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We consider the trial wave functions for the fractional quantum Hall effect that are given by conformal blocks,
and construct their associated edge excited states in full generality. The inner products between these edge states
are computed in the thermodynamic limit, assuming generalized screening (i.e., short-range correlations only)
inside the quantum Hall droplet and using the language of boundary conformal field theory (boundary CFT).
These inner products take universal values in this limit: they are equal to the corresponding inner products in the
bulk two-dimensional chiral CFT which underlies the trial wave function. This is a bulk/edge correspondence;
it shows the equality between equal-time correlators along the edge and the correlators of the bulk CFT up to a
Wick rotation. This approach is then used to analyze the entanglement spectrum of the ground state obtained with
a bipartition A ∪ B in real space. Starting from our universal result for inner products in the thermodynamic limit,
we tackle corrections to scaling using standard field-theoretic and renormalization-group arguments. We prove
that generalized screening implies that the entanglement Hamiltonian HE = − ln ρA is isospectral to an operator
that is local along the cut between A and B. We also show that a similar analysis can be carried out for particle
partition. We discuss the close analogy between the formalism of trial wave functions given by conformal blocks
and tensor product states, for which results analogous to ours have appeared recently. Finally, the edge theory
and entanglement spectrum of px ± ipy paired superfluids are treated in a similar fashion in the Appendixes.
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I. INTRODUCTION

A. Motivation

The fractional quantum Hall effect (FQHE) is an archetype
of strongly interacting many-body electronic systems. As the
filling fraction is varied, various fully gapped phases of matter
can be observed experimentally. These topological phases
of matter1 exhibit spectacular collective behavior, such as
localized excitations with quantized fractional charge, Abelian
(and possibly non-Abelian) fractional statistics, or protected
gapless edge modes. Our understanding of the FQHE mostly
relies on the “variational” approach pioneered by Laughlin.2

His celebrated wave function is not the ground state of a
physically realistic Hamiltonian (say, electrons in a magnetic
field with Coulomb repulsion). Yet, it describes accurately the
FQHE at some specific filling fractions and it is commonly
accepted that it belongs to the same topological phase as the
real physical system.

Since Laughlin’s contribution, several types of trial wave
functions have been proposed for the FQHE at various filling
fractions. These include, for example, hierarchical states,3

composite fermion wave functions,4 or the important family
of states given by conformal blocks introduced by Moore and
Read5 (MR) (states corresponding to Jack polynomials have
also been proposed later6 and they can actually be included in
the latter family7). In this paper, we focus on these MR trial
wave functions and their quantum entanglement properties.

The idea that quantum entanglement8 can help characterize
different topological phases of matter has emerged over the
past years. This approach has provided valuable new insights,
while traditional methods based on symmetry breaking and
local order parameters are widely accepted to fail.1 For
instance, the topological entanglement entropy9–11 of the
ground state of a fully gapped Hamiltonian is one robust
measure of quantum entanglement in a topological phase in

two dimensions. More precisely, a bipartition of the quantum
system is defined when the Hilbert space factors into two
parts H = HA ⊗ HB . For most physical systems, a natural
bipartition is given by a cut in position space in continuous
systems or between a row or a plane of sites in lattice models.
The object of interest is then the reduced density matrix
ρA = trHB

|ψ〉〈ψ |. The von Neumann entropy of ρA scales
linearly with the area of the cut between parts A and B,12

and it contains a universal order O(1) piece: the topological
entanglement entropy. At the end of Ref. 10, Kitaev and
Preskill (KP) pointed out that the topological entanglement
entropy arises naturally if one assumes that the reduced density
matrix ρA has the form of the thermal density matrix of a
(1 + 1)-dimensional gapless chiral theory along the cut.

The spectrum of the “entanglement Hamiltonian” HE =
− ln ρA is called the entanglement spectrum (ES). The eigen-
values of HE are called pseudoenergies. Li and Haldane
(LH) studied the ES of quantum Hall systems numerically
in Ref. 13 and observed that it contains a low-lying part in
which the multiplicities are related in a universal way to those
of the conformal field theory (CFT) describing the low-energy
edge excitations. This low-lying universal part is usually well
separated from the rest of the ES by an entanglement gap
(see also the extended discussion in Ref. 14). LH suggested
that this low-lying part could be used as a diagnostic tool
when comparing two ground-state wave functions. In addition,
they observed that for some specific trial states, such as the
Laughlin wave function, the entanglement gap goes to infinity,
leaving only the low-lying universal part. Although the work
of LH relies on a bipartition that is a cut in momentum space
(the so-called “orbital partition”15), which is not local,16 their
main observations remain valid for the more natural cut in real
space.16–18 The real-space ES is expected to be the spectrum
of a local field theory along the cut, in agreement with the
insightful suggestion of KP: not only the multiplicities, but
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also the eigenvalues of HE = − ln ρA are those of a (perturbed)
CFT along the cut, when the length of the cut is large compared
to the mean particle spacing (which plays the role of an UV cut-
off). The conjectured locality of the ES, also dubbed “scaling
property” in Ref. 16, is discussed in greater detail in Sec. I D.

The purpose of this paper is to provide an analytic
framework that explains why these properties of the real-space
ES hold for the large family of MR trial wave functions.
It involves a general construction of the space of edge
excitations, and a precise analysis of the inner product in
that Hilbert space. As a by-product, we will arrive at the
important conclusion that, assuming generalized screening,
i.e., short-range correlations only in the bulk (this will be
discussed in the following), there is an isometric isomorphism
(in the thermodynamic limit) between the Hilbert space of
the gapless edge excitations and the Hilbert space of the CFT
used to construct the ground-state trial wave function. This
result is a precise “bulk/edge correspondence,” which, stated
loosely, says that the edge CFT and the bulk CFT are the
same up to a Wick rotation. In particular, this rules out the
possibility of using nonunitary CFTs to construct FQHE trial
wave functions, as those can not be consistent with generalized
screening. Some version of this correspondence has long been
expected,5 although no precise statement about a general
relation between the inner products in the space of edge states
and those in the CFT has ever appeared in the literature. In
Ref. 19, Wen provided an important argument that implies
such a relation in the particular case of the Laughlin wave
function, relying on the plasma mapping;2 the formalism we
develop in this paper is strongly inspired by his. We will then
extend our ideas to tackle the real-space entanglement of the
ground state. Let us emphasize that we will work only with
wave functions, and do not address any question related to
(physical) Hamiltonians in this paper.

Previous steps towards an analytic understanding of the
ES in quantum Hall systems include direct calculations for
the integer quantum Hall effect16,20,21 or other free-fermion
systems22–24 and rigorous results on the multiplicities for a
large class of trial wave functions.25,26 Some general arguments
for a correspondence between the entanglement and edge
spectra have been proposed previously. In Ref. 27, it is
suggested to start from two pieces A and B of a topological
phase which both support (counterpropagating) gapless chiral
edge states, and then to glue them along the edge by switching
on an interaction Hamiltonian that couples the systems A and
B. Restricting the analysis to a coupling between the edge
states only (the possibility of exciting the system in the bulk
is neglected), standard renormalization-group (RG) arguments
yield the thermal form of the reduced density matrix suggested
by KP. Despite its simplicity, this “cut-and-glue” argument
relies neither on a specific wave function nor on a precise
choice of the bipartition of the Hilbert space, and is therefore
intrinsically different from the approach we adopt in this paper.
Another approach28 emphasizes geometric aspects and makes
use of Lorentz invariance to obtain a general argument, which
again is very different from our approach in this paper.

At the most fundamental level, the ultimate explanation for
the entanglement-edge correspondence should be something
like the following (part of which also appears as a small part
of the argument of Ref. 28): If the effective low-energy field

theory of the topological phase is some Chern-Simons gauge
theory, then to obtain a reduced density matrix, the degrees
of freedom of a subregion that are traced out must be gauge
invariant. The reduced density matrix is then gauge invariant. It
can be represented field theoretically by a functional integral,
which clearly must involve the same Chern-Simons theory in
the interior of the remaining region A. In order to be gauge
invariant, boundary degrees of freedom are required,29 and the
Hilbert space of these is the same as that of a physical edge
(that is, the quantum numbers and multiplicities agree). More
generally, the appearance of the edge degrees of freedom is
necessitated by gauge invariance or, in other words, to absorb
the effects of “anomalies” (in the field-theoretic sense) in the
bulk theory, just as in the case of a physical edge. The space
of low-(pseudo)energy degrees of freedom required to accom-
plish this is robust. The degeneracy of the pseudoenergies
of these states is resolved only by subleading nonuniversal
effects, which contain an ultraviolet cutoff. These effects
produce an effective local entanglement Hamiltonian when the
partition is carried out in a local fashion in real space, and this is
precisely what we obtain in our analysis of trial quantum Hall
wave functions. In our work, the use of trial wave functions that
are conformal blocks takes the place of the gauge theory, and
the role of ultraviolet cutoff is played by the particle spacing.

B. Fractional quantum Hall effect and the lowest Landau level

Let us first recall some standard notations for the many-
body problem in the lowest Landau level (LLL). One considers
N indistinguishable (spinless) charged particles in a two-
dimensional surface pierced by a normal and uniform magnetic
field. In this paper, this surface is either the plane or the
sphere S2.3 In both cases, we use complex coordinates to
parametrize the surface: the plane is simply parametrized by
z = x + iy ∈ C, while for the sphere of radius RS2 , we use the
stereographic coordinate z = 2RS2 e−iφ tan θ/2, where (θ,φ)
are the spherical polar coordinates.

It is well known that wave functions in the LLL correspond
to analytic functions.2 We therefore consider wave functions

�(z1, . . . ,zN ), (1.1)

which are analytic in z1, . . . ,zN , and satisfy the right statistics
(either bosonic or fermionic) under the exchange of the
zi’s. On top of these requirements, �(z1, . . . ,zN ) must be
normalizable:

1

N !

∫
CN

N∏
i=1

eV (zi ,z̄i )d2zi |�(z1, . . . ,zN )|2 < +∞. (1.2)

The measure eV (zi ,z̄i )d2zi depends on the surface which we are
considering. It can be computed directly by solving the Landau
problem for a single particle (see Ref. 3 for the spherical case).
The notation eV (zi ,z̄i ) comes from the fact that V (zi,z̄i) can be
viewed, in the plasma mapping,2 as an electrostatic potential
created by a background charge (we will come back to this
point in Sec. III):

V (z,z̄) =
{−(N� + 2) ln[1 + |z|2/(2RS2 )2] (sphere),

−|z|2/2�2
B (plane),

(1.3)
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where �B is the magnetic length in the plane, and N� is the
number of magnetic fluxes which pierce the sphere.

The Hilbert space corresponding to the LLL is finite
dimensional in the sphere, but not in the plane. Indeed, for
a single particle, a basis of normalizable analytic functions
�(z) is provided by the monomials zm, where m � 0 can be
any integer for the plane, while m ∈ {0,1, . . . ,N�} for the
sphere. Keeping that remark in mind, in the rest of this paper,
our notations allow us to treat the plane and the sphere on
equal footing.

The sphere and the plane both enjoy rotational invariance.
The angular momentum in the plane is written Lẑ. Note that
z is the complex coordinate in the plane, while ẑ stands for a
unit vector perpendicular to it. The basis of monomials zm are
eigenstates of Lẑ:

Lẑ · zm = m zm . (1.4)

Meanwhile, with these conventions, the angular momentum
LS2

ẑ around the vertical axis of the sphere (also written ẑ) acts
on the monomials as

LS2

ẑ · zm = (N�/2 − m) zm (1.5)

so the angular momentum on the sphere can always be related
to the one in the plane. In particular, for N particles, LS2

ẑ =
NN�/2 − Lẑ.

C. Moore-Read construction

We now recall how an ansatz for the wave function
�(z1, . . . ,zN ) can be obtained by looking at conformal
blocks in certain two-dimensional chiral CFTs.5 For a recent
discussion of the MR construction, and its implications for
non-Abelian statistics, see Ref. 30. For basic CFT material,
see Refs. 31–33. Let us consider the wave function

�(z1, . . . ,zN ) = 1√
ZN

〈N |
N∏

i=1

a(zi)|0〉, (1.6)

where a(z) is a local operator (i.e., a primary field) in a given
chiral CFT, acting on the vacuum |0〉. The charged vacuum
〈N | will be defined precisely below; it carries a charge that
is opposite to the total charge of

∏
a(zi), in order for the

correlator (1.6) to be nonzero. The chiral CFT and the field
a(z) must be chosen such that �(z1, . . . ,zN ) is single valued:
this implies that there must be a single fusion channel when
one fuses the field a(z) with itself. The field a(z) can therefore
be called Abelian. Of course, for consistency, the function
�(z1, . . . ,zN ) must also be analytic and have the correct
statistics, which requires additional properties for the field
a(z). For later convenience, the factor ZN is defined such that
the wave function �(z1, . . . ,zN ) given by the formula (1.6) is
normalized for the norm (1.2).

In the MR construction, the chiral CFT is chosen as the
(tensor) product of two sectors CFTU(1) ⊗ CFTψ , and the field
a(z) is a product of a vertex operator in the U(1) charge sector
and an Abelian field ψ(z) in the statistics sector CFTψ :

a(z) = eiϕ(z)/
√

ν × ψ(z). (1.7)

In this expression, ϕ(z) is a free chiral boson with propagator
〈ϕ(z)ϕ(w)〉 = − ln(z − w), and normal ordering is implicitly

assumed in the exponential. The U(1) symmetry is generated
by the transformations ϕ(z) 	→ ϕ(z) + const. The correlator
of the vertex operators 〈N |∏ eiϕ(zi )/

√
ν |0〉 has to be invariant

under these shifts, so the out vacuum 〈N | must carry a U(1)
charge proportional to N :

〈N | = lim
z→∞

1

zN2/ν
〈0|e−iNϕ(z)/

√
ν . (1.8)

This definition is standard in radial quantization of a CFT
in the plane (see Refs. 31–33). With this out vacuum 〈N |,
the correlator of the vertex operators is nonzero. It is equal
to the Laughlin-Jastrow factor

∏N
i=1(zi − zj )1/ν , leading to a

trial state with filling fraction ν. The correlator in the statistics
sector 〈∏ψ(zi)〉 depends on the choice of the CFT for the
field ψ(z). For example, the Laughlin wave function itself
corresponds to the simplest case when ψ(z) is the identity
operator. Other possible choices of ψ(z) include a free fermion
with propagator 1/(zi − zj ), leading to the MR (Pfaffian) wave
function5 or minimal Fateev-Zamolodchikov parafermions,34

which give the Read-Rezayi (RR) series.35 Other choices of
the field ψ(z) correspond to other wave functions which have
appeared in the literature, for example, those expressed in
terms of Jack polynomials.6

Like the U(1) charge sector, the statistics sector is associated
with some underlying symmetry, for example, a Z2 symmetry
in the case of a Majorana field generated by ψ(z) 	→ −ψ(z)
(and more generally, a Zk symmetry for parafermions). In
that case, our definition of the out vacuum [Eq. (1.8)] must be
completed by the insertion of a Z2 charge (Zk charge) when N

is odd (N �= 0 mod k) in order for the correlator 〈N |∏ a(zi)|0〉
to be nonzero. The CFT for the statistics sector is always a
rational one (there is a finite number of primary fields, which
form a closed algebra under the operator product expansion).

D. Entanglement of the trial states

Because of their particular structure, the trial states given
by conformal blocks have some very specific entanglement
properties, which are inherited from the underlying CFT. In
order to sketch some of these features, we first need to define
the bipartition of the Hilbert space H = HA ⊗ HB for which
one computes the reduced density matrix ρA or, alternatively,
the Schmidt decomposition

|�〉〉 =
∑

i

e−ξi/2
∣∣�A

i

〉〉 ⊗ ∣∣�B
i

〉〉
. (1.9)

The ES depends on the bipartition and is, by definition, the
set of pseudoenergies ξi’s.13 Throughout our paper, we will
use the notation with double right angle for kets in the 2 + 1
physical Hilbert space, while simple right angles are reserved
for states in the CFT. The ground state |�〉〉 corresponds to the
wave function (1.6).

1. Real-space partition (RSP)

A natural way to partition a system of itinerant particles
on some manifold M is to do a cut in position space.
The single-particle Hilbert space H1 is the L2 space of all
normalizable functions on M (in this section, we do not
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require any analyticity condition). If we divide the manifold as
M = MA ∪ MB , then H1 admits a decomposition as a direct
sum H1 = H1A ⊕ H1B , where H1A (H1B) is the subspace
of functions with support in MA (MB). This simply means
that any function f (r) can be written as f A(r) + f B(r), with
f A(r) = 0 (f B(r) = 0) if r /∈ MA (r /∈ MB). This decompo-
sition induces a corresponding bipartition of the N -particle
space as

HN =
N⊕

NA=0

HNA,A ⊗ HNB,B, (1.10)

where NA (NB) is the number of particles in part A (B). This
bipartition is called real-space partition (RSP).

In quantum Hall systems, the RSP (Refs. 16–18) is obtained
by dividing the complex plane C where the coordinates zi

are defined (see Sec. I B) into two complementary parts C =
A ∪ B. As is customary in the literature, the bipartition of the
plane C = A ∪ B is usually taken such that the subsystem A

is rotationally invariant (and simply connected for simplicity):
A is then a disk of radius R centered on the origin. The trial
state |�〉〉 is usually an eigenstate of the angular momentum
(LA

ẑ + LB
ẑ )|�〉〉 = Lẑ|�〉〉, so the angular momentum of part

A, noted LA
ẑ , is a good quantum number. The bipartition of the

Hilbert space HN with N particles thus takes the form

HN =
N⊕

NA=0

⊕
LA

ẑ

HNA,LA
ẑ

⊗ HNB,LB
ẑ
, (1.11)

with NA + NB = N , and the different eigenvec-
tors/eigenvalues in the Schmidt decomposition (5.2) can
be classified according to the number of particles NA and to
the angular momentum LA

ẑ .
In general, for RSP there is a nondegenerate lowest

pseudoenergy ξ (NA0,L
A
ẑ0) at some values NA0 and LA

ẑ0 which
depend on the system size N . We define �ξ , �NA, and �LA

ẑ

by subtracting off these values.

2. Scaling property of the entanglement spectrum

One can make a general conjecture that is expected to hold
for any ground-state wave function in a (2 + 1)-dimensional
topological phase, provided that the (connected) correlation
functions of local operators evaluated in that ground state are
all short range: In each topological sector (i.e., for a fixed
total anyonic charge in part A), the entanglement Hamiltonian
HE = − ln ρA is isospectral to a “pseudo-Hamiltonian” that
is local along the cut between A and B. Equivalently, in
Ref. 16, this conjecture, dubbed “scaling property,” was stated
as follows: for all �NA and �LA

ẑ , as N → ∞, the set of
�ξ ’s approach the energy levels of a “pseudo-Hamiltonian”
that is the integral of a sum of local operators in a (1 + 1)-
dimensional theory defined along the cut between A and B. In
particular, in phases of matter such as the FQHE, there is a low-
lying part (as observed by LH) that corresponds to a gapless
sector in the (1 + 1)-dimensional theory. In general, the theory
also has gapped excitations, which come with pseudoenergies
larger than or equal to the entanglement gap. These gapped
excitations are associated with Schmidt eigenstates that differ
from the “cut ground state” (i.e., the Schmidt eigenstate

|�A
NA0,L

A
ẑ0
〉〉 that has the smallest pseudoenergy), not only along

the cut, but also far from the cut. Such states contribute
with amplitudes that decay rapidly (exponentially) with the
distance to the cut, hence the presence of an entanglement
gap. The pseudoenergy levels that lie above the entanglement
gap correspond to a mixture of gapped and gapless excitations.
We note that for quantum Hall systems, this type of scenario
has been discussed in the case of the orbital partition
in Ref. 36.

For some trial FQHE states, such as the Laughlin or MR
(Pfaffian) states, the entanglement gap goes to infinity, leaving
only the gapless low-energy part. One of the purposes of
this paper is to explain why these wave functions, and more
generally all the wave functions given by conformal blocks,
exhibit this particular feature. Then, we will also explain why,
for these trial wave functions, the locality of the ES follows
from the fact that all correlations are short range, a property
which is sometimes called generalized screening in reference
to Laughlin’s plasma mapping, as in Ref. 30. We will find that,
for the trial wave functions given by the MR construction,
the ES is the spectrum of the Hamiltonian of a perturbed
(1 + 1)-dimensional CFT, and that this CFT is the one that
underlies the ground-state wave function. It is also the theory
that describes the physical edge excitations, as we will show. In
the simplest case where the CFT is perturbed only by irrelevant
operators, the pseudoenergies are given by the eigenvalues of

�ξ = v

R
L0 + · · · , (1.12)

where L0 = �LA
ẑ + O(�NA) is the Virasoro generator of

dilatations and rotations for the CFT in the plane. R is the
radius of part A (for a circular region with perimeter 2πR)
and v is some nonuniversal “velocity.” This velocity has
the dimension of a length, and is of the order of the mean
particle spacing close to the cut, which is the natural UV
cutoff in our problem. Thus, the ratio v/R in our scaling is
always of order 1/

√
NA. The ellipses in (1.12) are terms of

higher order in v/R ∼ 1/
√

NA, which come from perturbing
operators that are more irrelevant. The precise dependence
of the eigenvalues of L0 on �NA depends on the details of
the CFT. For the Laughlin wave function at filling fraction
ν, one has L0 = �LA

ẑ + (�NA)2

2ν
. More generally, the ES has

to be discussed case by case, depending on what FQHE state
one is dealing with. Depending on the CFT that underlies the
state, some perturbing operators may or may not be present in
the “pseudo-Hamiltonian” that gives the ES. It is also worth
emphasizing that, just like for the physical energy spectrum
in the presence of a real edge, the wave functions in the MR
construction [with both the U(1) charge sector and a nontrivial
statistics sector] usually have an ES with two branches of
excitations (rather than one), with different velocities vU(1)

and vψ . More details about the perturbing operators are given
in Sec. IV, where we derive our main results on the ES.

