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Kubo formulas for viscosity: Hall viscosity, Ward identities, and the relation with conductivity
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Motivated by recent work on Hall viscosity, we derive from first principles the Kubo formulas for the stress-
stress response function at zero wave vector that can be used to define the full complex frequency-dependent
viscosity tensor, both with and without a uniform magnetic field. The formulas in the existing literature are
frequently incomplete, incorrect, or lack a derivation; in particular, Hall viscosity is overlooked. Our approach
begins from the response to a uniform external strain field, which is an active time-dependent coordinate
transformation in d space dimensions. These transformations form the group GL(d,R) of invertible matrices,
and the infinitesimal generators are called strain generators. These enable us to express the Kubo formula in
different ways, related by Ward identities; some of these make contact with the adiabatic transport approach.
The importance of retaining contact terms, analogous to the diamagnetic term in the familiar Kubo formula for
conductivity, is emphasized. For Galilean-invariant systems, we derive a relation between the stress response
tensor and the conductivity tensor that is valid at all frequencies and in both the presence and absence of a magnetic
field. In the presence of a magnetic field and at low frequency, this yields a relation between the Hall viscosity,
the q2 part of the Hall conductivity, the inverse compressibility (suitably defined), and the diverging part of the
shear viscosity (if any); this relation generalizes a result found recently by others. We show that the correct value
of the Hall viscosity at zero frequency can be obtained (at least in the absence of low-frequency bulk and shear
viscosity) by assuming that there is an orbital spin per particle that couples to a perturbing electromagnetic field as
a magnetization per particle. We study several examples as checks on our formulation. We also present formulas
for the stress response that directly generalize the Berry (adiabatic) curvature expressions for zero-frequency
Hall conductivity or viscosity to the full tensors at all frequencies.
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I. INTRODUCTION

There has been great interest recently in the viscosity
of quantum fluids, coming from various directions. These
directions include a conjectured lower bound on the ratio of
the shear viscosity to entropy density of a fluid, from the
AdS/CFT correspondence;1 the properties of an interacting gas
of fermions with interactions described by s-wave scattering at
or near the unitarity limit;2 and the so-called Hall viscosity, an
antisymmetric part of the viscosity tensor analogous to Hall
conductivity, which has been calculated for several gapped
topological phases.3–5

Viscosity, whether in a solid or fluid, is essentially the set of
transport coefficients describing the relaxation of a deviation
of the momentum density from its value in (possibly only
local) equilibrium. Hence it is necessary that momentum be
conserved in order even to consider viscosity. If the momentum
density at x at time t is g(x,t), the continuity equation for
momentum is

∂gν(x,t)

∂t
+ ∂μτμν(x,t) = 0, (1.1)

(greek indices μ, ν, . . ., = 1, . . . , d refer to space components,
d is the dimension of space, and repeated greek indices are
summed). The stress tensor operator τμν(x,t) plays a central
role in calculating viscosity. The viscosity tensor in a fluid can
be defined as the expectation of the stress due to a time-varying
“strain.” Unlike in a solid, in a fluid with no external fields
present, an intrinsic local static strain tensor is not defined in
full in any completely natural way, but we can define its trace
as tr u = δ(Ld )/Ld , where Ld is the volume, for a uniform
dilation, or locally using the average particle number density

n as tr u = −δn/n. The local expected stress does not respond
to a change in the shape of a box confining the fluid (which
can be considered as an attempt to impose a static strain uαβ),
except that there is a response of the pressure to a change
in volume; the pressure is the expectation of the trace of the
stress tensor, divided by the dimension of space. However,
time-dependent strain has an analog, which is the matrix of
gradients of the velocity field v, the average velocity of the
fluid:

∂uαβ

∂t
= ∂vβ

∂xα

.

The change in the average stress tensor 〈τμν〉 from its equilib-
rium value can be formally expanded in time derivatives, as

δ〈τμν〉 = −λμναβuαβ − ημναβ

∂uαβ

∂t
+ · · · , (1.2)

where λμναβ is the tensor of elastic moduli and ημναβ is
the viscosity tensor. Here we may view this as holding
between local quantities at the same position in space from
a long-wavelength point of view, or to zeroth order in spatial
derivatives. Then in a fluid,

λμναβ = κ−1δμνδαβ, (1.3)

that is, only the trace of τ responds, and only to tr u,
corresponding to a change in volume or local density of
the fluid. The coefficient κ−1 is the inverse compressibility,
κ−1 = −Ld (∂P/∂(Ld ))N , the derivative of the pressure with
respect to volume Ld of the fluid, taken at fixed particle number
N . So far, we did not use rotational invariance (isotropy) of the
fluid; if we do, then the stress tensor is symmetric, and only
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the more familiar symmetrized rate of strain

1

2

(
∂vα

∂xβ

+ ∂vβ

∂xα

)
(1.4)

enters, so that ημναβ is also symmetric under the exchange
α ↔ β. Another part of the expected stress is the momentum
flux mnvμvν (where m is the particle mass), which is very
important in fluid mechanics (e.g., in obtaining the Navier-
Stokes equations), but will not be encountered in this paper as
we consider only linear response to strains.

Without assuming rotation invariance, we can further
distinguish some parts of the viscosity tensor. η can be divided
into a symmetric and antisymmetric part under exchange of
the first and the last pair of indices:3

ημναβ = ηS
μναβ + ηA

μναβ,

ηS
μναβ = ηS

αβμν, (1.5)

ηA
μναβ = −ηA

αβμν.

For the zero-frequency parts that we consider at the moment,
only the symmetric part of ηS contributes to dissipation. For
a rotationally invariant d-dimensional system, it has only two
independent components,

ηS
μναβ = ζ δμνδαβ + ηsh

(
δμαδνβ + δμβδνα − 2

d
δμνδαβ

)
,

(1.6)

with ζ the bulk viscosity and ηsh the shear viscosity. ηA can
only be nonzero when time-reversal symmetry is broken, and
in rotationally invariant two-dimensional system has only one
independent component,

ηA
μναβ = ηH (δναεμβ − δμβεαν), (1.7)

with ηH the so-called Hall viscosity.3,4 For gapped quantum
systems at zero temperature, it has been shown using the
adiabatic approach to quantum transport that

ηH = 1
2h̄ns, (1.8)

where n is the expected particle number density in the ground
state and s is minus the average orbital spin per particle;4,5 see
also Refs. 6 and 7. h̄ is Planck’s constant, which we usually set
to 1. We should point out that in Ref. 5, there is an unfortunate
sign mistake in the definition of the stress tensor in Eq. (2.18)
of that reference, which propagated through the paper, though
the adiabatic curvature results are correct. This means that
all viscosities calculated there should have the opposite sign;
above, we have also reversed the sign in the definition of the
scalar ηH , so as to retain the memorable formula, Eq. (1.8).

The purpose of this paper is to develop a variety of Kubo
formulas from which the viscosity tensor, which in general
is frequency dependent and complex, can be calculated in
quantum fluids at zero or nonzero temperatures. A motivation
for doing so is to define the Hall viscosity from a Kubo
formula, and thus make contact with traditional approaches.
In addition, we consider the relation of the viscosity tensor
to the conductivity tensor in Galilean-invariant systems, in
which the latter tensor is the momentum-momentum density
response; the relation comes from the continuity equation
(1.1), and (along with some other relations in this paper)

it can be called a Ward identity. This has been studied
previously, or else frequently is used as the definition of
the viscosity for calculation purposes; our goal is to do it
allowing for the possibility of a Hall viscosity. Moreover,
we will do the same in the presence of a magnetic field. In
this case, total (kinetic) momentum is not time independent,
but precesses at the cyclotron frequency. We will show that
we can, nonetheless, derive parallel formulas in this case. In
particular, we recover a formula of Hoyos and Son8 that relates
the Hall viscosity in a quantum Hall state to the order q2

part of the Hall conductivity at wave vector q and the inverse
compressibility κ−1 above (suitably defined in the presence
of the magnetic field) and generalize it further. These results
bring us closer to finding experimental techniques with which
the Hall viscosity can be measured. We also study several
example systems, to validate our approach to Kubo formulas
for the viscosity tensor. Finally, we show, in a partially heuristic
way, that the Hall viscosity can be rederived from macroscopic
electrodynamics by using the relation with conductivity, and
assuming that at low frequencies the system behaves as if there
is an orbital spin −s per particle that acts as a contribution to
magnetization density.

The basic strategy of our work is to define the viscosity from
the response of the stress to an external field. This external field
enters (in some gauge choices) as a spatial metric, or if we do
not assume rotational invariance, as what we will call a strain;
it is generally assumed to be constant in space. (This strain
field is external, and can have arbitrary time dependence. This
does not contradict our statement that a static strain is not fully
defined in a fluid, as that was for an intrinsic strain, which
would be a property defined given any state of the fluid in no
external field. But where the intrinsic strain is defined, i.e., for
its static trace and for its time derivative, the stress responses
to either of the two strains should agree.) It is well known
(especially in gravitation theory and high-energy physics) that
the stress tensor is the change in the Lagrangian or Hamiltonian
with respect to the metric. We build on this to consider the
underlying response function, that gives the viscosity, as the
next order response of this stress to the time-derivative of
the strain field. This approach has the advantage of making
contact with previous work in which the Hall viscosity of
some systems was calculated3–5 using the adiabatic transport
technique. It closely parallels the case of conductivity, in
which one considers the response of the current, which is
the change in Lagrangian or Hamiltonian with the vector
potential, to an electric field, viewed as the time-derivative
of the perturbing vector potential, setting that vector potential
to zero at the end. Our approach uses the standard Hamiltonian
(canonical) operator formalism, plus linear response. We do
not make any assumptions that hydrodynamic behavior or
local equilibrium holds, or use constitutive relations, beyond
motivating the names for some parts of our expressions, such as
compressibility and viscosity. We focus on quantum systems,
but a similar discussion could be given in the classical setting.

Early work on response-function type formulas for trans-
port coefficients was done by Green, Kubo, Mori, Kadanoff,
and Martin, and Luttinger, starting in the 1950s.9–13 Green and
Mori initially used somewhat phenomenological methods.
“Mechanical” formulations as the response to an external
field, similar to ours, were used by Kubo10 for the electrical
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conductivity case, and by Luttinger13 for thermal transport
and viscosity, and for the most part the final formulas agree
with those of Green and Mori. Kubo and Luttinger began
by deriving the retarded response function to an externally
applied field, and then transformed to expressions that are not
as familiar today, involving an integration over an imaginary
time variable, as well as one over real time. By contrast,
most references from the last forty years follow Kadanoff and
Martin12 in using only retarded response functions to obtain
“Kubo-type” formulas, now usually called simply Kubo
formulas. (We too use only this formalism.) For the particular
case of viscosity, many authors including Luttinger13 base
the definition on the continuity equation (1.1), and his
“mechanical” formulation is a study of the response of the
momentum density to an electric field (which couples
to the number current, equal to the momentum density times
the mass in a Galilean-invariant system of particles that all have
the same mass and unit charge). This leads him to a correct
formula as a stress-stress response function which, however, he
writes in terms of an additional integral over an imaginary-time
interval. In many other papers, including the interesting recent
Ref. 14, the starting formula is the momentum-momentum
response, which has to be expanded to order q2 as the wave
vector q tends to zero, to obtain the viscosity tensor. (We note
that this approach cannot be employed to define viscosity of a
finite system, which was defined using a strain in the adiabatic
approach.) In some of these papers, the stress-stress form is
not used at all. But in most papers that do give a stress-stress
form for the response function that yields the viscosity, the
formulas frequently are incomplete, lack a derivation, contain
pitfalls for the unwary, or are simply incorrect. In particular,
we are not aware of any derivations from an external strain
field in the many-body literature. Hence, and because so much
time has elapsed and notations have changed since the 1960s,
we feel justified in revisiting these formal matters here.

In order to explain the issues that need to be corrected in
the stress-stress form, we will use the more familiar case of
conductivity as an analogy. For the (complex) conductivity
tensor at zero wave vector, it was shown by Kubo10 that the
approach outlined above gives rise to the Kubo formula

σμν(ω) = in

mω+ δμν + 1

ω+

∫ ∞

0
dt eiω+t

×
∫

ddx 〈[jμ(x,t),jν(0,0)]〉0. (1.9)

Here, jν(x,t) is the current density operator (equal to gν/m in
a Galilean-invariant system), ω+ = ω + iε, the limit ε → 0+
is implicit, and the expectation is taken in the unperturbed
ground state or statistical ensemble, denoted 〈· · · 〉0. We set
the charge of the particles to 1 throughout this paper. This
expression gives the response of the expectation of the current
density to a uniform external electric field. (When multiplied
by m2, it is also the q → 0 limit of the momentum-momentum
response mentioned above; this fact will not play any role just
now). The first term is the so-called diamagnetic current, which
(in the approach we are using at the moment) arises because
the current density in the presence of a perturbing vector
potential Aν is actually jν(x,t) − Aν(x,t)n(x,t)/m (because
the Hamiltonian is quadratic in Aν), where n(x,t) is the

number density operator. The second term is the current-
current retarded response function (though we usually reserve
such terminology for the complete expression). We note that
textbook derivations of linear response usually assume that
the perturbing field appears only linearly in the Hamiltonian
(except possibly when considering conductivity), and then no
such “contact” terms (i.e., terms like the diamagnetic term in
the conductivity) appear.

It would not be wise to drop the diamagnetic current term
from the conductivity. Recall the Sokhotski-Plemelj formula
(for ω real),

1

ω + iε
= PP

1

ω
− iπδ(ω), (1.10)

where PP denotes the principal part (both terms become
meaningful once substituted into an integral). Even if one
wants to find only the real part of the conductivity, the
diamagnetic term contributes a δ function at zero frequency. In
some cases, such as for fermions without impurity scattering
(disorder), both in Fermi liquids and paired superfluids,
the time-integral term vanishes and the diamagnetic term is
the full response. At zero frequency, one would say that the
conductivity is infinite, which is correct.

For the real part, some authors instead use the formula

Re σμν(ω) = Re
∫∞

0 dt eiω+t
∫

ddx 〈[jμ(x,t),jν(0,0)]〉0

ω

(1.11)

in which the πδ(ω) coming from use of the Sokhotski-Plemelj
formulas has been dropped, both in the diamagnetic term,
and in the time-integral term (the latter would contain the
imaginary part of the time integral, in place of the real part
here). This is correct when these δ functions cancel, which
does happen for the case with impurity scattering. In the simple
Drude approximation, the complex conductivity tensor is

σμν(ω) = in

m(ω + i/τimp)
, (1.12)

where 1/τimp is the impurity scattering rate; there is no δ(ω)
piece in the real part. In that case the real part of the time
integral, which is kept, gives the correct broadened Drude peak,
in the simplest approximation. But in the limit as the impurity
scattering rate goes to zero, the correct result at zero frequency
should be diverging, while use of the above formula gives a
result that increases as the rate gets smaller, but jumps to zero
when there is strictly no impurity scattering. One would like to
criticize this behavior for not being continuous, however, if the
value at zero scattering was infinity it would not be continuous
either. Looking at the full function of ω, not only at ω = 0,
we would like to say that the correct result approaches a δ

function continuously as the scattering rate goes to zero. This
makes sense only if we interpret Re σμν(ω) as a distribution
for any scattering rate; then it is correct to say that as the rate
goes to zero, it approaches a δ function continuously (in the
space of distributions). But this continuity with the limit of
zero scattering is lost if the above form Re

∫∞
0 dt . . . /ω is

used.
The use of Eq. (1.11) also leads to difficulties with the

Kramers-Kronig (KK) relations, that do not occur with the
correct form, Eq. (1.9), even if the diamagnetic term is dropped
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(because that complex term obeys the KK relations). The
difficulty can be remedied only by reinstating the πδ(ω) times
the imaginary part of the ω = 0 time integral. However, the
diamagnetic term cannot be recovered in this way, unless one
has for example an argument that the real part of σ contains
no δ function at zero.

The issues in the literature on Kubo stress-stress formulas
for viscosity are very similar to these. Let us now give one of
our forms (slightly simplified) for the response function from
which we obtain the viscosity:

χμναβ(ω) = 1

iω+

{〈
∂τμν(0)

∂λαβ

∣∣∣∣
λ=0

〉
0

+ i

∫ ∞

0
dt

∫
ddx eiω+t

×〈[τμν(x,t),ταβ(0,0)]〉0

}
. (1.13)

The time-integral term is what would be expected for the stress-
stress response. The first term, which is frequency independent
except for the 1/ω+ factor, is what we call (following long-time
usage in the high-energy literature) a contact term (this has no
connection at all with the so-called “contact” in the theory
of interacting Fermi gases at the unitarity limit15–17). Without
giving the full details here, λαβ is the external strain, and
varying the Hamiltonian with respect to λμν gives (minus)
the stress tensor τμν(x). The stress still depends on λ, like the
current above. Thus the response of the expectation of the stress
to the strain contains the contact term, which is one more
derivative with respect to λαβ ; it is directly analogous to
the diamagnetic conductivity. By contrast, stress-stress re-
sponse formulas in the literature usually omit this term,
an exception being the early work of Luttinger,13 whose
expression is equivalent to this, but is written in a way that may
now seem obscure (the relation can be found in Kubo10). We
will now give reasons why the contact term has to be retained.

We pointed out earlier that in a homogeneous fluid, the
expectation of the stress is

〈τμν(x,t)〉0 = Pδμν, (1.14)

and that a static strain affects this at first order, the coefficient
being the inverse compressibility. It follows that there will be
a part of the response function,

χμναβ(ω) ∼ iκ−1

ω+ δμνδαβ + · · · (1.15)

as ω → 0, and any remaining 1/ω+ term has vanishing trace
on the indices μν and on αβ (this result is valid at nonzero as
well as at zero temperature). The coefficient κ−1 is equal to the
zero frequency limit of the response function −iω+χμμαα/d2,
and there is a contribution from the contact term as well as
from the time-integral term (we discuss this more formally in
Sec. III D below). Thus dropping the contact term spoils this
relation. It is a feature of our approach that this term can be
easily identified as the inverse compressibility, because it is
the response to a static external strain.

We then define the complex viscosity tensor to be

ημναβ(ω) = χμναβ(ω) − iκ−1

ω+ δμνδαβ. (1.16)

(We note that Luttinger13 recognized the need to subtract such a
term to obtain the viscosity tensor, however, he derives it using

hydrodynamic arguments and local equilibrium.) It follows
from the preceding remarks that the bulk viscosity cannot
diverge as ω → 0 (see the definitions above, for rotationally-
invariant systems). The shear viscosity has a contribution from
the contact term, and so the real part has a δ(ω) contribution.
This may sometimes be canceled by another from the time-
integral term. In particular, this occurs in a gapped system at
zero temperature, which should have no dissipative viscosity at
ω = 0. It also occurs in an interacting Fermi liquid at positive
temperature T , which has a finite shear viscosity at ω = 0
that tends to infinity as the temperature goes to zero. Thus,
similarly to the case of the conductivity of a Fermi gas with
impurities, the δ-function terms must cancel at T > 0. Either
of these cancelations is spoiled if the contact term is dropped.

