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We discuss the universal-transport signatures near a zero-temperature continuous Mott transition between a
Fermi liquid and a quantum spin liquid in two spatial dimensions. The correlation-driven transition occurs at
fixed filling and involves fractionalization of the electron: upon entering the spin liquid, a Fermi surface of
neutral spinons coupled to an internal gauge field emerges. We present a controlled calculation of the value of
the zero-temperature universal resistivity jump predicted to occur at the transition. More generally, the behavior
of the universal scaling function that collapses the temperature- and pressure-dependent resistivity is derived,
and is shown to bear a strong imprint of the emergent gauge fluctuations. We further predict a universal jump of
the thermal conductivity across the Mott transition, which derives from the breaking of conformal invariance by
the damped gauge field, and leads to a violation of the Wiedemann-Franz law in the quantum critical region. A
connection to the quasitriangular organic salts is made, where such a transition might occur. Finally, we present
some transport results for the pure rotor O(N ) conformal field theory.
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I. INTRODUCTION

Despite decades of study, the Mott metal-insulator tran-
sition remains a central problem in quantum many-body
physics.1 In recent years attention has refocused on an old
question: Can the Mott transition at T = 0 be continuous?
Usually, the Mott insulating state also has magnetic long-
range order or in some cases broken lattice symmetry which
doubles the unit cell. In such situations, a continuous Mott
transition between a symmetry-unbroken metal and the Mott
insulator requires not just the continuous onset of the broken
symmetry, but also the continuous destruction of the metallic
Fermi surface. It is currently not clear theoretically if such a
continuous quantum phase transition can ever occur.

Considerable theoretical progress2–8 has been possible
in situations in which the Mott insulator does not break
any symmetries but rather is in a quantum spin-liquid (SL)
state.9 The evolution from the Fermi-liquid (FL) metal to the
quantum spin-liquid state is of interest because it provides
an opportunity to understand the fundamental phenomenon
of the metal-insulator transition (MIT) without the compli-
cations of the interplay with the onset of broken symme-
try. Such a transition has acquired experimental relevance
with the discovery of quantum spin-liquid Mott insulators
near the Mott transition in a few different materials, notably
the quasi–two-dimensional triangular lattice organic salts10–15

κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, and the
three-dimensional hyper-kagome material16 Na4Ir3O8. Indeed,
upon application of hydrostatic pressure, these quantum spin
liquids become metallic.17[The phase diagram of κ-(BEDT-
TTF)2Cu2(CN)3 in addition has superconductivity at lower
temperatures.] The nature of the transition in the experiments
is not currently understood but could be potentially described
by a SL-FL quantum critical MIT.

A wide variety of quantum spin-liquid phases can exist
theoretically. However, a natural state3,18,19 that emerges near
the Mott transition is a gapless quantum spin liquid which has

a Fermi surface of spin- 1
2 neutral quasiparticles, the spinons,

while the charge excitations are fully gapped. Consequently,
there is a single-particle gap in the electron spectral function
even though there are gapless spin-carrying excitations. This
type of spin-charge separation where only the charge localizes
can be favored in systems (such as the organics) where
frustration and charge fluctuations suppress magnetic ordering.

The MIT we consider was studied at the mean-field level
in Ref. 2. A subsequent analysis5 of the quantum fluctuations
provided evidence that the second-order nature can survive
the (inevitable) inclusion of many-body effects. A rich set of
properties associated with the quantum critical point (QCP)
was uncovered, many not present at the mean-field level. For
example, it was found that quantum fluctuations lead to a
divergence of the effective FL mass as one approaches the MIT.
This gives rise to a divergence of the specific heat capacity
coefficient γ = C/T . A key insight was the realization that
the quantum critical state at the edge between the FL and SL is
actually a non-FL (nFL) metal where the Landau quasiparticle
is destroyed but the concept of a sharp Fermi surface persists.
This was dubbed a “critical Fermi surface.”4,5 One prediction
of this theory was that the zero-temperature resistivity jumps
by a finite amount as one goes from the FL to the quantum
critical state, where the value of the jump was predicted to be
universal, Rh̄/e2, R being a dimensionless number associated
with the QCP. This resistivity jump is illustrated in Fig. 1.

The main purpose of this work is to provide a controlled
calculation of the value of this jump and, more generally,
analyze the behavior of the electric resistivity in response to
changes in pressure (modifying the metallic bandwidth) and/or
temperature in the vicinity of the QCP. The resulting resistivity
can be compared with experiments, where the bandwidth can
be changed by applying mechanical or chemical pressure.
The predictions we make, viz., sharp resistivity variation on
the order of 10h/e2 ∼ 100 k�, quantum critical collapse of
pressure and temperature dependencies, thermal conductivity
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FIG. 1. (Color online) Jump of the universal resistivity ρ and
Lorentz number κ/σT at T = 0 as a function of δ, which is
proportional to ratio of the bandwidth to the Hubbard repulsion
[Eq. (1)]. The latter jump signals a violation of the Wiedemann-
Franz law by the critical Fermi-surface state. κ is the thermal
conductivity; R,K are universal constants associated with the Mott
QCP. In particular, they strongly depend on the emergent gauge boson
associated with the electron fractionalization. The resistivity becomes
infinite in the SL, and as a consequence so does the Lorentz number.

jump, and violation of Wiedemann-Franz law, provide distinct
signatures of the fractionalization at the MIT and of the critical
Fermi-surface state intervening between the FL and SL.

