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The Si(111)2×1 is among the most investigated surfaces. Nonetheless, several issues are still not understood. Its
reconstruction is well explained in terms of the Pandey model with a slight buckling (tilting) of the topmost atoms;
two different isomers of the surface, conventionally named positive and negative buckling, exist. Usually, scanning
tunneling microscopy (STM) experiments identify the positive buckling isomer as the stable reconstruction at
room temperature. However, at low temperatures and for high n doping of the substrate, recent scanning tunneling
spectroscopy (STS) measurements found the coexistence of positive and negative buckling on the Si(111)2×1
surface. In this work, state-of-the-art ab initio methods, based on density functional theory and on many-body
perturbation theory, have been used to obtain structural, electronic, and optical properties of Si(111)2×1 positive
and negative buckling. The theoretical reflectance anisotropy spectra (RAS), with the inclusion of the excitonic
effects, can provide a way to deepen the understanding of the coexistence of the isomers.
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I. INTRODUCTION

The Si(111)2×1 surface is one of the most studied and
well-known reconstructed semiconductor surfaces. The (111)
planes are the natural cleavage surfaces of the elemental
semiconductors and the 2×1 reconstruction is the one observed
for Si samples after cleavage in ultrahigh vacuum at low
temperature. The atomic structure of Si(111)2×1 consists of
zigzag chains of π -bonded atoms along the [110] direction,
well described within the Pandey model.1 Pseudopotential
total-energy calculations have shown that this reconstruction
can be formed easily in the cleavage process.2 In order to
describe properly all the experimental data, a buckling (i.e.,
a tilting) of the atoms of the chains has to be considered.
Moreover, ab initio calculations have shown that the buckled
structure is energetically more stable.3 Two different ways of
tilting the topmost atoms of the Pandey chains exist, giving
rise to two isomers of Si(111)2×1.3 They differ for the
conventional sign of the buckling: The Si(111)2×1 positive
buckling (pb) and the Si(111)2×1 negative buckling (nb)
(see Figs. 1 and 2).

Si(111)2×1 positive and negative buckling are inequivalent
structures with respect to the third atomic layer: This little dif-
ference in the surface geometry gives rise to significant differ-
ences in the electronic and optical properties, as shown in this
work. Scanning tunneling microscopy (STM) measurements4

suggest that in standard conditions (low doping and room
temperature) the Si(111)2×1 positive buckling is the most
stable atomic structure. Nonetheless, a recent work5 on highly
n-doped specimens of Si(111)2×1 has shown, comparing data
from scanning tunneling spectroscopy (STS) measurements
and theoretical predictions, the coexistence of both isomers of
the surface at very low temperature (8 K). This coexistence,
for which the level of doping is a crucial parameter,6 has also
been proved at room temperature.7 Therefore, a deeper study
of the Si(111)2×1 negative buckling is needed. The study
of the surface optical properties can provide the definitive
proof of the coexistence and insight into the electronic

structure of the two isomers. A combined effort of theoretical
simulations and experimental data concerning optical spectra
is often a powerful tool to confirm or discard a particular
surface model.8,9 The inclusion of the electron-hole interaction
in the theoretical optical spectra of surfaces is a major issue:
The excitons within the electronic gap (bound electron-hole
states) cannot be neglected in order to reproduce experimental
results. In this work we compute the geometric, electronic,
and optical properties of both isomers of Si(111)2×1 by
ab initio calculations among the most reliable state-of-the-art
methods based on density functional theory and many-body
perturbative techniques (GW and Bethe-Salpeter equation).
The differences between the two isomers concerning the
quasi-one-dimensional surface excitons determine a different
optical response of the two surfaces.

II. METHODS

In order to model the Si(111)2×1 positive and negative
buckling surfaces the supercell method was applied: We have
used slabs of 24 atoms, forming 12 atomic layers, separated by
7.42 Å of vacuum for structural and energetic properties and by
17.12 Å of vacuum for electronic and optical properties. Tests
with thicker slabs (up to 24 layers) have also been performed.

