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Non-Fermi liquid due to orbital fluctuations in iron pnictide superconductors
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We study the influence of quantum fluctuations on the electron self-energy in the normal state of iron pnictide
superconductors using a five-orbital tight-binding model with generalized Hubbard on-site interactions. Within a
one-loop treatment, we find that an overdamped collective mode develops at low frequency in channels associated
with quasi-one-dimensional dxz and dyz bands. When the critical point for the C4-symmetry-broken phase
(structural phase transition) is approached, the overdamped collective modes soften, and acquire increased spectral
weight, resulting in non-Fermi-liquid behavior at the Fermi surface characterized by a frequency dependence of
the imaginary part of the electron self-energy of the form ωλ, 0 < λ < 1. We argue that this non-Fermi-liquid
behavior is responsible for the recently observed zero-bias enhancement in the tunneling signal in point-contact
spectroscopy. A key experimental test of this proposal is the absence of non-Fermi-liquid behavior in the
hole-doped materials. Our result suggests that quantum criticality plays an important role in understanding the
normal-state properties of iron pnictide superconductors.
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I. INTRODUCTION

Whether or not the iron pnictide superconductors are
strongly correlated materials is hotly debated. Certainly a clean
association of non-Fermi-liquid behavior, either experimen-
tally or theoretically, with any part of the phase diagram would
suffice to settle this debate. While parallels with the cuprates
are suggestive,1–5 they have not resulted in a decisive answer
to this problem. In fact, to our knowledge, the possibility of
non-Fermi-liquid behavior other than Mott physics6 has not
been discussed to date.

A feature common to the parent and underdoped com-
pounds of the iron pnictide superconductors is the structural
phase transition (SPT) from tetragonal to orthorhombic sym-
metry occurring around 150 K.7 For most members of the
1111 and 122 families, in-plane anisotropy in the resistiv-
ity commences near the structural transition, and stripelike
antiferromagnetism develops if the temperature is further
lowered. The quasiparticle interference in scanning tunneling
microscopy8 also showed aniostropic electronic states at low
temperature. Despite the controversy as to whether the SPT
is induced by magnetic fluctuations as a result of the onset
of stripelike antiferromagnetism9–13 or if orbital ordering in
quasi-one-dimensional (1D) dxz and dyz bands14–17 is the effi-
cient cause, the phase below the SPT breaks C4 symmetry, and
quantum fluctuations associated with this phase are nematic in
character. A recent measurement of photoexcited quasiparticle
relaxation18 reveals the existence of strong nematic fluctua-
tions up to 200 K, well above the SPT temperature. Moreover,
in electron-doped Ba(Fe1−xCox)2As2 (Ba122), an unexpected
enhancement of the zero-bias signal19,20 in the tunneling data
measured in point-contact spectroscopy has been observed at
an onset temperature higher than TSPT. The excess conductance
appears at temperatures around 175 K, increasing in magnitude
through the structural, antiferromagnetic, and, in materials
exhibiting superconductivity, the superconducting transitions.
It is not seen in overdoped Ba122. It is important to study how
these strong orbital (nematic) fluctuations affect the physical
properties in both the normal and orthorhombic states of the
iron pnictide superconductors.

In this paper, we develop a microscopic theory for the orbital
fluctuations and show that they give rise to non-Fermi-liquid
behavior. In particular, we find a branch of overdamped
collective modes in the scattering channels associated with
quasi-1D dxz and dyz bands in the normal state at a temperature
higher than TSPT. In the vicinity of the SPT critical point,
these overdamped collective modes dominate the low-energy
physics, resulting in a strong modification of the electron
self-energy and a breakdown of Fermi-liquid theory even in
the symmetric normal state.

II. RANDOM-PHASE APPROXIMATION THEORY FOR
ELECTRON SELF-ENERGY

Since the random-phase approximation (RPA) represents
a perturbative treatment of the fluctuations, it represents a
zeroth-order theory. If deviations from Fermi-liquid theory are
found at this level of theory, then a Fermi-liquid description
is most likely invalid. This line of reasoning has been used
previously in the continuum limit to establish the existence of
the nematic phase.21 Thus far, a similar analysis appears to
be lacking for a multiorbital model. We use this approach
here to show that at the RPA level, the fluctuations are
inherently non-Fermi liquid in nature. Our starting point is
the Hamiltonian H = Ht + HI , where Ht = ∑

�k Hk is the
five-band tight-binding model proposed in Ref. 22 which can
reproduce correctly the Fermi surfaces of hole α1,α2 and
electron β1,β2 pockets in the unfolded Brillouin zone. The
interaction terms are given by HI ,