Some authors, who consider fluids at positive temperatures,
use an expression for the real part of the viscosity,

Re ημναβ(ω)

= Re
∫∞

0 dt
∫

ddx eiω+t 〈[τμν(0,t),ταβ(x,0)]〉0

ω
, (1.17)

where ω in the denominator is real (iε is dropped). In
particular, Kadanoff and Martin give a related form, which
can be obtained from this using the fluctuation-dissipation
theorem and letting ω → 0. In this form, δ functions δ(ω)
are all dropped, which removes the κ−1 term, and gives the
viscosity correctly only if the remaining δ(ω)’s do cancel
in the real part of our full expression above. As with the
conductivity of a Fermi gas with impurities, use of this form
in an interacting Fermi liquid as T → 0 gives discontinuous
behavior of the shear viscosity, which ought to be continuous
when viewed as a distribution. It also gives zero for a
noninteracting Fermi gas, instead of infinity. While one may
say that in either of these two limits, hydrodynamics is not
well defined, it is preferable to have continuous behavior of
our theories, and these are reasons to retain the contact term.

A few authors go a step further than this, asserting that the
complex viscosity is given by

ημναβ(ω)
?=
∫∞

0 dt
∫

ddx eiω+t 〈[τμν(0,t),ταβ(x,0)]〉0

ω
, (1.18)

with 1/ω, not the more correct 1/ω+. This is incorrect, as the
right hand side usually has a divergence as ω → 0 in the trace
part, which is a contribution to, but not equal to, κ−1. Further, if
the δ(ω)’s are to cancel in the real part of the correct expression,
it must also have a 1/ω divergence in the imaginary part of
the shear viscosity, that is canceled by that due to the contact
term. [The recent paper by Taylor and Randeria14 correctly
states that the contact term (in one particular form) contributes
to the imaginary part of the viscosity.] These latter forms also
lead to difficulties with the KK relations, as in the conductivity
case. There is sufficient information in these forms to recover
a version (given by the last expression, but with ω replaced by
ω+ in the denominator) that satisfies the KK relations, but the
contact term cannot be fully recovered in this way.

A further reason to retain the contact term is that then the
Ward identity relation with the conductivity tensor has a simple
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form,

σνβ(q,ω) = in

mω+ δνβ + qμqα

m2ω+2
χμναβ(ω) + O(q4), (1.19)

in zero magnetic field in a Galilean-invariant system. We see
that there is a term iκ−1qνqβ/(m2ω+3) on the right hand side,
which is sometimes wrongly omitted (e.g., in Ref. 14).

Now we will describe some of the highlights of our work
in the present paper. We begin in Sec. II with some technical
background used to set up the stress response expressions. As
mentioned above, we work systematically with the response to
an external “strain” field. This can be introduced in two ways in
particular. Again, an analogy with conductivity may be helpful
here. The conductivity is the response of the number current
density to an external electric field, and the field is taken to
be uniform in space and have frequency ω. The field can be
represented in two ways in particular, which are simply two
gauge choices. One is as a scalar potential, which depends
linearly on position, because the field is uniform. The other
is as a vector potential which is constant in space, and whose
time derivative gives the electric field (and so is nonzero even
when ω = 0). Both formulations appear in the literature; the
latter is very commonplace, while the first has the drawback
that the linearly varying scalar potential is not compatible
with periodic boundary conditions, and the choice of suitable
boundary conditions for a finite-size calculation becomes more
problematic, though this is frequently ignored. On the other
hand, in the first formulation the external electric field appears
only linearly in the Hamiltonian, so there is no contact term
in the response function, whereas in the formulation using the
vector potential, the external field appears quadratically, and
so there is a contact term—the diamagnetic current term, as
discussed above. Last, we note that the transformation from
one formulation to the other is a unitary transformation, simply
implementing the change of gauge in the quantum theory.

Similar alternatives appear in the case of stress response.
It is known that stress is the derivative of the Hamiltonian
with strain, so we may begin with a Hamiltonian with a
general, spatially-uniform strain that depends on time (it
appears nonlinearly in the Hamiltonian). A time-independent
strain can be eliminated from the Hamiltonian by a coordinate
transformation, which for spatially constant strain is a linear
transformation. The two coordinate systems used to describe
our system, which are related by this transformation,
are referred to as the x and X variables, respectively.
These coordinate transformations take the place of U(1)
gauge transformations; the relation can be understood if we
realize that the conserved quantity corresponding here to
particle number in the conductivity case is the total momentum
of the particles, and so in the generators of infinitesimal
transformations, the x dependence must be multiplied by the
momentum of the particle on which it acts:

Jαβ = −1

2

∑
i

{
xi

α,pi
β

}
(1.20)

for zero magnetic field, which leads to coordinate transfor-
mations (for the conductivity problem, the corresponding
operators are

∑
i x

i
α). These generators will be called strain

generators; they play a central role in our approach. In fact, the
time derivative of a strain generator gives the corresponding

component of the integrated stress tensor. This follows either
from expanding the (Fourier transformed) continuity equation
to first order in wave vector, or by seeing that the time
derivative is the commutator with the Hamiltonian, which
thus produces the change in the Hamiltonian with a uniform
strain, which we know is the (integrated) stress.

As the strain generators generate linear transformations of
the coordinates (and inverse ones of the momenta, as the
transformations are canonical), they obey the relations of
the Lie algebra gl(d,R) of the group of invertible matrices
GL(d,R) which describes (invertible) linear transformations.
We further generalize this to the case with a magnetic field
(in d = 2 dimensions). Previous work4,5 considered mainly
transformations in the subgroup SL(d,R), consisting of shears
and rotations but not dilations, because of the apparent
difficulty of including dilations in the presence of a magnetic
field. Here, we overcome this difficulty using a technical trick:
when the system is dilated, for consistency the magnetic field
must be rescaled as an inverse length squared. To do this, we
promote the magnetic field strength to be a quantum variable
B, for which the canonically conjugate momentum P does
not appear in the Hamiltonian. Then operator expressions
for the strain generators can be written down as before,
and the integrated stress tensor is again the commutator of
these with the Hamiltonian. Finally, the states with which
we work are assumed to have small width in B, so that the
results correspond to a fixed magnetic field as in conventional
approaches.

With this formalism in hand, we are ready to tackle stress
response in Sec. III. One place to start is in the X variables,
in which the time-derivative of the strain (but not the strain
itself) appears linearly in the Hamiltonian, multiplied by the
strain generator, similar to the conductivity case when using
the scalar potential to represent the external field; there is then
no contact term in the response. This “stress-strain” form can
then be integrated by parts on time, to obtain the “stress-stress”
form, which is similar to what was already discussed above,
and includes a contact term. (It can also be obtained as the
response to a strain by working directly in the x variables,
similar to the vector-potential formulation in the conductivity
case.) A different integration by parts produces instead the
“strain-strain” form, which is a strain-strain response function,
and is useful in making contact with the adiabatic approach.
These three forms have direct parallels with Kubo’s theorem
2 (there is a typo in the second line of the stated theorem in
Ref. 10; the dot should be over the second occurrence of φBA,
not the first). There are several variations on these results,
including formulas for the response in the local stress τμν

instead of in the integrated stress, and the use of periodic
boundary conditions in some of these formulations, or of a
confining potential that is handled similarly to the magnetic
field. We argue that the inverse compressibility must be
subtracted from the foregoing response to obtain the viscosity
tensor as described already above; in a magnetic field, this
becomes the inverse “internal” compressibility, the partial
derivative with respect to area taken with the flux through
the system fixed, not the field strength. We argue that the
bulk viscosity is never diverging at zero frequency (unlike the
shear viscosity, which may), and discuss the form of standard
sum rules and positivity constraints on the spectral density.
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We emphasize that these results are for all components of the
viscosity tensor, including Hall viscosity.

Section IV is devoted to the relation of the stress response,
and hence viscosity, to the conductivity itself. The relation
is between the stress response at zero wave vector, and the
second derivative of the conductivity with respect to wave
vector, and holds for all frequencies. This has been discussed
previously in zero magnetic field, and is sometimes used
to define the viscosity. Our derivation includes a uniform
magnetic field (with zero field as a special case). This relation
may then be studied at low frequencies, where if the bulk and
shear viscosities are zero, there is a relation between the Hall
viscosity, the second derivative of the Hall conductivity, and
the internal compressibility, which agrees with recent work by
Hoyos and Son.8 We find that the relation still holds if these
dissipative viscosity coefficients are nonzero but finite, and
can be generalized to allow for diverging shear viscosity at
zero frequency also.

In Sec. V, we study several simple examples as checks
on our formulation. These include the free (noninteracting)
Fermi gas in zero magnetic field, which possesses a diverging
shear viscosity. Other examples are a noninteracting Fermi
gas in nonzero magnetic field, for which we can find the
full frequency-dependent response function, and fractional
quantum Hall states, for which we recover the Hall viscosity
in agreement with previous work. Finally, we consider paired
states of fermions for pairing functions with nonzero angular
momentum for which we recover the Hall viscosity in
agreement with Refs. 4 and 5, for a mean-field model in which
the Hamiltonian is quadratic in field operators. In each case,
we can verify the relation with conductivity, using results of
some previous authors (who did not consider viscosity).

Finally, in Sec. VI, we show that using macroscopic
electrodynamics, together with the assumption (in the spirit
of an effective theory) that an external perturbing magnetic
field couples to the orbital spin −s of each particle as a
magnetization, we again recover the Hall viscosity result,
Eq. (1.8).

In Appendix A, we show how a standard expression for
the stress tensor in a rotationally invariant interacting particle
system can be obtained by varying the spatial metric in the
Hamiltonian. In Appendix B, we describe a formalism for
including a confining potential to make a finite-volume system
in an infinite space, and show that it works in the example of
free fermions in a harmonic potential. In Appendix C, we
show that the three forms of Kubo formula for stress response
can be written down in periodic boundary conditions, using
derivatives of the ground state instead of strain generators.
This makes contact with the adiabatic approach to quantum
transport, in which Hall conductivity and Hall viscosity are
written as Berry curvatures (and then as a Chern number in
the case of Hall conductivity) and generalizes it to nonzero
frequency, and to gapless systems. In Appendix D, we show
that some assumptions of time-translation invariance that were
used at some points in the derivations are justified.

II. STRESS TENSOR AND STRAIN GENERATORS

In this section, we provide background needed for the
viscosity linear response calculation. We discuss Hamiltonians

with a strain that could be static and others (related by a coordi-
nate transformation, implemented by a unitary transformation)
that contain only the time-derivative of the strain, times a strain
generator. The basic relation giving the integral of the stress
tensor as the time derivative of the strain generator is obtained.
We consider separately the two cases of zero magnetic field
(in Sec. II A), which is mostly straightforward, and nonzero
magnetic field (in Sec. II B), which is less so.

A. Zero magnetic field

We begin by considering a Hamiltonian H0 for a system of
interacting particles in infinite d-dimensional space:

H
(x)
0 = 1

2m

∑
i

pi
μpi

μ + 1

2

∑
i �=j

V (xi − xj ), (2.1)

where xi are the coordinates of the ith particle (i = 1, . . ., N )
and pi are their momenta, with[

xj
μ,pk

ν

] = iδμνδjk. (2.2)

(Here and in what follows, we use Roman letters i, j, . . ., for
particle indices.) We could be more general by introducing
an anisotropic mass in the kinetic term; this modification is
simple to make and will not be done explicitly. In general,
we do not assume the interaction potential V is rotationally
invariant. Then we introduce a spatially uniform strain �,
that is a linear transformation in the coordinates (with matrix
�μν), and the corresponding inverse transformation of the
conjugate momenta.5 We then allow � to depend on time
t . This transformation is viewed actively, as changing the
Hamiltonian of the system, relative to the same variables xi ,
pi . The Hamiltonian for this system is then

H�(t) = gμν(t)

2m

∑
i

pi
μpi

ν + 1

2

∑
i �=j

V (�T (t)(xi − xj )), (2.3)

where

gμν(t) = �μα(t)�να(t),
(2.4)

gμν(t) = �−1
αμ(t)�−1

αν (t).

We also define the matrix λμν by

� = eλ (2.5)

as matrices. Here, gμν is the metric, and gμν is the inverse
metric. If the Hamiltonian is rotationally invariant, then the
strain enters only through the metric gμν and its inverse.
We shall work primarily in units where h̄ = e = 1, unless
otherwise stated.

The strain transformation is canonical (and in fact does not
mix coordinates and momenta), so it can be implemented by
a unitary transformation S(t) for each t :

H�(t) = S(t)H (x)
0 S−1(t). (2.6)

We can parametrize the strain transformation S(t) in terms of
generators Jμν such that

S(t) = exp[−iλμν(t)Jμν]. (2.7)
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Inserting this into Eq. (2.6), we find that the self-adjoint strain
generators J must obey

i
[
Jμν,p

j
α

] = δαμpj
ν , i

[
Jμν,x

j
α

] = −δανx
j
μ. (2.8)

It follows that the strain generators must also satisfy

i[Jμν,Jαβ ] = δμβJαν − δναJμβ, (2.9)

which are the commutation relations of the Lie algebra
gl(d,R), associated with the group GL(d,R) of linear coor-
dinate transformations. In particular, the antisymmetric part of
Jμν is simply −1/2 times the angular momentum operator; for
example, in three dimensions,

Lσ = −εσμνJμν. (2.10)

We can satisfy Eqs. (2.8) and (2.9) by choosing5

Jμν = −1

2

∑
i

{
xi

μ,pi
ν

}
. (2.11)

With H�(t) as the starting point, we now use a similar
strain transformation but with a different point of view. We
make a time-dependent change of variables from xi , pi (which
we term the x variables) to Xi = �T (t)xi and Pi = �−1(t)pi

(which we term the X variables), which is again a canonical
transformation implemented by the same S is defined as above:
�T (t)xi = S(t)xiS−1(t) and similarly for pi . In the Heisenberg
picture, the time dependence of operators is determined by the
Heisenberg equation of motion, for example, for an operator
A in the x variables

i
dA

dt
= [A,H�(t)] + i

∂A

∂t
, (2.12)

where ∂A/∂t means the derivative acting on the explicit time
dependence of A. This equation of motion requires a choice
of the canonical variables used (here xi , pi), which are viewed
as having no explicit time dependence. But then due to the
time dependence of the change of variables, when the X
variables are viewed as having no explicit time dependence,
the resulting equations of motion will not agree with simple
changing variable unless an additional term is included in the
Hamiltonian. For an operator B, using the X variables, one has

i
dB

dt
= [B,H ] + i

∂B

∂t
, (2.13)

where

H = H
(X)
0 + H1, (2.14)

H1 = −i

(
∂S

∂t

)
x,p

S−1, (2.15)

in which H
(X)
0 = H�(t) is viewed as a function of Xi and Pi ,

and so is the same functional form as H
(x)
0 above, but with

xi and pi replaced by Xi and Pi . In the partial (explicit) time
derivative of S, xi and pi are to be viewed as time independent.
However, one can show that

−i

(
∂S

∂t

)
x,p

S−1(t) = −iS−1(t)

(
∂S

∂t

)
X,P

. (2.16)

S can be expressed in terms of strain generators for the X
variables,

J (X)
μν = −1

2

∑
i

{
Xi

μ,P i
ν

}
, (2.17)

which are related to Jμν by a linear transformation. The change
of canonical variables is similar to that which occurs when
passing to a rotating frame in mechanics, which, in fact, is a
particular case of the above derivation.

As we will be interested only in linear response, we can
expand the perturbation −iS−1 ∂S

∂t
to first order in λ to find that

in the X variables the term H1 is

H1 = −∂λμν

∂t
Jμν. (2.18)

(This form of a perturbation to a rate of strain is fairly common
in the literature, see, e.g., Ref. 14.) At the same time, the
distinction of x and X can be dropped, and we usually use
x variables to lighten notation. We have thus mapped the
Hamiltonian for a system with a time varying metric to that
of a system in a fixed Euclidean metric, with a perturbation
generating time-dependent deformations. The viscosity can
now be computed as the response of an appropriately defined
stress tensor to this strain perturbation. This is analogous to the
computation of the conductivity σμν , where one can consider
either the response of the current to a time-varying vector
potential, or—after an appropriate gauge transformation—the
response of the current to a scalar potential.

To define the stress tensor, let us start with the continuity
equation for momentum density g(x), defined in zero magnetic
field and in the absence of strain (and so using x variables and
Hamiltonian H

(x)
0 ) by

g(x) = 1

2

∑
i

{pi ,δ(x − xi)}. (2.19)

In the absence of other external forces, the continuity equation
reads

∂gν(x,t)

∂t
+ ∂μτ (0)

μν (x,t) = 0, (2.20)

where τ (0)
μν (x) is the stress tensor operator in the absence of

strain, and ∂μ = ∂/∂xμ. A standard expression for τ (0)
μν for

the Hamiltonian H
(x)
0 is the Irving-Kirkwood form18 (also

used in Refs. 19 and 20); we derive it within our framework
in Appendix A. We note that the continuity equation does
not completely determine τ (0)

μν , because any operator with
vanishing divergence (such as a curl of something) could be
added to τ without violating the equation. This should not
affect physical results, and, in particular, will not be an issue
when the stress tensor is integrated over all space, as it often
will be when the viscosity is calculated.

Because we are interested in the long-wavelength behavior
of the stress tensor, we will examine Eq. (2.20) in Fourier
space. To leading order in wave vector q, we have

∂

∂t

⎡⎣∑
j

(
pj

ν − iqμ

2

{
xj

μ,pj
ν

})⎤⎦+ iqμτ (0)
μν (q = 0) = 0.
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We define T (0)
μν = τ (0)

μν (q = 0) or equivalently T (0)
μν =∫

ddx τ (0)
μν (x), the integrated stress tensor. Then, because H

(x)
0

is translationally invariant,

T (0)
μν = −∂Jμν

∂t
= −i[H0,Jμν]. (2.21)

This relation between the stress and the strain generators
is a central result of this section. (As an example, for
noninteracting particles, T (0)

μν = ∑
i p

i
μpi

ν/m, the momentum
flux.) Since the antisymmetric part of Jμν is the angular
momentum, it is clear that the integrated stress tensor T (0)

μν

is symmetric (that is, the antisymmetric part is zero) when the
Hamiltonian is rotationally invariant. We can also view the
result in another way: referring to Eq. (2.6), we see that

T (0)
μν = − ∂H�

∂λμν

∣∣∣∣
�=I

. (2.22)

This is consistent with the idea that the stress tensor can be
obtained by varying the Hamiltonian with respect to the metric,
but here is slightly more general as we do not assume rotational
invariance. In the rotationally invariant case, we can also write

T (0)
μν = −2

∂H�

∂gμν

, (2.23)

which again is clearly symmetric, because gμν is so (we note
that the corresponding expression in Ref. 5 has the wrong
sign).