As a first step the geometric, electronic, and optical prop-
erties of both isomers of Si(111)2×1, positive buckling (pb)
and negative buckling (nb), were calculated within the density
functional theory (DFT) in the local density approximation
(LDA), using the codes of the Quantum Espresso package.10

We have employed a norm-conserving LDA pseudopotential
and an exchange-correlation potential parametrized by Perdew
and Zunger.11,12

We have sampled the Brillouin zone using Monkhorst and
Pack uniform grids of (nk1, nk2, nk3) k points13 with (0,0,0)
offset (not shifted k points) and (1,1,1) offset (shifted k points);
offset 1 along a particular axis means a grid displaced by half a
grid step in that axis. The number and the type of used k points
are crucial parameters, as highlighted in the next section.
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FIG. 1. (Color online) Side view of both isomers of Si(111)2×1.
The distance dπ between atom A and atom B is the bond length along
the Pandey chain, while the difference in height � between atom A
and atom B is the buckling amplitude.

Quasiparticle energies have been calculated within the
many-body perturbation theory in the GW approximation.14

The electron-hole interaction has been taken into account by
solving the Bethe-Salpeter equation15(BSE). The inclusion
of excitonic effects is often essential to describe properly
the optical properties of the matter and to obtain theoretical
results in good agreement (quantitative and qualitative) with
experiments. In order to ease the computational applicability,
the Bethe-Salpeter equation is rewritten as an eigenvalue prob-
lem involving the so-called “excitonic Hamiltonian” whose
elements can be calculated starting from DFT wave functions,
GW quasiparticle energies, and the screened Coulomb inter-
action W . BSE calculations have been carried out using the
EXC code.16

Concerning the optical properties, we have focused on
the reflectance anisotropy spectroscopy (RAS) spectra. RAS
experiments17,18 are a powerful and efficient tool widely used
to study and characterize surfaces. The RAS signal measures
the difference of reflectivity for light polarized along two
perpendicular directions (x and y) in the plane of the surface:

�R

R
= Ry − Rx

R

FIG. 2. (Color online) Top view of both isomers of Si(111)2×1.

and it corresponds to the difference of the reflectivity
corrections to the Fresnel case for the two different light
polarizations. For cubic crystals, the RAS signal comes from
the surface anisotropy since the bulk is optically isotropic.
The reflectance anisotropy spectroscopy is very suitable and
widely used to combine experimental and theoretical effort;
in fact, there is a simple expression for the RAS spectrum,
in the case of the supercell method, involving the half-slab
polarizability19 αhs

ii , related to the surface optical properties,
and involving the bulk dielectric function εb, related to the
volume (bulk) optical properties:

�Ri

R
= 4ωd

c
Im

4παhs
ii

εb − 1
,

where d is the half-slab thickness and i is the direction of light
polarization.

The half-slab polarizability αhs
ii and the bulk dielectric

function εb have been calculated within RPA using DFT-LDA
and within the GW plus Bethe-Salpeter equation method.

In our choice, y is along the [110] direction (parallel
to the Pandey chains) and x is along the [112] direction
(perpendicular to the Pandey chains).

III. RESULTS

A. Geometry and ground-state properties

As a consequence of minimization of total energy we
have obtained the ground-state geometry of both isomers of
Si(111)2×1 within DFT-LDA. With a cut-off energy of 30 Ry
and a mesh of 100 shifted k points in the irreducible Brillouin
zone (IBZ) we have determined the buckling amplitude �

and the bond length dπ along the Pandey chains for the two
different structures of the surface (see Fig. 1). Concerning the
buckling amplitude, we have obtained

�pb = +0.53 Å, for the positive buckling,

�nb = −0.59 Å, for the negative buckling.