Another important aspect that we want to point out in this
paper is the striking similarity between these particular trial
wave functions and other wave functions that are being used
in condensed matter and in quantum information: the matrix
and tensor product states (MPS and TPS). In that context,
ground-state entanglement properties have long been studied,
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with questions that are analogous to those that we tackle here.
We will come back to this point in Sec. V.

3. Particle partition (PP)

Another bipartition is natural for systems of identical
itinerant particles: the particle partition (PP).37 It is obtained
by assigning a fictitious “pseudospin” degree of freedom
for each particle. We label |A〉〉 or |B〉〉 the two orthogonal
pseudospin states. A spinless ground state is mapped into
the larger space that includes pseudospin by assigning to
each particle j the pseudospin state (|A〉〉j + |B〉〉j )/

√
2. The

bipartition of this larger space is simply HA ⊗ HB , where all
the particles with pseudospin |A〉〉j (|B〉〉j ) constitute part A

(B). This definition of PP,16 which includes different particle
numbers, is an extension of the original one.37

In PP, rotational invariance is inherited from the invariance
of the full system. In particular, on the sphere S2, the total
angular momentum (LA)2 is also a good quantum number.
In that case, the Schmidt eigenvalues/eigenvectors can be
organized in SO(3) multiplets. It can be shown easily that
the Schmidt rank is the same in each LA

ẑ subsector both for
RSP and PP.16,17 For PP, one can define LA

0 as the maximum
total angular momentum for the subsystem A, and NA0 the
corresponding number of particles. Then, we can define the
quantum numbers �NA and �LA (PP) by subtracting off these
values.

Unlike the RSP, the PP is not a local bipartition, so there
is no reason to expect that the ES should be the spectrum of a
local operator. Overall, if one looks at the whole spectrum,
the PP is not local. However, for large LA

ẑ , we will see
that the Schmidt eigenstates |�A

i 〉〉 actually correspond to
the ground-state configuration of NA particles localized in
a circular cap centered on the north pole (and NB particles
in a cap centered on the south pole), and of edge excitations
above this ground state. In that sense, and for NA/N → 1/2
when N,NA → ∞, the part A (B) corresponds to the northern
(southern) hemisphere. Thus, for these states, parts A and B

may roughly be seen as spatial regions, just like in the case of
RSP (this limit is also considered in Ref. 25). This observation
can be made precise, and it has the consequence that the
particle ES (the ES with PP) at large LA

ẑ can be analyzed
with the same techniques as for RSP. It leads to a similar result,
namely, that this part of the particle ES actually corresponds to
the spectrum of a local operator along the “cut” (the equator).
Of course, as we highlighted in the last paragraph, the SO(3)
rotational invariance of PP implies that the pseudoenergies
depend on �LA rather than on �LA

ẑ , so this local operator
needs to be different from (1.12), which is valid only for
RSP. The particle ES will be discussed in greater detail in
Sec. IV D.

E. Structure of the paper

Our paper is organized as follows. In Sec. II A, we define
some complementary notations for the trial wave functions
given by conformal blocks, and in Sec. II B we argue that
there is a natural and straightforward way of constructing
the edge states which correspond to those. More precisely,
we exhibit a linear mapping from the space of states in the

CFT to the space of wave functions for the edge states.
In Sec. III, we give a detailed discussion of the screening
property, and relate it to a boundary conformal field theory
formalism. As a consequence, we derive one of the main
results of this paper (Sec. III D), which states that, assuming
screening, the quantum-mechanical inner products between
the edge states are identical (in the thermodynamic limit)
to the inner products in the conformal field theory. In other
words, the linear mapping from Sec. II B becomes an isometric
isomorphism when the number of particles goes to infinity. We
provide some numerical checks of this result in Sec. III F. For
a finite number of particles, the corrections to scaling for the
inner product between the edge states can be tackled with
RG arguments, in the framework of perturbed boundary CFT.
This is discussed in Sec. III G. Then, in Sec. IV, we relate
our results for the edge states to the entanglement spectrum,
and apply them to prove the “scaling property” conjectured in
Ref. 16. We give a detailed scaling analysis of the different
contributions that can appear in the “pseudo-Hamiltonian,”
therefore leading to precise predictions for the ES of the
trial states given by conformal blocks. The Laughlin state
is treated in full details as an example for RSP and for PP.
Finally, in Sec. V, we emphasize the close relation between
the wave functions given by conformal blocks and tensor
product states, and discuss the relevance of our results in that
context.

II. TRIAL WAVE FUNCTIONS FOR THE EDGE
EXCITATIONS

A. More structure for the CFT space

1. Chiral algebra

In general, there is a field a†(z) in the CFT such that the
operator product expansion of a† with a is

a(z1)a†(z2) ∼
z1→z2

1

(z1 − z2)2ha
+ · · · . (2.1)

Here, we have introduced the conformal dimension ha of the
field a(z). Since the field a(z) is chiral, ha is also its spin.
In the quantum Hall literature, the conformal dimension ha

is sometimes referred to as the spin per particle.30 It is also
related to the “shift” on the sphere3 in a straightforward way:
S = 2ha .30 It is the sum of the conformal dimensions of the
vertex operator and of the field ψ (noted hψ ):

ha = 1/ν

2
+ hψ. (2.2)

The field a†(z) must carry a U(1) charge which is opposite
to the one of a(z), and similarly in the statistics sector. For
example, in the case of the Zk parafermions, the field a(z) =
eiϕ(z)/

√
ν × ψ1(z) carries a Zk charge 1 (mod k), so a† must

carry a Zk charge k − 1 (mod k). We have then

a†(z) = e−iϕ(z)/
√

ν × ψ†(z), (2.3)

where ψ(z1)ψ†(z2) ∼ 1/(z1 − z2)2hψ + · · · . The fields a(z)
and a†(z) generate the chiral algebra A by the operator product
expansion.
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2. Complex conjugation

In this paper, we need to work with wave functions given
by conformal correlators, such as (1.6), but also with their
complex conjugate. For this purpose, it is useful to introduce
an antichiral copy of the CFT, and an antichiral field

ā(z̄) = eiϕ(z)/
√

ν × ψ(z) (2.4)

such that the complex conjugate of �(z1, . . . ,zN ) is given by
the following correlator in the antichiral CFT:

[�(z1, . . . ,zN )]∗ = 1√
ZN

〈N |
N∏

i=1

a(zi)|0〉. (2.5)

The field a(z), together with its conjugate a†(z), generate a
copy of the same chiral algebra A.

B. Edge excitations

In this section, we construct wave functions that resemble
the “ground-state” wave function (1.6), but which we interpret
as the “edge excitations.” Note that we do not address physical
Hamiltonians in this paper. Instead, the wave functions for
the edge excitations are required to have the same short-range
properties (cluster properties) as the ground state (1.6), but they
have different global properties, such as angular momenta.

To construct these wave functions, we consider some set
of fields φk(ζk) (k = 1, . . . ,p) in the chiral algebra A, and we
compute the correlator

〈N ′|φp(ζp) . . . φ1(ζ1)
∏
i=1

a(zi)|0〉, (2.6)

where the appropriate charged vacuum 〈N ′| is inserted [it must
neutralize the total charge of the a(zi)’s and the φk(ζk)’s].
This correlator is a function of the ζk’s and of the zi’s. The
short-distance properties as two or more of the zi’s come
close to each other are inherited from the underlying operator
product expansions. Therefore, they must be the same as those
of the ground-state wave function (1.6). This implies that the
function (2.6) is analytic in the zi’s everywhere in the plane,
except possibly at the points ζk’s, where it can have some
singularities. The function is always single valued, and the
possible singularities at the ζk’s are poles. In other words, the
correlator (2.6) is meromorphic, and it is not yet a valid wave
function for particles in the LLL. However, let us consider
instead the contour integrals

〈N ′|
∮

Cp

dζpζ
mp

p φp(ζp) . . .

∮
C1

dζ1ζ
m1
1 φ1(ζ1)

∏
i=1

a(zi)|0〉,

(2.7)

where the contours C1, . . . ,Cp encircle all the zi’s as shown
in Fig. 1(a) (and the contours are radially ordered: C1 is
encircled by C2, and so on), and mk ∈ Z. In certain cases,
the correlator (2.7) can be zero [for instance, this may happen
if some of the mk’s are negative, when the correlator (2.6)
is analytic at ζk → ∞]. The contours can now be deformed,
without changing the value of expression (2.7). In particular,
they can be taken as circles with arbitrary large radii (i.e., they
can be “deformed around infinity”). Thus, the expression (2.7)
is analytic in the zi’s in the whole complex plane, just like

(a)

a(z1)

a(z2)
a(z3)

φ1(ζ1)

φ2(ζ2)

C1

C2

(b)

a(z1)

a(z2)
a(z3)

v|

FIG. 1. The edge-state wave functions are obtained (a) by
inserting contour integrals in the correlator as in formula (2.7) or
equivalently (b) by computing the matrix element (2.8) with an out
state 〈v| in radial quantization.

the ground state (1.6). If it is nonzero and normalizable for
the norm (1.2), it can be used as a FQHE trial wave function.
Another advantage of using the contour integrals (2.7) rather
than the meromorphic functions (2.6) is that one gets angular
momentum eigenstates, which will be more convenient for the
manipulations below.

If we introduce the Hilbert space of the CFT HCFT, which
is a (irreducible) module over the chiral algebra A, then (2.7)
can be reformulated as follows. To each state |v〉 ∈ HCFT, we
associate its dual 〈v| ∈ H∗

CFT. Then, we construct the correlator

〈v|
N∏

i=1

a(zi)|0〉, (2.8)

which we use as a wave function when it is nonzero (these
wave functions appeared previously in Refs. 38 and 39). Thus,
by definition, we have a linear mapping from the (dual) CFT
Hilbert space H∗

CFT to the space of edge states. This mapping
is in general not injective.

We now consider two concrete examples, the Laughlin wave
function and the MR (Pfaffian) wave function, to illustrate how
this construction works in practice.

1. First example: Edge states for the Laughlin wave function

For the Laughlin wave function, we have a(z) = eiϕ(z)/
√

ν .
There is no statistics sector. The chiral algebra A is gen-
erated by the vertex operators eiϕ(z)/

√
ν and e−iϕ(z)/

√
ν and

by the operator product expansions. In particular, the U(1)
current i∂ϕ(z) is generated by eiϕ(z1)/

√
νe−iϕ(z2)/

√
ν ∼ (z1 −

z2)−1/ν[1 + (z1 − z2)i∂ϕ(z2)/
√

ν + · · ·]. The modes of the
U(1) current Jn = 1

2πi

∮
dζ ζ ni∂ϕ(ζ ) satisfy the commutation

relations

[Jn,Jm] = nδn+m,0. (2.9)

As claimed in Sec. I C, the ground-state wave function (1.6)
is, up to the normalization factor,

〈N |
N∏

j=1

eiϕ(zj )/
√

ν |0〉 =
∏
i<j

(zi − zj )1/ν . (2.10)
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The neutral edge states are obtained by exciting the out vacuum
〈N | with the positive modes Jn (n � 0):

〈N |Jn

N∏
j=1

eiϕ(zj )/
√

ν |0〉 = 1√
ν

N∑
k=1

zn
k

∏
i<j

(zi − zj )1/ν,

〈N |Jn2Jn1

N∏
j=1

eiϕ(zj )/
√

ν |0〉

= 1
√

ν
2

N∑
k=1

z
n1
k

N∑
p=1

zn2
p

∏
i<j

(zi − zj )1/ν,

〈N |Jn3Jn2Jn1

N∏
j=1

eiϕ(zj )/
√

ν |0〉

= 1
√

ν
3

N∑
k=1

z
n1
k

N∑
p=1

zn2
p

N∑
l=1

z
n3
l

∏
i<j

(zi − zj )1/ν, (2.11)

and so on. The negative modes Jn (n < 0) do not need to
be considered since they annihilate the out vacuum 〈N |. In
general, the positive mode Jn of the U(1) current J (z) produces
the corresponding sum of powers 1√

ν

∑
zn
i .38,39 These wave

functions are the well-known (neutral) edge states for the
Laughlin wave function.19 Equivalently, one could have ob-
tained the same space of edge states (up to some change of ba-
sis) by acting with the modes an = 1

2πi

∮
dζ ζ n−1+ 1

2ν eiϕ(ζ )/
√

ν

and (a†)n = 1
2πi

∮
dζ ζ n−1+ 1

2ν e−iϕ(ζ )/
√

ν . The advantage of
working with the modes of the U(1) current here is that one
gets a nice basis for the CFT space with the U(1) charge corre-
sponding to N particles: {|N〉,J−1|N〉,J−2|N〉,J 2

−1|N〉, . . .}. In

other words, the bosonic Fock space structure is transparent. It
would be more painful to write such a basis in terms of states
of the form a−n1 . . . a−np

(a†)−m1 . . . (a†)−mp
|N〉, although in

principle nothing prevents us from doing that.
Finally, although the discussion in this section is about

neutral excitations (the number of particles N is identical to
that in the ground state), it is not difficult to extend it to the
case of charged excitations. To get those, one needs to add
some particles. For example, for a single particle added, the
correlator 〈N + 1|∏N+1

i=1 a(zi)|0〉 is simply the Laughlin wave
function with N + 1 particles.

2. Second example: Edge states for the Moore-Read
(Pfaffian) state

The second example we consider is the MR (Pfaffian)
wave function, which corresponds to a(z) = eiϕ(z)/

√
ν × ψ(z),

where ψ(z) is a free (Majorana) fermion field with propagator
〈ψ(z)ψ(w)〉 = 1/(z − w). For even particle number N , the
ground state is then, up to normalization,

〈N |
N∏

i=1

a(zi)|0〉 =
N∏

i=1

(
zi − zj

)1/ν
Pf

({
1

zk − zl

}
1�k,l�N

)
.

(2.12)

In addition to the Jn’s appearing in the U(1) sector as in the
Laughlin case, the chiral algebra contains fermionic modes
ψn = 1

2πi

∮
dζ ζ n− 1

2 ψ(ζ ), where n ∈ Z + 1
2 , with

{ψn,ψm} = δn+m,0. (2.13)

The neutral excitations obtained from the U(1) sector generate
edge states which are similar to those of the Laughlin wave
function. In the Majorana sector, we have instead (for N

even)

〈N |ψn1ψn2

N∏
j=1

a(zi)|0〉 =
∏
i<j

(zi − zj )1/ν Pf

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 z
n1− 1

2
1 z

n1− 1
2

2 . . . z
n1− 1

2
N

0 0 z
n2− 1

2
1 z

n2− 1
2

2 . . . z
n2− 1

2
N

−z
n1− 1

2
1 −z

n2− 1
2

1 0 1
z1−z2

. . . 1
z1−zN

−z
n1− 1

2
2 −z

n2− 1
2

2
−1

z1−z2
0

. . .
...

...
...

. . .
. . . 1

zN−1−zN

−z
n1− 1

2
N −z

n2− 1
2

N
−1

z1−zN

−1
zN−1−zN

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∏
i<j

(zi − zj )1/ν 1

2
N
2 −1

(
N
2 − 1

)
!

∑
σ∈SN

sgn σ × z
n1− 1

2
σ (1) z

n2− 1
2

σ (2)

(zσ (3) − zσ (4)) . . . (zσ (N−1) − zσ (N))
, (2.14)

where the Pfaffian of the (N + 2) × (N + 2) skew-symmetric
matrix is the free-fermion correlator 〈ψn1ψn2ψ(z1) . . . ψ(zN )〉
that must be evaluated using Wick’s theorem. Of course,
more fermion modes can be inserted in the correlator to
generate other edge states, and one recovers the wave functions
constructed in Ref. 40. The MR wave function with odd
particle number also fits naturally in that framework by

inserting one fermion mode ψ1/2 in the out vacuum 〈N |, as
discussed in Sec. I C.

III. SCREENING

It is well known that the normalization factor ZN of
the Laughlin wave function is exactly equal to the partition
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function of a two-dimensional one-component plasma in a
background potential V (z,z):

ZN = 1

N !

∫
C

N∏
i=1

d2zi e
∑

j V (zj ,z̄j )+ν−1 ∑
k<l ln |zk−zl |2 . (3.1)

This exact relation, usually referred to as “plasma mapping,”
has been exploited in various ways in the literature. A key
point in the plasma mapping is the observation that for
an inverse filling fraction ν−1 lower than about 70, the
plasma is in a screening phase. This property was highlighted
already by Laughlin, who used it to derive the fractional
charge of the quasiparticles. It was used later to show that
the quasiparticles also obey (Abelian) fractional statistics
under adiabatic exchange.41 Wen used the screening property,
coupled to an electrostatic argument (the method of images42),
to construct the edge theory of the Laughlin states from a
microscopic point of view.19

In this section, we use a generalization of the screening
property of Laughlin’s plasma, discussed recently in full
details in Ref. 30. This “generalized screening assumption”
is formulated as follows. The normalization factor of the wave
function (1.6) can be viewed as the partition function of a
two-dimensional system of itinerant particles subject to some
interactions and in a background electrostatic potential V (z,z̄):

ZN = 1

N !

∫
C

N∏
i=1

eV (zi ,z̄i )d2zi

∣∣∣∣∣〈N |
N∏

j=1

a(zj )|0〉
∣∣∣∣∣
2

. (3.2)

Contrary to the case of the Laughlin wave function, in general
this partition function is not the one of a Coulombic plasma
(i.e., involving only Coulomb two-body interactions). Instead,
it is argued in Ref. 30 (see also earlier ideas sketched in Ref. 43)
that the partition function (3.2) should in general be viewed as
the one of a perturbed CFT (in a grand-canonical description,
as we do in Sec. III B). Then, two situations may occur,
depending on the IR fixed point towards which the perturbed
CFT is sent under the RG flow: either (i) the IR theory is
massive, that is, all the connected correlations of local fields
decay exponentially, or (ii) the IR theory contains massless
modes and therefore long-range (power-law decaying) con-
nected correlations. We say that generalized screening holds if
the situation (i) occurs. It generalizes the case of the screening
phase for the Laughlin wave function, which contains only
exponentially decaying connected correlations.

In general, there is no known analytical argument that
allows us to discriminate between the situations (i) and
(ii). Instead, one usually has to rely on indirect numerical
checks of some of the consequences of the generalized
screening assumption (i). Recently, a plasma mapping has
been successfully constructed for the MR (Pfaffian) wave
function,44,45 which opened the route to a direct numerical
check of the screening hypothesis for this state.46 The property
(i) is therefore strongly supported by numerical evidence for
the MR (Pfaffian) wave function, and it is plausible that it holds
also for other states such as the k = 3 RR state. Also, some
general arguments have been given in Ref. 30 which show that
generalized screening can not hold in some cases, as it would
lead to contradictions (in particular, in the case of nonunitary
CFTs).

In what follows, the generalized screening property (i),
namely, the property that bulk correlations are all short range,
is assumed to hold; our purpose is to explore some of its
consequences. This part of our paper is devoted to reformu-
lating the screening property in the language of boundary
CFT, and to using it to make a precise statement of the long
expected “bulk/edge correspondence.” The arguments in this
section may be viewed as the natural generalization of Wen’s
microscopic theory of the edge excitations, which in its original
formulation was applicable only to the Laughlin state.19

A. The droplet

Consider the distribution of particles corresponding to the
partition function (3.2) given by the normalization factor of the
ground-state wave function. In the large-N limit, the particles
fill some domain in the plane C (where the coordinates zi’s
are defined) called the “droplet.” When the potential V (z,z)
is rotationally invariant, as in (1.3), the droplet is circular and
centered on the origin (see Fig. 2). At large distances (that
is, much larger than the mean particle spacing, which is of
order of �B in the plane), the average density of particles
is well approximated by a continuous function

∑
i δ

(2)(z −
zi) → ρ0(z,z̄). It can be shown easily, for instance, with a
saddle-point approximation (a fully detailed derivation for the
Laughlin case can be found in Ref. 47; it is easily extended to
other cases) that the density of particles is fixed by the U(1)
charge sector only, and that it is equal (at scales � �B) to the
“background charge density”

ρ0(z,z̄) = − ν

4π
�V (z,z̄), (3.3)

where � = 4∂z∂z̄ is the Laplacian. This background charge
density is constant for the quadratic potential V (z,z) cor-
responding to the plane in formula (1.3). It is not constant
for the sphere because the stereographic projection does not
preserve the volume (Fig. 2). Let us emphasize the fact that
the relation (3.3) has nothing to do with the screening property
described in the previous section. In particular, it holds in
the crystallized phase for the Laughlin wave function, as well
as in the screening phase, as long as the variations of the
“background charge” − ν

4π
�V (z,z̄) occur on distances much

larger than the mean particle spacing, such that a continuous
description of the particle density is meaningful. In this paper,
we will always be in the latter regime, where the background

R

(a) (b)

R

FIG. 2. In the thermodynamic limit (N → ∞), the particles fill
a circular droplet of radius R. For the background potential (1.3)
corresponding to the plane, the density is uniform (a), for the sphere
it is not uniform after the stereographic projection (b).
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potential V (z,z̄) varies slowly. For the case of the plane in (1.3),
this is obviously true since the background charge does not
vary at all, and for the sphere it varies on scales of order ∼RS2

(the radius of the sphere), while the mean particle spacing is
of order ∼RS2/

√
N , so their ratio vanishes when N → ∞.