A crucial ingredient of the theory is that, at zero temper-
ature, the emergent gauge fluctuations associated with the
fractionalization decouple from the quantum critical charge
fluctuations. Despite this, the gauge fluctuations are expected
to play a crucial role for nonzero-temperature transport proper-
ties. A similar phenomenon happens in the Kondo breakdown
model studied in Ref. 20. An important difference with the
Kondo breakdown scenario is that the charge fluctuations near
the Mott transition studied in this paper are described by an
interacting field theory at low energies. Irrespective of this
difference, the same conclusion holds: the gauge fluctuations
become important for low-frequency transport at nonzero
temperature. We show this explicitly by calculating the effects
of these gauge fluctuations on the transport. In particular, the
precise value of the universal resistivity jump in the limit
that the frequency of the applied electric field goes to zero
faster than temperature is strongly affected by the gauge
fluctuations. In contrast, in the opposite order of limits the
universal resistivity jump is unaffected by the gauge field. We
further predict a universal jump of the thermal conductivity
across the Mott transition, which derives from the breaking of
low-energy conformal invariance by the gauge field, and leads
to a violation of the Wiedemann-Franz law by the critical
Fermi surface.

The paper is organized as follows. In Sec. II, we summarize
our main findings; Sec. III introduces the slave-rotor descrip-
tion for the Hubbard model. In Sec. IV, we formulate the
transport via a quantum Boltzmann equation for the critical
charge fluctuations, the rotors, and present its solution at
criticality. Section V extends the resistivity calculation to the
entire QC region. In Sec. VI, we discuss the behavior of the
resistivity at large temperatures and frequencies. Signatures
relating to thermal transport are discussed in Sec. VII. The
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FIG. 2. (Color online) The phase diagram of the quantum critical
Mott transition. δ tunes the ratio of onsite repulsion to the bandwidth
away from its critical value, and can be put in correspondence with
P − Pc, the deviation from the QC pressure Pc. The dark shaded
(blue) region is the quantum critical region, where the Landau
quasiparticle is destroyed but a “critical Fermi surface” nonetheless
exists. It separates the spin liquid (SL) and the Fermi liquid (FL).
The intermediate-T states (with prefix “M”), the marginal SL and
FL, differ from the low-temperature ones by the fact that the spinons
and gauge bosons still behave as in the QC region.

Appendixes give further details regarding the critical rotors,
with a focus on their transport properties in the absence of the
emergent gauge field, i.e., in the pure O(N ) nonlinear sigma
model (NLσM) for N � 2.

II. MAIN RESULTS

In this section, we summarize our main results. We first
need to briefly describe the finite-temperature phase diagram
obtained in Ref. 5, which is reproduced in Fig. 2. The parameter
δ tunes the ratio of the electronic bandwidth to the onsite
repulsion away from its critical value, and can be put in
correspondence with P − Pc, the deviation from the quantum
critical pressure Pc:

δ ∝ t/U − (t/U )c ∼ P − Pc . (1)

At T > 0, the metal-insulator transition becomes a crossover
due to the presence of the emergent gauge boson. We
distinguish three main phases in Fig. 2: the spin liquid (in
white in the figure), the Fermi liquid (pink/light shading),
and the quantum critical state bridging the two (blue/dark
shading). The latter state is a non-FL where the Landau
quasiparticle has been destroyed, yet a sharp Fermi surface
persists: an instance of a “critical Fermi surface.” In exiting
the QC region, one enters two intermediate phases: a marginal
spinon liquid (MSL) or a marginal Fermi liquid (MFL). These
are similar to their low-temperature counterparts, the SL and
FL, except that the spinons and gauge bosons still behave as in
the QC region. As these correspond to fluctuations in the spin
degrees of freedom, the two crossovers may be interpreted
as corresponding to spin and charge degrees of freedom
exiting criticality at parametrically different temperatures.
At sufficiently low temperature they cross over to the usual
SL and FL states. The behavior of the electric resistivity as
one tunes across the phase diagram is illustrated in Fig. 3.
Figures 3(a) and 3(c) correspond to the T -dependent behavior
at fixed δ (i.e., pressure), and vice versa for 3(b) and 3(d).
The important crossovers for low-temperature transport are
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FIG. 3. (Color online) Sketch of low-temperature behavior of the resistivity near the quantum critical (QC) Mott transition. Panel (c) shows
the resistivity vs T for different values of the onsite repulsion over the bandwidth (tuned by δ), with the corresponding cuts shown in the phase
diagram in (a). Panel (d) shows the resistivity vs δ at different temperatures, with the corresponding cuts shown in the phase diagram in (b). In
(c) and (d), the markers correspond to the location of the resistivity jump upon entering the QC state from the FL. The value of the jump is
universal: Rh̄/e2. Our calculations yield R = 49.8, which translates to a jump of ∼8h/e2.

the boundaries of the QC region: there, the charge degree of
freedom either localizes (SL) or condenses (FL). At the former
crossover the resistivity becomes thermally activated, ∼e�+/T ,
because of the finite Mott charge gap �+. This can be seen
in curves 1 and 2 in Fig. 3(c). At the crossover to the FL, it
abruptly drops to its residual metallic value ρm [curves 4 and 5
in Fig. 3(c)]. The regime of interest for transport corresponds
to the QC non-FL, where the resistivity relative to its residual
value in the metal ρm is purely universal: ρ − ρm ≈ (h̄/e2)R,
where R is a universal dimensionless constant. Our controlled
calculation of R in a large-N approximation gives the estimate
R = 49.8. R sets the size of the jump shown in Fig. 1, which
is reproduced in Fig. 3(d), curve 1. At finite temperature, this
jump becomes a steep increase, as shown in curves 2 and 3 of
Fig. 3(d). We emphasize that the low-temperature resistivity
above the QCP, δ = 0, is T independent and takes the value
ρ = ρm + (h̄/e2)R.