Comparing with the most recent DFT calculations (2011),
we find the same values as reported by Bussetti et al.5 but also
a good agreement with the hybrid DFT results by Patterson
et al.20 We also find good agreement with previous theoretical
results.4,21–23

For the bond length along the Pandey chains, we have
obtained dπ = 2.27 Å for both isomers. The bond distance
along the π chains is contracted with respect to the bond length
of the Si bulk (db = 2.34 Å in our calculations). Moreover, the
absolute value |�| of the buckling amplitude of both isomers
satisfies the relationship |�| = (0.2–0.3)db, as reported by
Bechstedt.24 We find an excellent agreement between our
prediction of the bond length and the LEED data by Xu et al.25

(dπ = 2.271 Å) and a good agreement between the LEED data
(|�| = 0.51 Å) of the same authors and our calculated buckling
amplitude for the pb isomer.

We have checked the convergence of the geometric values
against the number of k points used to sample the IBZ: The
increasing trend till convergence of the buckling amplitude for
both isomers is shown in Fig. 3.

Si(111)2×1 negative and positive buckling are both local
energy minima, separated by an energetic barrier as shown in

245313-2



GEOMETRIC, ELECTRONIC, AND OPTICAL PROPERTIES . . . PHYSICAL REVIEW B 86, 245313 (2012)

20 30 40 50 60 70 80 90 100
shifted k-points

0.588
0.589
0.590
0.591
0.592
0.593
0.594

B
uc

kl
in

g
   

  [
Å

]
NEGATIVE BUCKLING

20 30 40 50 60 70 80 90 100
shifted k-points

0.521
0.522
0.523
0.524
0.525
0.526
0.527

B
uc

kl
in

g
   

  [
Å

]

POSITIVE BUCKLING

FIG. 3. (Color online) Buckling amplitude versus the number of
k points used to sample the IBZ.

Fig. 4. We have estimated the upper limit value of the energetic
barrier and we have found it to be about 0.06 eV/(2×1); the
estimate has been done switching from the negative buckling
configuration to the positive buckling one simply tilting “by
hand” the buckled atoms of the Pandey chain with respect to
each other. At each step, the system has been relaxed keeping
fixed the value of the buckling amplitude.

Our calculations show that the negative buckling is the most
stable configuration, being favored by about 5.4 meV/(2×1)
compared to the positive buckling. There are contrasting
results in the literature concerning this issue of the stability.3,26

We suggest that the choice of the number and the type (quality)
of the k points used to sample the Brillouin zone is crucial to
establish which configuration is the stable one. The trend of
DFT total energy against the number and the type of k points
for both isomers is shown in Fig. 5.

We can notice that using not shifted k points (that is, a
mesh of k points containing � and other k points on the
border of the Brillouin zone) and increasing their number,
there is an inversion of stability [see Fig. 5(b)]. Instead,
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FIG. 4. Energy path from the negative buckling structure to the
positive buckling configuration (see text).
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FIG. 5. (Color online) (a) Total DFT-LDA energy versus the
number of shifted k points used to sample the IBZ. (b) Total DFT-LDA
energy versus the number of not shifted k points used to sample
the IBZ.

using shifted k points (a mesh that does not include any high
symmetry point and no k points on the border of the BZ),
independently on their number, the negative buckling is always
the stable configuration [see Fig. 5(a)]. Hence, the quality of
the employed k points affects the results, but just when few k

points are used.
Recently, Patterson et al.20 have found that using an hybrid

DFT method, the pb is 4 meV/surface atom lower in energy
than the nb (but the number of used k points is not specified).
We have also performed total energy calculations using a
norm-conserving PBE27 pseudopotential (36 shifted k points
in IBZ) and a PBE028,29 hybrid functional (16 shifted k points
in IBZ), finding the same result obtained within the LDA
framework: The nb configuration is slightly lower in energy
(a few meV) than the pb. Also with the introduction of an
electric field perpendicular to the surface (±0.1 and ±0.2 V/Å)
and simulating an n-doped and p-doped Si(111)2×1 surface
with the addition (or subtraction) of fractional electrons,30

the nb isomer is favored by a few meV with respect to the
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FIG. 6. (a) Energy difference between the two isomers as a
function of the strength of an external electric field normal to the
surface. (b) Energy difference between the two isomers as a function
of excess charge: Injection or subtraction of fractional electrons to
simulate n or p doping, respectively.

pb (see Fig. 6). Moreover, we have found out that a higher
intensity of the electric field and a higher level of doping
(independently of the type) stabilize the negative buckling
isomer.