Strictly speaking, because the Hamiltonian H0 contains no
confining potential, for repulsive or for no interactions, there
is no normalizable ground state. We will nonetheless go ahead
somewhat informally (as in many papers in the literature),
and evaluate the response in a normalizable state in which the
particles occupy a region (or “box”) of volume Ld , and we
will treat the state as if it were an eigenstate. Such expectation
values will be written as 〈· · · 〉0. (A similar approach can be
used for nonzero temperature, and most of the following is also
valid for that case.) In a large system (i.e., as L and N become
large with the density remaining fixed—we refer to this as the
thermodynamic limit), this procedure may possibly be justified
over intermediate time scales. In any case, our results will be
seen to make sense. More formally, and completely generally,
we can add to H�(t) an explicit “confining” potential term U ,

U =
∑

i

u(xi). (2.24)

The single-particle potential u(x) has no � dependence, and
can be used to represent a box (say, by using a hard-wall
potential) the shape of which is fixed in x variables even
as � varies. Then in the X variables, the potential becomes
U = ∑

i u(�T −1X), so the shape of the box varies with �

(these conventions agree with Ref. 5, except that there a
periodic boundary condition was used instead, and the shape
was chosen to be a square in the x variables). The potential
modifies the continuity equation for momentum density by
the inclusion of an external force due to the potential, while
the stress tensor remains unchanged. We can also extend our
formalism to include the potential, in such a way that an
analog of Eq. (2.21) holds, with H0 + U in place of H0, by
modifying the strain generators. In this way, we can justify all

the later results that we present here less formally by ignoring
the potential that confines the system to a finite volume. This
is sketched in Appendix B.

Returning to the original approach without a confining
potential, at zeroth order in strain, we can consider the
expectation of the stress. Then use of Eq. (2.22) and the
Hellmann-Feynman theorem gives

〈
T (0)

μν

〉
0 = −

(
∂E(λ)

∂λμν

∣∣∣∣
�=I

)
N

, (2.25)

where E(λ) = 〈H�〉0 is the energy eigenvalue of the λ-
dependent ground state of H� (for time-independent �),
and we choose to emphasize that particle number N is
held fixed. By evaluating E in the X variables, in which a
time-independent � enters only through the shape and size of
the box, we realize that when the state is a homogeneous fluid,
the ground state energy depends on the volume of the box but
not on its shape (in leading order in the thermodynamic limit).
As −∂E/∂(Ld ) = P , the pressure, we have therefore〈

T (0)
μν

〉
0 = PLdδμν, (2.26)

(to leading order) as would be expected from the standard
result, 〈τ (0)

μν (x)〉0 = Pδμν . For nonzero temperature, we obtain
the same result, as the derivative of the expectation of energy
is taken with the probabilities held fixed, in order to use the
Hellmann-Feynman theorem under the thermal average. This
implies that the derivative is taken with the entropy fixed,
in agreement with the thermodynamic definition of pressure.
(A similar method is used to find an expression for the pressure
in Ref. 14.) There are certain subtleties about the argument for
this result (for either zero or nonzero temperature), which we
will briefly discuss later in Sec. III D, however, the result is still
valid. We emphasize that we did not use rotational invariance
to obtain it.

We also point out that if we use Eq. (2.21) and then
argue that the ground state is an eigenstate of H0, we
will conclude that all components of 〈T (0)

μν 〉0 vanish. This is
incorrect in general because in the absence of the potential
U , the normalizable state that we use is not an eigenstate of
H0 for repulsive or no interactions, while if the potential U is
included, there is a normalizable ground (energy eigen-) state
of H0 + U , but again the argument is blocked.

In order to derive linear response of the stress to a
time-dependent strain, we will need the stress to next order
in the strain. For this, it is convenient to notice that H� is
translationally invariant, and so the sum of pi is conserved.
This means that the density of p momentum obeys a continuity
equation, even in the presence of the time-dependent strain
�(t):

∂gν(x,t)

∂t
+ ∂μτμν(x,t) = 0. (2.27)

Here, τμν depends on �; to illustrate the form of this, note that
the momentum flux term part of τμν integrated over space is

Tμν =
∑

i

�−1
αμ�−1

αβ

pi
βpi

ν

m
+ · · · , (2.28)
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where the omitted terms refer to interactions. Following the
same derivation as before, we see that

Tμν = −i[H�,Jμν]. (2.29)

Then expanding to order λ, we have

Tμν = −i
[
H

(x)
0 ,Jμν

]+ λαβ

[[
H

(x)
0 ,Jαβ

]
,Jμν

] + O(λ2).

(2.30)

However, when we calculate response in the X variables, we
will use the stress tensor in those variables, which is defined
by transformation of tensors, so

T (X)
μν = �αμ�−1

νβ Tαβ. (2.31)

In terms of the X variables, this has the form T (X)
μν =∑

i P
i
μP i

ν /m + · · · (where the omitted terms are from interac-
tions), and coincides with T (0)

μν with Xi and Pi in place of xi

and pi . In the x variables, it can be expanded as

T (X)
μν = −i

[
H

(x)
0 ,Jμν

]+ λαβ

[[
H

(x)
0 ,Jμν

]
,Jαβ

] + O(λ2),

(2.32)

in which the order in the double commutator is reversed,
compared with Tμν . It is this integrated stress T (X)

μν that we
believe constitutes a natural starting point for the calculation
of viscosity. However, we will see that in a homogeneous
fluid, the difference in results from using either Tμν or T (X)

μν is
negligible in the thermodynamic limit.

B. Nonzero magnetic field in two dimensions

We now turn to the problem of generalizing the preceding
setup in the presence of an external magnetic field B; we
concentrate on two dimensions. Most of the work is in finding
the strain generators for this case; we will do so by considering
separately the cases of pure shear deformations [det �(t) = 1]
and pure dilations [�μν(t) ∝ δμν]. The unstrained Hamiltonian
can be taken to be

H
(x)
0 = 1

2m

∑
i

π i
μπi

μ + 1

2

∑
i �=j

V (xi − xj ), (2.33)

where

π i = pi − A(xi),
[
xj

μ,πk
ν

] = iδjkδμν,
(2.34)[

πj
μ,πk

ν

] = iBδjkεμν.

We usually assume that the interaction V is independent of the
magnetic field. Following the procedure of Sec. II A above, we
seek strain generators Jμν satisfying

i
[
Jμν,x

j
α

] = −δανx
j
μ, i

[
Jμν,π

j
α

] = δμαπj
ν . (2.35)

First, let us consider the case of pure shear deformations.
The Hamiltonian for the system in the presence of the time-
varying strain with det � = 1 is given by

H�(t) = 1

2m

∑
i

gμν(t)πi
μπi

ν + 1

2

∑
i �=j

V (�T (t)(xi − xj )).

(2.36)

The condition det � = 1 implies that trλ = 0. If we attempt
naively to generalize the generators from zero magnetic field

by taking

J̃ sh
μν = −

∑
i

1

2

{
xi

μ,πi
ν

}
, (2.37)

we find that

i
[
J̃ sh

μν,x
j
α

] = −δανx
j
μ, i

[
J̃ sh

μν,π
j
α

] = δμαπj
ν + Bεναxj

μ.

If we define

S̃ = exp[−itr(λT J̃ sh)],

then these relations imply that the coordinates xi transform
correctly, while the momenta π i transform as

S̃†πi
μS̃ = πi

μ + λμνπν + Bεαμλναxi
ν + O(λ2).

But note that if λμν is traceless, then the curl of the extra
term containing B is 0, and so it is just a λ dependent gauge
transformation. Thus we see that J̃ generates the desired strain
transformation along with the gauge transformation

Aμ → Aμ − Bλανενμxα.

An integration of this gauge term shows that since λ is
traceless, the gauge transformation is given by

φ = −B

2
λμνεναxμxα, Aμ → Aμ + ∂μφ.

In order to remove this unwanted gauge transformation as well
as to make this Jμν traceless, we define

J sh
μν = J̃ sh

μν − 1

2
tr(J̃ sh)δμν + B

2

∑
i

εναxi
μxi

α

=
∑

i

(
−1

2

{
xi

μ,πi
ν

}+ 1

4
δμν

{
xi

α,πi
α

}+ B

2
εναxi

μxi
α

)
.

(2.38)

A short calculation shows that J sh
μν defined in this way

reproduces the traceless part of the transformations (2.35),
and therefore it is the desired traceless strain operator.

Next, we consider the case of a pure dilation. We will soon
see that we must define strains of the system so that they rescale
the magnetic field in such a way that the magnetic flux � =
L2B through the system stays fixed while its shape is strained.
With a fixed particle number N , and defining the filling factor
for the region of area L2 occupied by the particles as ν =
2πN/(BL2) (as usual), this has the effect that we consider
deformations at fixed filling factor ν. For a dilation, we have

λμν = 1
2 tr(λ)δμν.

In accordance with Eq. (2.35), we seek a dilation generator K

satisfying

i
[
K,xj

μ

] = −xj
μ, i

[
K,πj

μ

] = πj
μ. (2.39)

Writing πi
μ = pi

μ − Aμ(xi), we see that these imply that

i
[
K,xj

μ

] = −xj
μ, i

[
K,pj

μ

] = pj
μ,

(2.40)
i
[
K,Aμ(xj )

] = Aμ(xj ).

At first glance, it appears that we are in a quandary—the
first and third of these equations are inconsistent, unless the
magnetic field strength B also transforms under the action of
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K . To accomplish this, we promote the field strength B to
a dynamical variable, represented by an operator B, whose
eigenvalues are values B. This enlarges the Hilbert space of
the system to include states with different magnetic fields; we
will continue to consider only B > 0. At this point, we are
naturally motivated to introduce the momentum P conjugate
to B, such that

[B,P] = i. (2.41)

B and P commute with xi and pi for all i. Note that the vector
potential is now a function of B, but is independent of P . We
then have

πi
μ = pi

μ − Aμ(xi ,B), (2.42)

and [
πj

μ,πk
ν

] = iBδjkεμν. (2.43)

For consistency with Eq. (2.39), we must also have

i[K,B] = 2B. (2.44)

The Hamiltonian (2.36) now becomes

H�(t) = 1

2m

∑
i

gμν(t)
[
pi

μ − Aμ(xi ,B)
][

pi
ν − Aν(xi ,B)

]
+ 1

2

∑
i �=j

V (�T (t)(xi − xj )), (2.45)

where we have expressed π in terms of the canonical
momentum and vector potential in order to make explicit the
dependence of the Hamiltonian on B. (Again, an anisotropic
mass can be introduced in the kinetic terms if desired.) Since
H is independent of P , states with given eigenvalues B of
B retain those values for all times. Eigenstates of B are not
normalizable, however, instead we can use normalized packets
with very small width in B to calculate expectations in linear
response.

A gauge-invariant dilation generator satisfying the commu-
tation relations (2.39) and (2.44) is then given by

K = −1

2

∑
i

{
xi

μ,πi
μ

}+ {B,�({xi},B)}, (2.46)

where we have introduced the “kinetic momentum”
�({xi},B) = P −∑

i A(xi ,B) conjugate to B, and {xi} =
{xi : i = 1, . . . ,N} is the set of all xi’s. Under a gauge
transformation generated by some scalar function φ(x,B) we
have

Aμ(x,B) → Aμ + ∂μφ(x,B),
(2.47)

A(x,B) → A + ∂Bφ(x,B).

To complete our definition of K , we specify that if the
gauge choice is the symmetric gauge for all B, that is
Aμ(x) = − 1

2Bεμνxν (which is preserved by x-independent
gauge transformations), then A is a function of B only,
independent of x. Then

[πj
μ,{B,�({xk},B)}] = iεμνBxj

ν , (2.48)

and this result of course is gauge covariant.

Putting it all together, we have thus shown that

Jμν = J sh
μν + 1

2
Kδμν

=
∑

i

[
1

2

(−{xi
μ,πi

ν

}+ Bεναxi
μxi

α

)]
+ 1

2
δμν{B,�({xi},B)} (2.49)

gives the strain generators for two dimensional systems in
a magnetic field, which satisfy Eqs. (2.35) and (2.44). These
generators also satisfy the gl(2,R) commutation relations (2.9),
and the antisymmetric part is −1/2 times the gauge-invariant
rotation generator (“angular momentum”). We note also that
we consider only the range B > 0. It can then be shown that
the operator {B,�} is a bona fide self-adjoint operator, which
is not the case for the operator � alone, on this range.

As in Sec. II A, we can now apply the canonical transforma-
tion S = exp(−iλμνJμν) to transform to the Hamiltonian in X
variables, in which the corresponding kinetic momenta are �i

(the variables B and P in X variables should be distinguished
from those in the x variables also, but we will not introduce
additional notation for this; at this point, it should be clear
from the context). We find, as in the zero magnetic field case,
that the system with time-varying strain is equivalent to one
with Hamiltonian

H = 1

2m

∑
i

�i
μ�i

μ +
∑
i �=j

V (Xi − Xj ) − ∂λμν

∂t
Jμν

= H
(X)
0 + H1, (2.50)

to first order in λ.
As above, we can obtain an expression for the stress

tensor in the presence of a magnetic field by considering
the continuity equation for the kinetic momentum density
(with time-dependence obtained from H

(x)
0 , which is now

generalized to include B), which reads

∂gν(x)

∂t
+ ∂μτ (0)

μν (x) = B
m

εναgα(x), (2.51)

with the kinetic momentum density given by

g(x) = 1

2

∑
i

{π i ,δ(x − xi)}. (2.52)

As in the previous section, we Fourier transform this equation,
and to first order in wave vector q we find [again, T (0)

μν =∫
d2x τ (0)

μν (x)]

∂

∂t

⎡⎣∑
j

(
πj

ν − iqμ

2

{
xj

μ,πj
ν

})⎤⎦+ iqμT (0)
μν

= B
m

ενα

∑
j

(
πj

μ − iqμ

2

{
xj

μ,πj
α

})
. (2.53)

Now, the first term on either side cancels since only the Lorentz
force breaks conservation of total kinetic momentum. Thus

T (0)
μν = 1

2

∑
i

(
∂

∂t

{
xi

μ,πi
ν

}− B
m

ενα

{
xi

μ,πi
α

})
. (2.54)
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We see that the term in the time derivative matches the first
term in Eq. (2.49) for the strain generator. Then we have

∂

∂t

(
Jμν + 1

2

∑
i

{
xi

μ,πi
ν

})

= B
2m

∑
i

[
ενα

(
πi

μxi
α + xi

μπi
α

)+ δμνεβαxi
βπi

α

]
= B

2m
ενα

∑
i

{
xi

μ,πi
α

}
. (2.55)

Thus, finally,

T (0)
μν = −∂Jμν

∂t
= −i

[
H

(x)
0 ,Jμν

]
, (2.56)

just as in Eq. (2.21) above. The definitions for Tμν and for T (X)
μν

and their expansions to order � in x variables are the same as
in zero magnetic field.

Again, at zeroth order in the strain, we can express
the expectation of the stress in terms of thermodynamic
properties, if we assume the state is a normalizable ground
(and eigen-) state of H0 for each value of B, and as a
function of B is concentrated near a value B. In the case
of a two-dimensional system with a magnetic field, the field
itself provides confinement, so normalizable eigenstates exist
for given B, and we may consider a disk of fluid that covers
an area L2. Then we expect that the average total stress 〈T (0)

μν 〉0

can be decomposed into a pressure term and a magnetization
term20 as 〈

T (0)
μν

〉
0 = δμν(PL2 − MB), (2.57)

where P = −(∂E/∂(L2))N,B is the pressure, and M =
−(∂E/∂B)N,L2 is the total magnetization. We define the
internal pressure20 as

Pint = P − MB

L2
(2.58)

or as

Pint = −
(

∂E

∂(L2)

)
ν,N

, (2.59)

where the partial derivative is at fixed N and fixed filling factor,
as we specified before. As pointed out by Cooper et al.,20 in
a homogeneous fluid, the usual pressure P is the change in
energy under a change in the size of the box (at fixed B), and
so includes a contribution from the Lorentz force acting on the
boundary current that is related to the magnetization. This part
is removed by defining the internal pressure, or equivalently,
by taking the derivative with the flux through the system held
fixed.

In our framework, derivatives with respect to strain are
taken in exactly that way. If we calculate the expectation of
the stress using Eq. (2.56), then we must be careful to recall that
the state is a wave packet in B, and so not an energy eigenstate
of H0, because the energy for given B generally depends on B.
Now when calculating the expectation of an operator that may
depend on B, but not on P (i.e., does not contain P), we can
take the expectation in the H0 eigenstate for each B, and then
average the result over B using the dependence of the wave
function on B. For the traceless (or shear) part of Jμν , P does

not appear, and so the fact that the state is an eigenstate of H0

for each B can be used to conclude that the expectation of T (0)
μν

is zero. This cannot be done for the trace, so the result can be
nonzero. On the other hand, the stress, including its trace, is
itself independent of P , and so the result is the average over
a small range of B of the result for each B, and the latter can
be related to the derivative of energy with the strain (holding
ν and N fixed) using the Hellmann-Feynman theorem just as
in the zero magnetic field case. (This is done in x variables,
using H�, and we emphasize that then xi and B are viewed as
fixed when taking derivatives with respect to strain λ.) Then
by averaging over a sufficiently small range of B, the result
for the trace is just the internal pressure. Then the full result is〈

T (0)
μν

〉
0 = δμνPint(L)L2, (2.60)

and this result can be considered as exact, rather than just as the
order L2 part as the size goes to infinity, if Pint(L) is defined
in this way at finite L, but tends to the thermodynamic Pint

as L → ∞. For nonzero temperature, we should include all
energy eigenstates, weighted by their Gibbs weight, but then a
similar difficulty as in the zero magnetic field case in infinite
size reappears: most states are spread over arbitrarily large
volumes. We may deal with this in the same way as in Sec. II A,
or by including a confining potential as in Appendix B. The
result takes the same form as in Eq. (2.60).

III. KUBO FORMULAS FOR VISCOSITY

In this section, to calculate the viscosity, we first compute
the retarded response function Xμναβ of the integrated stress
tensor Tμν to the perturbation H1 in Sec. III A. Initially,
we consider separately the zero magnetic field case in any
dimension and the case of nonzero magnetic field in two
dimensions. In Sec. III B, we give the response in the form of an
intensive response function χ , which can be defined in periodic
boundary conditions also. Then in Sec. III C we relate X and
χ to the viscosity tensor. We show in Sec. III D that a leading
part of χ at low frequency is the inverse compressibility, and
finally, in Sec. III E discuss sum rules and positivity properties
of X and χ .