The diverse behavior shown in Fig. 3 can be obtained
from a single-variable function. Indeed, the temperature- and
pressure-dependent resistivity (relative to its constant residual
value in the FL) can be collapsed by a universal scaling
function G associated with the Mott QCP:

ρ − ρm = h̄

e2
G

(
δzν

T

)
, (2)

where the dynamical and correlation length exponents corre-
spond to those of the three-dimensional (3D) XY universality
class: z = 1 and ν ≈ 0.672. Indeed, the critical charge degrees

of freedom can be effectively described by a Bose-Hubbard
model at half-filling near its insulator-superfluid transition,
which belongs to that universality class. We show that although
the spin fluctuations encoded in the emergent gauge field
associated with the electron fractionalization do not alter
these exponents, they have strong effects on the scaling
function, and thus on the value of the universal jump
(h̄/e2)R.

We predict that thermal transport also shows signatures
of the critical Fermi surface. In particular, the thermal
conductivity divided by temperature κ/T has a universal
jump at criticality, by an amount (k2

B/h̄)K , where K is a
dimensionless number just like R. As we explain in Sec. VII,
the emergent gauge fluctuations play an important role by
breaking the conformal invariance present in their absence,
thus reducing κ/T from a formally infinite value to a finite,
universal one. Finally, combining the electric resistivity and
thermal conductivity jumps, we predict that the QC non-FL
violates the Wiedemann-Franz law by a universal amount:
the Lorentz number differs from its usual value in the FL by
(kB/e)2RK , as shown in Fig. 1.

III. MOTT TRANSITION IN THE HUBBARD MODEL:
A SLAVE-ROTOR FORMULATION

To set the stage, we briefly review the description of the
insulating quantum spin liquid with a spinon Fermi surface,3

and the continuous bandwidth-tuned Mott transition5 to it from
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a Fermi liquid. We consider a single-band Hubbard model at
half-filling on a two-dimensional (2D) nonbipartite lattice (for,
e.g., triangular):

H = −t
∑
〈rr ′〉

(c†σrcσr ′ + H.c.) + U
∑

r

(nr − 1)2, (3)

where cσr annihilates an electron with spin σ at site r ,
and nr = c

†
σrcσr . In the small-U/t limit, the ground state

is a Fermi-liquid metal, while in the opposite limit a Mott
insulator results. The interplay of frustration and strong charge
fluctuations can lead to a quantum spin-liquid ground state
instead of a conventional antiferromagnetic Mott insulator.
We shall focus on the transition to such a state.

The slave-rotor construction2 is tailor made to describe the
spin-charge separation that occurs as the charge localizes when
the electronic repulsion becomes sufficiently large, yet weak
enough for the spins to remain disordered, even at T = 0.
At the level of the microscopic Hubbard model [Eq. (3)], the
slave-rotor construction is a change of variables to degrees of
freedom better suited to describe the SL, in which the electron
is fractionalized into spin- and charge-carrying “partons”:

crσ = ψσrbr . (4)

The fermionic spinons ψσr carry the spin, while the bosonic
rotors br = e−iθr the charge of the original electron. The
projection from the enlarged Hilbert space to the physical
one is obtained from the operator identity relating the rotor
charge or “angular momentum” lb to the fermion number, nf :
lb = 1 − nf , which is enforced at each site, where nf = n is
the actual electronic occupation number (because |b| = 1). By
virtue of Pauli exclusion, the charge relative to half-filling at
each site can only be −1 (double occupancy), +1 (hole), and
0 (single occupancy). Hence, the positive (holon) and negative
(doublon) electric charge excitations encoded in the rotors
relate to the holes and doubly occupied sites of the half-filled
Hubbard model (see Fig. 4). Moreover, since the system is
at half-filling, there is a low-energy particle-hole symmetry
between these positive and negative charge excitations.

In the long-wavelength limit, a U(1) gauge structure
emerges.3 The temporal component of the gauge field results

(a)

P 0
J 0
(b)

FIG. 4. (Color online) Charge excitations near the Mott transition.
(a) Triangular lattice at half-filling; the small shaded disks represent
electrons. The double-occupied (empty) sites are identified by a
red/left (blue/right) circle. These are encoded in the charge rotor
excitations, the holons and doublons, respectively. Under an applied
electric field, they will move in opposite directions. (b) By virtue of
the emergent particle-hole symmetry between doublons and holons,
it is possible to have a state with zero momentum P but finite current
J . This allows interactions to dissipate current while conserving
momentum.

from the above constraint necessary to recover the physical
Hilbert space, while the spatial components derive from
the fluctuations of spinon bilinears about their saddle-point
configuration. After coarse graining, the low-energy effective
action for the Hubbard model in terms of the fractionalized
degrees of freedom can be written as

S = Sb,a + Sf,a + Sa , (5)

Sb,a = 1

2g

∫
x

(|(∂ν − iaν)b|2 + iλ(|b|2 − 1)) , (6)

Sf,a =
∫

x

ψ̄σ

(
∂τ − μ − ia0 + (∇ − ia)2

2mf

)
ψσ , (7)

Sa = 1

e2
0

∫
x

(ενγβ∂γ aβ)2. (8)

We work in units where the rotor velocity c is set to one, unless
otherwise specified. The complex boson field b is constrained
to lie on the unit circle via the Lagrange multiplier field λ.
The indices ν, γ, β run over imaginary time and the two
spatial dimensions; μ is the electronic chemical potential.
We have used the shorthand