Finally, for technical reasons, in the next sections we will
often have to refer to the radius R of the circular droplet for the
rotationally invariant potentials (1.3). The radius is fixed by
the requirement that the number of particles inside the droplet
is

N =
∫

|z|<R

ρ0(z,z̄) d2z. (3.4)

In the case of the constant background charge for the
plane (1.3), this of course leads to the well-known radius
R = √

2N/ν�B . On the sphere, the particles fill some spherical
cap that is mapped onto the droplet by the stereographic
projection, and the radius R depends both on the radius of
the sphere and on the size of the cap.

B. Screening as a conformal boundary condition

In this section, we assume that the generalized screening
property holds, and we interpret its consequences at the edge
of the droplet using the language of boundary conformal field
theory (for a classical discussion of boundary CFT, see Refs. 48
and 49). We will have to make a certain number of technical
choices in order to state our arguments. The technicalities,
however, should not prevent the reader from catching the
basic idea, which is simple. Let us summarize it here. We
start from a nonchiral massless theory CFT ⊗ CFT defined
on a 2D surface. A subset of this surface, the “droplet,” is
filled with particles. In the field theory, these particles are
equivalent to a perturbation of the form

∫
a(z)a(z)d2z that

is turned on inside the droplet (but not outside). This new
term in the action drives the perturbed theory to a massive IR
fixed point. That is the screening assumption. Now, outside the
droplet, there is no perturbation, so the field theory CFT ⊗ CFT
is still massless. Inside the droplet, all the correlation functions
decay exponentially, and the correlation length is zero at the IR
fixed point. Thus, we are left with a nonchiral CFT outside the
droplet, and the local fields in this theory must satisfy a local
boundary condition along the boundary of the droplet. The
purpose of this section is to find this boundary condition. Its
consequences for the edge theory of the quantum Hall states
will be discussed later. Now let us turn to a more detailed
formulation of this argument.

It is more convenient to work in the grand-canonical
ensemble as in Ref. 30. Also, to avoid phase factors and
normalization constants that would obscure the argument,
we work on the cylinder C (see Fig. 3) parametrized by
w = x + iy where y is identified with y + L. We imagine that
the left half-cylinder Cl (Re w < 0) is filled by the particles in
a uniform neutralizing background with, say, constant density
ρ0. The way to treat this background charge was discussed
in Ref. 5. Eventually, one can regularize this at x → −∞ by
integrating over the region −� < Re w < 0, such that the total
background charge is finite, and then take � → ∞ in the end

(a)

y

x0

a†(w1)
a†(w2)

a†(w2)

(b)

a(w1) ∼ a†(w1)y

x0

a†(w1)
a†(w2)

(c)

a = a†

x0

FIG. 3. (Color online) (a) Particles in a neutralizing background
on the left half-cylinder. We are interested in the correlation function
of a†(w1) and a†(w2) in the right part, in the presence of all the
particles. (b) Assuming screening, and in the limit where the density
of mobile charges in the left half-cylinder goes to infinity, an operator
a†(w1) brought to the boundary from the outside is equivalent to an
operator a(w1). (c) In this limit, the correlation function of a†(w1)
and a†(w2) in the presence of all the mobile charges in the left is
equivalent to the two-point correlation function in the right part, with
the boundary condition a(x,y) = a†(x,y) at x = 0.

of the calculation. The partition function of this system is

Z(ρ0) = 〈eλ
∫
Cl

d2w a(w)a(w)
e
−i

ρ0√
ν

∫
Cl

d2w′[ϕ(w′)+ϕ(w′)]〉C, (3.5)

where the first exponential generates integrals over Cl of pairs
a(w)a(w). Following Ref. 30, we look at this term as a
perturbation of the action of the nonchiral theory CFT ⊗ CFT
by the local operator a(w)a(w) in the region Cl . The coefficient
λ is included such that the term in the exponential is
dimensionless. It can be tuned arbitrarily, giving different
weights to the terms with different number of pairs a(w)a(w).
This will be important later. For now, note that because of the
charge neutrality of the correlator (3.5), only one term [the
one with the U(1) charge that is exactly opposite to the total
background charge contained in region Cl] in the expansion of
the exponential actually contributes to the partition function
Z(ρ0). The correlator is evaluated on the cylinder rather than
in the plane, hence the subscript C, and the propagator of
the free chiral boson is 〈ϕ(w1)ϕ(w2)〉C = − ln[tanh π(w1−w2)

L
].

The argument will not depend on the details of the background
charge, though; the important point here is simply that there is
a nonzero density of particles ρ0 in the left half-cylinder Cl .

245310-9



J. DUBAIL, N. READ, AND E. H. REZAYI PHYSICAL REVIEW B 86, 245310 (2012)

Imagine that we want to compute the correlation function of
two operators a†(w1), a†(w2) in the right half-cylinder Re x >

0, as shown in Fig. 3:

〈a†(w1)a†(w2) e
λ
∫
Cl

d2w a(w)a(w)
e
−i

ρ0√
ν

∫
Cl

d2w′[ϕ(w′)+ϕ(w′)]〉C
Z(ρ0)

.

(3.6)

(The reason why such correlators of fields outside the droplet
are interesting will become clear below.) The two operators
a†(w1) = e−iϕ(w1)/

√
ν × ψ†(w1) and a†(w2) = e−iϕ(w2)/

√
ν ×

ψ
†
(w2) add a U(1) charge to the correlator (3.6). The latter

is still nonzero, though, because there is again a term in the
generating function of the integrals of pairs a(w)a(w) that has
exactly the right U(1) charge required to ensure the global
neutrality of the correlator. Similarly, in the statistics sector,
the global neutrality (underZk transformations, for example, if
the statistics sector is generated by aZk-parafermionic current)
is forced by the exponential that generates the pairs.

To get some insight, let us first consider the U(1) charge
sector only. We use an electrostatic language, assuming
screening in the “plasma” that fills the left half-cylinder Cl .
If the left/right–symmetric operators eiϕ(w)/

√
νeiϕ(w)/

√
ν and

e−iϕ(w)/
√

νe−iϕ(w)/
√

ν are termed “electric charges,” then the
operators e±iϕ(w)/

√
ν and e±iϕ(w)/

√
ν themselves contain both

electric and magnetic charge. In the plasma, the magnetic
charge is confined, that is, correlators of operators carrying
magnetic charge fall exponentially (and their expectations
in an infinite system vanish, so there is no need to subtract
their disconnected parts). The electric charge is screened
in the plasma, so correlators of electric charges fall also
exponentially, with a correlation length of order ∼1/

√
ρ0

set by the density. This then implies that, when we take the
operator a†(w1) to the boundary of the plasma from outside
(Re w1 → 0), it has its electric charge neutralized, leaving
its magnetic charge. Thus, at the boundary of the plasma
(Re w1 = 0), when inserted in the correlator (3.6), the operator
e−iϕ(w1)/

√
ν can be replaced by eiϕ(w1)/

√
ν when the density

ρ0 goes to infinity. Although this replacement apparently
violates charge neutrality because e−iϕ(w1)/

√
ν and eiϕ(w1)/

√
ν

have opposite electric charge (but the same magnetic charge),
it is valid inside the correlator (3.6), thanks to the exponential
generating integrals of pairs a(w)a(w) that ensures global
charge neutrality. Thus, for the U(1) sector, we have the
boundary condition along the imaginary axis (Re w = 0)

e−iϕ(w)/
√

ν = eiϕ(w)/
√

ν . (3.7)

Now, let us come back to the case of the full operator
a†(w1) = e−iϕ(w1)/

√
ν × ψ†(w1). Again, one brings a†(w1) to

the boundary (Re w1 → 0) from the outside. In the corre-
lator (3.6), it can fuse with one of the fields a(w)a(w),
leaving only the field a(w). Assuming exponentially decaying
correlations inside Cl , the “pairing” between a†(w1) and a(w)
can occur only on distances �1/

√
ρ0. Therefore, when the

density ρ0 goes to infinity, we are left with a CFT in the region
Re w > 0, where the fields are constrained by the boundary
condition

a†(w) = a(w) (3.8)

along the imaginary axis Re w = 0. This is a generalization
of the boundary condition (3.7) that includes the statistics
sector. For example, when the statistics sector is generated by
a Zk-parafermion current, the constraint (3.8) is a boundary
condition on the Zk current that was discussed in Refs. 50 and
51. Again, the boundary condition (3.8) apparently violates
charge neutrality, but the correlator (3.6) is still globally
neutral thanks to the generating function of integrals of pairs
a(w)a(w). Strictly speaking, the replacement a†(w1) by a(w1)
close to the boundary is only correct up to a multiplicative
constant, which depends on the value of λ in (3.6). Such a
multiplicative constant should also appear in the boundary
condition (3.8). However, the coefficient λ can always be tuned
such that the multiplicative constant is 1, leading to the simplest
form of the boundary condition (3.8).

The calculation of the correlator (3.6) then boils down to
the one of the two-point correlator

〈a†(w1)a†(w2)〉Cr
(3.9)

in the domain Cr , with the boundary condition (3.8). This is
a considerable simplification of the problem. We will use this
trick again in Sec. III E to compute equal-time correlators at
the edge of a quantum Hall system.

The boundary condition (3.8) for the nonchiral CFT outside
the droplet is the main result of this section. It will play a
crucial role in the rest of this paper. We obtained it from the
specific form of the perturbation of the action

∫
a(w)a(w)d2w

inside the droplet, and assuming that the generalized screening
hypothesis holds. The boundary condition (3.8) is a local
constraint along the boundary. It is a conformally invariant
boundary condition: it is invariant under conformal mappings
w 	→ f (w) of the domain outside the droplet which preserve
the shape of the boundary.48

Finally, to conclude this section, we reformulate the
boundary condition (3.8) using the operator formalism in
CFT. This is a purely technical step that will be used in the
next section, when we analyze the consequences of (3.8) for
the edge theory of the FQHE. It is a standard procedure in
boundary CFT.49,52 The fields a(w) and a†(w) can be expanded
in Fourier modes on the cylinder

a(w) =
(

2π

L

)ha ∑
n−ha∈Z

e
2πw
L

n a−n, (3.10)

a†(w) =
(

2π

L

)ha ∑
n−ha∈Z

e
2πw
L

n (an)†, (3.11)

with the Hermiticity condition (a−n)† = (a†)n (in this
Euclidean field theory, the Hermitian conjugate must be taken
after continuation to real time on the cylinder, namely, x → it ,
so w† = −w). One has similar expansions for a(w) and a†(w).
The boundary condition (3.8) can be written in terms of the
modes as (a†)n = a−n for any n ∈ Z + ha . More precisely,
this identity must hold while acting on a boundary state |B〉:

[(a†)n − a−n]|B〉 = 0. (3.12)

Such boundary states are known in the CFT literature as
Ishibashi states.49,52 It is convenient to think of the con-
straint (3.12) as the expression of an intertwiner between
the chiral and the antichiral representations of A. Since the
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operator product expansions of a(w) and a†(w) generate the
full chiral algebra A, and because we are assuming that the
representations of the chiral algebra A that appear in this paper
are irreducible, Schur’s lemma implies that the state |B〉 is
completely fixed, up to a global normalization constant.

Before we go ahead and analyze the consequences of these
boundary CFT ideas, let us point out that other technical
choices are possible for the analysis carried out here. We
have adopted a grand-canonical formalism in order to be
able to write the boundary condition (3.8), which violates
neutrality. The neutrality of correlators is restored thanks to
the fact that the particle number is not fixed. One could
have adopted other conventions. For instance, one possibility
would be to work in the canonical ensemble, and then focus
on the neutral subalgebra of the chiral algebra A, which is
generated by all the neutral operators. For instance, in the
U(1) sector, the neutral operators are generated by the operator
product expansions of the current i∂ϕ(z) and its derivatives.
In the statistics sector, the neutral subalgebra contains the
stress tensor, the modes of which generate a Virasoro algebra,
and possibly some other local operators, which yield some
extension of the Virasoro algebra [such as a Wk algebra for
Zk parafermions (see Refs. 53–55)]. Then, one would have
found a boundary condition analogous to (3.8) but for the
neutral currents rather than for the operators a(w) and a(w)
themselves. Also, another appealing possibility to circumvent
the problems caused by the violation of charge neutrality, while
working in the canonical ensemble, would be to use “shift
operators” that would map the CFT vacuum with N charges
|N〉 onto the one with N ± 1 charges. These operators are not
local. In terms of such a shift operator S, one would obtain a
boundary condition of the form a(w) = Sa†(w)S. The locality
of the boundary condition would be somewhat hidden in this
kind of expression. That is why, in this section, rather than
dealing with these shift operators, we decided to use a grand-
canonical formulation in order to reach the local boundary
condition (3.8), which should appear as more natural to the
reader. Of course, although all these technical conventions
need to be treated carefully for the global consistency of the
argument, they will have no influence on our final results.

C. Back to the droplet

In this section, we want to go back to the plane, where the
particles fill a droplet of radius R. We want to understand how
one should handle the state

1

λNZN

exp

[
λ

∫
C

eV (z,z)d2z a(z)a(z)

]
|0〉|0〉 (3.13)

when it appears inside correlators of the form

〈N |〈N |φ(ζ1) . . . φ(ζp)

× 1

λNZN

exp

[
λ

∫
C

eV (z,z)d2z a(z)a(z)

]
|0〉|0〉. (3.14)

Each of the operators φ(ζj ) is one field a(ζj ), a(ζj ), a†(ζj ),
or a†(ζj ). They are all lying outside the dropplet: |ζj | > R.
We are interested in these correlators in the “scaling region,”
which we now define. We first fix some number M > 0, and
consider the correlators of the form (3.14) such that p � M .

R

|B(R)

∼

R

FIG. 4. In the thermodynamic limit, assuming screening, the
state (3.13) is equivalent to the conformal boundary state |B(R)〉
in the so-called “scaling region.”

The nonzero contribution to the correlator (3.14) comes from
the term generated by the exponential that has exactly the right
total charge. This charge is contained in the interval [N −
M
2 ,N + M

2 ]. Then, we consider the limit N → ∞, keeping M

fixed. In that process, the radius R of the droplet grows, so one
has to push the operators φ(ζj ) such that they stay out of the
droplet (for example, when R is changed to R′, one can rescale
ζj 	→ ζj × R′/R). In the scaling region, only terms with a
number of particles within the range [N − M

2 ,N + M
2 ] matter.

Different particle numbers should in principle correspond to
circular droplets with different radii R + δR, however, we
have defined the scaling region precisely such that δR/R → 0
when the number of particles goes to infinity, so the variations
of the size of the droplet become negligible. Therefore, in
what follows the radius of the droplet is always R, even if the
number inside it can fluctuate around N .

Now, we are ready to apply the ideas of the previous
section. If the screening hypothesis holds inside the droplet,
then when the number of particles goes to infinity, the droplet
becomes equivalent to a boundary condition at |z| = R for the
nonchiral CFT that remains outside the droplet. The exterior
of the droplet can be mapped onto the right half-cylinder by
the conformal mapping z 	→ w = L

2π
ln(z/R), and we know

that the boundary condition on the cylinder is (3.8). Again,
the boundary condition (3.8) requires some fine tuning of the
parameter λ, such that configurations with different particle
numbers contribute with equal weights. Let us skip this detail
for now. We reach the conclusion that, in radial quantization
in the plane, the boundary condition is again encoded by the
boundary state (3.12) up to a scale transformation (in order
for the boundary to be at |z| = R rather than at |z| = 1), as
illustrated in Fig. 4

|B(R)〉 = RL0+L0 |B〉. (3.15)

At this point, the reader might be worried by a technical
aspect: a neutralizing background was explicitly included in
the previous section, while here we have traded the neutralizing
background for the factor eV (z,z̄) in the integration measure for
the particles. However, since the boundary state |B〉 is already a
sum over all the possible charge sectors with equal weights, this
does not affect the expression of |B〉. Thus, when it is inserted
in correlators, and in the scaling region, the state (3.13) can
be safely replaced by the boundary state |B(R)〉 in the limit
N → ∞ (up to a global normalization factor which still needs
to be fixed).

245310-11



J. DUBAIL, N. READ, AND E. H. REZAYI PHYSICAL REVIEW B 86, 245310 (2012)

D. Consequence for the overlaps between the edge states

Now, we come back to the edge states which we defined
in Sec. II B, and explore the consequences of screening for
the overlaps between these wave functions. Following the
formula (2.8), we define

�〈v|(z1, . . . ,zN ) = 1√
ZN

〈v| 1

R�L0

N∏
i=1

a(zi)|0〉, (3.16)

where we have introduced the rescaling operator 1/R�L0 .
Here, R is again the radius of the planar droplet defined
by (3.4), and �L0 = L0 − 〈N |L0|N〉 measures the conformal
dimension relative to the one of the vacuum (|N〉 is the
vacuum with N charges). For an angular momentum eigenstate
(L0|v〉 = hv|v〉), one can easily check that the factor 1/R�L0

ensures that �〈v|(z1, . . . ,zN ) is dimensionally homogeneous
to the ground-state wave function �〈N |(z1, . . . ,zN ), zi and
R being two lengths. The normalization (3.16) of the wave
functions for the edge states will also allow us to express the
result (3.23) in a particularly simple form.

Actually, the definition (3.16) is valid for the neutral edge
excitations only, as it is implicitly assumed that the out state
〈v| is a state with charge N . To be able to express our final
result (3.23) in a more general form, we also need to include
charged excitations. Therefore, for a state 〈v| with charge N +
n (n can be positive or negative), we define the wave function
for the excited state �〈v| as

�〈v|(z1, . . . ,zN ,zN+1, . . . ,zN+n)

= λn/2

√
ZN

〈v| 1

R�L0

N+n∏
i=1

a(zi)|0〉, (3.17)

where the coefficient λ is the same as in (3.13). Now that
our conventions for the edge states are fixed, we can consider
the overlap between two wave functions �〈v1|(z1, . . . ,zN ) and
�〈v2|(z1, . . . ,zN ):

〈〈
�〈v1|

∣∣�〈v2|
〉〉 = 1

N !

∫
C

N∏
i=1

eV (zi ,z̄i )d2zi

[
�〈v1|(z1, . . . ,zN )

]∗
×�〈v2|(z1, . . . ,zN ). (3.18)

This is an overlap between two neutral edge excitations. More
generally, between two charged excitations with some charge
N + n, the overlap is defined as

〈〈
�〈v1|

∣∣�〈v2|
〉〉 = 1

(N + n)!

∫
C

N+n∏
i=1

eV (zi ,z̄i )d2zi

× [
�〈v1|(z1, . . . ,zN+n)

]∗
×�〈v2|(z1, . . . ,zN+n). (3.19)

The overlap between two wave functions with different
particle numbers is always zero. Using our definitions (3.16)
and (3.17), these overlaps are equal to〈〈

�〈v1||�〈v2|
〉〉 = 〈v1|〈v2|R−�L0−�L0

1

λNZN

× exp

[
λ

∫
C

eV (z,z̄)d2z a(z)a(z)

]
|0〉|0〉.

(3.20)

According to the preceding section, the whole expression in the
second line can be replaced with the boundary state RL0+L0 |B〉,
at least as far as we are in the scaling region. This means that
the charge of the states 〈v1| and 〈v2| must be kept to some
value N + n, where |n| � M , and M is fixed while we send N

to infinity. This is precisely what we do here. Then, we have

〈〈
�〈v1|

∣∣�〈v2|
〉〉 ∼

N→∞
RhN +hN

ZN

[〈v1|〈v2|]|B〉 (3.21)

with hN + hN = 〈N |L0|N〉 + 〈N |L0|N〉. Using some basis of
states an1an2 . . . (a†)m1 (a†)m2 . . . |0〉, one can easily show that
the property (3.12) implies that for any |v1〉 and |v2〉,

〈v1|〈v2||B〉 = 〈v2|v1〉 × const, (3.22)

where the constant does not depend on |v1〉 and |v2〉, and comes
only from the global undetermination of the normalization of
|B〉. The property (3.22) is a very well-known property of
Ishibashi states (see Refs. 49 and 52). Actually, it could even
be used as a definition of an Ishibashi state, instead of (3.12).