A. The response function from strain generators

We work in the X variables, and calculate the response of
the integrated stress T (X)

μν to the perturbation H1, using linear
response theory. Dropping the superscript (X), the change in
the stress tensor to first order is given by

〈Tμν〉(t) − 〈Tμν〉0 = −
∫ t

−∞
dt ′ Xμναβ(t − t ′)

∂λαβ(t ′)
∂t ′

,

(3.1)

where the retarded response function X is given by

Xμναβ(t) = − lim
ε→0+

i�(t)〈[Tμν(t),Jαβ(0)]〉0e
−εt . (3.2)

These expressions are to be evaluated with λ = 0, so we may
now drop the distinction between X and x, and corresponding
superscripts. The time evolution here is taken with respect to
H0, and the expectation is taken in the unperturbed ground
state of H0 (in zero magnetic field, it is again subject to the
same caveats as in Sec. II A, which are addressed further in
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Appendix B). The exponential damping ensures that the system
was unperturbed infinitely far in the past. Fourier transforming
Eq. (3.2), we find that in the frequency domain

Xμναβ(ω) = − lim
ε→0+

i

∫ ∞

0
dt eiω+t 〈[Tμν(t),Jαβ(0)]〉0, (3.3)

where ω+ = ω + iε (the ε → 0+ limit will be left implicit
from here on). We call this the stress-strain form of the response
function. It corresponds directly to the response of the stress
to an applied spatially uniform rate of strain ∂λαβ/∂t . No
rotational invariance has been assumed in the derivation.

Using Eq. (2.21), we can express Eq. (3.3) in two additional
equivalent forms. The second form of the Kubo formula is the
stress-stress form

Xμναβ(ω) = 1

ω+

{
〈[Tμν(0),Jαβ(0)]〉0

+
∫ ∞

0
dt eiω+t 〈[Tμν(t),Tαβ(0)]〉0

}
. (3.4)

[In obtaining this, we had to use time-translation invariance
of the correlation function in Eq. (3.3) to shift the time
dependence onto the operator Jαβ , and then back after using
Eq. (2.21) and integrating by parts on t .] The time-integral term
is what one might have expected for the response function,
as the deformation of shape couples directly to the stress
tensor through the metric. In the additional contact term (the
equal-time commutator term), the coefficient of 1/ω+ is purely
imaginary, because it is the expectation of a commutator of
self-adjoint operators. The complete expression is directly
analogous to the standard Kubo formula for conductivity in
terms of the current-current response, and the contact term in
Eq. (3.4) is analogous to the diamagnetic conductivity. The
latter will be discussed further in Sec. III B below.

Lastly, we have the strain-strain form of the response
function

Xμναβ(ω) = −i〈[Jμν(0),Jαβ(0)]〉0

+ω+
∫ ∞

0
dt eiω+t 〈[Jμν(t),Jαβ(0)]〉0. (3.5)

[In this case, the identity (2.21) and integration by parts was
used on the operator Tμν in Eq. (3.3), and time-translation
invariance was not invoked.] This form of the response
function is closely connected with the adiabatic formalism for
viscosity.3–5 For systems with nondegenerate ground states and
an energy gap, the contact term (the equal-time strain-strain
commutator term) is the adiabatic curvature associated with
deformation of the metric, and gives the full response as
ω → 0. Note this part is real and is manifestly antisymmetric
under exchanging the pair μν with αβ. It gives the simplest
way to see that the Hall viscosity is connected with the orbital
spin density in these cases.5 See also Appendix C.

A similar analysis applies in the magnetic field case.
Because the equations of motion Eqs. (2.21) and (2.56) are
functionally identical, the same three forms of Kubo formula
Eqs. (3.2)–(3.5) for the response of T to H1 hold even in the
presence of a magnetic field, provided one uses the appropriate
strain generator as given in Eq. (2.49).

The different forms of the Kubo formula can be viewed as
related by use of Ward identities. Generally, Ward identities

are the consequences of symmetries or conservation laws for
response or correlation functions. In our case, the key relation,
Eq. (2.21) or (2.56), was obtained by expanding the Fourier-
transformed continuity equation to first order in wave vector.

There are some technical points about the derivation
to discuss. These center around the assumption of time-
translation invariance, which is usually assumed to hold for
response functions such as Eq. (3.2), on the basis that the
unperturbed ground state is an eigenstate of the unperturbed
Hamiltonian (or similarly at nonzero temperature, because
the thermal weighting is stationary). As we have mentioned
already, for the systems we consider, in zero magnetic field a
normalizable ground state is generally not available unless a
confining potential is included; this is because the system is in
infinite volume, so that the strain generators can be defined. In
Appendix D, we show that the preceding Kubo formulas are
certainly valid as written in the presence of nonzero magnetic
field, using the formalism of Sec. II B, and also more generally
using the formalism of Appendix B.

For rotationally invariant systems, in which H0 commutes
with angular momentum (the antisymmetric part of Jμν), the
symmetries of X can be read off from the formulas. First,
Tμν is symmetric, and therefore Xμναβ is symmetric under
μ ↔ ν. Next, in the stress-strain and stress-stress forms the
part of X antisymmetric under α ↔ β also vanishes, using
the assumption that the ground state is an H0 eigenstate
(more detailed or careful arguments can be given along lines
discussed at the end of Sec. III E and in Appendix D below).
This holds without assuming the ground state is an angular
momentum eigenstate. Finally, for the strain-strain form, at
first sight it may be less obvious that the part of X that
is antisymmetric under μ ↔ ν vanishes. However, for these
components one can see that the time-integral term cancels the
contact term (and similarly for the part antisymmetric under
α ↔ β), again without assuming the ground state is an angular
momentum eigenstate.

B. Intensive form of the response and
periodic boundary conditions

The stress-stress form, Eq. (3.4), of the response Xμναβ(ω),
which is an extensive quantity, can also be understood in
another way, as the response to a change in λ using the
Hamiltonian H� in the x variables. In the rotationally invariant
case, this is the same as the response to a change in metric,
and this point of view may be familiar to some readers. Using
this approach, we can also obtain a Kubo formula in terms of
intensive quantities only, which is compatible with periodic
boundary conditions, and will be useful later.

To rederive Eq. (3.4), we work in x variables, and recall that
the integrated stress tensor we are using is T (X)

μν , Eq. (2.31),
and its expansion to order λ in the x variables was given in
Eq. (2.32) (and the same forms are valid with a magnetic
field). Then the linear response of T (X)

μν to the strain, divided
by −iω+ so that this is actually the response to dλαβ/dt , and
finally dropping the distinction between x and X variables (as
we require only the linear response), gives exactly Eq. (3.4).
The contact term came from the expansion of the stress to
order λ in Eq. (2.32), just like the familiar diamagnetic term in
the conductivity response comes from expanding the current
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operator to order Aμ (Aμ being the perturbing vector potential,
the response to which is conductivity).

A similar approach works for the linear response of the
local stress tensor τ (X)

μν (X) = (det �)−1�αμ�−1
νβ ταβ(x) to the

uniform strain [the (det �)−1 factor is present because this
transforms as a density, or formally because the δ function
should be written in X space rather than x space]; the result is
the same as Eq. (3.4), but with τμν(0) in place of Tμν . Here we
have used the same boundary conditions as for the previous
derivation, that is, a system in an infinite volume. But a similar
derivation also works for periodic boundary conditions. These
are defined in x variables as periodic boundary conditions on
a box (or “unit cell”) of fixed shape and size (independent of
�), say a cube. The Hamiltonian is H� as before, except for
the different boundary conditions, and uninteresting changes
to the interaction potential to ensure it is periodic. When a
magnetic field is present (in two dimensions), the flux through
the unit cell is fixed independent of � also, and must be an
integer number of flux quanta (the flux quantum is 2π in our
units); use of the operatorB is not required here. In X variables,
the box has periodic boundary conditions described by �, as
X = �T x, while the Hamiltonian H

(X)
0 is independent of �,

except possibly through the interaction potential, the boundary
conditions, and also the magnetic field strength varies with �

so that the flux through the unit cell stays fixed. We note that
with these boundary conditions, translational invariance holds
strictly. Eq. (2.32) does not hold due to the nonexistence of
Jμν in a finite-size system with these boundary conditions,
but there is still an expansion of τ (X)

μν (X) to order λ in the x
variables:

τ (X)
μν (X) = τ (0)

μν (x) + ∂τ (X)
μν (X)

∂λαβ

∣∣∣∣∣
λ=0

λαβ + O(λ2). (3.6)

Another benefit of these boundary conditions is that nor-
malizable energy eigenstates always exist. Then the Kubo
formalism, working in x variables, leads to the result for linear
response of the stress at x = 0 in the ground state (or at nonzero
temperature) to a uniform rate of strain, which we call χ ;

χμναβ(ω) = 1

iω+

{〈
∂τ (X)

μν (0)

∂λαβ

∣∣∣∣∣
λ=0

〉
0

+ i

∫ ∞

0
dt

∫
ddx eiω+t

× 〈[
τ (0)
μν (0,t),τ (0)

αβ (x,0)
]〉

0

}
, (3.7)

the integral over x is restricted to the box. (There is of course
also a similar formula for X with these boundary conditions;
one expects the leading, extensive part of X to be independent
of the choice of boundary conditions.) Now we can take the
infinite size limit (with particle density held fixed, as always).
In the limit, because τ (X)

μν (0) is a local operator, its expansion to
order λαβ in terms of the commutator with Jαβ is again valid.
Then finally we have [dropping the superscript (0)]

χμναβ(ω) = 1

ω+

{
〈[τμν(0),Jαβ ]〉0 +

∫ ∞

0
dt

∫
ddx eiω+t

× 〈[τμν(0,t),ταβ(x,0)]〉0

}
. (3.8)

This agrees with the argument sketched just above, which
began with N particles in infinite space.

We can also transform this stress-stress expression into a
stress-strain form. As we have already passed to the infinite
system, we can use the relation Eq. (2.21) and integration by
parts again, to obtain

χμναβ(ω) = −i

∫ ∞

0
dt eiω+t 〈[τμν(0,t),Jαβ(0)]〉0. (3.9)

Note that a strain-strain form for the response is not available
in terms of intensive quantities.

C. Viscosity from the response function

It is natural to ask how the extensive and intensive forms
are related. χμναβ(ω) is not simply Xμναβ(ω)/Ld , because of
the following simple point. Recall that X is the response of
〈T (X)

μν 〉 to strain, while χ is the response of 〈τ (X)
μν (0)〉 instead.

Assuming a homogeneous fluid state, these should be related
by 〈

T (X)
μν

〉 = Ld
〈
τ (X)
μν (0)

〉
, (3.10)

where Ld means the volume of the system, which is the �-
dependent volume of the box, Ld = Ld |�=I det �, calculated
either in the X variables as the volume of the �-dependent
box using the fixed, standard Euclidean metric, or in x
variables for a fixed box but with the �-dependent metric.
(Actually, without rotation invariance, these metrics might not
be uniquely defined by our models, however, the formula is
still correct, because the important point is how the volume
varies with �, which is always through det � only.) Then for
the response at first order, we obtain

Xμναβ(ω)/Ld = χμναβ(ω) − i

ω+ δμνδαβP, (3.11)

where in the last term we use the result at zeroth order in the
strain, that in the thermodynamic limit the expectation of the
local stress is 〈

τ (0)
μν (0)

〉 = δμνP, (3.12)

and this becomes δμνPint in the presence of a magnetic field in
two dimensions.

The response function χ is almost exactly what we need
to obtain the viscosity, which is supposed to be the local
stress response to a uniform ∂λμν/∂t , and so is an intensive
quantity. However, the expectation value of the stress that
we just discussed will respond to static (time-independent)
strains—see, for example, the hydrodynamic forms (response
local in space and time) in Eq. (1.2). As χ is the response
to the time derivative of the strain, these elastic moduli at
zero frequency will show up as the coefficients of singularities
∼ i/ω+ in χ . If nonzero, they might be confused with viscosity
coefficients that happen to diverge at ω = 0.

To deal with this and obtain expressions for the viscosity
tensor at all frequencies, we will remove from χ these
static, and thus equilibrium, elastic coefficients, by subtracting
the zero-frequency value of the response to strain, that
is the elastic moduli divided by iω+, and call the remainder
the viscosity tensor. For the homogeneous fluids we consider,
the expectation of the stress obeys Eq. (3.12), which has an
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obvious generalization in the presence of a static strain, and is
affected only by a dilation. Then we arrive at our definition for
the viscosity tensor at frequency ω in zero magnetic field,

ημναβ(ω) = χμναβ(ω) + i

ω+ δμνδαβLd

(
∂P

∂(Ld )

)
N

, (3.13)

or, in terms of the inverse compressibility κ−1 =
−Ld (∂P/∂(Ld ))N ,

ημναβ(ω) = χμναβ(ω) − iκ−1

ω+ δμνδαβ. (3.14)

This, along with Eqs. (3.3)–(3.5) and (3.11), or Eqs. (3.8) and
(3.9), give the Kubo formulas for viscosity in the absence of
magnetic field.

The case of two dimensions with a magnetic field is similar,
but the dilations involve a rescaling of magnetic field, as we
have seen. Then we arrive at

ημναβ(ω) = χμναβ(ω) + i

ω+ δμνδαβL2

(
∂Pint

∂(L2)

)
ν,N

= χμναβ(ω) − iκ−1
int

ω+ δμνδαβ, (3.15)

where κ−1
int = −L2(∂Pint/∂(L2))ν,N is the “inverse internal

compressibility,” with the second partial derivative taken with
BL2 (or the filling factor) held fixed. If we write the energy
of the system as E(N,L2,B) = L2ε(ν,B), where ε(ν,B) is the
energy density as a function of Landau level filling factor
ν = nφ0/B, where n = N/L2 is the particle density and
φ0 = hc/e is the flux quantum (φ0 = 2π in our units), then

Pint(ν,B) = B

(
∂ε(ν,B)

∂B

)
ν

− ε(ν,B), (3.16)

κ−1
int (ν,B) = B2

(
∂2ε(ν,B)

∂B2

)
ν

. (3.17)

In the fractional quantum Hall effect, one encounters
incompressible fluids, which have vanishing compressibility
at zero temperature. This refers to the usual compressibility,
which can be related to the change in density with chemical
potential with the magnetic field fixed, and so differs from the
internal compressibility considered here, which is well defined
and usually nonzero and finite. (Later, we will see that the latter
can be extracted from the q2 part of the conductivity.)

Further, there are similar results at nonzero temperature.
For the (internal) compressibility, there is the question of what
is held fixed in taking the partial derivative of the pressure:
the temperature or the entropy. We will discuss this point in
Sec. III D, and argue that it is the entropy, as mentioned in
Ref. 14. After this point, our discussion applies to both zero
and nonzero temperature, unless otherwise noted.

D. Nondivergence of bulk viscosity

Next we comment on the subtraction of terms containing
the thermodynamic inverse (internal) compressibility in the
expressions for the viscosity in terms of the response function,
Eqs. (3.14) and (3.15), in either the extensive or intensive
forms. We will be led to the striking conclusion that the bulk
viscosity is finite, not infinite. Consider first the case of zero
magnetic field in d dimensions, and the extensive response X in

finite size. We can show in general that the leading contribution
to the diagonal or trace part Xd ≡ Xμμνν/d

2 of the response
function as ω → 0 is given by the derivative of PLd with λ.
In the stress-stress form, Xd is

Xd(ω) = 1

dω+ 〈[T (0),K(0)]〉0

+ 1

ω+

∫ ∞

0
dteiω+t 〈[T (t),T (0)]〉0, (3.18)

where we have defined T ≡ Tμμ/d with d the dimension of
space. Asymptotically as ω → 0,

ω+Xd ∼ 1

d
〈[T (0),K(0)]〉0

+ lim
ω→0

∫ ∞

0
dt eiω+t 〈[T (t),T (0)]〉0. (3.19)

This is the response of the system to a static dilation at zero
wave vector. By inserting a complete set of energy eigenstates
|e〉 of H0 into the commutator in the second line, we obtain

ω+Xd ∼ 1

d
〈[T (0),K(0)]〉0 + 2i

∑
e:Ee �=E0

|〈0|T |e〉|2
E0 − Ee

(3.20)

(the restricted sum over states is really a principal part, arising
from careful use of ε → 0). As explained already in Sec. III B,
working in the x variables the first term on right-hand side
is the expectation of the change in the operator T (X) under a
dilation. Then time-independent perturbation theory using the
x variables shows that the right-hand side is the change in the
expectation of T (X) due to the dilation, the second term being
due to the change of the ground state. Thus

ω+Xd ∼ −i

(
∂ 〈T 〉
∂(Ld )

)
N

= −i

(
∂(PLd )

∂(Ld )

)
N

= i(κ−1 − P )Ld, (3.21)

showing that the response to a dilation at leading order as ω →
0 is given by the difference between the inverse compressibility
and the pressure—it is an elastic response. This is precisely
the term we subtract from X to get the viscosity in Eq. (3.13).
We conclude that there can be no divergent bulk viscosity
at zero frequency. The argument goes through similarly in the
presence of a magnetic field in d = 2, with P and κ−1 replaced
by Pint and κ−1

int , respectively. It also goes through similarly
for the intensive formulation of viscosity in terms of χ ,
Eq. (3.7).

This argument may give rise to some unease. The shear
modulus of a fluid is of course zero, while the preceding
argument may lead us to expect that it is given by a similar
time-independent perturbation theory expression, which (as
we will see) is nonzero in some cases. This must be related to
the fact that the conventional way to obtain the elastic moduli
(including the inverse compressibility or bulk modulus), which
are susceptibilities, from the stress-stress response function,
would be by taking the thermodynamic limit of the (intensive)
response first, then taking ω → 0 before q → 0. But we have
q = 0, then took ω → 0, and finally the thermodynamic limit.

One can find susceptibilities directly at q = 0, provided
one is careful with the order in which one takes the derivative
with respect to strain and the thermodynamic limit. The usual
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“thermodynamic” formulas involve finite size, but the size
is treated as large and discreteness effects are ignored when
differentiating the ground-state energy, which corresponds
to taking the limit first. (Here and in the remainder of this
section, we concentrate on the case of zero temperature.) The
perturbation theory formula for the derivative (in finite size),
as in the right-hand side of Eq. (3.20), takes the derivative
of the expectation in a state that varies continuously with
strain. If the ground-state energy level does not cross others
as the strain is varied, the result is most likely independent
of the order of the limit and the derivative. We expect this is
the case for pure dilations, leading to the pressure and inverse
compressibility. But perturbation theory can break down if
energy levels cross, especially if they do so on a set in λ

space that becomes dense as the size goes to infinity. Then if
by “ground state” we mean the lowest-energy state for given
strain (as in the thermodynamic formulas), this state vector
changes discontinuously with strain, and this effect cannot be
picked up in perturbation theory. Taking the derivative after
the limit will give a different result from taking it before, at
whatever strain it is taken. This is the case for shear strains, in
some gapless systems.