In any case, the energy difference between the two
geometric structures is very small, and we can assume that the
two isomers are energetically degenerate within the accuracy
of the DFT method, as stated in previous works.3,5,21,26

Thus we would expect that experimentally both isomers
coexist but experiments see, most often, the positive buckling
configuration. The reason why this happens is not clear. One
possibility is that the pb structure is cleavage induced.31 The
inclusion of phonons may also be necessary to explain the
STM experimental findings4 according to which the pb isomer
is the stable configuration; anyway we notice that the effect of
the zero-point vibrations does not seem to play any role as one
can evince from the curvature of the total energy near pb and
nb configurations in Fig. 4.

TABLE I. Electronic gaps within DFT-LDA and GW of
Si(111)2×1 positive and negative buckling at the surface high
symmetry points in IBZ.

Si(111)2×1 Electronic gaps (eV)

Positive buckling Negative buckling

J K J ′ J K J ′

DFT 0.35 0.62 1.67 0.19 0.35 1.54
GW 0.77 1.03 2.34 0.46 0.63 2.04

B. Electronic properties

The electronic gaps at the surface high-symmetry points,
calculated within the density functional theory and within
the many-body perturbation theory (GW approximation), are
shown in Table I for both isomers.32

At the DFT-LDA level we find good agreement with
previous results for both isomers.26,33 At the GW level we find a
minimum gap of 0.44 eV near JK

2 for the Si(111)2×1 negative
buckling, while for the positive buckling a GW minimum gap
of 0.77 eV is observed near J . These values are in excellent
agreement with the most recent STS experimental results by
Bussetti et al.5 For the pb GW band structure we find a
good agreement with previous quasiparticle calculations.22,23

We can observe that the minimum gaps at the surface high
symmetry points are larger for the positive buckling isomer:
This is indeed true for all the k points along the JK direction
in reciprocal space, and it will affect the optical properties, as
shown in the next section.

In Fig. 7 we show the electronic band structure (empty and
filled surface states) for both isomers calculated within the
density functional theory (dashed line) and the GW method
(solid line) along the JK line, which corresponds to the
direction perpendicular to the Pandey chains in real space.
Two adjacent π chains are about 6.61 Å distant from each
other and so their interaction is very weak: This is the reason
for the little band dispersion observed along the JK direction.
On the other hand, the coupling between the orbitals is very
strong along each chain, as a direct consequence of the Pandey
model, and this is reflected in a marked dispersion of the
bands along the lines in reciprocal space corresponding to the
π -chain direction.22

The maximum value of the filled surface band is at J for
the positive buckling and between JK

2 and K for the negative
buckling; the minimum value of the empty surface band is
between J and JK

2 for both isomers. The occupied surface
states are located on the upper atoms of the Pandey chains,
while the empty states are located on the lower atoms of the
π chains: This result comes from the study of the squared
modulus of the Kohn-Sham wave functions. For example, we
show in Figs. 8 and 9 the squared modulus of the highest
occupied surface state and the lowest unoccupied surface state
at J , for both isomers.

We evaluated the impact of the geometry on the electronic
properties. The little difference in the buckling amplitudes of
the two isomers is not crucial: A slight change in the absolute
value of the buckling does not produce sizable changes in the
band structure. The important differences concerning the gaps
and the dispersion of the two configurations are mainly related
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FIG. 7. (Color online) Electronic band structure around the
fundamental gap of the Si(111)2×1 positive buckling (a) and negative
buckling (b) obtained within DFT-LDA (black dashed lines) and
within GW (red solid lines).

to the different sign of the buckling and must be therefore
attributed to the interaction between the first and the third
atomic layer.