The normalization of |B〉 is fixed by the requirement
that the ground-state wave function �〈N | is normalized:
〈〈�〈N ||�〈N |〉〉 = 1. Thus, the constant in (3.22) must be equal
to ZN/RhN +hN . The final result is then〈〈

�〈v1|
∣∣�〈v2|

〉〉 −→
N→∞

〈v2|v1〉. (3.23)

This formula, which is a direct consequence of the generalized
screening hypothesis, is the main result of this paper. It shows
that the linear mapping (3.16) from the (dual of the) Hilbert
space of the CFT to the space of the physical edge states be-
comes an isometric isomorphism in the thermodynamic limit.
This is a precise formulation of the long expected bulk/edge
correspondence. It implies, in particular, that the underlying
CFT has a positive-definite inner product, or in other words,
that it is a unitary CFT. In the MR construction (Sec. I C),
only the rationality of the CFT for the statistics sector was
assumed. We see that, if generalized screening holds, then we
arrive at (3.23), which implies that the CFT is unitary. This is
one additional argument that shows that the use of a nonunitary
CFT in the statistics sector can not be consistent with the fact
that all the connected correlations of local operators in the
bulk are short range, as it clearly leads to contradictions (for
previous arguments, see Refs. 30 and 56). Therefore, for con-
sistency, the FQHE trial states given by the MR construction
should correspond to rational and unitary CFTs only.

The formula (3.23) will also play a key role when we study
the entanglement spectrum in Sec. IV. We will provide some
direct numerical checks of this result in Sec. III F. In the next
section, we derive another result that is directly related to this
bulk/edge correspondence.

To conclude this section, let us comment on the factor λ

that appears each time one has to deal with particle numbers
that differ from N . We have for instance

〈〈�〈N+1||�〈N+1|〉〉 −→
N→∞

1, (3.24)

while by using the definitions (3.2), (3.17), and (3.19),

〈〈�〈N+1||�〈N+1|〉〉 = λ
ZN+1

RhN+1+hN+1

RhN+hN

ZN

. (3.25)
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In the previous sections, we explained that the coefficient λ

had to be tuned such that it gives rise to the result (3.23) for
charged excitations (not only for the wave functions for neutral
excitations). Thus, formula (3.24) is rather a definition of the
coefficient λ than an actual result. Indeed, in general λ may
depend on the radius R and therefore on the number of particles
N . However, once λ is fixed, there is no other free parameter
in (3.23). For instance, by evaluating 〈〈�〈N+n||�〈N+n|〉〉,
one finds that ZN+n/ZN ∼ λ−nRhN+n+hN+n−hN−hN , where the
coefficient λ is no longer a free parameter. As an exercise, one
can check that this is consistent with the large-N behavior of
the partition function ZN+n in the Laughlin case, either with
direct free-fermion calculations in the integer quantum Hall
effect or with the results of the semiclassical expansion of
Wiegmann and Zabrodin for the Laughlin wave function.57

E. Equality of edge and bulk CFT correlators

In this section, we show that screening, reformulated as the
conformal boundary condition (3.8), implies that the equal-
time correlators measured along the edge of the quantum Hall
system are equal to the correlators in the CFT that is used to
construct the ground-state wave function (1.6). For instance,
we can compute the correlator of particle creation/annihilation
operators c/c† along the boundary of the droplet (|zj | = |z′

j | =
R),

〈〈�|c†(z′
1) . . . c†(z′

n)c(z1) . . . c(zn)|�〉〉. (3.26)

The ground state |�〉〉 is the wave function (1.6) with N

particles. In first quantization, the correlator (3.26) is

A

(N − n)!

∫
C

N∏
i=n+1

eV (zi ,zi )d2zi

× [�(z′
1, . . . ,z

′
n,zn+1, . . . ,zN )]∗�(z1, . . . ,zN )

= A〈N |a(z′
1) . . . a(z′

n)〈N |a(z1) . . . a(zn)

× 1

λN−nZN

exp

[
λ

∫
C
eV (z,z̄)d2z a(z)a(z)

]
|0〉|0〉

−→
N→∞

Aλn〈N |a(z′
1) . . . a(z′

n)〈N |a(z1) . . . a(zn)|B(R)〉.
(3.27)

The factor A is the product
∏n

p=1 eV (zp,zp)/2eV (z′
p,z′

p)/2. Since
we assume that V (z,z) is rotationally invariant and the zp and
z′
p are on the circle of radius R, one has A = enV (R). In the

last line, we have replaced the state (3.13) by the boundary
state (3.15), as explained in Sec. III C. Finally, we use the
fact that the boundary state |B(R)〉 implements the conformal
boundary condition a†(w) = a(w) on the cylinder, which can
be mapped onto the plane by the conformal mapping w 	→
z = R exp 2πw

L
. This leads to the boundary condition along the

circle of radius R in the plane(
dz

dw

)ha

a†(z) =
(

dz

dw

)ha

a(z). (3.28)

The factors dz
dw

, dz
dw

appear because the operators a and a

transform covariantly under conformal transformations (see
Refs. 31–33). These two factors are equal to 2πz

L
and 2πz

L
,

respectively. Thus, the boundary condition at |z| = R is

a(z) = (z/z)haa†(z) (recall that ha = ha). In the end, the
correlator (3.26) converges to the following correlator in the
chiral CFT in the plane

(λeV (R))n
n∏

p=1

(
zp

zp

)ha

〈a†(z′
1) . . . a†(z′

n)a(z1) . . . a(zp)〉.

(3.29)

In particular, the particle propagator along the edge is propor-
tional to the two-point correlator in the chiral CFT 〈a†(z′)a(z)〉

〈〈�|c†(z′)c(z)|�〉〉 ∝ 1

|z′ − z|2ha
(3.30)

in the thermodynamic limit. This shows that equal-time
correlators evaluated along the edge are given by correlators
in the CFT that are used to construct the trial wave function for
the ground state (1.6). This result has been assumed in many
places in the literature, although no general argument has ever
been given. It generalizes the one obtained by Wen for the
Laughlin wave function in Ref. 19. For recent work on this
topic, see also Ref. 58. Note that we have restricted the result
to equal-time correlators because we do not address physical
Hamiltonians in this paper (see, however, Refs. 59 and 60).

The discussion in this section can be extended to the
case of equal-time correlation functions of quasiparticle and
quasihole operators along the edge. In the thermodynamic
limit and assuming short-range correlations in the bulk, the
same calculation based on the boundary condition (3.8) can be
done, leading to the equality (up to normalization and phase
factors) between these correlation functions and the correlators
in the bulk chiral CFT that underlies the trial wave function.

F. Numerical checks

The formula (3.23) can be checked numerically. In this
section, we present numerical evidence that shows that it holds
for the Laughlin wave function and for the MR (Pfaffian) wave
function. In both cases, we do a Monte Carlo (MC) simulation
for a system of N particles, which is tractable both for the
Laughlin and Pfaffian states. The MC calculation allows us
to estimate numerically the ground-state expectation value of
any observable O({zi}) that depends on the positions zi’s:

〈〈�|O({zi})|�〉〉. (3.31)

1. Laughlin at ν = 1/3

The edge states for the Laughlin wave function are given
explicitly in Sec. II B. We have〈〈

�〈N |Jk1 ...Jkp

∣∣�〈N |Jk′
1
...Jk′

q

〉〉
= 〈〈

�|S∗
k1

. . . S∗
kp

Sk′
1
. . . Sk′

q
|�〉〉

, (3.32)

where

Sk = 1√
ν

N∑
i=1

zk
i

Rk
, (3.33)

and S∗
k is the complex conjugate of Sk . It is the right-hand side

of (3.32) that we measure numerically with MC techniques.
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The result predicted by (3.23) when N → ∞ is〈〈
�|S∗

k1
. . . S∗

kp
Sk′

1
. . . Sk′

q
|�〉〉

= 〈
Jk′

1
. . . Jk′

q
J−kp

. . . J−k1

〉
. (3.34)

For ν = 1/3, N = 100, with 108 MC steps and with the quad-
ratic potential (1.3) corresponding to the plane, we find the fol-
lowing results for the first exited states. They are in very good
agreement with our analytic prediction in the N → ∞ limit:

MC Analytic

〈〈�|S∗
1S1|�〉〉 1.007 〈J1J−1〉 = 1

〈〈�|S∗
2S2|�〉〉 2.017 〈J2J−2〉 = 2

〈〈�|(S∗
1 )2S2|�〉〉 0.003 〈J2J

2
−1〉 = 0

〈〈�|S∗
2S∗

1S1S2|�〉〉 2.034 〈J2J1J−1J−2〉 = 2
〈〈�|(S∗

2 )2(S2)2|�〉〉 8.048 〈J 2
2 J 2

−2〉 = 8

2. Moore-Read (Pfaffian) at ν = 1/2

For the Pfaffian state, there are two types of edge exci-
tations: the excitations in the U(1) charge sector, which are
similar to those of the Laughlin state, and the excitations in the
Majorana sector. For the U(1) excitations, we find for ν = 1/2,
N = 100, and with 108 MC steps

MC Analytic

〈〈�|S∗
1S1|�〉〉 1.002 〈J1J−1〉 = 1

〈〈�|S∗
2S2|�〉〉 1.993 〈J2J−2〉 = 2

〈〈�|(S∗
1 )2S2|�〉〉 0.005 〉J2J

2
−1〉 = 0

〈〈�|(S∗
1 )2(S1)∗|�〉〉 1.995 〈J 2

1 J 2
−1〉 = 2

〈〈�|(S∗
2 )2(S2)2|�〉〉 7.934 〈J 2

2 J 2
−2〉 = 8

In the Majorana sector, the excitations are of the
form (2.14). For instance, with two excited fermion modes
only, we get the overlaps〈〈

�〈N |ψn1 ψn2

∣∣�〈N |ψn′
1
ψn′

2

〉〉 = 〈〈
�|F ∗

n1,n2
Fn′

1,n
′
2
|�〉〉

, (3.35)

where Fn1,n2 is the following ratio:

Pf

⎛
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0 0 z
n1− 1

2
1 z

n1− 1
2

2 . . . z
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Rn1+n2 × Pf

({
1

zi−zj

}
1�i,j�N

) .

(3.36)

Similar formulas hold for more fermionic excitations, for
example, for Fn1,n2,n3,n4 , etc. Again, the right-hand side
of (3.35) can be measured numerically in a MC simulation.
When N → ∞, we expect

〈〈�|F ∗
n1,n2

Fn′
1,n

′
2
|�〉〉 = 〈ψn′

1
ψn′

2
ψ−n2ψ−n1〉. (3.37)

We have checked this for a few matrix elements for sizes
N = 10, 20, 30, and 100 (each of them with 108 MC steps).
The results are in good agreement with our analytic prediction,
although the convergence is slower than in the U(1) sector:

N = 10 N = 20 N = 30 N = 100 Analytic (N → ∞)

〈〈�|F ∗
1
2 , 3

2
F 1

2 , 3
2
|�〉〉 1.371 1.288 1.231 1.124 〈ψ 1

2
ψ 3

2
ψ− 3

2
ψ− 1

2
〉 = 1

〈〈�|F ∗
1
2 , 5

2
F 1

2 , 5
2
|�〉〉 1.460 1.323 1.268 1.151 〈ψ 1

2
ψ 5

2
ψ− 5

2
ψ− 1

2
〉 = 1

〈〈�|F ∗
3
2 , 5

2
F 3

2 , 5
2
|�〉〉 1.432 1.393 1.331 1.189 〈ψ 3

2
ψ 5

2
ψ− 5

2
ψ− 3

2
〉 = 1

〈〈�|F ∗
1
2 , 7

2
F 3

2 , 5
2
|�〉〉 −0.033 −0.004 −0.003 −0.001 〈ψ 3

2
ψ 5

2
ψ− 7

2
ψ− 1

2
〉 = 0

〈〈�|F ∗
1
2 , 3

2 , 5
2 , 7

2
F 1

2 , 3
2 , 5

2 , 7
2
|�〉〉 1.617 1.764 1.700 1.381 〈ψ 1

2
ψ 3

2
ψ 5

2
ψ 7

2
ψ− 7

2
ψ− 5

2
ψ− 3

2
ψ− 1

2
〉 = 1

G. Corrections to scaling

So far, we have shown that, assuming short-range bulk
correlations only (the generalized screening assumption), the
universal formula (3.23) gives the inner products between
the edge states in the thermodynamic limit N → ∞. In
this section, we show how the corrections to scaling can be
tackled.

We will use ideas that come from the field of surface critical
phenomena (for a review, see Ref. 61). Let us sketch some of
the main points here. Like bulk critical phenomena, surface
critical phenomena can be understood within the framework
of the renormalization group (RG). Let us consider a classical
statistical system which is critical in the bulk, such as a critical
Ising model in d dimensions. At the surface (which is d − 1
dimensional), let us imagine that the spins are free. Imagine

also that one can turn on a magnetic field at the surface. The
spins at the surface tend to align with the magnetic field. Thus,
the surface of the system undergoes a transition, while the bulk
is at the critical point. Under the RG flow, the surface of the
system flows towards a fixed boundary condition where all the
spins are aligned. This is called a boundary RG flow; it brings
the system from one unstable boundary condition in the UV
to a more stable one in the IR. A boundary RG fixed point
is a scale-invariant boundary condition. For most systems,
scale invariance extends to conformal invariance, and we get
a conformal boundary condition (which means a conformally
invariant boundary condition). In the vicinity of a boundary
RG fixed point, the scaling behavior can be understood in terms
of perturbing operators along the boundary of the system. In
our example of the Ising model, the operator which is coupled
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to the magnetic field at the surface is the one corresponding to
the local magnetization. This operator, which we note φa(x), is
located at the surface, therefore it is called a boundary operator.
As in the more familiar case of bulk critical phenomena, one
can classify the boundary operators as relevant, irrelevant,
or marginal, depending on their scaling dimension ha . When
such an operator appears as a perturbation at the boundary,
it adds a term of the form λa

∫
dd−1xφa(x) to the action of

the theory. The coupling λa scales like �ha+1−d , where � is
some UV cutoff, such as the lattice spacing if our system is
a statistical model on a lattice. Under the RG flow, φa is said
to be relevant when ha < d − 1, irrelevant if ha > d − 1, and
marginal if ha = d − 1. Generically, all the operators which
respect the symmetries of the system are expected to appear
as boundary perturbations. For more information on surface
critical phenomena and boundary RG flows, we refer the reader
to Refs. 61 and 62. Now, let us use this framework to analyze
the corrections to scaling for the overlaps between the edge
states.

1. Locality of the boundary perturbation

As explained in the previous sections, our result (3.23) relies
on the fact that, in the thermodynamic limit and assuming
generalized screening, we are left with a nonchiral CFT
that lives outside the droplet, constrained by a boundary
condition along the edge of the droplet. The interior of the
droplet decouples from the exterior thanks to screening. In
this framework, it is natural to include boundary perturbations
that modify the conformal boundary condition. The action of
the field theory SCFT is then modified along the circle |z| = R

by boundary perturbations SCFT → SCFT + Sb. The latter are
of the form

Sb =
∑

a

λa

∫
|z|=R

|dz| φa(z), (3.38)

where the φa’s are some local boundary operators with scaling
dimensions ha , and with coupling constants λa . The boundary
condition (3.8) should be stable under the RG flow, which
means that there can be no relevant perturbation, namely,
all the scaling dimensions satisfy ha � 1. The boundary
perturbation (3.38) might look completely generic, however,
one should emphasize that it implicitly assumes locality, in
the sense that it is a sum of local operators. This holds thanks
to the locality of the action of the CFT outside the droplet,
and thanks to the screening assumption inside it. Without
screening, the degrees of freedom along the edge might be
coupled at long distances through the bulk, which would
typically lead to nonlocal perturbations of the action SCFT.
Since we are assuming screening, this can not happen, and the
perturbation (3.38) has the most generic form. The coupling λa

scales with some power of the UV cutoff, which is of the order
of the mean particle spacing close to the edge or, equivalently,√

ρ0
−1 where ρ0 is the mean particle density close to the edge.

Thus, λa ∼ (
√

ρ0
−1)ha−1. Note that the perturbation (3.38)

must be real, so Sb is Hermitian: Sb = S
†
b.

The perturbation (3.38) modifies our formula for the
overlaps between the edge states in the scaling region (which

implies
√

ρ0
−1

/R → 0)

〈〈�〈v1| | �〈v2| 〉〉 = 〈v2|e−Sb |v1〉
〈e−Sb 〉 . (3.39)

Of course, the leading order in this formula is nothing but the
universal result (3.23), but this refined expression generates
the corrections to scaling we are interested in. The first
correction comes from the least irrelevant operator (i.e., with
the smaller ha) and leads to a term of order (

√
ρ0

−1
/R)ha−1 ∼

(1/
√

N )ha−1. The denominator 〈e−Sb 〉 = 〈N |e−Sb |N〉 is fixed
by the requirement that the ground state |�〈N |〉〉 is normalized:
〈〈�〈N | | �〈N | 〉〉 = 1. By redefining Sb → Sb + const, one can
absorb this denominator in the definition of Sb itself. This is
what we do in the following, and we have thus the following
formula for the inner products:〈〈

�〈v1|
∣∣�〈v2|

〉〉 = 〈v2|e−Sb |v1〉. (3.40)

2. RG analysis of the corrections to scaling: The example of the
Laughlin state

So far, we have just expressed the fact that, if generalized
screening holds, then the corrections to scaling for the overlaps
can be understood in terms of local boundary perturbations to
the local boundary condition (3.8). The next step is to discuss
what local terms are allowed in Sb, namely, what are the least
irrelevant terms that are compatible with the symmetries of the
system. This requires a case-by-case analysis. Let us do this
for the Laughlin state in some more details now.

First, we note that, for different particle number N �= N ′,
two states |ψ〈N,k|〉〉 and |ψ〈N ′,k′|〉〉 always have a zero overlap.
This rules out the possibility of having the operator eiϕ(z)/

√
ν or

e−iϕ(z)/
√

ν in the boundary perturbation Sb, or any other vertex
operator, as it would allow nonzero overlaps between states
with different particle numbers. In other words, we must have
[J0,Sb] = 0, where J0 is the zero mode of the U(1) current,
which is the number operator. Similarly, because of rotational
invariance, two edge states with different angular momenta
have zero overlap, which can be expressed as the constraint
[L0,Sb] = 0. The most generic local perturbation along the
boundary takes the form of a sum of polynomials in the
(derivatives of the) U(1) current i∂ϕ(z). To avoid technical
issues caused by the extensive U(1) charge of the droplet, it is
more convenient to work with the shifted chiral bosonic field
ϕ̃(z) = ϕ(z) + i N√

ν
ln z. It is defined such that i∂ϕ̃(z) = 1

z
J̃0 +∑

n�=0 zn−1J−n, where Jn = 1
2πi

∮
dζ ζ ni∂ϕ(ζ ) is a Fourier

mode of the original (i.e., not shifted) U(1) current i∂ϕ(z)
(see also Sec. II B.1), and only the zero mode is shifted:
J̃0 = J0 − N/

√
ν. This ensures that, when it acts on the

CFT vacuum with N + �N charges, the eigenvalue of J̃0 is
J̃0|N + �N〉 = �N/

√
ν|N + �N〉, which is of order O(1)

in the scaling region, while the eigenvalue of J0 would rather
be of order O(N ). Leaving aside these technicalities for now,
the most generic boundary perturbation has the form

Sb =
∑
{k}

λ{k}
∮

dz

2πi

( z

R

)k1+...+kp−1 (
i∂k1

z ϕ̃
)
. . .

(
i∂

kp

z ϕ̃
)
(z),

(3.41)
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where the sum runs over the finite sets {k} = {k1, . . . ,kp}
with k1, . . . ,kp � 1. The polynomials in i∂ϕ̃(z) are normal
ordered, and the factor z

R
can be viewed as the Jacobian (up

to factors 2π ) of the conformal mapping from the cylinder to
the plane. It ensures, in particular, that Sb does not break
rotational invariance: [L0,Sb] = 0. The coupling λ{k} is of
order (

√
ρ0

−1)k1+···+kp−1; it leads to a correction of order
(
√

ρ0
−1

/R)k1+···+kp−1 ∼ (1/
√

N )k1+···+kp−1.
The least irrelevant operator is actually marginal: it is the

U(1) current i∂ϕ̃(z) itself, which has a scaling dimension 1. Its
zero mode is nothing but the number operator J̃0, so it plays
a role only when sectors with different particle numbers are
involved. The weights of these different sectors may eventually
be fixed such that the inner product do not depend on the
number operator at the leading order, and thus the associated
coefficient λ{1} is zero. Actually, this is exactly what we did in
the previous sections, when we explained that the somewhat
mysterious coefficient λ in (3.5) and the subsequent equations
could be chosen arbitrarily, and we tuned it such that the
isometry (3.23) holds not only for neutral excitations, but also
for charged excitations. We see now that the fact that this
coefficient required some fine tuning was simply due to the
presence of a marginal operator. That being said, we assume
as previously that the weights of the sectors with different
particle numbers are tuned such that the U(1) current does not
appear at this order, so we can safely turn to the next bound-
ary perturbations, which are all irrelevant for the Laughlin
state.