As an example, consider the free Fermi gas. Using periodic
boundary conditions on a rhomboid-shaped box, we can
examine the expectation of H0 and of Tμν , and their variation
with shape to first order. In X variables, � describes the shape
of the box, and the metric in H0 and in Tμν is the standard
one. Then as is well known, the many-particle ground state for
a given box is constructed by occupying all single-particle
plane-wave states with wave vectors k inside the Fermi sphere;
the radius of the sphere is chosen to obtain the correct particle
number N . Under shear and dilation, the k points move around,
and every so often points enter or leave the Fermi sphere. Under
a pure dilation, the volume of the Fermi sphere changes so that
exactly the “same” set of k points (up to a rescaling) is always
occupied, and no levels cross. But during a nonzero shear
(or shear and dilation together), k points do enter or leave the
Fermi sphere, and so the ground state energy levels cross. In the
limit, the ground-state energy density depends on the particle
density in the system, but not on its shape. Hence derivatives of
this energy density with respect to shear vanish, as expected.
Derivatives with respect to dilations give the pressure and
inverse compressibility, and because no levels cross as the
scale factor det � is varied, the same result would be obtained
by differentiating the energy of the finite volume system, and
taking the limit afterwards. But for derivatives with respect to
shear, in finite size the second derivative is nonzero, though it
becomes undefined on a set of measure zero at which ground
state levels cross. Through the above formulas, this leads to
an infinite shear viscosity, while the bulk viscosity is zero (we
give further details for the free Fermi gas in Sec. V A below).
We expect, though we do not have a rigorous proof, similar
behavior for an interacting Fermi gas in a Fermi-liquid phase,
so that the pressure and compressibility can be obtained by
using dilations either before or after the thermodynamic limit.
This means the i/ω+ terms in Xd/L

d or the corresponding part
of χ are canceled by the subtraction, and the bulk viscosity
cannot be infinite. But the shear viscosity will be infinite at zero
temperature, in agreement with calculations of its temperature
dependence.21

For the first derivative of ground-state energy with respect
to shear, that is, for the traceless part of the expectation
of the stress, the situation is slightly different from that for
the second derivative. Taking the limit first, the ground-state
energy density will be independent of shear. If, as an interval
of a path in λ space is traversed (with tr λ fixed), there are no
level crossings, then the limit of the first derivative along the
path will also be zero. But suppose there are level crossings on
this path, and the spacing of them goes to zero in the limit, so
that the set of positions of level crossings is dense (as for the
free Fermi gas). As the derivative taken after the limit is zero,
the lowest-energy levels as a function of position on the path
must be close to a sequence of overlapping parabolas, with the
minimum of each at the same energy. We have seen that the
second derivative is of order one, and so the first derivative on
any of these curves, anywhere within the interval in which it is
the lowest, will tend to zero in the limit, because the distance
in λ from the minimum of that curve goes to zero, as the level
crossings become dense. So (except on a set of measure zero
in λ on which the first derivative is not defined) the traceless
local (or intensive) stress in a fluid state does go to zero in the
thermodynamic limit, as claimed earlier.

At nonzero temperature, one can make different but related
arguments. In particular, the trace part ω+Xd is now identified
as −i(P − κ−1

S )Ld , or similarly with a magnetic field in two
dimensions, where the inverse isentropic compressibility, κ−1

S ,
is κ−1

S = −Ld (∂P/∂(Ld ))N,S at fixed entropy S (and also fixed
ν for the isentropic internal compressibility). This is because,
as for the pressure, the response function can be identified
as the partial derivative taken under the thermal average,
with the probabilities and hence the entropy, held fixed.
These compressibilities must be nonnegative for stability.
The appearance of the isentropic compressibility in this limit
of the response is frequently obtained from hydrodynamic
considerations, rather than directly from the stress-stress
response, as here.

In the preceding arguments, we have taken the frequency to
zero in the response function before the thermodynamic limit.
However, we will be using the intensive functions X/Ld , χ

and η in the thermodynamic limit, and the behavior of these
as the frequency tends to zero subsequently. The different
order of limits does not appear to be a problem. For example,
in the zero-temperature case, we can use the intensive form
in x variables to study the response of the trace of τ to
a low-frequency dilation. The leading part comes from the
ground state adiabatically following the dilation, and gives
the inverse compressibility. The real part of the bulk viscosity
involves transitions to excited states of the unperturbed system,
for which the available phase space is usually small (as in a
Fermi liquid, for example) or zero. Hence we expect that at
zero temperature, in general the real part of the bulk viscosity
actually goes to zero at zero frequency.

E. Spectral density, sum rules, and positivity

We can derive a spectral density for the viscosity tensor, and
a sum rule for it, by following a standard method, starting from
the convenient stress-strain formulation, in either extensive or
intensive forms. For the extensive form, using Eq. (3.3), we
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define the spectral density function by19

X′′
μναβ(ω) = −1

2
i

∫ ∞

−∞
dt eiωt 〈[Tμν(t),Jαβ(0)]〉. (3.22)

In many cases of linear response theory, such a function
would be the imaginary part of the corresponding retarded
response function, although for transport functions, such as
conductivity as well as viscosity, the division by −iω (in
the current-current, respectively stress-stress, forms) means
that the spectral density is proportional to the real part of the
conductivity, if certain symmetries such as time-reversal and
reflection symmetry are unbroken. But this is not generally the
case: X′′ is not in general real,19 but does consist (in a finite
size system) of a sum of δ functions in ω, with tensor-valued
coefficients.

There is a spectral representation:

Xμναβ(ω) = i

π

∫ ∞

−∞
dω′ X′′

μναβ(ω′)

ω+ − ω′ . (3.23)

This shows that if X′′ is real, it is the real part of X, as
expected. Xμναβ(ω) is analytic in the upper-half complex
ω plane, and there are also corresponding Kramers-Kronig
relations between X′′ and the complementary part X′

μναβ(ω) =
[Xμναβ(ω) − X′′

μναβ(ω)]/i (for real ω), which is the imaginary
part of X when X′′ is real. Finally, the definition leads
immediately to a sum rule for the total spectral density,∫ ∞

−∞

dω

π
X′′

μναβ(ω) = −i〈[Tμν(0),Jαβ(0)]〉. (3.24)

The “sum” on the right-hand side is real, because the expec-
tation of a commutator of self-adjoint operators is imaginary.
The sum rule can also be viewed as describing the ω → ∞
limit of Xμναβ(ω), using the spectral representation on the one
hand, and integration by parts from the stress-strain definition
of X, together with the Riemann-Lebesgue lemma, on the
other; this explains its relation with the contact term in the
stress-stress form. There are related results for χμναβ and for
ημναβ . (Similar sum rules were also discussed in Ref. 14, but
only in the absence of Hall viscosity.) One would expect that
the right-hand side is symmetric under μν ↔ αβ, which can be
shown in certain limits, as we discuss below. That is, the Hall
viscosity cancels from the sum rule. This would then be similar
to the case of conductivity, in which the Hall conductivity
cancels from the sum rule.

For further arguments, the stress-stress form of the spectral
density is most convenient. The only complication here is the
factor 1/ω+ in the formula for X, which causes the appearance
of δ(ω) terms in the spectral density, in addition to δ functions
that come from the stress-stress time-integral term. The former
correspond to the terms discussed in Sec. III D. We can obtain
the spectral density by multiplying X′′ in Eq. (3.22) by iω,
which means differentiating with respect to t under the integral,
and then using relation (2.21) once again (after shifting the t

dependence onto Jαβ). This has the effect of removing any
δ(ω) terms from X′′, one of which we know is the inverse

compressibility term. Reinstating these terms, one has

X′′
μναβ(ω) = πCμναβδ(ω)

+ 1

2ω

∫ ∞

−∞
dt eiωt 〈[Tμν(t),Tαβ(0)]〉 (3.25)

(in finite size, the time-integral expression should not produce
any δ function at ω = 0), where the constant tensor Cμναβ is

Cμναβ = −i〈[Tμν(0),Jαβ(0)]〉0

− i

∫ ∞

0
dt e−εt 〈[Tμν(t),Tαβ(0)]〉0 (3.26)

and is real. Then, using arguments presented in, e.g., Ref. 19,
one can almost conclude that X′′(ω), viewed as a matrix with
rows and columns indexed by the pairs μν and αβ, respec-
tively, should be Hermitian, and also positive semidefinite,
for all ω, and that at zero frequency it (i.e., Cμναβ) should
be real. We say “almost” because Forster’s discussion19 does
not include the contact terms in our stress-stress form, which
contribute to X′′ only at zero frequency. Hermiticity holds at
nonzero frequencies, and the time-integral term in Cμναβ is
real and symmetric, so to obtain symmetry of the matrix at
zero frequency, we would need the contact term coefficient
−i〈[Tμν,Jαβ]〉 to be symmetric under the exchange μν ↔ αβ.
This is not yet obvious in general, and we discuss it further
below. For positivity, the energy absorption argument19 does
allow for contact terms, and those that occur in the positivity
statement at zero frequency are automatically symmetrized,
as they arise from the second derivative of the Hamiltonian
with respect to the perturbing field, in our case, of H� with
respect to λ. The part of Cμναβδ(ω) that vanishes on taking
the trace on μν and on αβ would either be zero, or would
represent an infinite shear viscosity, as discussed in Sec. III D.
At zero frequency, the infinite shear viscosity (if any) must
be positive. For arbitrary frequencies, in simple cases such as
with time-reversal and reflection symmetries in which case the
X′′ matrix is symmetric, these conditions imply that the real
parts of the shear and bulk viscosities must be positive (like
the real part of the symmetric conductivity tensor). In general,
at nonzero frequency, the condition that the Hermitian matrix
X′′ be positive semidefinite involves the imaginary part of
the Hall viscosity, and not only the shear and bulk viscosities
(just like the case of conductivity, in which the imaginary
part of the Hall conductivity enters); note that the discussion
in Sec. I was for frequency-independent or zero-frequency
viscosity coefficients only. At zero frequency, one statement
of positivity is for the intensive function χ ′′(ω), which differs
from X′′ by the pressure term in the trace part; it implies that
the inverse (internal) compressibility should be nonnegative,
in agreement with a consequence of thermodynamic stability.
On the other hand, positivity of the trace part of X′′ implies
that κ−1

int − P � 0 as well. This can also be viewed as a
consequence of thermodynamic stability, by using tr λ as a
“generalized coordinate,” rather than the volume Ld .

If the zero-temperature real part of the shear viscosity
is a δ function (that results in part from the contact term),
then at nonzero temperature in an interacting system in the
thermodynamic limit, the shear viscosity at zero frequency
will generally be neither zero nor infinity, and as a function of
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frequency the δ function becomes broadened. In this case the
δ function is canceled by a contribution from the time-integral
term, which also produces the broadened peak (which tends to
a δ function at zero temperature). For such cases, the spectral
representation above for finite size should be rearranged so
there is no δ function in the traceless part.

The symmetry of the contact-term coefficient

−i〈[Tμν,Jαβ ]〉 (3.27)

under μν ↔ αβ can be shown under some conditions or in
some limits. Using Eq. (2.21) again, the antisymmetric part is
− 1

2 times the expectation value of

[[H0,Jμν],Jαβ] − [[H0,Jαβ],Jμν] = [H0,[Jμν,Jαβ]] (3.28)

(this also gives the difference between the contact terms that
would result in the x variables from use of Tμν versus T (X)

μν at
the end of Sec. II A). The commutator of the two J ’s always
contains only traceless parts, as the commutation relations can
be rewritten as

i[Jμν,Jαβ] = δμβJαν − δναJμβ,

= δμβ

(
Jαν − 1

d
δανJγγ

)
−δνα

(
Jμβ − 1

d
δμβJγγ

)
.

(3.29)

Taking the expectation value, and using the Eq. (2.21), we
arrive at two expectations of traceless parts of Tμν , which we
have argued are small compared with Ld in the thermodynamic
limit (or zero, in the magnetic field case in two dimensions).
(In the rotationally invariant case, we look at parts symmetric
under μ ↔ ν and under α ↔ β only, and then the commutator
gives the angular momentum, and the expectation is zero even
in finite size.) Hence, if we are interested in the viscosity of
the infinite (thermodynamic limit) system, then the symmetry
under μν ↔ αβ does hold, and has the pleasing consequences
mentioned above.

One might wish for more in the finite-size case. Our basic
definitions can, and perhaps should, be modified to make the
contact term in the stress-stress form symmetric, by taking its
symmetric part. It is not clear to us fundamentally why that
would have to be done, but it would be useful anyway when
performing numerical calculations at finite size, to remove
the antisymmetric part that should not be present in the limit.
Alternatively, perhaps there is some physical meaning to the
antisymmetric part of the coefficient of δ(ω) in X′′, even though
it does not contribute to energy absorption, or to the physical
(infinite-size) viscosity.

IV. RELATION BETWEEN VISCOSITY
AND CONDUCTIVITY

In a Galilean-invariant system with particles that all have
the same charge (which is one in our units) and mass m,
the momentum density is m times the number current density.
We will now use the intensive form of the stress-strain response
function to derive a general relation between viscosity and
conductivity for this case. We note that this does not require
rotational invariance, provided that the inverse mass tensor is
the same for each particle. In this section, we will usually treat

the zero and nonzero magnetic field case together and so spe-
cialize to d = 2 dimensions; other cases are handled similarly.

We begin by using the translation-invariant system in a
box of volume (area) L2 with periodic boundary conditions,
with Hamiltonian H0. The continuity equation for momentum
density, Eq. (2.51), can be written as(

−δνλ

∂

∂t
+ ωcενλ

)
gλ(x,t) = ∂μτμν(x,t), (4.1)

where ωc = B/m is the cyclotron frequency. (For B > 0, the
following derivation still holds if there is an anisotropic mass
tensor, by making a suitable modification of ωcενλ to a different
tensor.) Due to the uniformity of the magnetic field, we can use
this to derive additional modified Ward identities, in particular
starting from the stress-stress retarded response function:

qλqρ

∫ ∞

0
dt eiω+t

∫
d2x e−iq·x〈[τλν(x,t),τρβ(0,0)]〉0

= (iωδνλ + ωcενλ)(−iωδβρ + ωcεβρ)
∫ ∞

0
dt eiω+t

×
∫

d2x e−iq·x〈[gλ(x,t),gρ(0,0)]〉0

− iqγ

∫
d2x e−iq·x〈[τγ ν(x),gβ(0)]〉0

− (iωδβρ − ωcεβρ)
∫

d2x e−iq·x〈[gν(x),gρ(0)]〉0. (4.2)

Expressions similar to this have been used for zero magnetic
field (ωc = 0) by many authors, in particular Taylor and
Randeria,14 however, even in that case our approach differs
in some of the details.

Assuming Galilean invariance, the number current den-
sity j(x,t) is related to the momentum density by j(x,t) =
g(x,t)/m. Hence the retarded function on the right-hand
side of Eq. (4.2) is the same as the one appearing in the
Kubo formula for the electrical conductivity (current-current
response function),

σνβ(q,ω) = in

mω+ δνβ + 1

ω+

∫ ∞

0
dt eiω+t

∫
d2x

× e−iq·x〈[jν(x,t),jβ(0,0)]〉0. (4.3)

Meanwhile, the left-hand side of Eq. (4.2) includes the time-
integral part of the intensive form of the response function for
viscosity, with two factors of q contracted into it, presently
in finite size, as in Eq. (3.7). We will now account for the
remaining terms on the right-hand side and aim to take the
thermodynamic limit and only then expand in powers of q to
second order, to obtain the response function χμναβ(ω) from
the conductivity. It follows from the preceding derivation that,
as the left-hand side of Eq. (4.2) is of order q2, all terms of
order one and of order q on the right-hand side must cancel.

First, still in finite size, in the last term on the right-hand
side of Eq. (4.2), we can use translation invariance to introduce
integration over a variable x′, divide by L2, and then evaluate,
giving

1

L2

∫
d2x d2x ′ e−iq·(x−x′)〈[gν(x),gρ(x′)]〉0

= 1

L2

∑
i

1

4

〈[{
πi

ν,e
−iq·xi}

,
{
πi

ρ,e
iq·xi}]〉

0

= 1

L2
(iNBενρ − qν〈Gρ〉0 − qρ〈Gν〉0),
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where G = ∑
i π

i is the total momentum. The thermodynamic
limit of this exists, and contains no term of order higher than
q as q → 0.

Next, the second term on the right-hand side of Eq. (4.2)
can be manipulated to produce the contact term in χ . First,
we take the thermodynamic limit, and then the part quadratic
in q, by expanding the exponential e−iq·x to first order. We
also use translation invariance again, so that the expression
contains [τμν(0),gβ(−x)]. Then we recognize the occurrence
of the first term of the strain generator, if we write Eq. (2.49)
in the form

Jμν = −
∫

d2x xμgν(x) +
∑

i

1

2
Bεναxi

μxi
α

+ 1

2
δμν{B,�({xi},B)} (4.4)

(or similarly without the terms containing B, if B = 0). Then
we can cast the contact term from Eq. (3.8) in the form

1

ω+ 〈[τμν(0),Jαβ]〉0 = − 1

ω+

∫
d2x 〈[τμν(0),xαgβ(x)]〉0,

(4.5)

where for B �= 0 the last two terms in Eq. (4.4) do not
contribute, because they fail to commute only with the kinetic
part of the stress tensor, and the result of that commutator
always contains a product of a particle coordinate with a delta
function of that coordinate at the origin. This means that the
term in question can be absorbed into the time-integral term
on the left to produce precisely χ contracted with two qs.

Hence, Eq. (4.2) turns into a relation between the con-
ductivity and a symmetrized part of the intensive strain-
stress response function; we define χμναβ(ω) = 1

2 [χμναβ(ω) +
χανμβ(ω)], then

χμναβ(ω) = 1

2
m2(ωδνλ − iωcενλ)

∂2σλρ(q,ω)

∂qμ∂qα

∣∣∣∣
q=0

× (ωδρβ − iωcερβ). (4.6)

This is the central result of this section. When the magnetic
field is zero, one can simply substitute ωc = 0 in the above
equations. Let us note that a similar relation holds in three
dimensions:

χμναβ(ω) = 1

2
m2(ωδνλ − iωcbγ εγ νλ)

∂2σλρ(q,ω)

∂qμ∂qα

∣∣∣∣
q=0

× (ωδρβ − iωcbδεδρβ), (4.7)

where b = B/|B| is a unit vector in the direction of the
magnetic field.

These results lend themselves to a simple interpretation.
For simplicity, we will concentrate on two dimensions. If we
expand the wave-vector-dependent conductivity in powers of
the wave vector q,

σλρ(q,ω) = σ
(0)
λρ (ω) + σ

(2)
λρ (q,ω) + · · · , (4.8)

then the zeroth order term (the response to a uniform electric
field) is fixed by Galilean invariance to be

σ
(0)
λρ (ω) = − n

m
(iω+δλρ + ωcελρ)−1

= n

m
(
ω+2 − ω2

c

) (iω+δλρ − ωcελρ). (4.9)

By Eqs. (4.6) and (4.9), the second order in q term is related
to the viscosity through

σ
(2)
λρ (q,ω) = −σ

(0)
λν (ω)

1

n
qμχμναβ(ω)

1

n
qασ

(0)
βρ (ω). (4.10)

One can intuitively understand this expression as follows:
in the presence of a nonuniform electric field E(q,ω), to
the leading order the system responds with a nonuniform
current, 〈jβ(q,ω)〉 = σ

(0)
βλ (ω)Eλ(q,ω), which implies a strain

rate u̇αβ(q,ω) = (iqα)σ (0)
βλ (ω)Eλ(q,ω)/n (symmetrization over

α and β is not important, as χμναβ(ω) is symmetric with respect
to these two indices). The strain rate results in an average stress
〈τμν(q,ω)〉 = −χμναβ(ω)u̇αβ(q,ω), whose spatial derivative
gives a contribution to the effective electric field acting on the
particles, Eeff

ν (q,ω) = −iqμ〈τμν(q,ω)〉/n, which then affects
the current (and the conductivity) via σ

(0)
λν (ω), resulting in

Eq. (4.10).
By Eqs. (3.14) or (3.15), to arrive at the viscosity one

should subtract the inverse (internal) compressibility con-
tribution from χμναβ(ω). Defining ημναβ(ω) = 1

2 [ημναβ(ω) +
ηανμβ(ω)], we have

ημναβ(ω) = 1

2
m2(ωδνλ − iωcενλ)

∂2σλρ(q,ω)

∂qμ∂qα

∣∣∣∣
q=0

× (ωδρβ − iωcερβ) − iκ−1
int

2ω+ (δμνδαβ + δμβδνα).

