 〉 =

−iω(αm∗/h̄μB)n × 〈μω〉.
The additional SO current j(SO)

ω , described by the RSO
force and the classical dynamic conductivity, is the only
consequence of the Rashba coupling, in spite of the complex
components of this current. It is proportional to the frequency
and the amplitude of the precessing magnetization at the
frequency ω. Thus, in the absorption power PE [Eq. (19)] we
can distinguish two components: The classical, nonresonant
Joule heat P (J )

ω = (1/2)Re[E∗
1ωσ̂ (ω)E1ω] and the second one,

which is observed in spin resonance experiments,

P (SO)
ω = 1

2 Re
[
E∗

1ωσ̂ (ω)e−1
〈
F(SO)

ω

〉]
. (21)

As for the nonresonant part, we consider a constant electric
field, that is, the case ω = 0, E1(t) = E10. According to
Eq. (20) the total electric current is j0 = ne〈v0〉 = σ̂ (0)E10

(where j0 = j(p)
α=0) and simultaneously j(SO)

0 = 0. The momen-
tum current is then equal to j(p)

α,0 = j0 − j(R)
0 , where j(R)

0 =
(neeα/h̄μB)n × 〈μ0〉, with the static magnetization ne〈μ0〉 =
M0. In the case of E10 = 0 we have j0 = 0 and due to the
broken symmetry of the Hamiltonian in momentum space [see
Eqs. (5) and (6) and Fig. 2] the momentum current j(p)

α,0 = −j(R)
0

does not vanish.
Now let us analyze the expression (19): PE(ω) =

(nee/2)Re[E∗
1ω〈vω〉]. Combining the oscillatory part of Eq.

(7) with the equality B∗
Rωμω = −m∗v(p)∗

ω v(R)
ω we get

PE(ω) = E(kin)
ω

τ
+ P (M)

ω , (22)

where E(kin)
ω = ne(m∗/2)|〈vω〉|2 is the kinetic energy of the

electron gas, and P (M)
ω is the Rashba magnetic power ab-

vy
(p)

E

-v0y

v0yΔ /2 + Δ′
Δ /2 - Δ′

Δ E+ E-

Fermi level

FIG. 2. (Color online) Conduction band minima for the two
spin orientations in the presence of an external magnetic field. The
two eigenvalues E± of the Hamiltonian (6), E± = 1

2 m∗[v2
x + (vy ±

v0y)2] − 	′ ∓ 1
2 	, correspond to the upper + (μ = μ||, parallel to

B0) and lower − (μ = −μ|| antiparallel to B0) branches of the
spectrum (v0y = | α

h̄μB
n × μ||| sin θ , 	′ = 1

2 m∗v2
0y , 	 = gB0μ||). The

annulus indicated in red color in momentum space corresponds to
spin-unpaired electron states.

sorption, which describes the energy transfer via the Rashba
field to the Zeeman energy. P (M)

ω is the time averaged value
of P (M)(t) = −M(t)dBR/dt . Expressed by the oscillatory
amplitudes of the Rashba field and magnetization, it reads

P (M)
ω = (ω/2)Im(B∗

RωMω), (23a)

which has a simple form21 in a rotating coordinate frame:

P (M)
ω = (ω/2)[χ ′′

+(ω) |BRω+|2 + χ ′′
−(ω) |BRω−|2], (23b)

where χ ′′
± denotes the imaginary part of χ± ( + corresponds

to the ordinary electron spin resonance).
In a static field, the mean values of the precession ampli-

tudes of individual electron spins vanish. A finite precession
of the magnetization results from an rf field with a frequency
close to the Larmor frequency. Traditionally an rf magnetic
field B1 is used to excite spin precession. Rashba coupling
causes, however, that the rf Rashba field can additionally
induce magnetization precession, that is, a coherent precession
of individual spins.

For weak or moderate Rashba coupling, and typical electric
field strengths applicable in experiments, the momentum
current j(p)

ω can be well approximated by the total current,
as described by Eq. (20). The maximum value of the Rashba
velocity is negligible in comparison to the drift velocity. In
particular, for a 2DEG in Si/SiGe structures where vR = 4 m/s
and the electron mobility μ ∼= 30 m2/Vs, the drift velocity
exceeds the Rashba velocity already for E1 � 2 V/m, while
the microwave field in the microwave cavity is of the order of
E1

∼= 104 V/m at a microwave power of 1 μW.
On the other hand, for a high mobility, the Rashba field

induced by the electric component of a microwave [Eq. (12)]
is by orders of magnitude bigger than the amplitude of the
microwave magnetic field. For the listed values of μ and
vR the Rashba field is BRω

∼= 7 × 103B1. This comparison
shows that even for the Si/SiGe case, where SO coupling is
very weak as compared to GaAs or InSb, the current induced
ESR excitation is much more effective than magnetic dipole
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excitation.3,5,11 Therefore, for high mobility electrons, the most
effective excitation of spin resonance takes place when the
sample is placed in the maximum of E1, that is, at the node of
B1 in an ESR microwave cavity.