C. Optical properties

The presence of π chains on the Si(111)2×1 surface
gives rise to a large anisotropy in the optical properties. This
has been proved in 1984 by surface differential reflectivity
(SDR) experiments,34 in which a strong optical response was
observed only for light polarized along the Pandey chains
(as suggested by Del Sole and Selloni35). A previous SDR
experiment36 with unpolarized light, in 1971, had already
shown an optical peak at 0.45 eV, connected to a surface
exciton, as theoretically described by tight binding37 and

FIG. 8. (Color online) Squared modulus of the Kohn-Sham wave
function of the highest occupied surface state at J for the Si(111)2×1
positive buckling (left) and negative buckling (right).

FIG. 9. (Color online) Squared modulus of the Khon-Sham
wave function of the lowest unoccupied surface state at J for the
Si(111)2×1 positive buckling (left) and negative buckling (right).

Bethe-Salpeter22 calculations. The excitonic peak is also
evident in reflectance anisotropy spectroscopy experiments
[RAS and SDR results are equivalent38 in the near-IR region
of the Si(111)2×1 spectrum]; a RAS spectrum for Si(111)2×1
surface has been experimentally obtained up to 4.5 eV.38,39

The inclusion of the excitonic effects in theoretical simula-
tions of optical spectra has been done by solving the BSE22,33

and also within TDDFT33 calculations, but only for the
Si(111)2×1 pb. Concerning the Si(111)2×1 nb, only one DFT
calculation is, to our knowledge, present in the literature.20

A calculation of the RAS spectrum with the inclusion of
the effects correlated to the electron-hole interaction is still
missing.

In order to understand the buckling influence on the
surface optical spectra, studies for the nb geometry have been
performed in the present work. For the purpose of a direct
comparison using the very same convergence criteria (en-
ergy cutoff, basis set, pseudopotentials, exchange-correlation
functional, k points, and so on), the pb isomer was also
investigated. We have obtained the RAS spectra of both
isomers of Si(111)2×1 within the density functional theory
(in the LDA approximation) and using the GW plus Bethe-
Salpeter equation approach.40

RAS spectra of positive and negative buckling structures
within DFT-LDA, up to 6 eV, are shown in Fig. 10: The
RAS spectra of the two isomers differ in shape, intensity,
and position of the peak. The Si(111)2×1 negative buckling
presents a RAS peak (0.23 eV) at lower energies with respect to
the peak of the positive buckling (0.48 eV), and this is related
to the differences in the DFT gap values shown in Table I:
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FIG. 10. (Color online) RAS spectra of Si(111)2×1 positive
and negative buckling calculated within DFT-LDA. y is the [110]
direction, parallel to the Pandey chains, and x is the [112] direction,
perpendicular to the chains.
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FIG. 11. (Color online) RAS spectra of Si(111)2×1 positive and
negative buckling calculated within BSE. y is the [110] direction, par-
allel to the Pandey chains, and x is the [112] direction, perpendicular
to the chains. An artificial broadening of 0.05 eV has been included.

The electronic gaps of the positive buckling are larger than
the electronic gaps of the negative buckling. The RAS peak
is more intense for the negative buckling. The intensity ratio
between the two isomers is nearly 1.6. The main reasons are
related to the different gaps and to the fact that the empty and
occupied surface bands of the nb isomer are parallel in a wider
BZ region along the JK line. This leads to an enhancement of
the joint density of states.

The results obtained for the Si(111)2×1 positive buckling
are in good agreement with previous DFT-LDA RAS spectra33;
the redshift of negative buckling RAS peak with respect to
the positive buckling was already predicted.20 Even at the
DFT-LDA level we can observe that the optical response of the
two isomers is deeply different and so we presume that they can
be easily distinguished in RAS experiments. Anyway, in order
to compare in a quantitative and qualitative way to the (still
missing) experimental data, the introduction of the excitonic
effects is necessary.