The next possible contribution corresponds to the stress
tensor (more precisely, a “shifted” stress tensor, which involves
the shifted zero mode J̃0 rather than J0) T̃ (z) = 1

2 (i∂ϕ̃)2(z),
with scaling dimension 2. It turns out that this term can not
appear in Sb, at least for the inner products of the edge states
in the plane or in the sphere that we are considering in this part
(however, it will appear later, in a modified version of these
inner products associated with the real-space entanglement
spectrum). The reason why the stress tensor T̃ (z) can not
appear in Sb is essentially translational invariance in the plane
(or rotational invariance on the sphere); we come back to that
in more details in the next section (Sec. IV D). For now, let
us focus on the other possible operators. There is another
candidate with scaling dimension 2: i∂2ϕ̃(z), which is nothing
but the derivative of the U(1) current, so one can again dismiss
it. Thus, there are actually no perturbating operators of scaling
dimension 2 in Sb.

There are three operators with scaling dimension 3, namely,
(i∂ϕ̃)3(z), (i∂ϕ̃)(i∂2ϕ̃)(z), and (i∂3ϕ̃)(z). One can show (for
instance using translation invariance, as below) that the leading
contribution to Sb for the Laughlin state comes from (i∂ϕ̃)3(z),
and the two other operators, which are total derivatives, do
not contribute. Then, at the next order, there are five possible
operators with dimension 4, and so on.

In conclusion, for the Laughlin state, the overlaps in the
plane and on the sphere are given by the formula (3.40) where
the leading contribution to Sb is of order O(1/N ), and is given
by

Sb = const × 1

N

∮
dz

2πi
z2(i∂ϕ̃)3(z) + O(N−3/2). (3.42)

The proportionality constant in (3.42) is some nonuniversal
number. In general, such coefficients can not be determined
simply by symmetry arguments, such as those we are giving
here. The constraint derived in the next paragraph for inner
products in the plane may help fixing a few of these coeffi-
cients; in full generality, however, there will always remain
some undetermined coefficients that can not be calculated by
the methods we use in this paper.

3. Translation invariance constraint on the boundary
perturbation Sb for the overlaps in the plane

In this paragraph, we derive a constraint on the boundary
perturbation Sb that generates the corrections to scaling in
the formula (3.40), which holds for any quantum Hall states
given by the MR construction (not only the Laughlin state).
The constraint is valid in the plane, namely, when one uses the
potential V (z,z) = − |z|2

2�2
B

[see (1.3)] in the integration measure.
It essentially expresses translation invariance in the plane, and
it is written as

[e−Sb ,J−1] =
√

ν

N
L̃−1e

−Sb , (3.43)

where J−1 is the first Fourier mode of the U(1) current, and
L̃−1 is the Fourier mode of the total stress tensor of the CFT,
which involves both the U(1) sector and the statistics sector:
T̃ U(1)(z) + T ψ (z). The reason why we use the notation T̃ (z) is
the same as above: in the U(1) sector, to avoid technical prob-
lems due to the extensive U(1) charge inside the droplet, we use
the shifted current i∂ϕ̃(z) to construct the shifted stress tensor
in the U(1) sector T̃ U(1)(z) = 1

2 (i∂ϕ̃)2(z). This shift does not
affect the statistics sector at all. The Fourier mode L̃−1 is sim-
ply defined as

∮
dζ

2πi
ζ [T̃ U(1)(ζ ) + T ψ (ζ )] or, in other words, by

L̃−1 =
∑
n>0

J−n−1Jn + J−1J̃0 + L
ψ

−1. (3.44)

Before we explain how to derive the constraint (3.43)
in the plane, let us explain why, when it is associated
to the locality of Sb expressed in (3.38), it becomes a
useful equation. For the Laughlin state, T̃ (z) = T̃ U(1)(z),
and as explained in the previous paragraph, Sb could in
principle include a leading contribution from the stress
tensor, which has scaling dimension 2. Then, we would have
Sb = α√

N
L̃0 + O(N−1) for some undetermined coefficient α

of order O(1). When we plug this into the constraint (3.43),
and expand e−Sb = 1 − α√

N
L̃0 + O(N−1), we see that we

get α√
N

[L̃0,J−1] = O(N−1), which implies α = 0. Thus, the
absence of the U(1) part of the stress tensor in Sb follows from
the constraint (3.43). However, it is important to note that
the constraint (3.43) does not prevent the statistics part of the
stress tensor T ψ (z) to appear. Therefore, in general, one should
expect to have a term proportional to 1√

N
L

ψ

0 in Sb. In particular,
this means that the first correction to the universal formula
for the inner products generated by the formula (3.40) is
usually of order 1/

√
N (at least) for the edge excitations in the

statistics sector, while in the U(1) sector the corrections are of
order 1/N . This nicely agrees whith our numerical results for
the MR (Pfaffian) state in Sec. III F: the convergence towards
our universal formula is much faster for the excitations in the
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U(1) sector (because the corrections are of order 1/N) than
for those in the statistics sector (corrections of order 1/

√
N ).

More systematically, once one has postulated the local form
of the perturbation Sb (3.38), one can use the constraint (3.43)
recursively to analyze new terms in Sb, which are more
and more irrelevant. This leads to a large-N expansion for
the inner products when the resulting formula for Sb is
plugged into (3.40). Of course, not all possible terms are
constrained by (3.43), as we have seen for instance for L

ψ

0 .
For the Laughlin state, since there is no statistics sector, the
constraint is slightly more powerful. For example, it allows us
to compute the proportionality constant in (3.42). At the next
order O(1/N3/2), however, the operators of scaling dimension
4 appear, and these include (i∂2ϕ̃)2, which commutes with J1

(this operator will appear again in the entanglement spectrum).
Thus, the coefficient of this operator is not fixed by the
constraint (3.43). As the scaling dimension increases, there
are more and more operators that are not constrained by this
relation.

Finally, let us show how to derive the constraint (3.43).
For any pair of CFT states |v1〉, |v2〉 (with the same charge
corresponding to N particles), consider the overlap between
the corresponding edge states |�〈v1|〉〉 and |�〈v2|〉〉 given
by (3.18). Since all the coordinates (zi,zi)’s are integrated
over the entire complex plane C, the integral is invariant
under a reparametrization (zi,zi) → (zi + ε,zi) corresponding
to a translation of the entire droplet along some axis. For an
infinitesimal ε, this implies

0 = ε
1

N !

∫
C

N∏
k=1

d2zk

N∑
i=1

∂zi

×
[
e
−

∑
j |zj |2
2�2

B

[
�〈v1|(z1, . . . ,zN )

]∗
�〈v2|(x1, . . . ,zN )

]
.

Since the ∂zi
derivatives do not act on the zi variables, we find

0 = − 1

N !

∫
C

N∏
k=1

d2zk

[
e
−

∑
j |zj |2
2�2

B

×
(∑

i

zi

2�2
B

�〈v1|(z1, . . . ,zN )

)∗
�〈v2|(x1, . . . ,zN )

]

+ 1

N !

∫
C

N∏
k=1

d2zk

[
e
−

∑
j |zj |2
2�2

B

[
�〈v1|(z1, . . . ,zN )

]∗

×
∑

i

∂zi
�〈v2|(x1, . . . ,zN )

]
.

In other words, we just performed an integration by part, and
used the fact that there are no contact terms since we integrate
over the entire complex plane. Now, using the notations of this
paper, we can rewrite this as

0 = −R
√

ν

2�2
B

〈〈
�〈v1|J1

∣∣�〈v2|
〉〉 + 1

R

〈〈
�〈v1||�〈v2|L−1

〉〉
.

The factors R come from the normalization of the edge
states (3.16). We have used the fact that, in conformal field
theory, L−1 is the generator of translations: it acts as

∑
i ∂zi

on the conformal block in �〈v2|(z1, . . . ,zN ). Plugging this

into (3.40), and using the radius (3.4) of the droplet in the
plane R = √

2N/ν�B , we find

N√
ν
〈v2|e−SbJ−1|v1〉 = 〈v2|L−1e

−Sb |v1〉. (3.45)

Here, the operator L−1 is the Fourier mode of the full stress
tensor T U(1)(z) + T ψ (z), and it is not shifted. The shifted mode
L̃−1 = (L̃1)†, given by (3.44), is related to L−1 by

L̃−1 = L−1 − N√
ν
J−1. (3.46)

The advantage of using L̃−1 rather than L−1 is, once again, that
it leads to terms of order O(1), rather than terms of order O(N )
(or higher powers of N ) when it is used in the formulas (3.23)
or (3.40). For instance, the overlaps 〈〈�〈v1|L̃1

|�〈v2|L̃1
〉〉 and

〈〈�〈v1|L1 |�〈v2|L1〉〉 are not equal: the former is of order O(1),
while the latter is of order O(N2) when N → ∞. Substituting
L̃−1 in (3.45), we find the constraint (3.43).

Let us finally emphasize that our results are intimately
related to a series of papers by Zabrodin and Wiegmann,
who have studied the behavior of the Laughlin droplet as
the potential V (z,z̄) is varied, using the so-called “loop
equation.”57,63,64 Our constraint (3.43) is actually nothing but
a reformulation, in the particular case of a quadratic potential
V (z,z), of their “loop equation.” The details of the calculations
that relate the results of Zabrodin and Wiegmann to ours
are beyond the scope of this paper, but we believe that
our point of view, which emphasizes the crucial role of the
screening assumption and its main consequences, which are
the conformal boundary condition (3.8) and the locality of the
boundary perturbations (3.38), is slightly different from theirs,
and sheds some new light on their results.

IV. ENTANGLEMENT SPECTRUM

We are ready to apply the formalism developed in Secs. II
and III to the analysis of the entanglement spectrum of
the ground-state wave function. In particular, the universal
result (3.23), which relates the overlaps between the edge states
to the inner product in the CFT space, will play a key role in our
analysis. Our main focus is on real-space partition (RSP, see
Sec. I D). However, the techniques we use can also be applied
to the case of the particle partition (PP) in the so-called “scaling
region,” as explained in the following (Sec. IV D).

In this section it is more convenient to use a second-
quantized formalism. By definition, in second quantization,
the wave function (1.6) becomes

|�〉〉 = 1

N !

∫
CN

N∏
i=1

eV (zi ,zi )/2d2zi (4.1)

�(z1, . . . ,zN ) c†(z1) . . . c†(zN )|0〉〉,
where the c†(z)’s create fermions/bosons at position z and
|0〉〉 is the fermionic/bosonic vacuum annihilated by all the
c(z)’s. The modes obey the canonical (anti)commutation rela-
tions {c(z),c†(z′)} = δ(2)(z − z′) (fermions) or [c(z),c†(z′)] =
δ(2)(z − z′) (bosons). To define the RSP, we fix R > 0, and
we define A as the disk of radius R, A = {z ∈ C; |z| < R},
and B as the complementary subset B = C \ A. Our goal is
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to compute the Schmidt decomposition

|�〉〉 =
N∑

NA=0

∑
k

e−ξ (NA,k)/2
∣∣�A

NA,k

〉〉∣∣�B
NB,k

〉〉
, (4.2)

where {|�A
NA,k〉〉} (as well as {|�B

NB,k〉〉}) is a set of orthogonal
states with NA particles in part A (and NB = N − NA

particles in part B). The set of pseudoenergies ξ (NA,k) is
the entanglement spectrum.13

Since the bipartition A ∪ B is rotationally invariant, the
angular momentum in part A, LA

ẑ , is a good quantum num-
ber. The Schmidt eigenvalues/eigenvectors can be classified
according to LA

ẑ . As claimed in Sec. I D, in general, there is a
nondegenerate lowest pseudoenergy ξ at some values NA0 and
LA

ẑ0. These values depend on the radius R. In general, the radius
R is the one of a droplet with NA0 particles given by (3.4), and
LA

ẑ0 is the angular momentum of the ground state (1.6) with
NA0 particles. We define �ξ , �NA, and �LA

ẑ by subtracting
off these values.

A. Decomposition of the ground state from a completeness
relation in the CFT space

In this section, we use a completeness relation to decompose
the ground state as a sum of products of terms of the
form |�A〉〉|�B〉〉. In the end, these terms will turn out
to be orthogonal only in the thermodynamic limit, when
NA,NB → ∞ (and assuming screening), so this will be a true
Schmidt decomposition only in that limit. However, it will not
be difficult, once our procedure has been exposed, to adapt
it to take into account corrections to scaling. This will be
explained later in Sec. IV C. For now, we initiate the process
of calculating the decomposition in a naive way, relying only
on the fact that the ground-state wave function is a conformal
block.

As in Sec. II B, we think of the CFT in radial quantization,
and we use a complete set of states in the CFT Hilbert space
to write the identity operator as

1 =
∑
NA,k

|NA,k〉〈NA,k|. (4.3)

In this expression, NA is the number of particles, and k stands
for all the excited states in a given NA sector (called the
descendants in the CFT literature). Strictly speaking, in radial
quantization, the operator (4.3) actually acts on the CFT states
corresponding to the field configurations on a circle at radius
|z| = 1, so we need to rescale this operator such that it acts at
|z| = R (see also Fig. 5):

1 =
∑
NA,k

RL0 |NA,k〉〈NA,k|R−L0 . (4.4)

Now, we write the state (4.1) as

|ψ〉〉 = 1

λ
N
2
√

ZN

×〈N |R exp

[
λ

1
2

∫
C

eV (z,z)/2d2z a(z) ⊗ c†(z)

]
|0〉|0〉〉.

(4.5)

a(z1)

a(z2)

a(z3)

R

a(z4)
a(z5)

a(z6)a(z7)
RL0

NA,k

|NA, k NA, k|R−L0

= 1

FIG. 5. We use the completeness relation (4.4) to decompose the
conformal correlator 〈∏i a(zi)〉 as a sum of products of one correlator
which involve only particles in part A (|z| < R) with another one
which involves particles in part B (|z| > R).

Note that |0〉 is the CFT vacuum, while |0〉〉 is the physical
fermionic/bosonic vacuum [annihilated by the c(z)’s]. The
symbol R denotes radial ordering (see Refs. 31–33). The
coefficient λ will be useful later, as a tunable parameter
associated with the terms with different particle numbers in
A and B. When one expands the exponential, only the term
with N particles in total remains, because of the projection
onto the vacuum with N charges |N〉. This expression is then
exactly equal to (4.1). The integration over C = A ∪ B can
be split into an integration over A and another over B, so the
exponential is equal to

R exp

[
λ

1
2

∫
B

eV (z,z)/2d2z a(z) ⊗ c†(z)

]

×R exp

[
λ

1
2

∫
A

eV (z,z)/2d2z a(z) ⊗ c†(z)

]
. (4.6)

Then, we insert the completeness relation (4.4) between these
two exponentials (Fig. 5). The result can be written as

|�〉〉 =
√

ZNA0 ZNB0

ZN

N∑
NA=0

∑
k

∣∣�A
〈NA,k|

〉〉∣∣�B
|NA,k〉

〉〉
, (4.7)

where NB0 = N − NA0, and∣∣�A
〈NA,k|

〉〉
= 1

λ
NA0

2
√

ZNA0

〈NA,k| 1

R�L0

×R exp

[
λ

1
2

∫
A

eV (z,z)/2d2z a(z) ⊗ c†(z)

]
|0〉 |0〉〉,

(4.8a)

∣∣�B
|NA,k〉

〉〉
= 1

λ
NB0

2
√

ZNB0

〈N |R exp

[
λ

1
2

∫
B

eV (z,z)/2d2z a(z) ⊗ c†(z)

]

×R�L0 |NA,k〉 |0〉〉. (4.8b)

We have used the notation �L0 = L0 − 〈NA0|L0|NA0〉. The
normalizing factors ZNA0 and ZNB0 are fixed such that the states
| �A

〈NA0| 〉〉 and | �B
|NA0〉 〉〉 corresponding to the vacuum |NA0〉
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are both normalized,

ZNA0 = 1

NA0!

∫
A

NA0∏
i=1

eV (zi ,zi )d2zi

∣∣∣∣〈NA0|
NA0∏
i=1

a(zi)|0〉
∣∣∣∣
2

,

(4.9a)

ZNB0 = 1

NB0!

∫
B

NB0∏
i=1

eV (zi ,zi )d2zi

∣∣∣∣〈N |
NB0∏
i=1

a(zi)|NA0〉
∣∣∣∣
2

.

(4.9b)

The states |�A
〈NA,k|〉〉 appearing in the decomposition (4.7)

should be viewed as the edge excited states that we constructed
in Sec. II. Similarly, the states |�B

|NA,k〉〉〉 can be viewed as the
edge excited states for part B (although, strictly speaking, we
have not constructed these states in Sec. II B, the extension of
our formalism to the part B is straightforward). One difference
with the edge states introduced previously is the integration
domain: here the positions of the particles are restricted to the
domain A, so the |�A

〈NA,k|〉〉’s are projections onto the domain A

of the edge states of Sec. II. With that minor distinction in mind,
we see that the formula (4.7) is a natural decomposition of the
ground state as a sum of products of edge excited states for
parts A and B. It is quite close to the Schmidt decomposition
we are looking for, except that the states appearing in the
right-hand side of (4.7) are not necessarily orthogonal. In
the next section, we argue that, in the “scaling region” (to
be defined below), the states are orthogonal if the screening
assumption holds, such that we can use our result for the
overlaps between the edge states (3.23).

It is worth emphasizing that although the decomposi-
tion (4.7) may look quite formal, it becomes very explicit when
one considers concrete examples. In the case of the Laughlin
wave function, for instance, the decomposition of the ground
state in terms of the edge-state wave functions becomes very
elegant; it can be found explicitly in Ref. 16. For the MR
(Pfaffian) wave function (2.12), it is an instructive exercise to
write down the decomposition of the Pfaffian in terms of the
edge excited states (2.14).

B. Pseudoenergies at the leading order in the scaling region

Let us start by defining what we call the scaling region.
It is the extension of the concept of “scaling region” that
we used previously in Sec. III which needs to be adapted
to the bipartition A ∪ B. Roughly speaking, it is the set
of Schmidt eigenvalues and eigenvectors for which �NA is
small compared to N , and �LA

ẑ is small compared to LA
ẑ0.

More precisely, we imagine that the radius R of the disk
A depends on N such that NA0/N is fixed. This is the
situation that is usually considered in numerical studies, where
A and B correspond to the two hemispheres of the sphere
after stereographic projection, with a ratio NA0/N = 1/2 (for
an even number of particles on the sphere). Then, we fix
some positive number M , and keep all the eigenvalues and
eigenvectors such that |�NA|,|�LA

ẑ | � M . Finally, we take
the thermodynamic limit N → ∞. This scaling region is the
one where the entanglement spectrum is conjectured to possess
the “scaling property.”16 Note that, by definition, in the scaling
region, both NA and NB go to infinity. In this section, we
analyze the limiting behavior of the pseudoenergies in this

range of quantum numbers �NA, �LA
ẑ . We do this only at

the leading order; subleading corrections will be tackled in the
next section.

First, we focus on the prefactor appearing in the right-hand
side of (4.7). This is a ratio of partition functions√

ZNA0ZNB0

ZN

= exp[−(fNA0 + fNB0 − fN )/2], (4.10)

where fNA0 = − ln ZNA0 , etc. Each of these three terms in the
exponential is the free energy of a statistical system of itinerant
particles in part A, part B, or in C = A ∪ B. To discuss them,
it is natural to adopt a statistical mechanics point of view as in
Sec. III. The following argument is standard in that context;
it has been used in several works (see for instance Ref. 65) to
support the area law for the entanglement entropy12 or other
similar quantities such as the (logarithm of the) ratio (4.10).66

The leading contribution to the free energy is a bulk part,
which in general could be expressed as a functional of the
local density of particles inside the domain. This bulk part
is usually extensive for statistical systems with short-range
interactions, or superextensive if the interactions are long
range, such as Coulomb interactions in the plasma mapping
for the Laughlin wave function. Another contribution, which is
subleading, comes from the boundary of the statistical system.
It usually scales linearly with the length of the boundary, and
may be interpreted as a surface tension. The free energies fNA0

and fNB0 should both contain such a surface tension term,
proportional to the length of the cut between A and B (that
is, 2πR). The bulk parts of fNA0 and fNB0 cancel the bulk part
of fN , leaving only the surface tension term at the boundary
between A and B. Therefore, we are left with

− ln

[√
ZNA0ZNB0

ZN

]
∼ α2πR − γ + O(1) (4.11)

when R is large compared to the mean particle spacing close to
the cut (which plays the role of the UV cutoff). The coefficient
α is nonuniversal and depends on the UV cutoff. We have
also included a possible O(1) term, noted −γ . This term
is dimensionless, and it is universal: it is the topological
entanglement entropy.10,11 The presence of this term here can
be shown by adapting the original argument of KP; this is
explained in more details in Appendix A.