∫
x

= ∫ 1/T

0 dτ
∫

d2x. The gauge
fluctuations have a Maxwellian action resulting from the elimi-
nation of high-energy fluctuations; e0 is the corresponding bare
gauge charge. The parameter that tunes the Mott transition
of the rotors (and hence of the whole electronic liquid) is
g ∝ U/t , where U is the Hubbard repulsion from the original
electronic Hamiltonian, while t is proportional to the electronic
bandwidth. To make the action dimensionless, the parameter g

carries the dimension of length, as given by a real-space cutoff
scale. We can relate it to the parameter δ introduced in Eq. (1)
via δ = g−1 − g−1

c ∝ t/U − (t/U )c. For small coupling g <

gc, the rotors spontaneously condense, corresponding to the
metallic phase of the original Hamiltonian, while in the
opposite limit g > gc, the rotor field is disordered, leaving
the system in a SL ground state. In the condensed or ordered
phase, one key feature that needs to be emphasized is the
gapping out of a spurious “gapless zero sound mode” found
in the decoupled treatment,2 where it arises as a Goldstone
boson of the spontaneously broken O(2) symmetry of the
charged rotors in the FL. In fact, this mode acquires a gap when
the inescapable gauge fluctuations about the saddle point are
included. The Goldstone boson combines with the emergent
transverse gauge boson via the Anderson-Higgs mechanism,
which leaves both excitations with a gap.

The emergence of a relativistic action for the rotors, which
have a dynamical exponent z = 1, is a consequence of the
emergent low-energy particle-hole symmetry of the Hubbard
model at half-filling noted above. This low-energy symmetry
will be important when we examine the effect of the gauge field
on the critical rotors. It will lead to a strong suppression of the
dynamical gauge fluctuations in the charge (rotor) sector.

The field theory above is strongly interacting. Indeed,
in two dimensions the rotor NLσM considered separately
flows to a strong-coupling fixed point where even the b-
field quasiparticles are ill defined. The spinons and gauge
fluctuations do not alter this. One perturbative approach to
the problem extends the field theory to include a large number
of flavors of the matter fields: when that number is very large,
we have weakly interacting quasiparticles, at least in the boson
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sector. We will use this extension, which we now describe in
more detail, to bring the calculation under control.

A. Low-energy theory and large-N extension

We consider the slave-rotor field theory extended to have
a large number of rotor and spinon flavors, allowing for a
systematic study of transport.21 The number of copies of the
complex rotor is taken to be N/2, yielding an even number N

of real scalar fields. The case of physical interest has N = 2.
In this large-N extension, the effective actions of the rotors
and spinons read as

Sb,a = N

2g

∫
x

(|(∂ν − iaν)bα|2 + iλ(|bα|2 − 1)) , (9)

Sf,a =
∫

x

ψ̄σ

(
∂τ − μ − ia0 + (∇ − ia)2

2mf

)
ψσ , (10)

where each bα is a complex scalar, and α runs from 1 to
N/2, while there are N copies of spinons, σ = 1, . . . ,N .
Repeated indices are summed over, for example, |bα|2 =
b̄αbα = ∑

α |bα|2. λ is the Lagrange multiplier field enforcing
the constraint that the O(N ) real field be unimodular. The
coupling g has been rescaled g → g/N . Note that the gauge
field reduces the rotor global symmetry from O(N ) to U (N/2).
In the N → ∞ limit, the fluctuations of the λ and gauge bosons
are unimportant. Formally integrating out the rotors yields the
following form for the partition function21 Z = ∫

Dλe−Seff [λ],
with

Seff[λ] = N

2

[
tr ln(−∂2 + iλ) − i

g

∫
x

λ

]
. (11)

The overall factor of N plays the role of 1/h̄ so that in the
large-N limit, the quantum fluctuations are suppressed and we
only need to consider the classical equation of motion21

∫
q

1

q2 + m2
= 1

g
, (12)

where
∫
q

= T
∑

ωn

∫
ddq/(2π )d and the mass squared m2 =

iλ0 ∈ R corresponds to the saddle-point value of the uniform
component of λ, λ0. This mean-field value of λ plays the
role of the mass for the rotors in their insulating phase at
large g. It can be alternatively seen as the inverse correlation
length ξ ∼ 1/m. At sufficiently small g, Eq. (12) has no
solution, and a different approach must be used to describe the
condensation. In the following, we shall focus mainly on the
quantum critical regime as well as on the insulating phase. The
solution of the saddle-point equation (12) in the large-N limit
and at finite temperature directly above the quantum critical
point g = gc yields m = �T , where � = 2 ln( 1+√

5
2 ) ≈ 0.96,

twice the logarithm of the golden ratio.22 The mass vanishes
linearly as T → 0, i.e., the correlation length of the charged
rotors diverges upon approaching the QCP: ξ ∼ 1/T . The full
dependence of m on g and T at N = ∞ is given in Sec. V.