Here F(SO)
ω [see Eq. (11)] is proportional to the precession

amplitude μω. This amplitude of the transverse magnetization
is induced by the transverse component of the rf magnetic field
μω⊥ = (δne)−1χ̂ (ω)Bω⊥. The real (= dispersive) component
χ ′(ω) describes μω⊥ which occurs in phase with Bω⊥ and the
imaginary (= absorption) component χ ′′(ω) corresponds to the
magnetization shifted by π/2 in phase. The power transferred
to the magnetic system, given by Eq. (23b), is described by
the imaginary component only.

In contrast, the experimentally observed spectrum5,11 of the
electric absorption, as described by Eq. (21), is proportional to
a sum of imaginary and real components of χ̂ (ω). If the sample
is placed at the node of B1, the amplitude of Bω is dominated
by the current induced Rashba field, as described by Eq. (12). It
is proportional to the local electric field, expressed by Eq. (18).
The amplitudes of the real and imaginary contributions to the
CI ESR spectrum, A′

SO and A′′
SO, which stand for coefficients

of the real and imaginary components of χ (ω), are obtained
from the set of Eqs. (11), (12), (14), (18), and (21). They
scale with α2 and the in-plane component of E2 sin2 θ (θ is
the angle between n and E, θ = π/2 corresponds to in-plane
orientation of E). The ratio of the two amplitudes results
from a complex interplay of the phase shifts between E1(t),
j(t), BR(t), μ(t), and, finally, F(SO)(t). The occurrence of a
dispersive component in the observed absorption spectra was
a long-standing puzzling problem.21 Here it is shown to be a
unique attribute of the CI ESR induced by a microwave electric
field.

Both amplitudes of CI ESR spectra depend on the experi-
mental geometry and on electron mobility in a complex way.
An example of the dependence of the amplitudes on the sample
orientation θ is shown in Fig. 3.
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θ = π/2. The solid (green) line stands for the total electric absorption
amplitude and the dotted (orange) for the dispersion amplitude. The
dashed (dark red) line describes the energy transfer to the magnetic
energy and the dashed-dotted line (red) stands for the reduction of
the Joule heat at spin resonance. Inset: dependencies in linear scale,
demonstrating the signs of all amplitudes.

For ωτ ∼= 1 both amplitudes are of the same order of
magnitude. For such a high mobility they are expected to
change sign with θ . A peculiarity occurs at θ ∼= 64◦, where
the 2D cyclotron frequency agrees with the Larmor frequency.

The dashed line in Fig. 4 represents the transfer of resonance
energy to the magnetic energy A′′

M as described by Eqs. (23a)
and (23b). Remarkably, the amplitude A′′

M is bigger than the
total amplitude A′′

SO. Comparing Eqs. (19) and (22) we can
express the gain in magnetic power in excess of P (SO)

ω as
follows: P (SO)

ω − P (M)
ω = E(kin)

ω /τ − P (J )
ω � 0.

As it is shown in Figs. 3 and 4 (in the latter all amplitudes
are plotted as a function of the momentum relaxation time,
proportional to the electron mobility), A′′

kin is negative in the
whole range of τ and for all directions θ .

As seen in Fig. 4, in the low frequency limit all components
of CI ESR absorption vanish. The dispersive component
vanishes faster, with ω2τ 3, than the absorption one, with
ωτ 2. Consequently, the resonance line shape for low mobility
is expected to be a classical absorption line χ ′′(ω), while
a dispersive component occurs for high mobility only. The
difference A′′

kin = A′′
SO − A′′

M increases with ω3τ 4, being thus
negligible in the low mobility limit. It becomes effective only
for ωτ � 1.

V. CONCLUSIONS

In conclusion, we have analyzed the complex nature of
electric currents in the presence of Rashba type SO coupling.
We consider the coherent interaction of an electron with an
oscillating Rashba field induced by an electric rf perturbation.
We show that the oscillatory parts of the electron velocity and
the electron spin vary coherently with electric perturbation,
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independently of random electron collisions with crystal
imperfections. Since the conductivity tensor is used in the
description of the electron motion, the cyclotron motion
and random scattering (described by the relaxation time τ )
are taken into account. The spin oscillations at resonance
frequency are described by the magnetic susceptibility tensor
which depends on the transverse relaxation time T2 (containing
information of the spin interaction with crystal imperfections)
which, in agreement with experiment, is assumed to be much
longer than momentum relaxation time τ .

In spite of the fact that the electron velocity is a sum of
two components of very different character and characterized
by distinct relaxation mechanisms, the electric current can
be fully described by a sum of a classical current and an
additional component caused by the RSO force, both ruled by
Ohm’s law with a classic conductivity tensor. Since the RSO
force is proportional to the time derivative of magnetization,

the effect vanishes for static fields and a significant effect
occurs for rf electric fields with a frequency close to the
Larmor frequency. The formalism presented well describes
details of current induced ESR, a powerful tool for effective
spin manipulation.11,14 In particular, it explains a specific
resonance line shape and resonance amplitude and their
complex dependencies on experimental geometry and electron
mobility.21
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