Second, assuming screening, in the limit NA → ∞, the
overlaps between the states |�A

〈NA,k|〉〉 are given by our
result (3.23):〈〈

�A
〈NA,k|

∣∣�A
〈NA,k′|

〉〉 −→
NA→∞

〈NA,k′|NA,k〉 = δk,k′ . (4.12)

Here, we have used the fact that the basis of states {|NA,k〉}
in (4.3) is orthonormal. States with different particle number
N ′

A �= NA are always orthogonal. The same formula can be
obtained for the overlaps between the states in part B by
a straightforward extension of the arguments developed in
Sec. III:〈〈

�B
|NA,k〉

∣∣�B
|NA,k′〉

〉〉 −→
NB→∞

〈NA,k|NA,k′〉 = δk,k′ . (4.13)

One might be worried about the integration domains: here
the positions of the particles zi are integrated only over part
A (or B), while the result (3.23) was claimed for overlaps

245310-19



J. DUBAIL, N. READ, AND E. H. REZAYI PHYSICAL REVIEW B 86, 245310 (2012)

computed by integrating over the whole plane C. This does
not make any difference, though, as long as we focus on the
states |�A

|NA,k〉〉〉 or |�B
〈NA,k|〉〉 that are in the scaling region. For

these states, the contribution of the integration over the whole
plane is exponentially suppressed by the factor eV (z,z̄) outside
the droplet of radius R, so the difference between the overlaps
computed by integrating over A (B) or over C is exponentially
small. The choice of the nonuniversal coefficient λ in (4.5),
which must be tuned in order to give the correct weight to
the terms with different particle numbers, might be sensitive
to the fact that one is integrating over A or B rather than the
whole complex plane C. However, as discussed at the end
of Sec. III D, there is always one choice of λ that leads to
the conformal boundary condition (3.8) and to the universal
result (3.23). Therefore, the limits (4.12) and (4.13) are correct,
and the subtleties about the integration domains will become
relevant only in the next section, when we deal with subleading
corrections to these formulas.

Let us come back to the decomposition (4.7). We have
reached the conclusion that, in the scaling region, the two
sets of vectors in the right-hand side are orthogonal at the
leading order. Thus, in that limit, (4.7) is really a Schmidt
decomposition. In particular, this implies that in each LA

ẑ

subsector, the Schmidt rank matches exactly the dimension of
the corresponding subspace of angular momentum eigenstates
in the conformal field theory. Also, the Schmidt eigenvectors
turn out to be exactly the edge states constructed in Sec. II,
up to the subtleties involving the integration domain. The
pseudoenergies are all equal to

ξ (�NA,k) = α2πR − γ + O(1) (4.14)

in the scaling region, independently from �NA and from
the descendant labeled by k. The splitting between the
pseudoenergies appears only at higher order, when one tackles
subleading corrections to the formulas (4.12) and (4.13), as we
do in the next section.

C. Corrections to scaling, RG analysis, and locality of the
pseudo-Hamiltonian

As in Sec. III G, we adopt a statistical mechanics point
of view, and we use ideas from the theory of surface critical
phenomena.61,62 Let us start by summarizing the main points
discussed in Sec. III G. Our main result (3.23) and its varia-
tions (4.12) and (4.13), which are useful for the calculation
of the entanglement spectrum, rely on the fact that, in the
thermodynamic limit and assuming generalized screening, we
are left with a nonchiral CFT that lives outside the droplet,
constrained by a conformal boundary condition along the
edge of the droplet. The interior of the droplet decouples from
the exterior thanks to screening. To tackle the corrections to
scaling, one has to include boundary perturbations. The action
of the field theory SCFT is modified along the circle |z| = R

by these boundary perturbations SCFT → SCFT + Sb, where Sb

has the generic form

Sb =
∑

a

λa

∫
|z|=R

|dz| φa(z). (4.15)

The φa’s are local boundary operators with scaling dimensions
ha , and with coupling constants λa ∼ (

√
ρ0

−1)ha−1, where ρ0

is the mean particle density close to the edge. The perturba-
tion (4.15) modifies our formula for the overlaps between the
edge states in the scaling region, as in formula (3.40). Here,
since we are dealing with overlaps in part A, this formula
becomes 〈〈

�A
〈v1|

∣∣�A
〈v2|

〉〉 = 〈v2|e−Sb(A)|v1〉, (4.16)

and the same formula holds for part B. However, since the
boundary perturbation Sb is not necessarily the same for A

and B, in what follows we will label it by Sb(A) or Sb(B). The
formula (4.16), for parts A and B, generates the subleading
corrections to the universal formula for the overlaps, and
determines the ES, as we show next.

1. Locality of the pseudo-Hamiltonian

The physical space of edge states is isometric to the CFT
Hilbert space, up to corrections that are local along the edge,
and that are encoded in the operators Sb(A) and Sb(B). Now,
we show that this property implies that the ES is the spectrum
of a pseudo-Hamiltonian that is local along the cut between A

and B. The ES is related to Sb(A) and Sb(B) as follows. Let us
consider the operator SES defined by

e− SES
2 = e− Sb (B)

2 e− Sb (A)
2 , (4.17)

which acts in the Hilbert space of the chiral CFT. This operator
is nothing but the “pseudo-Hamiltonian” we are looking for:
its spectrum is the ES, up to the global additive constant (4.14).
To see that, consider the singular value decomposition (SVD)

of e− SES
2 :

e− SES
2 =

∑
NA,k

e− �ξ (NA,k)
2

∣∣uNA,k

〉〈
vNA,k

∣∣. (4.18)

By definition of the SVD, {|uNA,k〉} and {|vNA,k〉} are two sets
of orthogonal vectors in the CFT Hilbert space. Here, the
�ξ (NA,k)’s are simply the eigenvalues of SES. Next, we write
the identity operator as

1 = RL0e
Sb (B)

2

(∑
NA,k

e− �ξ (NA,k)
2 |uNA,k〉〈vNA,k|

)
e

Sb (A)
2 R−L0 ,

(4.19)

and we insert it in (4.6), like we did previously in Sec. IV A.
This time, however, we get

|�〉〉 =
√

ZNA0 ZNB0

ZN

∑
NA

∑
k

e− �ξ (NA,k)
2

×
∣∣∣∣�A

〈vNA,k |e
Sb (A)

2

〉〉∣∣∣∣�B

e
Sb (B)

2 |uNA,k〉

〉〉
. (4.20)

The difference between this last identity and (4.7) is that
the states in the right-hand side are now orthogonal because
of (4.16). We also use the fact that the operators Sb(A) and
Sb(B) are self-adjoint; again, this reflects the fact that they
represent boundary perturbations of the action of the field
theory, which must be real. Then, (4.20) is truly a Schmidt
decomposition. The pseudoenergies are directly given by the
eigenvalues of SES [noted �ξ (NA,k)], up to the global additive
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constant (4.14):

ξ (NA,k) = α2πR − γ + �ξ (NA,k). (4.21)

We have thus found the ES in terms of Sb(A) and Sb(B). The
key point is now that, thanks to the particular relation (4.17)
between SES, Sb(A), and Sb(B), the pseudo-Hamiltonian
SES inherits the locality property of Sb(A) and Sb(B). This
follows from the Baker-Campbell-Hausdorff formula: SES can
be expanded in terms of the commutators [Sb(A),Sb(B)],
[Sb(A),[Sb(A),Sb(B)]], etc. Since Sb(A) and Sb(B) are both
integrals of local operators, each of these commutators is
also an integral of a local operator. Note that this is a
completely general observation, which remains valid beyond
the framework of conformal field theory. Finally, the locality of
SES itself implies that it must also have the generic form (4.15),
just like Sb(A) and Sb(B) (but with different coupling constants
λa , and possibly different operators φa). The calculation of
the ES in the scaling region has thus boiled down to a
standard renormalization-group (RG) discussion: one needs
to determine which local operators φa(z) (which, again, can
be relevant, irrelevant, or marginal, depending on their scaling
dimension ha) do or do not contribute to the expression of SES,
relying on symmetry arguments.

This completes our proof of the “scaling property” conjec-
tured in Ref. 16, which states that the entanglement spectrum
in the scaling region is the spectrum of a sum of local operators
along the cut between A and B. Our line of arguments
relies heavily on the short-rangedness of bulk correlations (the
generalized screening hypothesis) and makes use of standard
RG arguments and field-theoretic tools.

2. Pseudo-Hamiltonian, Hamiltonian of the (1 + 1)-dimensional
CFT, and role of the stress tensor

So far, we have shown that, if generalized screening
holds, then the pseudo-Hamiltonian SES is the integral of a
local operator in the (1 + 1)-dimensional CFT that underlies
the wave function. We know that it must have the generic
form (4.15), but we have not yet determined this operator.
We are now going to argue that, in most situations, and for
real-space partition (RSP), this operator is the Hamiltonian of
the CFT, namely, v

R
L0 for some “velocity” v, with irrelevant

or marginal perturbations. In other words, the real-space ES of
the trial wave functions is the spectrum of a perturbed CFT.

To see this, we need to discuss what terms may appear in
SES, which has the form (4.15). In the case of our FQHE states,
there is always an operator with scaling dimension 1: the U(1)
current i∂ϕ(z). In most cases, this is the most relevant operator
(more precisely, it is marginal as a boundary perturbation, see
Sec. III G). The integral of the current along the cut is the
number operator J0, so this term plays a role only when sectors
with different particle numbers are involved. When the system
is symmetric under the exchange of A and B (as is a sphere
cut along the equator, with hemispheres A and B), the ES
must be invariant under the exchange �NA → −�NA, and
the number operator is forbidden by this symmetry. In other
cases, as explained in Sec. III, the effect of the number operator
is not difficult to comprehend, so we can safely turn to the next
perturbations, which usually have scaling dimensions ha > 1.

In particular, the stress tensor T (z) appears generically as a
perturbation. The coupling λT has the dimension of a length,
and is of order λT ∼ √

ρ0
−1 ∼ �B . In statistical mechanics,

the length 2πλT is known as the extrapolation length and
is ubiquitous in the study of surface critical phenomena.61

Although it has the dimension of a length, we use the notation
v = 4πλT , because v is going to be the velocity that appears
in the ES. Generically, there are of course other perturbations,
but for the sake of simplicity, let us assume first that this one is
the least irrelevant, and that it is the only operator at this order.
Then, one is left with

SES = v

R
L0 + · · · . (4.22)

This means that the entanglement spectrum is the spectrum of
v
R
L0 in the chiral CFT that underlies the trial wave function,

with a linear dispersion relation. Our results thus support the
claim made in Refs. 10 and 27.

More generally, however, other boundary perturbations are
present in (4.15), and may consequently appear in the ES.
The latter is thus given by the spectrum of the Hamiltonian
of a perturbed CFT. In particular, for most states in the MR
construction, the stress tensor of the full theory actually breaks
down into two pieces: one for the charge sector T U(1)(z) and
another one for the statistics sector T ψ (z). These two operators
do not, in general, appear with the same coefficient λT . Thus,
for the MR (Pfaffian) states or for the RR states, or any state
in the MR construction but the Laughlin state, one should
generically expect two branches (rather than one) of gapless
excitations in the ES, with different velocities. This is of course
a well-known feature of the energy spectrum of a quantum Hall
system with a physical edge.

All the perturbations that preserve the symmetries should
generically appear in the ES, and this needs to be discussed
case-by-case. There are perturbating operators in the U(1)
charge sector, in the statistics sector, and possibly also mixed
terms between the charge and statistics sectors. For most trial
states, we expect the perturbing operators φa(z) (other than
the stress tensor) appearing in SES to be more irrelevant than
the stress tensor, namely, they should have scaling dimensions
ha > hT = 2. When this is true, the ES in the scaling region
collapses onto a branch (or two branches) of excitations with
linear dispersion relation as N → ∞. The corrections coming
from the more irrelevant operators introduce some splitting
between the pseudoenergies at the next order.

We would like to warn the reader about the fact that,
although the stress tensor is itself irrelevant (as a boundary
perturbation) in the RG sense (hT = 2 > 1), it is crucial to
take it into account to understand the structure of the ES, at
least beyond the zeroth order where all the pseudoenergies
are degenerate (4.14). When discussing the influence of the
different perturbing operators in SES, most of them turn out
to be irrelevant (as boundary perturbations) in the sense that
ha > 1, but they can still have spectacular effects on the ES if
they are less or equally irrelevant to T (z) (that is, ha � 2). The
standard RG terminology (relevant/irrelevant/marginal) must
thus be used cautiously here, as we refer to the relevance of
the boundary perturbations at the boundary of a 2D theory,
which differs from the relevance of bulk perturbations of the
(1 + 1)-dimensional theory that gives the ES.
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Finally, since we have shown that the real-space ES is the
spectrum of a perturbed CFT, most of the usual results on
the edge spectrum can be safely used for the ES as well.
This of course includes the case when there is an operator
that is less or equally irrelevant to the stress tensor in the
spectrum (for a recent discussion of the possible perturbations
in the physical edge spectrum, see Ref. 59). As an illustrative
example that is not exactly a FQHE state, but that is closely
related, one can look at the case of � ± i�-paired superfluids
(spinless when � is odd). For those, the edge theory is known
to correspond to � chiral Majorana modes at the boundary.67

One generically expects to have a bilinear term that couples the
different Majorana modes. Such a term in the bulk of the (1 +
1)-dimensional theory is relevant; it has scaling dimension
h = 1 < 2 (this term is directly a bulk perturbation in the ES,
we do not view it as a boundary perturbation along the edge
of the sample). It leads to a splitting of the energy levels of
Majorana modes.59 As should be expected from the generic
arguments presented here, such a splitting should also appear
in the real-space ES of these chiral superfluids. This was indeed
found in Ref. 24.

3. RG analysis of the ES: The example of the Laughlin state

Let us discuss the case of the Laughlin wave function in
some more details now. Following the arguments in Sec. III G2,
we arrive at the fact that SES must have the form

SES =
∑
{k}

λ{k}
∮

dz

2πi

( z

R

)k1+···+kp−1

× (
i∂k1

z ϕ̃
) · · · (i∂kp

z ϕ̃
)
(z),

(4.23)

where the sum runs over the finite sets {k} = {k1, . . . ,kp}
with k1, . . . ,kp � 1. Here, the shifted chiral bosonic field is
defined as ϕ̃(z) = ϕ(z) + i NA0√

ν
ln z, such that, when acting on

the CFT vacuum with NA0 + �NA0 charges, the eigenvalue of
J̃0 is J̃0|NA0 + �NA0〉 = �NA0/

√
ν|NA0 + �NA0〉, which is

of order O(1) in the scaling region, while the eigenvalue of J0

would rather be of order O(NA0).
Further restrictions can be put on the operators that can

appear SES. Usually, in the literature, the cut between A and B

is chosen such that the bipartition is symmetric with respect to
the exchange of A and B. This is the case in particular for the
sphere when A and B are chosen as the northern and southern
hemispheres. For the Laughlin wave function, the symmetry
under the exchange of A and B implies a symmetry under
the transformation of the U(1) current i∂ϕ̃(z) 	→ −i∂ϕ̃(z),
which prevents all the terms that contain an odd number
of factors [i∂kj ϕ̃(z)], such as i∂ϕ̃(z), i∂2ϕ̃(z), or (i∂ϕ̃)3(z),
from appearing in the operator SES. Then, the least irrelevant
operator is indeed the stress tensor, leading to the linear
dispersion relation (4.22). The next leading corrections are
due to higher-order terms, such as (i∂2ϕ̃)2(z), or (i∂ϕ̃)4(z),
both with scaling dimension 4, leading to additional splitting
between the pseudoenergies at order (

√
ρ0

−1
/R)3 = 1/N

3/2
A0 .

There is no new operator leading to a splitting of order 1/NA0

because the only possible operator of scaling dimension 3 that
is even under i∂ϕ̃(z) 	→ −i∂ϕ̃(z) is (i∂ϕ̃)(i∂2ϕ̃)(z), which is
the derivative of the stress tensor.

It turns out that very similar RG arguments can be given for
the ES obtained from particle partition (PP), so we now turn to
this discussion. We will come back later to the real-space ES of
the Laughlin state (Sec. IV E), and we will provide numerical
comparison between the spectrum that can be obtained from
our scaling analysis and the actual ES computed numerically
for the Laughlin state.

D. Particle-partition entanglement spectrum
in the scaling region

As mentioned in the Introduction of this paper (Sec. I D),
the particle partition has also been considered in the literature.
Mathematically, this bipartition is very similar to the RSP,
which allows us to treat the particle ES (namely, the ES
for PP) in a way that is almost identical to the real-space
ES.16,17 In particular, our definition of the scaling region
(Sec. IV B) can be extended straightforwardly to PP. We fix
some finite ratio NA0/N (usually NA0 = N/2 for N even).
The scaling region then corresponds to the set of all Schmidt
eigenvalues/eigenstates which correspond to values of �NA

and �LA
ẑ that remain bounded (�M for some fixed M) when

one sends N to infinity.
Although, because of the SO(3) rotational invariance of

the sphere, the total angular momentum LA (rather than
LA

ẑ ) is the most natural quantity to use to classify the
Schmidt eigenvectors/eigenvalues, it is still worth looking at
what happens at large LA

ẑ . Indeed, the Schmidt eigenstate
corresponding to the largest value of LA

ẑ is nothing but a
state where NA = N/2 particles with “pseudospin” A fill the
northern hemisphere, while the ones with “pseudospin” B fill
the southern hemisphere. Therefore, PP at large values of LA

ẑ

is very similar to RSP with a cut along the equator. We will
use this below to analyze the scaling behavior of the ES. After
stereographic projection, the equator corresponds to a circle in
the plane where the coordinates z live. We note R the radius
of this circle.

1. Completeness relation, corrections to scaling, and
entanglement spectrum

The decomposition (4.7), obtained from a completeness
relation in the CFT space, is still valid for PP. More precisely,
for any fixed NA, the ground-state wave function �(z1, . . . ,zN )
can be decomposed as

�(z1, . . . ,zN ) = 1√
ZN

∑
k

〈N |
N∏

i=NA+1

a(zi)|NA,k〉

× 〈NA,k|
NA∏
j=1

a(zj )|0〉, (4.24)

where we have used the completeness relation 1NA
=∑

k |NA,k〉〈NA,k| in the NA subsector. This equation can
be derived using the procedure of Sec. IV A, restricting the
positions of the operators inside/outside a disk of some radius
as in Fig. 5. Since the correlators 〈Na,k|∏j a(zj )|0〉 and
〈N |∏i a(zi)|NA,k〉 in the right-hand side are all analytic, the
identity remains true for any positions of the points zi’s and
zj ’s, without the requirement that they lie inside/outside a
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disk of some radius. Thus, for PP, we have a decomposition
identical to (4.7), where the states | �A

〈NA,k| 〉〉 and | �B
|NA,k〉 〉〉

are replaced by∣∣�A
〈NA,k|

〉〉
PP

= 1

λ
NA0

2

√
ZPP

NA0

〈NA,k| 1

R�L0

×R exp

[
λ

1
2

∫
C

eV (z,z)/2d2z a(z) ⊗ c†(z)

]
|0〉 |0〉〉,

(4.25a)

∣∣�B
|NA,k〉

〉〉
PP

= 1

λ
NB0

2

√
ZPP

NB0

〈N |R exp

[
λ

1
2

∫
C

eV (z,z)/2d2z a(z) ⊗ c†(z)

]

×R�L0 |NA,k〉 |0〉〉. (4.25b)

Note that the integration domain in the exponential is the entire
complex plane C rather than some subsets as for RSP. Again,
the coefficient λ is nonuniversal, and must be tuned like for
RSP to give the correct weight to the charged edge states. It
usually depends on NA0 (or R). The normalization factors for
PP are

ZPP
NA0

= 1

NA0!

∫
C

NA0∏
i=1

eV (zi ,zi )d2zi

∣∣∣∣〈NA0|
NA0∏
i=1

a(zi)|0〉
∣∣∣∣
2

,

(4.26a)

ZPP
NB0

= 1

NB0!

∫
C

NB0∏
i=1

eV (zi ,zi )d2zi

∣∣∣∣〈N |
NB0∏
i=1

a(zi)|NA0〉
∣∣∣∣
2

.

(4.26b)

Again, note that the integration domain is C rather than a
subset A or B, as was the case for RSP.

The states | �A
〈NA,k| 〉〉PP and | �B

|NA,k〉 〉〉PP are exactly the
edge states constructed in Sec. II B. In the scaling region, they
all correspond to edge excitations of the droplet of radius R.
Then, the entire discussion of Secs. IV B and IV C applies as
well for PP in the scaling region. The conclusion is that the
particle ES is also the spectrum of a local operator along the
“cut,” namely, the circle of radius R. Up to a global constant
shift, the pseudoenergies are the eigenvalues of SPP

ES, related to
the boundary perturbation of the action of the CFT SPP

b (A) and
SPP

b (B) by the same formula as (4.17). Then, the determination
of the particle ES boils down to a discussion of the operators
that can/can not appear in the operator SPP

ES, exactly like in the
case of RSP. Once again, this needs to be done case-by-case.

2. Absence of the stress tensor in the U(1) sector
for particle partition

The most striking difference between PP and RSP is the
following. For RSP we argued that the ES usually obeys a
linear dispersion relation because of the presence of the stress
tensor of the chiral CFT T (z) [more precisely, T U(1)(z) and
T ψ (z) separately] in the set of perturbing operators along

the cut. This is expected to be a very generic boundary
perturbation, and as we highlighted, it is related to the
extrapolation length 2πλT that appears very often in the field
of surface critical phenomena.61 However, the stress tensor
T U(1) can not appear in the particle ES. We already gave
an explanation as to why it can not appear in Sb(A) [or
Sb(B)] in Sec. III G3, based on the constraint (3.43) derived
from translation invariance in the plane. We give now an
alternative argument, which goes as follows. On the sphere,
the SO(3) rotational invariance implies that the pseudoenergies
depend not directly on �LA

ẑ (which would be related to the

Virasoro generator L0 = L
U(1)
0 + L

ψ

0 , or more precisely the
shifted mode L̃0 = L̃

U(1)
0 + L

ψ

0 ), but rather on the total angular
momentum �LA. This means that the combination L

U(1)
0 + L

ψ

0

can not appear in the pseudo-Hamiltonian for PP; Lψ

0 , however,
could appear independently, as was pointed out in Sec. III G3.