Corrections at order 1/N to the N = ∞ saddle point
correspond to interactions mediated by the λ and a bosons,
which develop dynamics when N is finite. The rotor action,
including the effective mass corresponding to the saddle-point

value of the λ boson, now reads as

Sb,a = 1

2g

∫
x

[|(∂ν − iaν)bα|2 + m2|bα|2 + iλ|bα|2]. (13)

We are using the Coulomb or transverse gauge so that it
is understood that we only include configurations where
∇ · a = 0. The transverse and temporal component of aμ are
decoupled in this gauge. Further, we can omit the latter in
the low-energy limit because it is screened by the spinon
Fermi surface. The transverse part of the gauge field remains
gapless because the currents remain unscreened, as opposed
to the charge. In the remainder, we shall use a to represent
the transverse component. The 1/N corrections to the saddle
point will generate O(1/N) propagators for both the gauge
and λ bosons, which acquire the following effective action:

1

2

∫
q

[
|a(q)|2 N

2

(
�

j
f + �

j
b

) + |λ(q)|2 N

2
�b

]
, (14)

where the finite-temperature, imaginary-time polarization
functions read as

�b(iνl,q) = T
∑

n

∫
d2 p

(2π )2

1

(ωn + νl)2 + ε2
p+q

1

ω2
n + ε2

p

,

(15)

�
j
b(iνl,q) = −T

∑
n

∫
d2 p

(2π )2

(2q̂ × p)2

(ωn + νl)2 + ε2
p+q

1

ω2
n + ε2

p

,

(16)

where the superscript “j” identifies the current-current cor-
relator; we have defined the rotor dispersion relation εp =√

p2 + m2. Details about the computation of �b,�
j
b can be

found in Appendixes A and C, respectively. �j
b is discussed in

the next section. The spinon Fermi surface contributes

�
j
f = μ

(
c1

|ωn|
vF k

+ c2
k2

k2
F

)
, |ωn| < vF k (17)

where the ci are real numbers, while kF ,vF are the Fermi
momentum and velocity, respectively. As we work in units
where the velocity of the rotors is set to 1, we need to keep
vF explicitly. Because of the term |ωn|/vF k in the fermionic
polarizability, the gauge fluctuations are Landau damped.

1. Role of gauge fluctuations

We now examine the role of the gauge fluctuations. The
Landau damped dynamics due to the Fermi surface dominate
those induced by the rotor polarization function �

j
b, and we

can evaluate the latter in the static limit.5 Note that �
j
b, just

as �b, depends on the temperature and g via the mass of the
rotors m. For g = gc, as shown in Appendix C, we get

�
j
b(0,q) =

{
γ2

q2

T
if q � T ,

σ∞
b q if q  T ,

(18)

where γ2 ≈ 0.031 is a dimensionless constant, while σ∞
b ≈

0.063 is the rotor conductivity in units of e2/h̄ in the
large-frequency (T → 0) limit ω/T  1. As discussed in
Secs. IV A and VI A, it differs from the dc conductivity we
are seeking and can be obtained from a simple T = 0 analysis.
The q2 behavior at q � T results from including the mass of

245102-5



WITCZAK-KREMPA, GHAEMI, SENTHIL, AND KIM PHYSICAL REVIEW B 86, 245102 (2012)

the rotors m = �T when computing the current polarization
function. It has the behavior expected from massive modes
since for q � T , the fluctuations exceed the correlation length
1/m ∼ 1/T and must be gapped. The important term for the
low-temperature behavior is the linear q contribution. This
nonanalytic dependence arises because of the gaplessness of
the critical rotors and gives the gauge field a za = 2 dynamical
exponent, making it less singular than deep in the SL where the
rotors are gapped and the gauge bosons have za = 3. Indeed,
the za = 2 damped gauge fluctuations give the spinons a
self-energy ∼ 1

N
iω ln(μ/|ω|), which is weaker than in the usual

SL, where we have 1
N

i|ω|2/3. Thus, at criticality, as well as in
the MFL and MSL phases, the spinons form a marginal Fermi
liquid, leading to the usual logarithmic corrections. We em-
phasize that we do not need to worry about possible subtleties
with the breakdown of the naive large-N expansion for a Fermi
surface coupled to a gapless boson.23 Indeed, we are mainly
concerned with the quantum critical region, where, as stated
above, the fermions only acquire logarithmic corrections due
to gauge fluctuations. Such a marginal Fermi liquid of spinons
can be controlled by a simple perturbative renormalization
group (RG) approach.24,25 In contrast, deep in the SL, one
might need to take the limit of small za − 2 simultaneously
with 1/N → 0 to make the expansion controlled.25 Further, the
main transport properties will derive from the rotor sector for
which the large N works reliably. The spinons affect the rotors
only via the damping of the gauge bosons, which we believe
is a robust feature, independent of the expansion scheme.

Regarding the rotor or charge sector, it was shown5 that
the gauge fluctuations do not alter the nature of the rotor
excitations, i.e., the rotor self-energy is subleading compared
to the bare dynamics. Insofar as the thermodynamic critical
properties of the charge sector are concerned, they belong to
the 3D XY universality class, unaffected by the gauge bosons
or spinons. The importance of the damping at quenching
the gauge fluctuations can be heuristically understood by
examining the dominant rotor fluctuations, which have ω ∼ q

(z = 1). Substituting this dispersion relation into the Landau
damping term we get μ|ω|/q ∼ μ. Thus, the dominant rotor
fluctuations see the gauge bosons as screened. Such an effect
was also identified in Ref. 26, in the context of a quantum
critical transition between a Néel-ordered Fermi-pocket metal
to a non-FL algebraic charge liquid, called a “doublon metal.”
This suppression mechanism of the gauge field due to a Fermi
surface was referred to as a “fermionic Higgs effect.”

In the next section, we shall show that although the gauge
fluctuations are not effective at influencing the thermodynamic
critical properties in the charge sector, they can have strong
effects on nonzero-temperature transport, down to arbitrarily
low temperatures.