HI =
∑
ia

Unia↑nia↓ +
∑
i,b>a

(
U ′ − J

2

)
nianib

−
∑
i,b>a

2J �Sia · �Sib + J ′(p†
iapib + H.c.), (1)

where U ′ = U − 2J , J is the Hund coupling, J ′ = J , and a

(b) refers to the orbital index, 1 = xz, 2 = yz, 3 = xy, 4 =
x2 − y2, and 5 = 3z2 − r2. nia = ∑

σ c
†
iaσ ciaσ is the number

operator on site i in orbital a, and pia = cia↓cia↑. Energies
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are measured in eV, in line with the units used in recent
tight-binding models.22 J = 0.2U throughout this paper. This
model has been shown to have stripelike antiferromagnetism
together with orbital ordering in a previous study.23,24 We
introduce a unitary transformation Û�k such that (Û�k)†Ĥ�kÛ�k =
diag[E�k,1, . . . ,E�k,5], and it is straightforward to obtain the
noninteracting response functions,

χ
(0)
ab;cd (�q,iωn)

= − 1

N

∑
�k

∑
l,m

(Û�k+�q)a,l(Û�k+�q)∗c,l(Û�k)d,m(Û�k)∗b,m

× nF (E�k+�q,l) − nF (E�k,m)

E�k+�q,l − E�k,m − iωn

, (2)

in the symmetric normal phase, where χ
(0)
ab;cd (�q,iωn) is a 25 ×

25 matrix. The convention on the indices is that in Ref. 22.
Adopting the interaction kernels for the spin-spin (V̂ s) and
density-density (V̂ c) fluctuations derived in Ref. 25, we obtain
the electron self-energy at the random-phase-approximation
level,

�orbital
ab (�k,ipn) = 1

βN

∑
�q

∑
ikm

	̂ai;jd

× (�q,ipn − ikm)Ĝ0
ij (�k − �q,ikm), (3)

where ikm and ipn are Matsubara frequencies for fermions,
Ĝ0(�k,ipn) = [ipn − Ĥt + μ]−1 is the bare Green function, and
	̂ab;cd (�q,ipn − ikm) is the effective interaction,

	̂(�q,ipn − ikm) = 1
2 {3[1 − V̂ s χ̂0(�q,ipn − ikm)]−1V̂ s

− [1 + V̂ cχ̂0(�q,ipn − ikm)]−1V̂ c} (4)

within one loop.

III. CRITICAL BEHAVIOR ABOVE THE STRUCTURAL
PHASE TRANSITION

Since our focus is on the critical region above the structural
phase transition, throughout this paper the temperature is set
to kBT = 0.02 eV at which the system is in a normal state
without any symmetry breaking. The case of ordered states
will be discussed in the next section.

We start by studying the mean-field phase diagram of our
model using the formalism outlined in Ref. 23, as shown
in Fig. 1. Then we can fix the temperature and change U

to investigate how the self-energy changes as the critical
region is approached. Consider first the spectral functions
for the effective interactions −Im	̂(�q,ω + iη) displayed in
Fig. 2. As is evident, the spectral functions for the intraorbital
effective interactions −Im	aa;aa(�q1,ω) dominate the electron
self-energy. Also of interest are the spectral functions for
momenta �q along the diagonal direction so that 	11;11(�q,ω) =
	22;22(�q,ω). It can be seen in Fig. 2 that the spectral functions
at low frequency are dominated by an overdamped collective
mode in 	11;11 (	22;22). When U is tuned to approach the
critical point (Uc ≈ 2.1 eV at this temperature), this mode
gains more spectral weight and moves to even lower energy
as shown in Fig. 3. Note that although the shift of the
spectral weight upon approaching the critical point is shown
to follow the typical behavior for an overdamped continuum

FIG. 1. Mean-field phase diagram of the model used in this paper.
The arrow indicates the direction from which the critical region is
approached in this paper. At T = 0, the orbital ordering transition is
driven entirely by changing the strength of the interaction.

of collective excitations, our calculations do not have the
accuracy to demonstrate the shift of the peak position toward
zero frequency as expected. We attribute this to the fact that the
model considered here generally has both orbital ordering and
stripe-antiferromagnetic (AFM) phases occurring together. In
this case, it is hard to distinguish whether the transition is first

FIG. 2. Spectral functions for effective interactions in intraorbital
channels [	aa;aa(�q,ω)] at �q1 = (0.04π,0.04π ) for (a) U = 1.3 and (b)
U = 2.0. 	11;11(�q,ω) = 	22;22(�q,ω) for �q along the diagonal direction
as expected, and an overdamped collective mode appearing at low
energy in 	11;11(�q,ω) [	22;22(�q,ω)] can be observed.
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FIG. 3. Spectral functions of effective interactions 	11;11(�q1,ω)
at �q1 = (0.04π,0.04π ) for different U . The overdamped collective
mode at low energy acquires increased spectral weight as the critical
point (Uc ≈ 2.1 eV at the temperature we are considering, kBT =
0.02 eV) is approached.

or second order as discussed in Ref. 26, which is beyond the
accuracy of our calculation on a finite-size square lattice.