3. Example of the Laughlin state

In the case of the Laughlin wave function, the analysis
can be pushed further. As for RSP, the operators SPP

b (A),
SPP

b (B), and SPP
ES have the generic form (4.23). Again, some

additional restrictions are imposed: the operators in SPP
ES have

to be even under i∂ϕ̃(z) 	→ −i∂ϕ̃(z). Since the stress tensor
and its derivatives are not here either, the least irrelevant
allowed operator has scaling dimension 4, and it leads to a
splitting of the pseudoenergies of order (

√
ρ0

−1
/R)3 ∼ 1/N

3/2
A0

when N,NA0 → ∞. This operator is (i∂2ϕ̃)2(z). Before we
analyze the ES that follows from this operator, let us give a
slightly more detailed argument which shows how this operator
appears.

For large LA
ẑ , the NA = N/2 + �NA particles fill the

northern hemisphere, while the NB = N/2 − �NA particles
fill the southern hemisphere. The free energies − ln ZPP

NA0
and

− ln ZPP
NB0

are the ones of a one-component plasma (in its
screening phase as long as 1/ν is not too large) on the sphere,
with a boundary along the equator. Generically, these two free
energies should both contain a surface tension contribution,
proportional to the perimeter of the cap that they fill. More
precisely, such a term does not appear at ν = 1 (this is of course
consistent with the fact that all the pseudoenergies are degen-
erate in that case), but when ν > 1 it is known that the surface
tension is not zero.68,69 Now we imagine that the droplet
is slightly deformed, namely, that its boundary is a curve
parametrized by θ = π

2 + δθ (φ), for a small displacement δθ .
Here, (θ,φ) are the polar coordinates on the unit sphere. Then,
the length of the interface is

∫ 2π

0 dφ
√

sin2 θ + (dθ/dφ)2 �
2π + 1

2

∫
dφ[(dδθ/dφ)2 − (δθ )2]. The displacement of the

interface is proportional to the current i∂φϕ̃(φ) (see Ref. 19).
Thus, we find that the surface tension term is given by
the integral along the equator of the operator (i∂2

φϕ̃)2(φ) −
(i∂φϕ̃)2(φ). One can check that this is the same operator as
(i∂2ϕ̃)2(z) when one maps the sphere back to the plane, taking
into account the Jacobian of this transformation carefully.
Looking at the surface tension term on the sphere rather
than on the plane has the advantage of making the SO(3)
rotational invariance more transparent. This term appears both
in SPP

b (A) and SPP
b (B), with no obvious cancellation between

the contributions coming from A and B, therefore it must also
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appear as well in SPP
ES. We analyze the spectrum of the operator

that we just found next.
When it is written in terms of the modes of the (shifted) U(1)

current i∂ϕ̃ = 1
z
J̃0 + ∑

n�=0 zn−1J−n, the zero Fourier mode of
(i∂2ϕ̃)2(z) leads to

SPP
ES = − C

N
3/2
A0

⎡
⎣1

2
J̃ 2

0 −
∑
k�1

(k2 − 1)J−kJk

⎤
⎦ + O

(
1/N2

A0

)
,

(4.27)

where C is some undetermined positive constant of order O(1).
This constant vanishes for the integer quantum Hall effect
(Laughlin with ν = 1), but it is nonzero as soon as ν < 1.
As explained previously, the particle ES is nothing but the
spectrum of SPP

ES, up to a global additive shift that ensures
the normalization of the reduced density matrix tr ρA = 1.
The spectrum of the operator (4.27) has several interesting
features. The eigenstates of SES at the order 1/N

3/2
A0 are all

the states
∏

k�1 J
nk

−k|NA0 + �NA〉, for any finite set of positive
occupation numbers nk’s. Then, for each finite set of nonzero
occupation numbers, the splitting between the corresponding
pseudoenergy and the ground state is, at the leading order,

�ξ = − C

N
3/2
A0

[
(�NA)2

2ν
−
∑
k>0

nk(k2 − 1)k

]
. (4.28)

This spectrum possesses a few noticeable features. First,
looking at the lowest pseudoenergy in each �NA sector, which
always corresponds to no nonzero occupation number nk , one
gets the inverted parabola observed numerically in Ref. 16:
�ξ = − C

N
3/2
A0

(�NA)2

2ν
. Second, for fixed �NA, the spectrum of

SES is in general highly degenerate. This is due to the fact
that �ξ does not depend on n1. Thus, in the Schmidt de-
composition, all the states |�A

〈N |〉〉PP, |�A
〈N |J1

〉〉PP, |�A
〈N |J 2

1
〉〉PP,

|�A

〈N |J 3
1
〉〉PP,. . . contribute with the same pseudoenergy (at least

at this order), leading to a large degeneracy in the ES. Such a
large degeneracy is to be expected since the SO(3) rotational
implies that the pseudoenergies appear in multiplets.

Once again, we emphasize the fact that our results can be
related to those of Zabrodin and Wiegmann. The calculations
that lead to the operator (i∂2ϕ̃)2 in their approach are beyond
the scope of our paper. Here, we just want to point out
that one should be careful when trying to relate their results
to ours. Indeed, the fact that the surface tension for the
one-component plasma vanishes at ν = 1 has been the source
of some confusion. In particular, the term corresponding to
the surface tension, which is nonzero when ν < 1, is actually
missing in the result stated by Zabrodin and Wiegmann in
Ref. 57, although they do consider it in their calculations. This
term appears as a zero mode of the “loop equation” in their
paper, which of course is reflected in our formalism by the fact
that the operator in formula (4.27) commutes with the mode
J1, and therefore is a zero mode of the constraint (3.43). This
term, however, should be there, as pointed out for instance
in Refs. 68 and 69. We note that, in the FQHE literature, the
possibility of a surface tension term was also quickly discussed
in the Appendix of Ref. 70.

FIG. 6. (Color online) (Plots of PP pseudoenergies ξ versus LA
ẑ

for NA = N/2 and versus NA for the N = 12, ν = 1/3 Laughlin state.
Here, �∗ξ = ξ − N ln 2. Main figure: levels in the scaling region
versus LA

ẑ . The dotted curve is a one-parameter fit of a cubic to seven
levels, explained in the text. Inset: lowest pseudoenergy for each NA;
the values for NA = 0, 12, which are ξ = N ln 2, are omitted. The
curve is an inverted parabola, with the same parameter value as the
main figure, as explained in the text.

In Fig. 6, we compare the formula (4.28) with numerical
results for the particle ES of the Laughlin state with ν = 1/3.
We plot low-lying pseudoenergies ξ versus LA

ẑ for the scaling
region near LA

ẑ0, for NA = N/2 and N = 12 particles. The
range of pseudoenergies included is a little larger than in
Ref. 16, to show the structure. It is interesting to look at
the upper envelope of the levels, namely, the maximum ξ

for LA
ẑ = LA

ẑ0 − k for each k = 1, 2, . . . . For k � 6 = NA,
those levels fall on a curve, but the trend ends at this k; the
next one k = 7 is degenerate with that at k = 6. These levels
(with k � 6) should agree with setting nk = 1, and others zero,
for k = 1, 2, . . . ,6, in the above formula, and so lie on the
cubic curve �ξ = (C/N

3/2
A0 )(k3 − k) plotted in the figure. We

find a reasonable agreement, as shown, for C = 0.5144 at this
size. At the same time, the lowest pseudoenergies for each NA

should lie on an inverted parabola, and the coefficient should be
the same according to the above formula (4.28). A plot is shown
in the inset on the figure, with the same parameter value, and
the agreement is reasonable. If the two curves are fitted to these
forms independently, with one parameter for each, then the best
parameter values are found to be within about 10% of each
other. Further features of the spectra also agree with the above
form. Let us note first that the cutoff at k = NA noticed above
makes sense as the standard cutoff from finite-size effects in
the edge spectra; the sums of powers

∑NA

i=1 zk
i , which create

these elementary excitations if trial wave functions are used,
become algebraically dependent on the lower ones if k > NA.
Levels in the spectra other than the extreme ones fitted above
can be roughly explained as sums of multiple excitations, in
rough agreement with the formula. In particular, the banded
structure that is apparent in the figure emanating from each
of those extreme levels can be understood in each case as
excitations with lower k′ < k added to the kth extreme one.
Similar structures and trends are seen in smaller sizes, and for
NA < N/2 (not shown).
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E. Numerical comparisons for the real-space ES of the
Laughlin state at ν = 1/3

In this section, we come back to RSP, and present some
numerical results for the Laughlin state. As pointed out
previously, the “pseudo-Hamiltonian” SES must be of the
form (4.23).

We work on the sphere, with a cut along the equator, and
with NA0 = N/2. Then, the ES must be invariant under the
exchange �NA 	→ −�NA, which implies that SES is invariant
under i∂ϕ(z) 	→ −i∂ϕ(z). The first operator that can appear
in SES is then the zero mode of the (shifted) stress tensor
L̃0 = L̃

U(1)
0 , which has scaling dimension 2, and the mode

expansion

L̃0 = 1

2
J̃ 2

0 +
∑
k�1

J−kJk . (4.29)

The next linearly independent operators that are allowed in
SES have scaling dimension 4: it is the operator (i∂2ϕ̃)2(z)
that we already encountered for PP, and the operator (i∂ϕ̃)4.
Their zero Fourier modes O1

0 = ∮
dz z3(i∂2ϕ̃)2(z)/2 and

O2
0 = ∮

dz z3(i∂ϕ̃)4(z)/4! are

O1
0 = 1

2
J̃ 2

0 −
∑
k�1

(k2 − 1)J−kJk,

(4.30)

O2
0 = 1

4!

∑
k1,k2,k3

: Jk1Jk2Jk3J−k1−k2−k3 : .

We then expect a pseudo-Hamiltonian of the form

SES = α

N
1/2
A0

L̃0 + β

N
3/2
A0

O1
0 + γ

N
3/2
A0

O2
0 + O

(
N−2

A0

)
.

(4.31)

In this formula, the coefficients α, β, and γ are of order O(1),
however, they need not be completely independent of NA0:
they can be expanded as α = α0 + α1/N

1/2
A0 + α2/NA0 + · · · ,

where α0, α1, α2, etc., do not depend on NA0. These sublead-
ing pieces of the coefficients come from the operators that are
total derivatives. For instance, α1 comes from the derivative
of the stress tensor ∂(∂ϕ̃)2/2, which has scaling dimension
3, and a zero Fourier mode

∮
dz z2∂(∂ϕ̃)2/2 = −2L̃0. In what

follows, we keep NA0 fixed, so we work only with the three real
parameters α, β, γ , and we do not focus on their dependence
on NA0.

We now compare our formula (4.31) to the ES computed
numerically for the Laughlin state at ν = 1/3 for N = 12
particles in total (NA0 = 6). We have fitted the three parameters
α, β, γ to minimize the square of the difference between the
two sets of eigenvalues. We impose some cutoff, such that the
fit is done only on eigenvalues that are low enough, and that
correspond to |�LA

ẑ | � K . We find that the ES is approximated
by the one of SES with α = 0.7603, β = −0.4108, and γ =
0.3653. The comparison between the two spectra is shown in
Fig. 7.

For completeness, we also pushed this analysis to the next
order. The next linearly independent operators that can appear
in the spectrum are (∂3ϕ̃)2, ∂3ϕ̃(∂ϕ̃)3, and (∂ϕ̃)6, of scaling

fitted eigenvalues

LA
ẑ

ξ

44 45 46 47 48 49 50 51 52 53 54
0

5

10

ΔNA

ξ

10

20

FIG. 7. (Color online) Red: real-space ES of the Laughlin state
at ν = 1/3 on the sphere, with a cut along the equator (for N = 12,
NA0 = 6). Blue: spectrum of the operator (4.31). Both spectra are
plotted in the �NA = 0 sector. The inset shows the lowest eigenvalue
for the other values of �NA. The parameters α,β,γ are obtained
from a least-squares fit that includes all the eigenvalues in the shaded
(green) area.

dimension 6. This leads to a fit with six real parameters. The
result is shown in Fig. 8.

V. DISCUSSION: ENTANGLEMENT, TRIAL WAVE
FUNCTIONS, CONFORMAL BLOCKS, AND

TENSOR PRODUCT STATES

Since the seminal work of Laughlin,2 it is known that an
efficient approach to the theory of the FQHE consists in making
various proposals for trial wave functions, which are not
directly related to the eigenstates of the original Hamiltonian,

fitted eigenvalues

LA
ẑ

ξ

44 45 46 47 48 49 50 51 52 53 54
0

5

10

ΔNA

ξ

10

20

FIG. 8. (Color online) Same as Fig. 7, but with six linearly
independent operators in SES, instead of three, leading to a six-
parameter fit on the eigenvalues contained in the shaded (green) area.
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but which still accurately capture some of its physical features.
This approach is of course not specific to the FQHE effect, and
other strongly correlated quantum systems can be studied with
variational wave functions. Some powerful techniques have
been developed for one-dimensional systems, especially for
spin chains, which focus on some class of trial wave functions
called matrix product states (MPS).71 As a simple example of
these, let us consider an open spin- 1

2 chain with N sites. An
MPS for this system can be constructed as

|�〉〉=
∑

s1,...,sN =↑,↓
〈vout|A(sN ) . . . A(s2)A(s1)|vin〉 |s1s2 . . . sN 〉〉,

(5.1)

where the states |s1s2 . . . sN 〉〉 with si = ↑,↓ span the 2N -
dimensional Hilbert space H = {↑,↓}⊗N , and A(↑), A(↓) are
both D × D matrices acting in an auxiliary space VD . The
two states |vin〉 and |vout〉 belong to the space VD . The choice
of these two states in the auxiliary space, and of the D × D

matrices A, fixes the physical state |�〉〉.
An MPS possesses peculiar entanglement properties: divid-

ing the system into two subchains of length NA and NB (with
Hilbert spacesHA = {↑,↓}⊗NA andHB = {↑,↓}⊗NB ), one can
easily check that the Schmidt decomposition corresponding to
the bipartition H = HA ⊗ HB ,

|�〉〉 =
∑

k

e−ξk/2|�A,k〉〉 ⊗ |�B,k〉〉, (5.2)

is of rank D at most. This simply follows from inserting
a completeness relation in the auxiliary space VD (namely,
1VD

= ∑D
k=1 |vk〉〈vk| with 〈vk|vk′ 〉 = δk,k′) between the ma-

trices A(sNA+1) an A(sNA
). This is a striking feature of an

MPS, as it is radically different from generic states in H
which would typically have Schmidt decompositions of rank
min(dimHA,dimHB). In that sense, the set of MPS in H for
some fixed D can be thought of as being a submanifold (of
H, viewed as a manifold) of minimally entangled states. In
particular, when D = 1, the space of MPS is nothing but the
submanifold of separable states.

Starting from a Hamiltonian Ĥ for our spin- 1
2 chain, one

should minimize the expectation value 〈〈�|Ĥ |�〉〉/〈〈�|�〉〉
within the set of D-dimensional MPS, which would give some
approximation to the true ground state of Ĥ . By increasing the
dimension D of the auxiliary space VD , one can approximate
the true ground state of the system with arbitrary accuracy.
MPS are at the heart of numerical methods such as the density
matrix renormalization group (DMRG),72 and have also been
used recently as a key theoretical tool in the successful
efforts made by several groups to classify one-dimensional
symmetry-protected topological phases of matter.73–76 Their
higher-dimensional analogs, the TPS (also called “PEPS” for
projected entangled-pair states77) are currently being used
in attempts to classify higher-dimensional topological phases
(see for instance Ref. 78). The basic idea of such a program
is that any gapped phase of matter is believed to be accurately
represented by one (or more) trial states, such as an MPS for
D large enough, or some higher-dimensional generalization
(see for instance Ref. 79). Such a trial state is not the
ground state of the actual physical Hamiltonian, but it is
the ground state of some local Hamiltonian3,80,81 which is

believed to be adiabatically connected to the physical one.
Then, the topological properties of the phase, namely, the
properties which are robust as one varies the different physical
parameters within the phase, are captured by the trial state,
and the trial state has the enormous advantage of having some
nice mathematical structure, which makes analytic and/or
numerical calculations tractable, even for relatively large
system sizes.

We would like to point out that the states given by the MR
construction have a structure that is very similar to that of an
MPS or a TPS. Essentially, it can be viewed either as an MPS
with D = ∞, or equivalently as a continuous version of a TPS.
Indeed, we note that the conformal block in (1.6) is nothing
but

〈vout|a(zN ) . . . a(z1)|vin〉, (5.3)

where |vin〉 = |0〉 is the vacuum of the CFT, and |vout〉 = |N〉
is the vacuum with N charges. The structure of this correlator
is clearly analogous to the MPS (5.1), with a space VD which
is now the (infinite-dimensional) Hilbert space of the CFT.
The use of conformal blocks as infinite-dimensional MPS
has recently been advocated in Ref. 82. In particular, in this
work, conformal blocks are used as trial wave functions for
critical (gapless) spin chains. We note that, in the context of
the FQHE, such wave functions are nothing but the ones given
by the MR construction (Sec. I C). The fact that VD is infinite
dimensional does not mean than the particular entanglement
properties emphasized above completely break down since in
each given angular momentum subsector (that is, in each L0

eigenspace) the auxiliary space is finite, and thus the Schmidt
rank in that sector is finite. This is exactly the property that was
observed by LH, namely, that particular trial wave functions for
the FQHE have an infinite entanglement gap. We emphasized
the connection between the so-called “level counting” in each
angular momentum sector, the conformal block structure, and
the completeness relation in the auxiliary space in Sec. IV A.

Another way of looking at the trial wave functions for
the FQHE is to view them as continuous TPS in 2D. Let
us imagine that the ground state in a two-dimensional gapped
phase of matter can be approximated by some TPS. For a
continuous system of identical itinerant particles, a natural
way of searching for a TPS approximation of the ground
state would be to discretize the space, namely, to put the
particles on a lattice. For simplicity, let us assume that the
particles are identical hard-core bosons. Then, on each site
i of the lattice, either there is a particle, or there is none.
There is one tensor associated to each of these two situations,
Bi

e1,...,ep
(one particle) and Ai

e1,...,ep
(no particle), with p indices

corresponding to the p edges that end at the site i. Each of the
edge indices e1, . . . ,ep can take values from 1 to D, where
D is the dimension of the auxiliary space VD . Then, in the
ground state, the amplitude of the configuration c

†
i1

. . . c
†
iN

|0〉〉
with N bosons on the sites i1, . . . ,iN (for S sites in total) is
given by the contraction of all the edge indices of a product
of tensors A (S − N times) and B (N times). Then, we sum
over all the possible numbers of particles n, and we get the
trial wave function

|�〉〉= tr

[ ∏
vertex i

(Ai ⊗ 1 + Bi ⊗ c
†
i )

]
|0〉〉, (5.4)
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where the trace is taken over the auxiliary space VD for
each edge of the lattice, and we have omitted all the
edge indices. If we fix one configuration of edge indices
{e1,e2, . . .}, the product of the corresponding tensor elements
A1

{e} × A2
{e} × · · ·AN

{e} can be viewed as an amplitude for this
configuration. This amplitude is local: it is a product of terms
that depend locally on the configuration of edge indices. The
same observation holds with insertions of tensors Bi’s in some
places on the lattice, giving different amplitudes for the same
configuration {e1,e2, . . .}. It is now clear what the natural
extension of a TPS should be when we replace the lattice by a
continuous space (here the two-dimensional plane, or sphere).
The set of edge indices {e1,e2, . . .} should be replaced by a
set of local degrees of freedom, which we note h(x). A fixed
configuration of degrees of freedom comes with an amplitude∏

i A
i . In the continuum, the product on each point “

∏
x”

is more conveniently written as the exponential of a sum,
which becomes an integral. Thus, to a given configuration of
variables {h(x)}, we associate the amplitude e

∫
d2xF [h(x)]. The

continuous analog of the tensor Bi , which modifies locally the
amplitude A1 . . . Ai . . . AS to A1 . . . Bi . . . AS , is an operator
O[h(x)]. Then, the continuous TPS takes the familiar form

|�〉〉 =
∫

[dh] e
∫

d2xF [h(x)] e
∫

d2x′O[h(x′)]⊗c†(x′)|0〉〉 (5.5)

up to normalization. In other words, the amplitude
of the configuration c†(x1) . . . c†(xN )|0〉〉 is∫

[dh]e
∫

d2xF [h(x)]O[h(x1)] . . .O[h(xN )]. This, of course,
is nothing but the correlator of a set of local operators in a
local field theory.