IV. CRITICAL TRANSPORT NEAR THE MOTT
TRANSITION

In a slave-particle theory such as the one under consider-
ation, many observables can be determined from the separate
responses of the partons. These relations generally go under
the name of Ioffe-Larkin composition rules. For example, the
one for the resistivity reads as27

ρ = ρb + ρf , (19)

where ρb,f is the resistivity of the spinons and rotors,
respectively. The resistivities “add in series” because of the
constraint relating the spinons and rotors to recover the original
Hamiltonian/Hilbert space: the electric field induces a motion
of the electrically charged rotors, forcing spinons to flow as
well. Alternatively, we can say that the external electric field
induces an internal one. It follows that the parton with the
highest resistivity governs the entire electric response. Near
the Mott transition, the rotors have the most singular response
as they undergo a quantum phase transition, while the spinons
form a Fermi surface throughout. We thus anticipate that the
strong variation of ρb across the transition will give the entire
resistivity its key dependence.

Let us first discuss the T = 0 and clean limit, in which case
the spinon Fermi surface has vanishing resistivity throughout.
The rotors also have vanishing resistivity in their condensed
phase, such that the FL has ρ = ρb + ρf = 0 + 0 = 0 as
expected. On the Mott side, the rotors are gapped hence the
whole system has infinite resistivity: ρb = ∞ = ρ. The inter-
esting feature happens directly at criticality, where although we
still have ρf = 0, the rotors have a finite universal resistivity
induced purely by interactions22,28 ρb = Rh̄/e2. It is possible
for systems with particle-hole symmetry or equivalently
emergent relativistic invariance to have a finite resistivity in the
absence of disorder or umklapp scattering. For such systems,
the momentum and electric current operators need not be
proportional, allowing interactions to dissipate the latter while
preserving the former. More physically, these systems have in-
dependent and symmetry-related positive and negative charge
excitations that flow in opposite directions under an applied
electric field, yielding a state with a finite current but with zero
momentum. This is schematically illustrated in Fig. 4. The
finite, interaction-driven rotor resistivity at criticality leads to
a discrete jump at T = 0, as illustrated in Fig. 1.

This scenario naturally extends to finite but low tempera-
tures: the fermions still contribute only a constant ρf , which
is zero for a clean system, or finite in the presence of weak
disorder. Instead of discontinuously jumping, the rotor resistiv-
ity increases rapidly upon entering the quantum critical region,
where it slowly increases until the growth becomes exponential
at the crossover to the spin liquid, as is shown in Fig. 3(d). We
shall thus focus on the resistivity of the rotors ρb for which we
perform a 1/N expansion. In the simplest limit, N = ∞, the
rotors are free because they decouple from the λ and gauge
bosons. The dc resistivity thus vanishes in the absence of
scattering, ρb = 0. At order 1/N , the rotors begin colliding
with the constraint field λ and the emergent gauge boson,
leading to a finite resistivity. For sufficiently large N , the
system has well-defined quasiparticles, the transport properties
of which can be unambiguously studied by a quantum kinetic
(or Boltzmann) equation, to which we now turn.

A. Quantum Boltzmann equation for
critical charge fluctuations

We formulate the quantum Boltzmann equation (QBE) for
the distribution functions of the rotor excitations in the pres-
ence of an oscillating electric field E(t) with driving frequency
ω. This frequency plays an important role as it introduces
an energy scale that divides the critical frequency-dependent

245102-6



UNIVERSAL TRANSPORT NEAR A QUANTUM CRITICAL . . . PHYSICAL REVIEW B 86, 245102 (2012)

resistivity into two regimes: ω < T and ω > T . Indeed, the
frequency ω must be compared with the dominant scale for the
rotors in the quantum critical regime, which is the temperature.
As was established in seminal work by Damle and Sachdev,22

the limits ω → 0 and T → 0 do not generally commute for
the response functions of critical systems. For example, the
T = 0 dc resistivity is obtained by first taking ω/T → 0,
then T → 0, so that one must necessarily perform a finite-
temperature analysis to obtain the correct dc response. A T =
0 calculation, which is equivalent to taking T → 0 first, yields
the response in the ω/T → ∞ limit, which generically differs
from the dc behavior. This noncommutativity of the ω → 0
and T → 0 limits can be explained on physical grounds:
The small-frequency resistivity (ω < T ) is dominated by the
incoherent scattering of thermally excited critical fluctuations;
it corresponds to the hydrodynamic limit. In contrast, the
large-frequency resistivity (ω > T ) arises from the coherent
motion of field-generated excitations; it is mainly collisionless.
The dichotomy is even more striking in our case due to the
presence of the gauge bosons: We shall show that although the
gauge fluctuations do not affect the transport in the large-ω/T

limit, they actually dominate the dc resistivity!
We assign the electric charge to a single rotor flavor

b1, which couples to the oscillating electric field E(t). The
standard mode expansion for the electrically charged rotor
operator reads as

b1(x) =
∫

k
α+(t,k)eik·x + α

†
−(t,k)e−ik·x , (20)

where we have defined α±/α
†
± as the annihilation/creation

operators for holons (+) and doublons (−), i.e., the positive
and negative electric charge excitations. The expectation value
of the current can be decomposed into two pieces: J(t) =
J I (t) + J II (t), where

J I (t) =
∫

k

∑
s=±

s
k
εk

〈α†
s (t,k)αs(t,k)〉 (21)

=
∫

k

∑
s=±

s
k
εk

fs(t,k), (22)

J II (t) =
∫

k

k
2εk

〈α†
+(t,−k)α†

+(t,k) − α
†
−(t,−k)α†

−(t,k)

− 2α
†
+(t,−k)α†

−(t,k)〉 + H.c. (23)

We have defined the distribution functions of positive and
negative charge excitations: fs = 〈α†

s (t,k)αs(t,k)〉, s = ±;
εk = √

m2 + k2 is the rotor dispersion. From Eq. (23), it
should be apparent that as J II involves pair production, it
will only contribute when the driving frequency is above the
pair-production threshold ω > 2m, where m ∼ T in the QC
region. We shall concern ourselves with the determination of
J I , i.e., fs(t,k), which governs the transport in the small-
frequency limit. The asymptotic high-frequency resistivity in
the limit ω  T can be obtained from a T = 0 calculation and
we leave its analysis to Sec. VI A.