BSE calculations of both isomers up to 2.5 eV are shown in
Fig. 11. The dimension of the excitonic Hamiltonian we have
diagonalized is 80 000 × 80 000 in the transition space; more
technical details are in Ref. 40. We find the main RAS peak at
0.45 eV for the Si(111)2×1 positive buckling and at 0.31 eV
for the Si(111)2×1 negative buckling.

Our results for the positive buckling structure in the IR re-
gion are in good agreement with previous BSE calculations22,33

and with experimental data34,38,39 as shown in Fig. 12. Thus we
can assume the reliability of our results also for what concerns
the negative buckling isomer, even if we cannot compare
our calculations with an experimental optical spectrum, still
missing in literature.

With the inclusion of the excitonic effects, the differences
between the spectra of the isomers are even more sizable:
The negative buckling shows a narrower and more intense
peak at lower energies with respect to the positive buckling.
The intensity ratio between the two structures is now nearly
3. As discussed before, one reason for the different optical
responses can be traced back from the electronic properties
(band structure). Actually, as can be seen in Fig. 13, along the
JK line the momentum operator matrix elements are nearly the
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FIG. 12. (Color online) RAS of Si(111)2×1 pb calculated within
BSE (red dashed line) compared with experiment39 (blue solid line).
y is the [110] direction, parallel to the Pandey chains, and x is the
[112] direction, perpendicular to the chains.

same for the two isomers. The difference in dispersion of the
transition energies Ec(k) − Ev(k) is slightly more remarkable
since the nb shows a more flat trend. This, together with the
smaller gap, seems to be the reason of the larger optical signal
in the nb isomer.

The strong anisotropy in surface optical properties, stated
in the Pandey model1 and experimentally well proved,34 is
highlighted in Fig. 14: For both isomers the RAS peak in the
IR region is completely related to the optical response along
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FIG. 13. (Color online) (a) GW energy gaps Ec(k) − Ev(k) for k

points along the JK line for both isomers. (b) Squared modulus of
the momentum operator along the y direction for transitions between
the highest occupied and lowest unoccupied surface states along the
JK line for both isomers of Si(111)2×1.
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FIG. 14. (Color online) Surface contribution to reflectance for
light polarized along x ([112] direction, perpendicular to the π chains)
and y ([110] direction, parallel to the Pandey chains) calculated within
BSE. An artificial broadening of 0.05 eV has been included.

the [110] direction, that is the direction parallel to the Pandey
chains (y).

Concerning the surface exciton binding energy Eb we
find Eb = 0.32 eV for the positive buckling isomer (in good
agreement with previous results22,33,37) and Eb = 0.13 eV for
the negative buckling structure. The smaller binding energy
for the nb is consistent with a narrower electronic gap and
a consequence of a more effective screening. In fact, we find
that the “surface” dielectric constant for the nb is about 5 times
larger than the one of the pb.

For both isomers, several excitonic eigenvalues can be
found below the GW electronic gap but the optical peak is
dominated by the lowest energy surface exciton, on which we
focus. The other excitons are responsible for the asymmetry
of the RAS peak, more evident in the positive buckling isomer
that presents a larger number of excitonic states below the GW
gap. In order to study the lowest energy excitons we follow
Rohlfing and Louie22: We consider the hole placed on one of
the upper atoms of the Pandey chain (on which we have the
maximum distribution of the highest occupied surface state, as
shown in Fig. 8 for the J point) and we analyze the probability
distribution to find the excited electron in real (|ψexc(re,rh)|2)
and reciprocal (|Acv(k)|2) space, where

ψexc(re,rh) =
∑

cvk

Acv(k)φ∗
vk(rh)φck(re)

FIG. 15. (Color online) Si(111)2×1 positive buckling. Probabil-
ity distribution to find the excited electron with the hole fixed on one
of the upper atoms of the Pandey chain.