(4.11)

For rotationally invariant two-dimensional systems, there
are only three independent (frequency-dependent) coefficients
of viscosity: the bulk viscosity ζ , shear viscosity ηsh, and Hall
viscosity ηH [cf. Eqs. (1.6) and (1.7)]. The relation (4.6) can
be used to extract the viscosity coefficients at all frequencies
from the conductivity [taking q in the x (i.e., one) direction
without loss of generality],

ζ (ω) + iκ−1
int

ω+
= χ1111(ω) − χ1212(ω)

= m2

2

∂2

∂q2
x

{(
ω2 − ω2

c

)
[σ11(q,ω) − σ22(q,ω)]

} ∣∣
q=0,

(4.12)

ηsh(ω) = χ1212(ω) = m2

2

∂2

∂q2
x

{
ω2σ22(q,ω) + ω2

cσ11(q,ω)

+ 2iωωcσ
H (q,ω)

}∣∣
q=0, (4.13)

ηH (ω) = χ1112(ω) − χ1211(ω)

2
= m2

2

∂2

∂q2
x

{(
ω2 + ω2

c

)
σH (q,ω)

− iωωc[σ11(q,ω) + σ22(q,ω)]
}∣∣

q=0, (4.14)
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where σH (q,ω) = [σ12(q,ω) − σ21(q,ω)]/2 is the Hall con-
ductivity. Here we have separated ζ (ω) from iκ−1

int /ω, accord-
ing to our analysis of the trace part of the viscosity tensor in
Sec. III D. For zero magnetic field (ωc = 0, and κ−1

int = κ−1),
relations similar to the first two are fairly well known, but often
are written in terms of the transverse and longitudinal parts of
σλρ ; see, for example, Ref. 14, in which, however, the κ−1 term
is absent. The Hall viscosity decouples in this case.

Alternatively, again for a rotationally-invariant system in
two dimensions, we can invert Eq. (4.6) to obtain the q2 part
of the conductivity tensor, σ

(2)
λρ (q,ω). For vanishing magnetic

field, we find

σ
(2)
λρ (q,ω) = 1

m2ω+2

[(
ζ (ω) + iκ−1

ω+

)
qλqρ

+ ηsh(ω)q2δλρ + ηH (ω)q2ελρ

]
. (4.15)

For zero magnetic field, we see that the Hall viscosity can be
obtained just from the q2 part of the Hall conductivity, at all
frequencies.

In the presence of a magnetic field, the expressions are
more complicated, and for later use we retain only terms that
are nonvanishing at zero frequency, assuming that ζ and ηH

do not diverge as ω → 0, and that ηsh does not diverge more
rapidly than 1/ω+. Then we have, as ω → 0,

σ
(2)
λρ (q,ω)

∼ 1

m2ω2
c

{[
ζ (ω = 0) + iκ−1

int

ω+

]
qμεμλqαεαρ + ηsh(ω)q2δλρ

+ [ηH (ω = 0) − κ−1
int

ωc

+ 2iω

ωc

ηsh(ω)]q2ελρ

}
. (4.16)

This can be used to obtain ηH (ω = 0) from the q2 part
of the conductivity at ω → 0. If ηsh is nondiverging as
ω → 0, the antisymmetric part of the equation reduces to the
relation found by Hoyos and Son8 between the Hall viscosity,
internal compressibility, and q2 part of the Hall conductivity
at zero frequency in the presence of a magnetic field, which
they obtained for a gapped quantum Hall system at zero
temperature [see Eq. (3.17) for the equivalence of κ−1

int with
their expression]. That relation is now seen to hold even
when ζ (ω = 0) and ηsh(ω = 0) are nonzero but finite, with
a generalization for the case of diverging ηsh. Our formulas
above give the generalization to all frequencies as well.

V. EXAMPLES OF THE KUBO FORMULAS AND
CONDUCTIVITY RELATION

In this section, we consider applications of the Kubo
formulas to various simple model examples with rotational
invariance, at zero temperature except where otherwise stated.

A. The free Fermi and Bose gases

As a first application of our Kubo formula, let us compute
the viscosity of the free Fermi gas in d dimensions at
zero temperature and zero magnetic field. The unperturbed

Hamiltonian for this system is

H0 = 1

2m

∑
i

pi
μpi

μ. (5.1)

For a system of N particles enclosed in a very large box, the
ground-state energy E0 has the form

E0 = 〈H0〉0 ∝ (Ld )−
2
d . (5.2)

From Eq. (2.21), the stress tensor is given by

Tμν = −i[H0,Jμν] = 1

m

∑
i

pi
μpi

ν. (5.3)

Because Tμν is independent of time, the time-integral term in
the stress-stress form of the Kubo formula (3.4) vanishes, and
we easily find

Xμναβ(ω) = 1

ω+ 〈[Tμν(0),Jαβ (0)]〉

= i

ω+ (δμβ〈Tνα〉0 + δμα〈Tνβ〉0)

= 2i

dω+ E0(δμβδνα + δμαδνβ), (5.4)

where we have used rotational invariance to express 〈Tμν〉0 in
terms of E0: P = 2E0/(dLd ). Lastly, we have that

P − κ−1 = −
(

∂E0

∂(Ld )

)
N

− Ld

(
∂2E0

∂(Ld )2

)
N

= − 4

d2Ld
E0,

(5.5)

and so from Eq. (3.14), we see that the zero-temperature
viscosity tensor of the free Fermi gas is given by

2i

dω+
E0

Ld

(
δμβδνα + δμαδνβ − 2

d
δμνδαβ

)
. (5.6)

This is purely a shear viscosity—the bulk viscosity of the free
Fermi gas is not only not infinite, as anticipated, but identically
zero at zero temperature. Furthermore, the dissipative shear
viscosity coefficient ηsh, given by the real part of the scalar
prefactor of ημναβ , is

ηsh(ω) = 2πE0

dLd
δ(ω), (5.7)

which is zero for all ω �= 0, and infinite at ω = 0. Such δ-
function divergences in response functions are characteristic
of noninteracting systems, and indicate that in response to
shear strains, the free Fermi gas accelerates without bound. In
an interacting Fermi gas at nonzero temperature, the δ function
is broadened and the zero-frequency shear viscosity is finite.
As the temperature tends to zero, it approaches a δ function;
the limit is continuous in the space of distributions.

We note that one can derive the same result by first
finding the q-dependent conductivity through elementary
Green function techniques,

σνβ(q,ω) = in

mω+ δνβ + 2i

dm2ω+3

E0

Ld
(δνβq2 + 2qνqβ)

+O(q4), (5.8)

and substituting this expression into the zero magnetic field
version of the viscosity-conductivity relation, Eq. (4.11) [or,
equivalently, comparing it with Eq. (4.15)].
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For the free Bose gas, the calculations are very similar,
except of course that the Bose distribution must be used
in place of the Fermi distribution. In particular, at zero
temperature, the ground state is a Bose condensate with all
particles in the p = 0 state, instead of filling a Fermi sea. In
this case, the ground-state energy E0, pressure P , and inverse
compressibility κ−1 are all zero. Then using similar arguments
as above, the viscosity response tensor vanishes identically. At
positive temperature, the results take the same form as above,
but E0 is replaced by the average energy E = 〈H0〉0. Then a
δ-function real shear viscosity, with coefficient proportional to
E/Ld , again appears; the bulk viscosity remains zero.

B. The integer and fractional quantum Hall fluids

Let us now compute the viscosity for noninteracting
electrons in an external magnetic field. The Hamiltonian H0 is

H0 = 1

2m

∑
i

π i
μπi

μ. (5.9)

We can take our unperturbed state to have the lowest ν Landau
levels occupied, in a region of area L2, and so the ground-state
energy is

E0 = nsωcL
2 = ν2

2mφ0
B2L2, (5.10)

where as before s = ν/2 is minus the average orbital spin per
particle. However, this is unnecessarily restrictive here, and at
any temperature and any average filling factor ν the average
energy is again 〈H0〉0 = nsωcL

2. From Eq. (2.56), we have
that

Tμν = −i[H0,Jμν] = 1

2m

∑
j

{
πj

μ,πj
ν

}
. (5.11)

We will calculate X using both the strain-strain and stress-
stress Kubo formulas. It will be convenient to work in the
symmetric gauge, where the dilation generator K takes the
simple form

K = −1

2

∑
i

{
xi

μ,πi
μ

}+ {B,P}. (5.12)

We can diagonalize the Hamiltonian H0 with two sets of
creation annihilation operators. Writing zj = xj + iyj and
z̄j = xj − iyj , these are (see, e.g., Ref. 5)

bj = 1√
2B
(
πj

x + iπj
y

)
, (5.13)

aj = bj † − i

√
B
2

z̄j , (5.14)

satisfying

[bi,bj †] = [ai,aj †] = δij , (5.15)

[bi,aj †] = [bi,aj ] = 0. (5.16)

In terms of these operators, the Hamiltonian takes the simple
form

H0 = B
m

∑
i

(
bi†bi + 1

2

)
. (5.17)

The stress tensor can be written as

Tμν = δμνH0 + B
2m

∑
i

[(
bi†

2 + bi2)
τ z
μν + (

bi†
2 − bi2)

τ x
μν

]
,

(5.18)

where τ x and τ z are the standard x and z Pauli matrices. The
shear generator J sh

μν from Eq. (2.38) takes the form

J sh
μν =

∑
j

i

4

(
bj †2 − bj 2 − aj 2 + aj †2 )

τ z
μν

−
∑

j

1

4

(
bj 2 + bj †2 − aj 2 − aj †2 )

τ x
μν

+
∑

j

1

2
(bj †bj − aj †aj )εμν (5.19)

(note we could have written εμν = iτ
y
μν), and the dilation

generator K can be written

K = {B,P} + i
∑

j

(aj †bj † − ajbj ). (5.20)

The shear generators agree with those presented by Read and
Rezayi.5 The last ingredient we need is the commutation rela-
tions between P and the creation and annihilation operators.
A computation shows that these are

[P,bj ] = i

2B aj †, (5.21)

[P,aj ] = i

2B bj †. (5.22)

It is worth noticing also that

[K,ai] = [K,bi] = 0. (5.23)

Now, using the stress-stress Kubo formula (3.4), we find
rather directly that

Xμναβ(ω) = E0

ω+2 − 4ω2
c

[iω+(δμβδνα − εμβενα)

− 2ωc(δναεμβ − δμβεαν)] + iE0

ω+ δμνδαβ, (5.24)

where in ωc = B/m, B is again the value at the center of
the narrow wave packet over B values. Finally, applying
Eqs. (3.16) and (3.17), we have

Pint = nsωc = E0

L2
, (5.25)

κ−1
int = 2nsωc = 2

E0

L2
, (5.26)

and hence

ημναβ(ω) = E0

L2(ω+2 − 4ω2
c )

[iω+(δμβδνα − εμβενα)

− 2ωc(δναεμβ − δμβεαν)]. (5.27)

At nonzero temperature, the result is the same, with the ground-
state energy density E0/L

2 replaced by 〈H0〉0/L
2. We notice

that the trace on μν or on αβ vanishes at all frequencies—the
bulk viscosity is identically zero. In the remainder, the spectral
density consists solely of δ functions at the frequencies ±2ωc,
which represent transitions in which the Landau level index
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changes by ±2. This is because of the quadrupolar nature of
the stress, and the fact that only the operators bi appear in Tμν .
In the ω → 0 limit, the viscosity reduces to the Hall viscosity

ημναβ(ω = 0) = 1
2n s(δναεμβ − δμβεαν), (5.28)

in agreement with known results.3,4,22 It is not surprising that
the zero-frequency bulk and shear viscosities vanish when the
temperature is zero and there is a gap in the spectrum; that
they do so in other cases as well is due to the noninteracting
nature of the system.

To make contact with the adiabatic calculation of the Hall
viscosity,3–5,22 we can also calculate the viscosity from the
strain-strain formula (3.5). Naturally, this must give the same
result as Eq. (5.27), however, it is enlightening to see how this
comes about. If we evaluate just the equal-time contact term,
we find

−i〈[Jμν,Jαβ]〉0 = 1

2

⎛⎝E0

ωc

−
∑

j

〈
aj †aj + 1

2

〉
0

⎞⎠
× (δναεμβ − δμβεαν). (5.29)

The intra-Landau level 〈a†a〉 term is larger than O(N ), but
we know that it must cancel. On calculating the time-integral
contribution, we find as ω → 0

ω+
∫ ∞

0
dt eiω+t 〈[Jμν(t),Jαβ(0)]〉0

∼ iE0

ω+ δμνδαβ +
∑

j

〈
aj†aj + 1

2

〉
0

2
(δναεμβ − δμβεαν).

(5.30)

Here, the i/ω+ term arose because there is a part of the
correlation function that is linear in t for large t . That is present
because the trace K = Jμμ has time derivative −i[K,H0] =
−Tμμ = −2H0, which is time independent. Combining these,
we see that the intra-Landau level contributions to X exactly
cancel in the final result. The traceless part of this result was
obtained previously by considering the transport of degenerate
subspaces in the disk geometry in the infinite plane in the
adiabatic transport formulation of viscosity.5

We can also use the strain-strain form of the Kubo formula
(3.5) to calculate the ω → 0 traceless viscosity of a fractional
quantum Hall fluid in the lowest Landau level. Although the
presence of interactions makes manipulating the stress tensor
rather cumbersome, we can calculate the necessary matrix
elements of the traceless strain generators (5.19) for certain
trial states. Because of the nonstandard time dependence of
the dilation generator K , we avoid computation of the diagonal
response function.

Let us consider a fractional quantum Hall system in
the lowest Landau level. We assume that the interaction is
rotationally invariant, and commutes with all the Landau level
raising and lowering operators bi†, bi . Further, we assume it
is one of the “special” Hamiltonians for which exact zero-
interaction-energy ground (and edge, and quasihole) states
lying in the lowest Landau level are known (for more details
on these, see Ref. 5). Since we are only concerned with the
traceless strain generators, we are free to work with states
with a fixed magnetic field B. We denote by |0〉 the unique

minimum angular momentum ground state of the fluid. Using
the strain-strain form of the traceless response function Xsh in
Eq. (3.5), along with the commutation relations Eq. (2.9), we
have

Xsh
μναβ(ω) = δνα〈0|J sh

μβ |0〉 − δμβ〈0|J sh
αν |0〉

+ω+
∫ ∞

0
dt eiω+t 〈0|[J sh

μν(t),J sh
αβ(0)

]|0〉. (5.31)

Using the fact that the system is in the lowest Landau level,
we can evaluate the first term above to get

Xsh
μναβ(ω) = − 1

2

∑
j

〈0|aj†aj |0〉(δναεμβ − δμβεαν)

+ω+
∫ ∞

0
dt eiω+t 〈0| [J sh

μν(t),J sh
αβ(0)

] |0〉.
(5.32)

In the limit ω → 0, we can evaluate the time-integral term.
Note that in this limit, the only nonzero contributions come
from elements of the expectation value which are independent
of time (there is no other kind of nonoscillatory time
dependence for these traceless components). Let {|D〉 : D =
0,1, . . .} be an orthonormal basis for the subspace degenerate
with the ground state (including the ground state |0〉), and
{|e〉 : e = 1,2 . . .} an orthonormal basis for the space of all
eigenstates with energy larger than that of the ground state
(thus we are assuming a discrete spectrum, as in a finite
system). Now we use the following fact: given a system with
a discrete spectrum, and denoting by P0 = ∑

D |D〉 〈D| the
projection operator onto the lowest-energy subspace, we have

lim
ω→0

ω+
∫ ∞

0
dt eiω+t 〈0| A(t)B(0) |0〉 = i 〈0| A(0)P0B(0) |0〉

(5.33)

for any operators A and B. (In fact, the identity continues to
hold if |0〉 is replaced by any state in the degenerate subspace.)
Using this in Xsh

μναβ(ω → 0), we obtain exactly the expression
that results from adiabatic transport of a degenerate subspace
as in Ref. 5:

Xsh
μναβ(ω = 0) = −i〈0|JμνP⊥Jαβ |0〉 + i〈0|JαβP⊥Jμν |0〉,

(5.34)

where P⊥ = 1 − P0. Thus it is the expectation of the commu-
tator of J ’s, as in the contact term, but in the intermediate-state
sum, the states degenerate with the ground state are omitted.
(The noninteracting system considered above is a particular
case, in which all intra-Landau level effects cancel; this does
not occur in fractional quantum Hall states in interacting
systems.)

In the present case, using Eq. (5.19) and noting that
∑

i a
i†2

leaves the ground state in the degenerate subspace while
∑

i a
i2

takes it out of that subspace,5 we have

〈0| J sh
μνP0J

sh
αβ |0〉 − 〈0| J sh

αβP0J
sh
μν |0〉

= i

8

∑
ij

〈0| ai
2a

†2

j |0〉 (δμβεαν − δανεμβ). (5.35)
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Inserting Eq. (5.35) into the Kubo formula (3.5), we find

Xsh
μναβ(ω → 0)

= −1

2
(δναεμβ − δμβεαν)

〈∑
i

ai†ai − 1

4

∑
ij

ai2
aj †2

〉
0

= 1

2
sN (δναεμβ − δμβεαν), (5.36)

(at leading order in the thermodynamic limit) where the second
line follows from the matrix elements computed in Ref. 5. Thus
again we obtain for the viscosity

ημναβ(ω → 0) = 1
2 sn(δναεμβ − δμβεαν). (5.37)

C. The viscosity-conductivity relation for quantum Hall systems

In Sec. IV, we obtained a general relation between the
viscosity and the q2 part of the conductivity for a system in
a magnetic field. We have already commented there that as
ω → 0, we obtain a relation

1

2
B2 ∂2

∂q2
x

σH (q,ω = 0)|q=0

= ηH (ω = 0) − κ−1
int

ωc

+ 2iω

ωc

ηsh(ω), (5.38)

which is more general than that of Hoyos and Son,8 but which
reduces to theirs [using Eq. (3.17)] when the shear viscosity is
nondiverging at ω → 0.