The QBE for the distribution function of holon (doublon)
rotor excitations fs with s = ±, respectively, reads as

(∂t + s E · ∂k)fs(k,t) = 1

N
(Iλ[f±] + Ia[f±]) (24)

= 2

N

∫ ∞

0

d�

π

∫
d2q

(2π )2

[
Im

(
1

�b(�,q)

)
+ (2k × q̂)2 ImD(�,q)

]{
(2π )δ(εk − εk+q − �)

4εkεk+q

[fs(k,t)[1 + fs(k + q,t)]

× [1 + n(�)] − fs(k + q,t)[1 + fs(k,t)]n(�)] + (2π )δ(εk − εk+q + �)

4εkεk+q

[fs(k,t)[1 + fs(k + q,t)]n(�)

− fs(k + q,t)[1 + fs(k,t)][1 + n(�)]] + (2π )δ(εk + ε−k+q − �)

4εkε−k+q

[fs(k,t)f−s(−k + q,t)[1 + n(�)]

− [1 + fs(k,t)][1 + f−s(−k + q,t)]n(�)]

}
. (25)

We have absorbed the magnitude of the rotor charge into E.
The right-hand side of the QBE, the collision term, can be
obtained for instance by invoking Fermi’s golden rule.21,29

The first two δ functions enforce energy conservation for
absorption and emission of λ and gauge bosons by the rotors,
while the last one corresponds to pair creation/annihilation of
holon-doublon pairs.

The propagators of the λ and gauge bosons 2/N�b and
2D/N = 2/N (�j

j + �
j
b), respectively, enter into the QBE via

their spectral functions which dictate the density of states
the rotor excitations can scatter into. They are evaluated
in equilibrium. This is justified in the large-N limit since
the external field couples to a single rotor flavor such that
the associated nonequilibrium corrections to the polarization

functions sublead in 1/N . In other words, the drag of the λ and
gauge fields by the electric field, an analog of “phonon drag,”
is negligible in the large-N regime. The rotor flavors that do
not directly couple to the electric field bα>1 play the role of an
effective bath at equilibrium, from which the constraint field
acquires its dynamics.

The scattering terms on the right-hand side of Eq. (24)
all scale like 1/N because the gauge and λ bosons have
propagators of that order. As N → ∞, the scattering terms
vanish and the rotors become free, displaying a sharp
Drude peak in the real part of the small-frequency con-
ductivity: σb ∝ δ(ω), ω < T . As we shall see, the finite
1/N effects will cure this singularity, yielding a finite dc
conductivity.
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We now proceed to the solution of the rotor QBE [Eq. (24)]
by first expanding the distribution function to linear order
in E,

fs(k,ω) = n(εk)2πδ(ω) + s E · kϕ(k,ω) , (26)

where we have Fourier transformed from time to frequency.
The deviation function ϕ(k,ω) only depends on the magnitude
of k since E · k fully encodes the rotational symmetry breaking
in the presence of the external electric field. The unknown
function ϕ parametrizes departures from the equilibrium Bose-
Einstein distribution n(εk), with ε2

k = m2 + k2. The result of
the linearization of the collision term due to the λ bosons
can be found in Appendix A; we can not make significant
simplifications there. Indeed, we need to perform a careful
numerical evaluation of the retarded polarization function
�b(�,q) for all frequencies and momenta. On the other hand,
we can significantly simplify the scattering term due to gauge
bosons. As mentioned above, dynamical gauge fluctuations
are suppressed in the rotor sector at T = 0. Although a static
(� = 0) gauge mode a(0,q) escapes the Landau damping, at
T = 0 it constitutes a set of measure zero in the continuum
of excitations and is thus unimportant. At finite T , the static
�n = 0 Matsubara frequency is well separated from the others
and thus provides a viable scattering channel. As long as the
hierarchy ω � T � μ is maintained, where μ is the electronic
chemical potential, this effect remains. We can interpret the
situation as follows: the rotors are scattered by a static random
magnetic field ∇ × a(x), generated by the emergent gauge
fluctuations, which increases the resistivity compared with the
usual insulator-superfluid transition of rotors. The width of this
random distribution of static magnetic fields is proportional to
the temperature T . This is illustrated in Fig. 5. To determine
the corresponding scattering rate, let us first rewrite the

FIG. 5. (Color online) Illustration of the main scattering mech-
anisms determining the resistivity in the QC region. The blue disk
corresponds to a holon excitation with charge +e. In addition to the
usual scattering between critical charge fluctuations (mediated by the
λ field), the static emergent gauge fluctuations generate a random
“magnetic field” ∇ × a that scatters the holons and doublons. A
schematic configuration of this emergent magnetic field (which is
always perpendicular to the plane) is shown, where the scale gives its
strength and direction, the latter dictated by the sign.

gauge-boson–rotor scattering term

Ia[fs] = 2

N

∫ ∞

0

d�

π

∫
d2q

(2π )2
(2k × q̂)2ImD(�,q)

×
{

(2π )δ(εk − εk+q − �)

4εkεk+q

[fs(k,t)[1 + fs(k + q,t)]

× [1 + n(�)] − fs(k + q,t)[1 + fs(k,t)]n(�)]

+ (2π )δ(εk − εk+q + �)

4εkεk+q

[fs(k,t)[1 + fs(k + q,t)]

× n(�) − fs(k + q,t)[1 + fs(k,t)][1 + n(�)]]

}
.