FIG. 16. (Color online) Si(111)2×1 negative buckling. Probabil-
ity distribution to find the excited electron with the hole fixed on one
of the upper atoms of the Pandey chain.

holds. Considering the calculated geometric, electronic, and
optical properties of the two configurations of Si(111)2×1,
we expect a deep spatial anisotropy of the excitons. As we can
see in Figs. 15 and 16, this is indeed the case. The exciton is
localized on the surface, along the chains, for both isomers, and
it is almost one dimensional. The probability to find the excited
electron decays to zero in nearly 13 Å towards the bulk; a
localization in the [112] direction (perpendicular to the Pandey
chains) is also evident, and is a direct consequence of the weak
interaction between the chains. The behavior of the excitonic
wave function is visibly different in the [110] direction (along
the Pandey chains): The probability to find the excited electron
ranges over a larger distance, decaying to nearly zero in 80 Å
in [110] direction for the positive buckling but remaining still
large for the negative buckling. We could just estimate, for the
nb, that the excitonic radius is larger than 80 Å. The spatial
distribution of the excitonic wave function is thus different for
the two isomers: The lowest energy exciton of the negative
buckling is more delocalized along the π chain containing the
hole. This is in agreement with the lower binding energy of
the nb exciton with respect to the pb one.

Despite the localization of the electron-hole pairs over only
a few Pandey chains in [112] direction and their restrictions
to the first atomic layers, important features of the excitons
can be interpreted in terms of (strongly anisotropic) Wannier-
Mott excitons. The large binding energy is connected to the
depletion of the screening due to dimensionality effects.

Studying the probability in reciprocal space, we find that
the transitions involved are mainly those between the highest
occupied and the lowest unoccupied surface states, along
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FIG. 17. (Color online) Probability |Acv(k)|2 for transitions
between surface states versus k for both isomers of Si(111)2×1.
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the JK line. We show in Fig. 17 the envelope functions of
two representative excitons. Their behavior in k space is in
agreement with the electronic properties (the one-dimensional
character of the excitons comes from the fact that the band
structure is also one dimensional along JK): For the positive
buckling the probability is maximum near J , at which the
minimum GW gap is observed, and it decreases rapidly
towards K; for the negative buckling the maximum probability
is near JK

2 , that is where the GW gap is minimum. In Fig. 17 a
stronger localization of the negative buckling exciton is evident
in the direction perpendicular to the Pandey chains: Again, this
can be explained in terms of the more parallel surface bands
of the nb isomer [see Fig. 13(a)].

IV. CONCLUSIONS

We have studied the Si(111)2×1 surface using theoretical
techniques based on density functional theory and many-
body perturbation theory. DFT-LDA results showed that
the two Si(111)2×1 isomers, conventionally named positive
and negative buckling, are both local stable geometrical
configurations, and they are separated by an energetic barrier
of less than 0.06 eV/2×1. The slight difference in the
geometry of the two isomers, related to the different tilting
mode of the topmost atoms of the Pandey chain, produces
sizable physical differences in the electronic properties and,
consequently, in the optical response. This is a consequence of
third-nearest neighbor effects. The most important difference

concerns the RAS of the two isomers: The peak of the
RAS of the negative buckling is narrower, more intense, and
redshifted by about 0.14 eV with respect to the one of the
positive buckling. The importance of this observation resides
in the possibility to investigate the coexistence of the two
configurations at different temperatures and levels of doping,
comparing experimental RAS spectra of Si(111)2×1 to the
theoretical results obtained in this work. The larger intensity
of the negative buckling RAS peak is related to the more
parallel empty and occupied surface bands along the JK line
for negative buckling, and to the narrower electronic gap.
The solution of the Bethe-Salpeter equation put in evidence
the quasi-one-dimensional character of the exciton responsible
for the RAS main peak for both isomers, that is very localized
along the direction perpendicular to the Pandey chains, and
whose probability distribution is extended over 80 Å along
the chains for the positive buckling and even more for the
negative buckling. The larger delocalization of the exciton in
the negative buckling is at the origin of the small value of its
binding energy (∼0.1 eV).
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