It is interesting to compare the full frequency-dependent
relation with an exact calculation for the integer quantum
Hall state at filling factor ν, based on the results of Chen
et al.23 for σμν(q,ω). Extracting the quadratic in q terms in the
conductivity from their calculations we find

∂2σ11(q,ω)

∂q2
x

∣∣∣∣
q=0

= i
ω

ωc

ν2�2

2π

(
ω2

c

ω+2 − 4ω2
c

− ω2
c

ω+2 − ω2
c

)
,

(5.39)

∂2σ22(q,ω)

∂q2
x

∣∣∣∣
q=0

= − ωc

iω+
ν2�2

2π

(
4ω2

c

ω+2 − 4ω2
c

− 3ω2
c

ω+2 − ω2
c

)
,

(5.40)

∂2σH (q,ω)

∂q2
x

∣∣∣∣
q=0

= −2
ν2�2

2π

(
ω2

c

ω+2 − 4ω2
c

− ω2
c

ω+2 − ω2
c

)
,

(5.41)

where � = 1/
√

B is the magnetic length. Substituting these
expressions into Eqs. (4.12)–(4.14), we arrive at (using again
κ−1

int = νnωc, s = ν/2):

ζ (ω) = 0, (5.42)

ηsh(ω) = ns
iωcω

4ω2
c − ω+2

, (5.43)

ηH (ω) = ns
2ω2

c

4ω2
c − ω+2

, (5.44)

in full agreement with Eq. (5.27).

D. Complex �-wave paired superfluids in two dimensions

Lastly, we shall consider a complex �-wave paired super-
fluid of fermions in two dimensions. The model mean-field
Hamiltonian we shall consider takes the form

H0 =
∫

d2x ψ†(x)

(
− 1

2m
∇2 − μ

)
ψ(x)

+ 1

2

∫∫
d2x d2x ′ �(x − x′)ψ†(x)ψ†(x′) + H.c.,

(5.45)

where the pairing function � transforms as an �-wave under
rotations. We note that we are now working with a number-
nonconserving system, in which the chemical potential appears
as a parameter. Previously we worked with systems at fixed
number, however, generalizations to fixed chemical potential
(the grand canoncial ensemble), or even as here to systems in
which particle number is not conserved, should be reasonably
self-evident. The terms in the Hamiltonian that violate number
conservation also violate angular momentum conservation; the
system is not rotationally invariant. However, the operator � =
ενμJμν − 1

2�N̂ is still a conserved quantity, where ενμJμν is
the angular momentum operator, and N̂ is the number operator.

Using the continuity equation (2.20), we find that the
second-quantized strain generator is given by

Jμν = −
∫

d2x xμgν(x)

= i

2

∫
d2x xμ

[
ψ†(x)

∂ψ(x)

∂xν

− ∂ψ†(x)

∂xν

ψ(x)

]
. (5.46)

The general relations such as Eq. (2.21) between stress and
strain generators still hold, as do the Ward identities for the
response function, and their consequences. We should view the
system as a nonrotationally invariant case, and we commented
on these as we went along. To compute the viscosity, we shall
use the strain-strain form of the Kubo formula, and specialize
only to the ω → 0 limit. From Eqs. (2.9) and (3.5), the response
function X is given by

Xμναβ(ω → 0) = (δνα〈Jμβ〉0 − δμβ〈Jαν〉0)

+ lim
ω→0

ω+
∫ ∞

0
dt eiω+t 〈[Jμν(t),Jαβ(0)]〉0,

(5.47)

with averages taken with respect to the ground state of the
system in the plane geometry.

We now proceed to evaluate this expression. Introducing
momentum space creation and annihilation operators ck and
c
†
k, Eq. (5.46) for the strain generators becomes

Jμν = − 1

2L2

∑
kk′

∫
d2x xμ(kν + k′

ν)c†k′cke
i(k−k′)·x, (5.48)

and in the limit of large system size L → ∞

Jμν = iL2

4(2π )2

∫
d2k d2k′ (kν + k′

ν)c†k′ck

×
(

∂

∂kμ

− ∂

∂k′
μ

)
δ(k − k′). (5.49)
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(This clearly has the form of a strain generator in momentum
space.)

To proceed further, we use the Bogoliubov transformation

ck = u∗
kαk − v−kα

†
−k, c

†
k = ukα

†
k − v∗

−kα−k, (5.50)

where

{αk,α
†
k′ } = δkk′ (5.51)

and other anticommutators vanish. We have a gauge freedom
in choosing the phases of uk and vk, and for convenience we
shall work in the gauge where uk is real. This implies that vk
transforms as an � wave under rotations. The explicit forms of
uk and vk will not be needed. The Hamiltonian then takes the
form (see, e.g., Ref. 24)

H0 = E0 +
∑

k

εkα
†
kαk, (5.52)

where E0 is the ground-state energy and

εk =
√(

k2

2m
− μ

)2

+ |�k|2 (5.53)

is the quasiparticle dispersion relation. We work at parameters
for which εk > 0 (gapped) at all k.

We turn first to the contact term in Eq. (3.5). Using the
properties of the αk operators, we find

〈Jμν〉0 = − iL2

4(2π )2

∫
d2k kν

(
vk

∂v∗
k

∂kμ

− v∗
k
∂vk

∂kμ

)
. (5.54)

This is the continuum limit of the expression given in Ref. 5.
From rotational covariance, it follows that this term is purely
antisymmetric. Writing

vk = |vk|eiφk , (5.55)

we have

〈Jμν〉0 = 1

2
εμν〈Jxy − Jyx〉0

= L2

4(2π2)
εμν

∫
d2k |vk|2

(
ky

∂

∂kx

− kx

∂

∂ky

)
φk

= − L2

4(2π )2
εμν

∫
kdk dθ |vk|2 ∂φk

∂θ

= − L2

4(2π )2
εμν

∫
kdk|vk|2 [φk(θ = 2π ) − φk(θ = 0)].

But since vk transforms as an �-pole under rotations, we have

φk(θ = 2π ) − φk(θ = 0) = 2π�,

and hence 〈
Jμν

〉
0 = − L2

4(2π )
�εμν

∫
kdk |vk|2 (5.56)

= −〈N〉0 �

4
εμν (5.57)

= 1

2
L2nsεμν. (5.58)

Thus the contact term gives the expected Hall viscosity ηH =
1
2 sn.

Next, we must consider the time integral term in the
response function X. Because of the nondegenerate ground
state, and the gap in the excitation spectrum, we expect that
at low frequency, the only terms will be the pressure and κ−1

terms that go as 1/ω+. But κ−1 here will be the derivative of the
pressure with respect to size at fixed chemical potential μ, not
fixed number N , and will vanish. The pressure itself is minus
the derivative of the ground state energy with volume, at fixed
chemical potential, as usual (this “energy” is really the grand
thermodynamic potential), and is not expected to vanish (nor
does the usual inverse compressibility, which is defined using
a derivative of pressure with volume at fixed particle number,
not fixed chemical potential). We have some difficulty with
the formal calculation, because k space was most convenient
to diagonalize the Hamiltonian, but to make sense of the
size dependence of the energy, we need the formalism of
Appendix B, with a confining potential (the use of periodic
boundary conditions does not fit with the strain generators,
though we could use the approach of Appendix C). But we
have seen in previous sections how the pressure term emerges
in the stress-stress form, and thanks to the formalism, this is
equivalent to the strain-strain form we wanted to use. Hence
we will not pursue this further.

Finally, let us apply the viscosity-conductivity relation
(4.6), which is still valid in the present situation, even though
number is not conserved. We consider only the � = 1, or
px + ipy , spinless superconductor. The conductivity in that
case was calculated by Lutchyn et al.25 The result for the Hall
conductivity (the antisymmetric part) in the 2D limit to order
q2 reads [cf. Eqs. (72) and (103) in that paper]:

σH (q,ω) = I (ω)
e2

4πh̄

v2
F q2

2ω+2
, (5.59)

where vF is the Fermi velocity and I (ω) is a dimensionless
factor obeying I (0) = 1. Substituting this result into the
viscosity-conductivity relation (4.11), taking ω to zero, and
remembering that the particle number density is related to
the Fermi wave vector kF by n = k2

F /(2π ) in 2D, we find
that the Hall viscosity is ηH = h̄ns/2, with s = 1/2, in
accordance with the discussion above, except for an apparent
sign discrepancy: for p + ip, s should be −1/2, not +1/2.

VI. HALL VISCOSITY FROM ELECTRODYNAMICS
OF A FLUID WITH ORBITAL SPIN

In this section, we present an alternative derivation of
Eqs. (1.7) and (1.8) by examining the electrodynamics at
small q and ω of a Galilean- and rotationally invariant fluid in
the spirit of a low-energy effective description, in which we
assume there is an orbital spin −s per particle; we neglect bulk
and shear viscosity. We find the orbital spin contribution to the
conductivity, and hence to the viscosity.

When one applies an electric field to such a fluid, to
lowest order in q the electric current response is 〈jα(q,ω)〉(0) =
σ

(0)
αβ (ω)Eβ(q,ω); by the continuity equation, the corresponding

change in the particle number density is δ〈n(q,ω)〉(1) =
qα〈jα(q,ω)〉(0)/ω+. Since each particle carries orbital spin
−s, this leads to a change in the magnetization density,
δμ(q,ω) = −sδ〈n(q,ω)〉(1)/(2m). Finally, this feeds into the
electric current, 〈jν(q,ω)〉(2)

M = ενμiqμδμ(q,ω), and gives the
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following order q2 contribution to the conductivity:

σ
(2),M
νβ (q,ω) = −i

s

2

qαqμ

mω+ ενμσ
(0)
αβ (ω). (6.1)

This contribution was previously discussed by Lutchyn et al.25

in the zero magnetic field case.
A similar contribution comes from the fact that by

Maxwell’s equations, a curl of the electric field implies a
time-dependent magnetic field, B(q,ω) = εαβqαEβ(q,ω)/ω.
The magnetic field couples to the magnetization density,
which is −s times the particle number density, divided
by 2m; hence, it is equivalent to an electric potential
V B(q,ω) = sB(q,ω)/(2m), giving rise to an effective electric
field EB

μ (q,ω) = −iqμV B(q,ω), and thus to an electric current

density 〈jν(q,ω)〉(2)
B = σ (0)

νμ (ω)EB
μ (q,ω). The corresponding

order q2 contribution to the conductivity is

σ
(2),B
νβ (q,ω) = −i

s

2

qαqμ

mω+ σ (0)
νμ (ω)εαβ. (6.2)

Summing Eqs. (6.1) and (6.2), we find the total contribution
of the orbital spin to the conductivity:

σ
(2),s
νβ (q,ω) = −i

s

2

qαqμ

mω+
[
ενμσ

(0)
αβ (ω) + σ (0)

νμ (ω)εαβ

]
, (6.3)

where σ
(0)
λρ (ω) is given by Eq. (4.9).

These terms, however, do not in general give the full
conductivity tensor, even for gapped systems. In that case,
the only other possible contribution comes from a response
with the form of the inverse (internal) compressibility κ̃−1,
which is not necessarily the total one κ−1

int , as we will see.
As before, in the presence of a nonuniform electric field, to
lowest order in q the electric current response is 〈jα(q,ω)〉(0) =
σ

(0)
αβ (ω)Eβ(q,ω). Again, the corresponding change in the

particle number density is δ〈n(q,ω)〉(1) = qα〈jα(q,ω)〉(0)/ω+.
Through the inverse compressibility, this leads to a contri-
bution to the pressure δ̃P (q,ω) = κ̃−1δ〈n(q,ω)〉(1)/n, which
is equivalent to an electric field EP

μ (q,ω) = −iqμδ̃P (q,ω)/n.
Finally, this leads to a change in electric current, 〈j (2)〉ν(q,ω) =
σ (0)

νμ (ω)EP
μ (q,ω). Combining all these expressions, we find an

order q2 contribution to the conductivity,

σ
(2),κ
νβ = −iκ̃−1 qμqα

n2ω+ σ (0)
νμ (ω)σ (0)

αβ (ω). (6.4)

We then have the total q2 conductivity

σ
(2)
νβ (q,ω) = σ

(2),s
νβ (q,ω) + σ

(2),κ
νβ (q,ω). (6.5)

Using Eq. (4.9) we then obtain, in the absence of a magnetic
field,

σ
(2)
νβ (q,ω) = iκ̃−1 qνqβ

m2ω+3
+ ns

2m2

q2

ω+2
ενβ. (6.6)

The contributions of s and κ̃−1 have different tensor structures,
and the result agrees with Eq. (4.15) if we identify κ̃−1 = κ−1,
and ηH = 1

2n s.
On the other hand, for nonzero magnetic field, we find

σ
(2),s
νβ (q,ω) ∼ ins

m2

qαqμ

ω+ωc

εαβεμν − ns

2m2

q2

ω2
c

ενβ, (6.7)

σ
(2),κ
νβ (q,ω) ∼ iκ̃−1 qαqμ

m2ω2
cω

+ εμνεαβ − κ̃−1 1

m2ω3
c

q2ενβ, (6.8)

as ω → 0, up to terms linear or higher order in ω. Adding
these, we see that the total inverse internal compressibility is
κ−1

int = κ̃−1 + nsωc, and hence

σ
(2)
νβ (q,ω) ∼ iκ−1

int
qαqμ

im2ω2
cω

+ εμνεαβ

+
(

1

2
nsωc − κ−1

int

)
1

m2ω3
c

q2ενβ. (6.9)

This agrees with the general form Eq. (4.16), giving again
ηH = 1

2n s.
In this derivation of the Hall viscosity, the centerpiece was

the use of the magnetization equal to the orbital spin over
twice the mass, for each particle. This is the standard result
for zero magnetic field, and can be obtained by taking minus
the derivative of the kinetic energy with respect to B in the
symmetric gauge, then setting B to zero. But doing the same
in a uniform nonzero field gives −(bi†bi + 1

2 )/m for the ith
particle, which is twice the orbital angular momentum of the
cyclotron motion of a particle divided by twice the mass in the
noninteracting case. Of course, in the rigorous microscopic
derivation, this was not the way that the conductivity was cal-
culated, so there is no contradiction, however, the underlying
reason for the assumed coupling seems less clear. Hence in the
magnetic field case, the present argument should perhaps be
viewed as an interpretation of the correct result, rather than as
an alternative derivation from first principles.

VII. CONCLUSION

The motivation for and conclusions of this work have been
described in detail in the Introduction. Essentially, we have
a fairly complete formalism for defining the stress response
to an external strain field and obtaining from it the inverse
compressibility and the viscosity tensor in different situations
that include nonzero temperature or magnetic field and finite
systems with a confining potential or periodic boundary
conditions. The results from distinct formulations (such as
different boundary conditions) agree in the thermodynamic
limit. The results illuminate the relation of the Hall viscosity
results, obtained from adiabatic transport, to more traditional
Kubo formula approaches; the Kubo formulas extend to more
general situations.

A motivation for this work was to make it possible to
study Hall viscosity experimentally. The generality of the
Kubo formulas should make it possible to analyze possible
experimental setups to see when Hall viscosity manifests itself.
In particular, the use of optical techniques to obtain the current
response σ (q,ω) to an external perturbing electromagnetic
field at small q and ω, in conjunction with the relation due
to Hoyos and Son,8 which holds more broadly as shown
in Sec. IV, to obtain the Hall viscosity should be explored.
The result would be of interest in quantum Hall physics,
because Hall viscosity is related to the so-called shift in
the ground state,4,5 which can distinguish between distinct
possible ground states at a given filling factor.
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APPENDIX A: THE STRESS TENSOR
FOR PAIR INTERACTIONS

For completeness, we present a derivation of an expression
for the local stress τ (0)

μν (x) and its integral T (0)
μν for the case

of a system of particles interacting through a two-particle
interaction. In particular, starting with the position-dependent
generalization of Eq. (2.23) in a space with coordinates x and
a general metric gμν(x),

τ (0)
μν (x) = − 2

δH�

δgμν(x)

∣∣∣∣
�=I

, (A1)

and setting the metric to its standard flat space form after
taking the functional derivative, we shall recover the known
Irving-Kirkwood form of the stress tensor,18,19 and show that
its integral over space agrees with Eq. (2.21). (We consider
only the rotationally invariant case, as this was assumed in
those references.) Note that any time dependence of the metric
does not enter into this derivation (all variational derivatives
are taken at equal time), and hence it has been suppressed for
brevity.

We begin with the Hamiltonian (in zero magnetic field, for
simplicity)

H� = 1

2m

∑
i

∫
ddx gμν(x)

{
pi

μ,
{
pi

ν,δ(x − xi)
}}

+ 1

2

∑
i �=j

V (D(xi ,xj )). (A2)

Here, we have introduced the geodesic distance

D(x,x′) ≡
∫ 1

0
dξ

√
gμν(r(ξ ))

drμ

dξ

drν

∂ξ
, (A3)

which is the length (computed using gμν(x)) of the geodesic
r(ξ ), the path from x to x′ satisfying

r(0) = x, (A4)

r(1) = x′, (A5)

δ

δr(ξ )

{∫ 1

0
dξ

√
gμν[r(ξ )]

∂rμ

∂ξ

∂rν

∂ξ

}
= 0, (A6)

where the variational derivative is taken with fixed endpoints.
For metrics close to the flat metric, which is sufficient for our
purposes, there is a unique path that is a local minimum (in the
space of paths) of the length, and this path is the geodesic. The
use of the geodesic distance allows us to use the same potential
function in curved space as in flat, and while in principle the
choice of path entering the distance function D is somewhat

arbitrary, we believe that the geodesic distance given above
represents a natural choice. Different choices could produce
different stress tensors even in the flat-space limit, but they
will differ only by divergenceless tensors.

We now proceed to evaluate Eq. (A1). Looking first at the
kinetic term, and using the identity

δgαβ(x)

δgμν(x′)

∣∣∣∣
g=I

= −1

2
δ(x − x′)(δαμδβν + δανδβμ), (A7)

we easily find for the kinetic part of the stress tensor

τ (0),K
μν (x) = 1

4m

∑
i

{
pi

μ,
{
pi

ν,δ(x − xi)
}}

, (A8)

in agreement with standard results.
Moving on to the interaction term, we have

−2
δ

δgμν(x)

⎧⎨⎩1

2

∑
i �=j

V (D(xi ,xj ))

⎫⎬⎭
= −

∑
i �=j

V ′(D(xi ,xj ))
δ

δgμν(x)
D(xi ,xj ). (A9)

Now comes the key observation. D(xi ,xj ) depends on the
metric in two ways: through its explicit dependence indicated
in Eq. (A3) and implicitly through the definition (A6) of the
geodesic r(ξ ) for each pair i, j . However, because r(ξ ) is
defined such that the distance is stationary under variations of
the path, the chain rule tells us that only variations of D with
respect to the explicit metric dependence are non vanishing.
Thus we have

δ

δgμν(x)
D(xi ,xj ) = 1

2

∫ 1

0
dξ δ(x − r(ξ ))

1

D(xi ,xj )

drμ

dξ

drν

dξ
.