These overdamped modes, emergent at low frequency
and small �q, resemble the collective modes observed in
the quadrupole density spectral function,21,27–29 that is, the
spectral function related to the interactions in the d-wave
channel in a quantum nematic Fermi fluid. As shown in
Ref. 30, in a system containing quasi-1D dxz and dyz bands,
hybridization enhances significantly the strength of the inter-
action in the d-wave channel. As a result, the nematic order in
such multiorbital systems is completely equivalent to orbital
ordering in quasi-1D bands, and the spectral functions due
to quantum fluctuations associated with the quasi-1D bands
naturally acquire the same properties of the quadrupole density
spectral function discussed in the context of the quantum
nematic fluid mentioned above. It has been shown21,27,29 that
these overdamped collective modes could lead to a non-Fermi
liquid near the critical region and also in the nematic phase. The
reason is that in the vicinity of the nematic critical point, these
overdamped collective modes become soft. Electrons scatter
strongly with these soft overdamped collective modes, which
modify the electron self-energy away from the Fermi-liquid
behavior in the vicinity of the nematic critical point.

It is intriguing to check whether the same physics discussed
above occurs in the iron pnictide superconductors since the
SPT signals a transition from their symmetric normal phase to
a state which breaks C4 symmetry. We performed a numerical
evaluation of Eq. (3). To compute the self-energy of the
retarded Green function of a single-particle state on the Fermi
surface, we need to do one more transformation and also an
analytical continuation of Eq. (3) to obtain

�band
αα (�kF ,ω + iη) = [Û�kF

�̂orbital(�kF ,ω + iη)Û †
�kF

]αα, (5)

which is the self-energy of the electron with momentum �kF on
the Fermi surface sheet α.

Because we study the normal state at finite temperature,
�band

αα (�kF ,ω + iη) contains contributions from both thermal
and quantum fluctuations which cannot be separated in RPA-
type calculations.29 Nevertheless, it is generally expected that

FIG. 4. (a) Normalized self-energy of electron with momentum
�kF = (0.12π,0.12π ) on the hole Fermi pocket α1 for different U .
A crossover from Fermi liquid (λ = 2) to non-Fermi liquid (λ � 1)
can be seen as U increases from U = 0.5 to the critical point U =
2.1 eV. (b) Normalized self-energy of electron in the critical region
(U = 2.1 eV) with momenta �kF1 = (0.12π,0.12π ), �kF2 = (0.2π,0)
on hole Fermi pocket α1, and �kF3 = (0.88π,0.16π ) on electron Fermi
pocket β1.

the contribution from quantum critical fluctuations should be
expanded in powers of ω/T and the thermal fluctuations
should be most dominant at ω = 0. In order to see the
frequency dependence due to the quantum critical fluctuations
more clearly, we plot in Fig. 4 the normalized imaginary part
of the self-energy defined as

Im�nor
αα (�kF ,ω) ≡

[
Im�band

αα (�kF ,ω) − Im�band
αα (�kF ,0)

]
Im�band

αα (�kF ,0)
. (6)

Generally, it is expected that at finite temperature the self-
energy is analytical for h̄ω 	 kBT , which gives the ω2 term.
We find the crossover from a Fermi liquid with ω2 at small
frequency to a non-Fermi liquid in which the ωλ term with λ �
1 dominates over the ω2 term as U is increased to approach the
critical point. Similar results have been seen in Ref. 29. In the
critical region, non-Fermi-liquid behavior exists on a large part
of the Fermi surface with strong angular dependence of Im�,
as expected, due to the critical fluctuations near orbital ordering
(now termed nematicity).27 As the temperature is lowered, the
critical point Uc shifts to a lower value but the non-Fermi-
liquid behavior remains robust near the critical point. This
strongly suggests that this non-Fermi-liquid behavior should
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be observable in iron pnictide superconductors at a temperature
above the SPT.

One subtle point is that the effective interaction 	 in
Eq. (4) contains contributions from both the charge and spin
channels. While for large momentum [e.g., (π,0) or (0,π )]
there is no doubt that the contribution from spin channels is
dominant, as seen from previous calculations22,25 and also in
our calculations, for small momentum, which we focus on
here, the contributions from both charge and spin channels
become comparable. As a result, we cannot completely rule
out the effects from the spin channels. However, since it has
been shown26 that the spin nematicity could also induce orbital
ordering, the critical collective modes associated with the
orbital ordering discussed above will be still present in that
case, despite the fact that the spectral weight might be reduced
due to the coupling to the collective modes associated with
spin nematic order. As a result, the non-Fermi-liquid behavior
discussed above will be most prominent if the contribution
from charge channels in Eq. (4) is dominant. We find, in
general, that the charge channels become much stronger for
U ≈ U ′, which is consistent with previous studies of orbital
ordering in Sr3Ru2O7.