We thus conclude that, searching for a TPS-like ansatz
for a continuous system of mobile identical particles, one is
naturally led to considering local field theories, and correlators
of local observables in those. This remark, of course, can
be extended straightforwardly to the case of particles with
additional degrees of freedom (such as spin), by using
one operator O per degree of freedom [for instance O↑
and O↓, with an appropriate SU(2) symmetry, for spin 1

2 ].
Although lattice TPS may appear as more useful in numerical
simulations, working with their continuous analogs can be
helpful in a few cases. In the FQHE in particular, and more
generally in phases of matter with breaking of parity and
time-reversal symmetry, one may encounter various issues
by trying to search for lattice TPS. One reason for that is
the following. For fermionic systems, the field-theory/lattice
model that one uses to construct the trial wave function must
be fermionic as well. If one wants a trial state which breaks
parity and time-reversal symmetry, one is naturally led to
consider chiral fermions. It is a notoriously difficult problem to
construct lattice models which give rise to chiral fermions.83

Working directly in the continuum allows us to circumvent
such problems. There are plenty of well-known examples of
field theories of chiral fermions. Such examples include, of
course, some chiral CFTs. The use of conformal blocks as
trial wave functions is thus natural in that context. The trial
states for the FQHE that are given by conformal blocks may
all be viewed as continuous TPS.

To conclude this section, we note that the results given
in this paper may be reformulated in light of the connection

between the wave functions given by conformal blocks and the
larger class of (lattice or continuous) TPS. For all of these TPS,
one can construct some wave functions for the “edge excita-
tions” in a way similar to ours. These “edge states” are exactly
the ones that appear in the Schmidt decomposition of the
ground state. In general, there are two important questions that
are intimately related: (i) whether the space of “edge states” is,
in the thermodynamic limit, isometric to the auxiliary space,
up to corrections that are local along the edge (and up to
distinctions of a finite number of topological sectors, which by
definition are always nonlocal); (ii) whether the entanglement
Hamiltonian is isospectral to an operator that is local along the
cut (up to distinctions of topological sectors). As explained
in this paper, if the property (i) holds, then (ii) follows from
a simple use of the Baker-Campbell-Hausdorff formula. A
natural conjecture is that the properties (i) and (ii) hold as long
as the connected correlations of local operators are all short
range in the bulk. This is exactly what we showed in this paper
for the FQHE trial wave functions that are given by conformal
blocks. In the lattice TPS context, we note the existence of a
recent work along these lines, where the conjectured property
(ii) is stated explicitly (Ref. 84), and where numerical evidence
is provided for the locality of the pseudo-Hamiltonian in a
number of specific two-dimensional lattice models.

VI. CONCLUSION

In summary, we have studied the trial states for the FQHE
that are given by conformal blocks. We have constructed the
wave functions for to the gapless edge excitations that are as-
sociated to those. We define those directly, relying on the con-
formal block structure: to each CFT state |v〉, we have attached
a physical state |�〈v|〉〉. We did not address (physical) special
Hamiltonians, in contrast with most previous approaches. In
all known cases, however, and in particular for Laughlin and
the MR (Pfaffian) states, these edge states agree with those
constructed previously, for instance in Refs. 19 and 40.

Then, we have studied the overlaps between these edge
states, relying heavily on the assumption that all the connected
correlations of local observables are short range in the bulk,
a property dubbed generalized screening after Ref. 30. The
techniques involved in the study of the overlaps were those
of boundary CFT.48,49 The basic idea can be summarized as
follows: the chiral CFT that underlies the trial wave functions
lives in the complex plane C. The complex conjugate of the
wave functions is obtained from an antichiral copy CFT. In
the thermodynamic limit, there is a simply connected region
� ⊂ C filled by the N particles: the droplet. Inside the
droplet, generalized screening means that the nonchiral theory
CFT ⊗ CFT is perturbed by a local operator a(z) ⊗ a(z),
and flows towards a massive fixed point under the RG flow.
Then, we are left with a massive field theory inside the
region �, and a massless theory CFT ⊗ CFT in C \ �. At
the boundary of �, the massless theory obeys a conformal
boundary condition. We have determined this conformal
boundary condition [a(z) ∝ a†(z) at the boundary], and shown
how it implies that the (antilinear) mapping from the CFT space
to the physical space |v〉 	→ |�〈v|〉〉 becomes an isometric
isomorphism in the thermodynamic limit N → ∞. This is a
precise bulk/boundary correspondence, for which we provided
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some elementary numerical checks (Monte Carlo) in the case
of the Laughlin and the Moore-Read (Pfaffian) states. In
particular, one consequence of this isometric isomorphism
between the CFT space and the physical space of edge
excitations is that the CFT must be unitary. We have also shown
that another aspect of this bulk/boundary correspondence holds
as a simple consequence of this boundary CFT formalism: the
equal-time correlators (evaluated in the ground state) of local
operators along the edge are equal to the analogous correlators
in the chiral CFT.

We then tackled the entanglement spectrum of the ground
state for real-space partition. A key point was the use of a
completeness relation in the CFT space, which leads to a
natural decomposition of the ground state |�〉〉 as a sum of
terms of the form |�A

〈v|〉〉 ⊗ |�B
|v〉〉〉. In the limit NA,NB →,

because of the isometric isomorphism, all these states are
orthogonal, and therefore this natural decomposition is really a
Schmidt decomposition. All the pseudoenergies are degenerate
in that limit. More seriously, most of the interesting features
of the ES are hidden in the subleading corrections. We
sketched how such corrections to scaling can be naturally
apprehended with RG arguments: in reality, the massless
theory CFT ⊗ CFT that lives inC \ � is subject to a perturbed
conformal boundary condition along the edge. Therefore, one
needs to discuss what perturbations are allowed by the different
symmetries to be present at the boundary. A careful analysis
of these perturbations leads to a deformation of our isometric
isomorphism, due to the corrections to scaling. Of course, the
latter need to be taken into account in the orthogonalization
of the states that appear in the Schmidt decomposition. These
corrections to scaling are thus reflected in the entanglement
spectrum. Our most significant result here is that the ES, as
a consequence of generalized screening, is the spectrum of a
sum of (integrals of) local operators along the cut between A

and B. We also showed that the ES for particle partition (PP)
can be analyzed in a similar fashion.

Finally, we have emphasized that our results suggest
relations between the formalism of wave functions given
by conformal blocks and matrix product states (in 1D) or
tensor product states (in higher dimensions), noted MPS or
TPS. We have argued that the continuous analog of a TPS
(defined on a lattice) is nothing but the correlator of local
operators in a local field theory. Working in the continuum
rather than on the lattice has a number of advantages, in
particular when one is dealing with the ground state of a
phase of matter with broken inversion/time-reversal symmetry,
such as the FQHE. In that case, assuming that good trial
wave functions can be built as correlators in a local field
theory, one is naturally led to look for chiral field theories,
and correlators of local fields in those. A good illustration
of this is the case of complex paired superfluids, for which
the BCS ground state can always be viewed as a correlator
in some chiral free-fermion theory. Looking for a lattice
TPS approximation of the ground state is then equivalent to
constructing a lattice discretization of a chiral field theory.
Then, one runs into trouble, as various problems arise, in
particular the fermion-doubling problem.83 Starting from the
continuum, namely, from a field theory, to construct a trial
wave function, is a natural way of circumventing such issues.
This justifies, at least heuristically, the approach pioneered

by MR, namely, the use of conformal blocks as trial wave
functions for the FQHE.
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APPENDIX A: THE TOPOLOGICAL TERM γ APPEARS IN
ALL THE PSEUDOENERGIES

In this Appendix, we give one argument to support the
fact that the topological entanglement entropy γ appears in all
the pseudoenergies in the scaling region (see Sec. IV B). It is
adapted from the argument sketched by Kitaev and Preskill at
the end of Ref. 10.

We have shown in this paper that the ES (for RSP) is, up
to a constant shift, given by the spectrum of v

R
L0 + . . ., where

the . . . are terms of higher order in 1/R. To keep the argument
as simple as possible, we do not address the case of different
velocities in the charge sector and the statistics sector, but this
could be done and the result would remain unchanged. The
constant shift is fixed by the requirement that tr ρA = 1. To
compute this shift, let us start by dropping the terms of higher
order in 1/R. Within this approximation, the reduced density
matrix ρA is isospectral to

1

Z e− v
R

L0 (A1)

acting on a module V over the chiral algebra A, usually the
module of the identity. The normalization factor is

Z = q
c

24 × trV qL0− c
24 (A2)

with q = exp(−2π v
2πR

). The central charge of the CFT is
noted c. The object in the right-hand side is called a character
in the CFT literature.31–33

The constant shift we are looking for is the order O(1)
piece in the expansion of lnZ = α2πR − γ + O(1/R). We
thus need to obtain the asymptotic behavior of lnZ when
R � v ∼ √

ρ0
−1, namely, when q → 1. At first sight, this

may not look obvious because the sum diverges in that limit,
however, it is a very standard exercise in CFT. The trick is to use
the modular properties of the characters, namely, to express the
character χ (q) = trV qL0− c

24 as a function of q̃ = e−2π 2πR
v , and

then take the limit q̃ → 0, which is well defined. In general,
the characters obey the following rule:

χa(q) =
∑

b

Sb
aχb(q̃), (A3)

where a and b label the different irreducible modules over A,
and Sb

a is the so-called modular S matrix (note that this is not
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the same object as the shift operator S in Sec. III B). In the case
when V is the module of the identity, the leading contribution
comes from the character of the identity module itself, noted
χ1 (and the corresponding diagonal element of the modular S
matrix noted S1

1 ):

ln χ1(q) ∼
q→1

ln

[∑
a

Sa
1 χa(q̃)

]
(A4)

∼ ln
[
S1

1χ1(q̃)
]

(A5)

∼ − c

24
ln q̃ + lnS1

1 . (A6)

Since lnZ = ln χ1(q) + c
24 ln q, we find in the end

lnZ = α2πR − γ + O(v/R) (A7)

with γ = − lnS1
1 as expected. The coefficient α is not

universal, as it involves the inverse length 1/v. The argument
given here, based on modular manipulations, can be easily
extended to the case when anyonic excitations are present in
parts A and B. More details can be found in Refs. 10 and 85.

We do not address the robustness of γ here. Since it is a
dimensionless constant, it can not be affected by irrelevant
perturbations of the CFT. One can make some sanity checks in
a few cases, for instance for a CFT with both a U(1) sector and
a statistics sector, which come with different velocities vU(1)

and vψ . One finds that γ is invariant indeed.
In conclusion, the topological term γ must appear as the

order O(1) piece in all the low-lying pseudoenergies in the
ES. Because of this, it also appears in the von Neumann entan-
glement entropy, but this is not specific to this entropy. It is a
property of all the pseudoenergies independently, rather than a
property specific to the von Neumann entropy only. In partic-
ular, one consequence of the presence of the term γ in all the
low-lying pseudoenergies is that all the Renyi entropies contain
this term γ as well. This fact was noted already in Ref. 86.

APPENDIX B: EXACTLY SOLVABLE CASE OF px ± i py

PAIRED SUPERFLUIDS

In this Appendix, we discuss the case of a px − ipy

superfluid treated in BCS theory,67 where the overlaps between
the edge states and the real-space entanglement spectrum can
be computed exactly. We reformulate some of the results of
Ref. 24 in the language of this paper, to illustrate the ideas
developed in Secs. I C, III, and IV.

For convenience, we consider the system on the cylinder
C. The BCS ground state of spinless particles is expressed in
terms of the pairing function g(w1,w2),

|�〉〉
= 1√

Z
exp

(
1

2

∫
C
d2w1

∫
C
d2w2g(w1,w2)c†(w1)c†(w2)

)
|0〉〉,
(B1)

where w = x + iy is the complex coordinate on the cylinder
(y and y + L are identified). For a weakly paired px − ipy

superfluid, the pairing function expressed in momentum space
behaves as

g(k) ∝ 1

kx − iky

(B2)

as |k| → 0 (see Ref. 67). Coming back to real space, on the
cylinder C, the pairing function is

g(w1,w2) = μ/2π

L
2π

sinh 2π(w1−w2)
L

, (B3)

where μ is a complex parameter with the dimension of an
inverse length, which is related to the density of particles.
Without loss of generality, one can assume that μ is real and
positive. For this particular choice of the pairing function, the
BCS ground state (B1) can be rewritten as

|�〉〉 = 1√
Z

〈exp

(√
μ

2π

∫
C
d2w ψ(w) ⊗ c†(w)

)
〉C |0〉〉,

(B4)

where ψ(w) is a free Majorana field on the cylinder with prop-
agator 〈ψ(w1)ψ(w2)〉C = 1/( L

2π
sinh 2π(w1−w2)

L
). The chiral

correlators 〈ψ(w1) . . . ψ(wN )〉C are evaluated using Wick’s
theorem. Introducing an antichiral copy ψ(w) of the Majorana
fermion field, the normalization factor Z can be expressed as
a correlator in the nonchiral theory Majorana ⊗ Majorana

Z =
∑
n�0

(
μ

2π

)n
(n!)2

∫ n∏
i=1

d2wid
2w′

i

×〈ψ(w1) . . . ψ(wn)ψ(w′
1) . . . ψ(w′

n)〉
× 〈〈c(zn) . . . c(z1)c†(z′

1) . . . c†(z′
n)〉〉

= 〈e iμ

2π

∫
d2wψ(w)ψ(w)〉C . (B5)

The factor i in the last exponential appears because of the
convention that the holomorphic/antiholomorphic modes to
anticommute {ψ,ψ} = 0. We also use the fact that only the
correlators with an even number of fields ψ(zi) are nonzero.
The term in the last exponential should be viewed as a
mass term in the Majorana fermion theory, with the standard
quadratic Euclidean action

S = 1

2π

∫
d2w[ψ∂wψ + ψ∂wψ + iμψψ]. (B6)

1. Edge states

We now focus on the px + ipy superfluid filling only the left
half-cylinder Cl corresponding to x < 0. A trial wave function
for this system is obtained by restricting the integration in the
expression (B1) to the domain Cl ,

|�,Cl〉〉 = 1√
Zl

〈
e

√
μ

2π

∫
Cl

d2wψ(w)⊗c†(w)〉
C |0〉〉. (B7)

Note that the chiral correlator is still evaluated on the full
cylinder, but the particles fill the left half-cylinder only. The
normalization factor then corresponds to the partition function
of the Majorana fermion field on the cylinder, with a mass term
which is switched on in the left side only

Sl = 1

2π

∫
C
d2w[ψ∂wψ + ψ∂wψ] + iμ

2π

∫
Cl

d2w ψψ.

(B8)

From now on, we make use of the translation invariance of the
system in the y direction by using a ky-momentum basis. On
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the cylinder, the field ψ(w) can be expanded in Fourier modes

ψ(x,y) =
√

2π

L

∑
ky

eky (x+iy)ψ−ky
, (B9)

where the sum runs over all the admissible momenta,
namely, ky ∈ 2π

L
(Z + 1

2 ) for antiperiodic boundary condi-
tions. The Fourier modes obey the canonical commutation
relations {ψky

,ψk′
y
} = δky+k′

y ,0. The ground-state trial wave
function (B7) is then

|�,Cl〉〉

= 1√
Zl

〈0|T exp

⎛
⎝√

μ
∑
ky

∫ 0

−∞
dx ekyxψ−ky

⊗ c
†
ky

(x)

⎞
⎠

×|0〉 |0〉〉, (B10)

where the symbol T denotes time ordering for the imaginary
time x. The state |0〉 is the vacuum of the CFT, annihilated
by all the mode ψky

with ky > 0 [note the difference with
the physical fermionic vacuum |0〉〉 annihilated by the c(w)’s].
The time-ordering operator T implies that the Cooper pairs of
particles with momenta +ky and −ky must appear in a specific
order, as discussed in Ref. 24.

As explained in Sec. II B, one can write trial states for the
edge excitations by replacing the out vacuum 〈0| by an excited
state in the CFT, such as 〈0|ψk1ψk2 for some k1,k2 > 0:∣∣�〈0|ψk1 ψk2

〉〉
= 1√

Zl

〈0|ψk1ψk2T e
√

μ
∑

ky

∫ 0
−∞ dxeky xψ−ky ⊗c

†
ky

(x)|0〉 |0〉〉.
(B11)

The study of the overlaps between these states is equivalent
to the one of correlators of the fields ψ and ψ in the right
half-cylinder Cr (x > 0), in the presence of the massive phase
in the left half-cylinder Cl (x < 0). In the limit μ → ∞, one
is left with a conformal boundary condition at x = 0 for the
massless Majorana fields in Cr ,

ψ(0,y) = ψ(0,y), (B12)

which gives, in terms of the Fourier modes acting on the
boundary state |B〉,

ψky
|B〉 = ψ−ky

|B〉. (B13)

The boundary state |B〉 can easily be written in terms of the
fermion modes

|B〉 = e
∑

ky>0 ψ−ky ψ−ky |0〉|0〉. (B14)

As explained in Sec. III D, this implies that the overlaps in the
μ → ∞ limit are given by〈〈

�〈0|ψk1 ...ψkp

∣∣�〈0|ψk′
1
...ψk′

p

〉〉
= [〈0|ψk1 . . . ψkp

〈0|ψk′
1
. . . ψk′

p

]|B〉
= 〈0|ψk′

1
. . . ψk′

p
ψkp

. . . ψk1 |0〉. (B15)

We have arrived at this result thanks to the fact that the massive
phase of the theory Majorana ⊗ Majorana in the domain Cl

can be reformulated as the boundary condition (B12). This is

a particular case of the general argument of Sec. III D, which
leads to the result (3.23).

Since the px + ipy paired superfluid wave function (B1) is
Gaussian, one can actually compute the overlaps (B15) exactly
for any μ, not only in the limit μ → ∞. This can be done as
follows. For some given ky,k

′
y > 0, we have

〈〈
�〈0|ψky

∣∣�〈0|ψk′
y

〉〉 = 〈〈�,Cl|√μ

∫ 0

−∞
dx ekyxcky

(x)

× √
μ

∫ 0

−∞
dx ′ek′

yx
′
c
†
k′
y
(x ′)|�,Cl〉〉

= e−2Sμ(ky )δky,k′
y
, (B16)

where

Sμ(ky) = ln
(√

1 + (ky/μ)2 + ky/μ
)
. (B17)

Here, we have used a result of Ref. 24 [see formulas (13)
and (14) in that reference]. The case with more fermionic
excitations follows simply from Wick’s theorem: in general,
the overlaps at finite μ are

〈〈
�〈0|ψk1 ...ψkp

∣∣�〈0|ψk′
1
...ψk′

p

〉〉
= 〈0|ψk′

1
. . . ψk′

p
e−Sb(μ)ψkp

. . . ψk1 |0〉, (B18)

where we have defined the boundary perturbation as

Sb(μ) =
∑
ky>0

Sμ(ky)ψky
ψ−ky

. (B19)

Of course, in the limit μ → ∞, the boundary perturbation
goes to zero, and we recover the formula (B16).

2. Real-space entanglement spectrum

The real-space entanglement spectrum on the cylinder
(where A is the left half-cylinder Cl and B is the right
half-cylinder Cr ) can also be computed exactly, as pointed
out in Ref. 24. Because the left and right half-cylinders are
symmetric here (such a symmetry was not assumed in Sec. IV),
the boundary perturbations for parts A and B are both equal
to Sb(A) = Sb(B) = Sb(μ) defined in (B19). Following the
discussion in Sec. IV, and in particular the formula (4.17), we
define

e− SES
2 = e− Sb (μ)

2 e− Sb (μ)
2 = e−Sb(μ) (B20)

and the entanglement spectrum is directly given (up to an
additive constant shift) by the spectrum of the operator
SES = 2Sb(μ), which is a free-fermion spectrum, generated
by the set of single-particle pseudoenergy levels 2Sμ(ky) for
the admissible ky > 0. The constant shift can be computed
easily using this fact. For example, if we focus on the smallest
pseudoenergy ξ0, corresponding to the cut ground states in A
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and B (that is, without any insertion of a ψky
mode), then we

have the exact formula

e−ξ0/2 =
∏
ky>0

1

1 + e−2Sμ(ky ) , (B21)

where the product runs over all the admissible ky > 0. Then,
ξ0 is given by the Euler-MacLaurin formula as L → ∞:

ξ0 = αL − γ + . . . , (B22)

where the coefficient α is the integral
∫∞

0 dky2 ln(1 +
e−2Sμ(ky )). Here, the topological term is actually γ = 0, in
apparent contradiction with the claim made in Sec. IV that
this term is the topological entanglement entropy. However,
the topological entanglement entropy itself can be computed
exactly by the same method, using a similar Euler-MacLaurin
expansion, and the result would also be 0, again in contra-
diction with the expected result γ = ln 2. This comes from
the fact that we have not restricted the parity of the particle
number in part A (or equivalently B). The topological term can
only appear in that case, and it does if we restrict the number
of particles in A to be, say, even (see also the discussion in
Ref. 24). Thus, the result is indeed in agreement with the

general claim in Sec. IV. The set of pseudoenergies is then
given by

ξk1,k2,...,kp
= ξ0 +

p∑
j=1

2Sμ(kj ) + · · · , (B23)

where p is assumed to be even, and ξ0 ∼ αL − ln 2 + . . . .
The same result holds if we restrict the particle number in A

to be odd.
Finally, to conclude this appendix, we note that, by

expanding the formula (B19) in powers of ky/μ, and going
back to real space, the operator SES is indeed the integral
along the cut between A and B of some local operators in the
CFT. As expected from the discussion in Sec. IV, the first term
in SES is nothing but the stress tensor itself

SES = 2

μ

∫ L

0

dy

2π
T (0,y) + · · · (B24)

and the length 1/μ, which is the only microscopic length scale
in this model, appears as a coefficient. It is the extrapolation
length discussed in the main text (up to some numerical
factor).
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