(A10)

Now, at g = I , the geodesic r(ξ ) is simply given by a straight-
line path

r|g=I = xi + ξ (xj − xi) (A11)

and the distance D by the standard Euclidean norm

D(xi ,xj )|g=I = |xi − xj |. (A12)

Thus, putting it all together, we find for the interaction
contribution to the stress tensor

τ (0),V
μν (x) = −1

2

∑
i �=j

V ′(|xi − xj |) (xi − xj )μ(xi − xj )ν

|xi − xj |

×
∫ 1

0
dξ δ(x − xi + ξ (xi − xj )), (A13)

which is the well-known contribution due to two-particle
interactions introduced by Irving and Kirkwood.18 Physically,
it means that the flow of momentum between particles i and
j when they interact is treated as flowing along the straight
line connecting them, and so there is a momentum flux at
any x on that line, which necessitates the integral over ξ from
0 to 1. The verification that this stress tensor satisfies the
continuity equation for the momentum density, Eq. (2.20), is
straightforward or can be found in the literature.
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Finally, integrating τ (0)
μν = τ (0),K

μν + τ (0),V
μν over space yields

T (0)
μν = 1

m

∑
i

pi
μpi

ν − 1

2

∑
i �=j

V ′(|xi − xj |)

× (xi − xj )μ(xi − xj )ν

|xi − xj | , (A14)

which a simple calculation shows is equal to

T (0)
μν = −i[H0,Jμν] (A15)

as expected.

APPENDIX B: STRAIN GENERATORS FOR SYSTEMS
IN A CONFINING POTENTIAL

Because the volume of a system in the infinite plane with
zero magnetic field is poorly defined, we would like to work
in a finite-sized system when using the extensive forms of
the stress response function given in Sec. III. Unfortunately,
because the strain generators contain an explicit x operator, we
cannot do this with periodic boundary conditions. Instead, let
us add to the Hamiltonian H�(t) a general confining potential
(this differs slightly from what was mentioned in Sec. II A, for
reasons that should become clear)

U (x) =
∑

i

u(Zxi), (B1)

with an invertible matrix of shape parameters Zμν , and we take
the single-particle potential u such that u(x) → ∞ as x →
∞ in any direction. For example, the most general harmonic
confining potential can be written

U (x) =
∑

i

mC2

2
ZμνZμαxi

νx
i
α. (B2)

Now, under an additional strain transformation we have
xi → �′T xi , and this �′ can be absorbed into � by multi-
plication on the left. According to the definition just given,
U (x) in the x variables should be unchanged, so we need Z →
Z�′T −1. To implement this transformation using operators,
we are motivated by our treatment of the magnetic field in
Sec. II B to quantize the Zμν . We introduce operators Zμν and
their conjugate momenta Mμν such that

[Mμν,Zαβ] = −iδμαδνβ, (B3)

and take for the strain generators Jμν

Jμν = −1

2

(∑
i

{
xi

μ,pi
ν

}− {Mαμ,Zαν}
)

. (B4)

These satisfy [Jμν,(Zxi)α] = 0, and so also

[Jμν,U
(x)] = 0. (B5)

For given eigenvalues Z of Z , the confining potential is fixed,
independent of �, and defines a box that is always fixed in the
x variables.

To use this formalism, we first note that M does not
appear in the Hamiltonian H� + U (x), and so with � = I (for
example), states with given eigenvalues Z of Z evolve with
Z fixed, however (as with B), formal eigenstates of Z are not

normalizable. One can, however, consider normalizable states
that are eigenstates of H0 + U (x) for each Z, with a narrow
range of Z. These are almost as good as true eigenstates for
most purposes.

We want to show that both our basic relation (2.21) and our
Kubo formulas (3.3)–(3.5) continue to hold unmodified in the
presence of the confining potential. First, we will verify that
the stress tensor is given by minus the time derivative of Jμν .
This is simple, as Jμν commutes with U (x) and the {M,Z}
terms in Jμν commute with H

(x)
0 . Hence

T (0)
μν = −i

[
H

(x)
0 + U (x),Jμν

]
. (B6)

Next, we will verify that our Kubo formulas still hold with
these strain generators. We have the Hamiltonian H�(t) + U (x)

in the x variables (which include Z and M), and we make a
time-dependent canonical transformation to X variables. The
analogs of Z and M in X variables will be denoted by Ẑ =
SZS−1 = Z�T −1 and M̂ = SMS−1. Then the Hamiltonian
in X variables is H = H

(X)
0 + U (X) + H1, where

H
(X)
0 + U (X) =

∑
i

P i
μP i

μ

2m
+ 1

2

∑
i �=j

V (Xi − Xj )

+
∑

i

u(ẐXi), (B7)

H1 = −∂λμν

∂t
Jμν (B8)

to order λ. In these variables, the {M̂,Ẑ} terms in H1 cause
Ẑ to evolve in time, in such a way that if the Xis also
evolve by the H1 term only, then they continue to lie inside
the “box” (defined by U ) if they do so initially; this was
the desired behavior. The stress in these variables, T (X)

μν ,
is the same expression as in the case with no potential U . Thus
the stress-strain Kubo formula (3.3) obtained from standard
linear response theory takes the same form as before (though
the strain generator is now different, and the Hamiltonian
includes U ). Additionally, the Ward identity Eq. (B6) ensures
that the stress-stress and strain-strain Kubo formulas are still
valid in the presence of a confining potential, as is the final
formula (3.15) for the viscosity, up to a choice of the volume
Ld to assign to the system. (Technical justification of these
statements is discussed further in Appendix D.) If the potential
u is taken to have a hard-wall form, the volume can be taken
as that within the walls.

As an example of this formalism, let us consider a system
of noninteracting spinless fermions in a harmonic potential in
two dimensions, with Hamiltonian

H =
∑

i

(
pi

μpi
μ

2m
+ mC2

2
ZμαZμβxi

αxi
β

)
. (B9)

We consider the state |0〉 in which the potential has angular
frequency C/L, meaning that Zμν |0〉 = L−1δμν |0〉 (strictly,
this means a narrow normalizable wave packet centered at this
value, as we explained above) and the lowest Q levels filled.
This state has N = Q(Q + 1)/2 particles, and its energy is

EQ = C

L

Q∑
n=1

n2. (B10)
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The integrated stress tensor is Tμν = ∑
i p

i
μpi

ν/m. We will use
the stress-stress form of the Kubo formula, Eq. (3.4). Let us
examine the contact term first. This gives

〈[Tμν(0),Jαβ(0)]〉0 = i

m

∑
i

(〈
pi

βpi
μ

〉
0δνα + 〈

pi
βpi

ν

〉
0δμα

)
= iEQ

2
(δμαδνβ + δναδμβ), (B11)

where the last line follows from an application of the virial
theorem. To evaluate the time-integral term, note that the
stress tensor and the Hamiltonian are independent ofMμν , and
hence Tμν(t) leaves the ground state in the fixed Zμν = L−1δμν

subspace. Hence we are free to evaluate the time dependence
in this subspace. Doing so, we find∫ ∞

0
dteiω+t 〈[Tμν(t),Tαβ(0)]〉0

= −iEQ

4

1

1 − (
ω+L
2C

)2 (δμαδνβ + δναδμβ). (B12)

Hence we find that the response function for harmonically
trapped noninteracting fermions is

Xμναβ = iEQ

2ω+

[
1 − 1

2

1

1 − (
ω+L
2C

)2

]
(δμαδνβ + δναδμβ).

(B13)

The fluid in the harmonic potential is not homogeneous; its
density is not uniform, and accordingly its other properties,
such as the expectation of τμν(x), are not uniform either, and
this effect does not disappear in the thermodynamic limit L,
N → ∞, if we take it with the density at the center held
fixed. A macroscopic fraction of particles experience a nonzero
potential (this is already apparent from the use of the virial
theorem: the kinetic energy, which is used to obtain the trace
of Tμν , is only half the total energy). Therefore use of the
results involving P and κ−1 which relied on homogeneity is
not justified. However, we find that if we use the free Fermi
gas results in Sec. V A to obtain the pressure and viscosity at
a given density, and then average the results using the density
profile of the harmonically trapped gas, the results agree in all
details with the thermodynamic limit of the above. To obtain a
fluid that is homogeneous (up to a negligible boundary layer)
in the thermodynamic limit, we need a confining potential that
is essentially zero in the interior, then rises rapidly very close
to the edge.

APPENDIX C: STRESS RESPONSE WITHOUT USE
OF STRAIN GENERATORS

In this section, we show how to obtain even more general
forms of the stress response, which work for either the infinite
system with a confining potential, or for periodic boundary
conditions, and are analogous to the stress-strain and strain-
strain forms, but do not require the use or existence of the strain
generators. The approach we use is based on that of Niu et al.
for the conductivity case,26 however, we extend it to nonzero
frequency as well as adapting it for the stress response. For the
case of infinite space, the expressions reduce to the forms in
the text when written in terms of strain generators.

We begin with the time-integral part of the extensive
stress-stress form at zero temperature, which we write in
a spectral representation. For definiteness, one can assume
periodic boundary conditions. Then we have

1

ω+

∫ ∞

0
dt eiω+t 〈[Tμν(t),Tαβ(0)]〉0

= 1

ω+

∫ ∞

0
dt eiω+t

∑
n

[e−i(En−E0)t 〈0|Tμν(0)|n〉〈n|Tαβ(0)|0〉

− e−i(E0−En)t 〈0|Tαβ(0)|n〉〈n|Tμν(0)|0〉], (C1)

where {|n〉} is an orthonormal set of energy eigenstates of
H0 (or H0 + U if the confining potential is used in place of
periodic boundary conditions) with energies En, and we now
write |0〉 for the ground state, which we assume for simplicity
is nondegenerate. We now use the identity

e−i(En−E0)t =
d
dt

e−i(En−E0)t

−i(En − E0)
(C2)

in the first term inside the integral, and the same with n and 0
switched in the second term; then integrate by parts. Further,
we recall that in the x variables, the Hamiltonian H�(t) to first
order in λ is

H�(t) = H0 − Tαβλαβ(t) (C3)

[where Tαβ = Tαβ(0) is at zero time in the Heisenberg picture],
and so if we define the ground state of H� for given λ to be
|ϕ(λ)〉, that is,

H�|ϕ(λ)〉 = E(λ)|ϕ(λ)〉 (C4)

(with |ϕ(0)〉 = |0〉, E(0) = E0), then perturbation theory to
first order in λ gives us∣∣∣∣ ∂ϕ

∂λαβ

〉
=
∑

n

|n〉〈n|Tαβ(0)|0〉
En − E0

. (C5)

(We leave it as understood that the partial derivative is
evaluated at λ = 0.) Combining these results, and moving the
term resulting from the lower limit in the integration by parts to
the other side, we arrive at two forms of the response function
Xμναβ(ω):

Xμναβ(ω)

= i

ω+

[〈
ϕ(0)

∣∣∣∣Tμν(0)

∣∣∣∣ ∂ϕ

∂λαβ

〉
+
〈

∂ϕ

∂λαβ

∣∣∣∣Tμν(0)

∣∣∣∣ϕ(0)

〉]
+ 1

ω+

∫ ∞

0
dt eiω+t 〈ϕ(0)|[Tμν(t),Tαβ(0)]|ϕ(0)〉 (C6)

=
∫ ∞

0
dt eiω+t

[〈
ϕ(0)

∣∣∣∣Tμν(t)

∣∣∣∣ ∂ϕ

∂λαβ

〉
+
〈

∂ϕ

∂λαβ

∣∣∣∣Tμν(t)

∣∣∣∣ϕ(0)

〉]
. (C7)

The first of these is the stress-stress form and the second is the
stress-strain form.

In order to use the same identity and perform a second
integration by parts, we generalize the previous perturbation
formula by using Tμν(t) for given t as the perturbation and
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define ∣∣∣∣∂ϕ(t)

∂λμν

〉
=
∑

n

|n〉〈n|Tμν(t)|0〉
En − E0

(C8)

=
∑

n

|n〉〈n|Tμν(0)|0〉
En − E0

e−i(E0−En)t . (C9)

Then the strain-strain form of X is

Xμναβ(ω)

= −i

[〈
∂ϕ(0)

∂λμν

∣∣∣∣∂ϕ(0)

∂λαβ

〉
−
〈
∂ϕ(0)

∂λαβ

∣∣∣∣∂ϕ(0)

∂λμν

〉]
+ω+

∫ ∞

0
dt eiω+t

[〈
∂ϕ(t)

∂λμν

∣∣∣∣∂ϕ(0)

∂λαβ

〉
−
〈
∂ϕ(0)

∂λαβ

∣∣∣∣∂ϕ(t)

∂λμν

〉]
.

(C10)

The first part is the curvature of the Berry connection. This
part reproduces the formulas for the antisymmetric (Hall
viscosity) part of X at ω = 0 that result from adiabatic
transport in a gapped system (with the sign here corrected as
explained earlier). The derivation of this ω = 0 limit from the
stress-strain form is presumably equivalent to the one reviewed
in Ref. 5. The last term produces the iκ−1/ω+ term in the trace
part, as ω → 0, similarly as in Sec. V B [such parts, referred
to as “persistent currents” by analogy with the conductivity
case, were suppressed in Ref. 5 by subtracting the ground
state energy E(λ) from H�]. The strain-strain form given
here can be viewed as generalizing the adiabatic curvature
(and the related Chern number for conductivity) to the full
stress response tensor, to all frequencies, and to systems that
are gapless in the thermodynamic limit. Because the formal
derivation is general in form, similar ones can be given for
conductivity at all ω, and for other transport properties also.

The similarity with the three forms of X given in the text is
evident and can be made exact by use of the formula

|ϕ(λ)〉 = e−iλαβJαβ |ϕ(0)〉, (C11)

and expanding to first order. Then one can view∣∣∣∣∂ϕ(t)

∂λαβ

〉
= −iJαβ (t)|ϕ(0)〉 =

∑
n

|n〉〈n|Tαβ(t)|0〉
En − E0

(C12)

as resulting from the basic relation, Eq. (2.21). This is not
merely an analogy; for the infinite-space geometry, the ground
states of H� are of exactly this form (with t = 0), using the
formalism for magnetic field and for a confining potential, so
they form a “homogeneous bundle” in the language of Ref. 5
[here for GL(d,R), not just SL(d,R) as mainly considered
there]. We note, however, that strictly speaking for the infinite-
space geometry, the formalism for a magnetic field or in
Appendix B again produces issues regarding the existence
of normalizable energy eigenstates, and some arguments with
wave packets analogous to those in the text or in Appendix D
are needed to overcome these. In any case, the forms given
here for periodic boundary conditions are expected to yield
the same results for intensive quantities in the thermodynamic
limit, justifying the use of the same notation Xμναβ(ω) in the
formulas given here.

APPENDIX D: TIME-TRANSLATION INVARIANCE
AND THE KUBO FORMULAS

In this Appendix, we give arguments that justify the use
of time-translation invariance (TTI) in the derivation of the
Kubo formulas in Sec. III A, even though the states that must
be used are not true eigenstates of the Hamiltonian. We say
that a correlation or response function in the time domain
has TTI if shifting the time argument in each operator by the
same constant has no effect on it. For the zero magnetic field
case in the informal treatment without a confining potential
that we have mentioned in Sec. II A, one has to appeal
to an assumed limit in which time-dependence of the state
occurs only near the boundary, and the bulk of the system
presumably dominates the response over relevant time scales.
This is intuitively appealing, but quite involved to justify fully.
Here we give more detailed arguments for the case with a
magnetic field in which normalizable ground (energy eigen-)
states in which a disk-shaped region is occupied exist for given
magnetic field. There is still an issue here, however, because
our strain generators involved the introduction of the magnetic
field variable B, and eigenstates of B are not normalizable.
Similar arguments are also given for the case with a confining
potential, in the formalism of Appendix B.

The “ground” state that we described in Sec. II B is not
strictly an energy eigenstate, because though it is such for
each value of B, the energy eigenvalue depends on B (the
Hamiltonian H0 depends onB but not onP , so parts of the state
with different B values do not mix). Thus the contributions
from different B change phase with time at different rates.
When we calculate an expectation value of some operators,
these time-dependent phase may cancel; in particular, they
will if those operators do not contain P . Now the stress tensor
Tμν does not contain P , so the correlation function

〈[Tμν(t),Tαβ(t ′)]〉0 = f (t,t ′) (D1)

is TTI—it is unchanged if we replace t , t ′ by t + t0, t ′ + t0. (In
the following, the indices on the operators will play no role, so
they will not be recorded on f and similar functions below.)
Now consider the correlation function

〈[Tμν(t),Jαβ(t ′)]〉0 = g(t,t ′). (D2)

From the identity (2.56),

∂

∂t ′
g(t,t ′) = −f (t,t ′), (D3)

and f (t,t ′) = f (t − t ′) (say) by TTI. Integrating gives

g(t,t ′) =
∫ t−t ′

0
dt ′′ f (t ′′) + g(t,t), (D4)

where

g(t,t) = 〈eiH0t [Tμν(0),Jαβ(0)] e−iH0t 〉0. (D5)

The commutator [Tμν(0),Jαβ(0)] does not contain P for any
choice of indices, and so g(t,t) is again independent of t ,
or TTI. Hence g(t,t ′) = g(t − t ′), say, is TTI. These results
justify the use of TTI to pass from the stress-strain to the
stress-stress form of response.

For the strain-strain form, we proceed similarly with

〈[Jμν(t),Jαβ(t ′)]〉0 = h(t,t ′). (D6)
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Then
∂

∂t
h(t,t ′) = −g(t − t ′), (D7)

and so

h(t,t ′) = −
∫ t−t ′

0
dt ′′ g(t ′′) + h(t,t). (D8)

The equal-time piece is

h(t,t) = 〈[Jμν(t),Jαβ(t)]〉0. (D9)

The commutators of two J ’s are the gl(d,R) Lie algebra
relations, given in Eq. (2.9). The generator corresponding to
the trace [the generator of the gl(1) or u(1) subalgebra] never
occurs on the right-hand side; see Eq. (3.29). The traceless
parts of J ’s do not contain P , and so h(t,t) is independent of
t , that is, it is TTI. Hence h(t,t ′) = h(t − t ′), say, is TTI.

In fact, TTI was not used to obtain the strain-strain form
from the stress-strain form, but we have learned that it can
be applied to the final form. This enables us to reverse the
argument, but with the roles of the two pairs of indices

interchanged. This leads to the same stress-stress form of
response, but with the two pairs of indices exchanged in the
contact term. We showed in Sec. III E that this contact term is
symmetric, which shows the arguments are consistent.

For the formalism of Appendix B, with a confining
potential, we can proceed similarly, using a wave packet in
Z space of energy eigenstates for each Z. The preceding line
of argument goes through, up to the point where h(t,t) was
studied. In the present case, all strain generators Jμν contain
M, not only the trace. Hence h(t,t) is not independent of t . If
we take its time derivative, we find

∂

∂t
h(t,t) = iδαν〈Tμβ(t)〉0 − iδμβ〈Tαν(t)〉0 (D10)

in which the trace of the expectation of the stress cancels. We
have shown that the expectation of the traceless part of Tμν

is time independent, so h(t,t) is linear in t , and also its time
derivative is smaller than O(Ld ) as the thermodynamic limit is
taken. Thus in the limit, for our purposes h(t,t ′) is again TTI.
The strain-strain form in the main text is nonetheless correct
as written even in finite size.
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