31,32 Moreover, it has been shown that
the inclusion of electron-phonon coupling can also enhance
the instability in the charge channels.33 Since it is well known
that physical properties of iron-based superconductors could
vary significantly for different families due to differences in
details, we expect that the non-Fermi-liquid behavior discussed
above might not be visible in some families of the iron-based
superconductors. This is actually what is seen in point-contact
spectroscopy and other experiments which will be discussed
in Sec. V.

IV. NON-FERMI-LIQUID BEHAVIOR BELOW
THE STRUCTURAL PHASE TRANSITION

In this section, we discuss the fate of the non-Fermi-
liquid behavior in the C4-symmetry-broken phase. For the
nematic phase in a continuous model, these overdamped
collective modes induced by the d-wave interaction evolve
into Goldstone modes but remain overdamped and dominate
the low-energy physics. Consequently, the non-Fermi liquid
persists in the nematic phase. In the multiorbital model studied
here, the situation is complicated by the fact that since the
continuous rotational symmetry is absent in a lattice model,
there are no gapless Goldstone modes in general. Nevertheless,
these overdamped collective modes remain, existing with a
gap � due to the breaking of the discrete symmetry from C4

to C2. Consequently, the non-Fermi-liquid behavior will be
present as long as the temperature energy scale kBT is larger
than �. Note that � is a gap in the density-density correlation
function, not in the single-particle spectrum, since the orbital
order (like the nematic order) does not gap out the Fermi
surfaces. As a result, it is expected that the non-Fermi liquid
will persist for a while as the temperature is lowered below
TSPT and then gradually disappear at very low temperature
where the orbital order is strong. This is analogous to the case
of the ferromagnetic quantum critical point with a magnetic
field where the critical fluctuations are gapped by the Zeeman
energy.34

V. EXPERIMENTAL CONSEQUENCES

A direct consequence of non-Fermi-liquid behavior is the
temperature dependence of the resistivity. It has been pointed
out35 from studies on various iron pnictide superconductors
that a strong deviation from the Fermi-liquid T 2 behavior of
the resistivity above the SPT temperature will occur if a large
anisotropy in the in-plane resistivity exists below the SPT
temperature. Since the anisotropy in resistivity is intimately
related to orbital ordering, this observation provides direct
evidence for our claim that non-Fermi-liquid behavior is due
to orbital fluctuations. An independent calculation including
electron-phonon coupling to enhance the effect of orbital
fluctuations by Onari and Kontani33 also showed unusual
temperature dependence of the resistivity above the structural
transition temperature.

What about the zero-bias anomaly seen in point-
contact tunneling experiments19,20 on electron-doped
Ba(Fe1−xCox)2As2? Intriguingly, this zero-bias enhancement
starts to appear at temperatures roughly 30 K higher than TSPT

and remains robust well below TSPT. This observation is also
consistent with our theory. It has been shown by Lawler et al.21

that the single-particle density of states has the form of

N∗(ω) = N∗(0) + Bω2/3 ln ω + · · · (7)

in the nematic critical region and also in the nematic phase. In
fact, N∗(ω) obtains extra contributions due to the non-Fermi-
liquid self-energy, giving rise to a cusp at zero frequency and a
subsequent decrease as the frequency increases. This provides
a direct explanation for the zero-bias enhancement observed
in point-contact spectroscopy since the conductance dI/dV

roughly measures the single-particle density of states for small
frequency. Moreover, since the form of the single-particle
density of states is the same up to some mild modifications in
the vicinity of the critical point and also in the C4-symmetry-
broken phase, the zero-bias enhancement should have a smooth
crossover as TSPT is crossed, which in fact has been noticed
in quantum point-contact measurements.36 We predict that for
hole-underdoped Ba1−xKxFe2As2, which does not have an
in-plane resistivity anisotropy,35 the zero-bias enhancement
should be either nonexistent or much weaker than that in
electron-doped Ba(Fe1−xCox)2As2.

VI. CONCLUSION

In this paper we have presented a theory of non-Fermi-
liquid behavior in a five-band model with generalized Hubbard
on-site interactions for iron pnictide superconductors. At the
level of the random-phase approximation, we found a branch
of overdamped collective modes emergent at low frequency
in channels associated with quasi-1D dxz and dyz bands,
and we have shown that these modes become dominant at
low energies near the critical point for the C4-symmetry-
broken phase, leading to non-Fermi-liquid behavior. Our
theory indicates that quantum criticality through the evolution
of a non-Fermi-liquid phase plays an important role in
understanding the normal-state properties of iron pnictide
superconductors.
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