(27)

We have neglected the particle-antiparticle production term,
the one with δ(εk + ε−k+q − �), because it requires an energy
� > 2m, which renders it subleading due to the suppression
of dynamical gauge fluctuations. Linearizing yields the simple
relaxational form

Ia = − s E · kϕ(k,ω)

τa(k)
= − δfs

τa(k)
(28)

with the momentum-dependent scattering rate

1

τa(k)
= T

N
× 8k2

πεk

∫ 1

0
dy

y2
√

1 − y2

�
j
b(0,2ky)

. (29)

This result for the scattering rate due to the emergent gauge
bosons is valid for temperatures T � μ. This elastic scattering
rate obtained in the static regime is universal in the sense that
it does not depend on the Fermi-surface information, such as
kF and vF . It follows that we can express it in terms of a
single-parameter scaling function

1

τa

= T

N
Fa

(
k

T

)
. (30)

The exact momentum dependence can be determined numer-
ically and is shown in Fig. 6. In evaluating Eq. (29), had one
simply used the T = δ = 0 result �j

b(0,q) ∼ q, the rate would
have vanished as k → 0.

0 1 2 3 4 5
0

5

10

15

k T

Fλ

Fa

FIG. 6. (Color online) The scattering rate due to gauge fluctua-
tions (solid line), Eq. (29), and due to the λ bosons (dashed line). The
latter, Fλ, appears in Eq. (31) and is defined in Eq. (A3). We see that
the rate due to the gauge fluctuations is a factor of ∼8 larger than that
due to the λ field and is thus the dominant scattering mechanism.
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After linearizing Eq. (24), we get the following equation
for the deviation ϕ from the equilibrium distribution:

−iωϕ(p,ω) + g(p)/T 2 = T

N

{
−[Fλ(p) + Fa(p)]ϕ(p,ω)

+
∫

dp′Kλ(p,p′)ϕ(p′,ω)

}
, (31)

where we have Fourier transformed from time to frequency and
have introduced dimensionless momentum variables p,p′ that
have been normalized by temperature: p = k/T . On the left-
hand side, the term that makes the equation nonhomogeneous
reads as g(p) = ∂εp

n(εp)/εp = −eεp/εp(eεp − 1)2, where it
is understood that when we use the dimensionless momen-
tum, the rotor mass is scaled by T , εp =

√
p2 + (m/T )2,

and the Bose function does not contain the usual factor of
temperature: n(εp) = 1/(eεp − 1). We have also introduced
the dimensionless kernel Kλ(p,p′) describing the nonelastic
processes in which the rotors exchange energy with the λ

bosons. It is independent of the gauge field, the driving
frequency, and N . In analogy with Eq. (30), we have further
defined the dimensionless function Fλ that corresponds to the
scattering rate due to interactions with the λ field. More details
about Fλ and Kλ can be found in Appendix A.

B. Solution of QBE and rotor conductivity

By performing the rescalings

ω̃ = ωN

T
, (32)

�(p,ω̃) = T 3

N
ϕ(p,ω) , (33)

where again p = k/T is the dimensionless momentum, we
obtain a universal, parameter-free equation

−iω̃�(p,ω̃) + g(p)

= −F (p)�(p,ω̃) +
∫

dp′Kλ(p,p′)�(p′,ω̃) . (34)

The gauge fluctuations do not spoil the existence of such a
universal equation, which arises for the pure rotor theory,21

because they contribute a universal scattering rate modifying
Fλ → Fλ + Fa =: F .

The above integral equation needs to be solved numerically.
Once we obtain �, we can compute the low-frequency
conductivity σbI from the expression for the current in terms
of the distribution function of the rotors

〈J I (ω)〉 =
∫

d2k

(2π )2

∑
s=±

s
k
εk

fs(k,ω) (35)

=
∑

s

s

∫
d2k

(2π )2

k
εk

s E · kϕ(k,ω). (36)

Assuming the E field is in the x direction, we get

σbI (ω) = 〈JIx(ω)〉/Ex(ω) (37)

= 1

2π

∫ �

0
dk

k3ϕ(k,ω)

εk

(38)

= N × 1

2π

∫ �/T

0
dp

p3�(p,ω̃)

εp

, (39)
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FIG. 7. (Color online) Universal scaling function for the real part
of the conductivity above the QCP (δ = 0). ω̃ = Nω/T is the rescaled
frequency. The dotted line shows the scaling function in the absence
of the gauge field. The inset shows �′

I for a larger range of ω̃.

where � is the momentum cutoff used in the numerical
solution. The last equality makes use of the scaling function
for ϕ, so that the small-frequency conductivity ω/T � 1 can
be written as

σbI (ω) = e2

h̄
N × �I

(
Nω

T

)
, (40)

where the fundamental constants e and h̄ were reintroduced;
�I is a complex-valued universal function defined by Eq. (39),
the real part of which is shown in Fig. 7. As shown there, the
conductivity is substantially reduced at small frequencies ω̃

compared with the pure O(N ) model due to the presence of the
emergent gauge field. The universal number that determines
the dc conductivity is �I (0) = 0.010. It can be compared with
�

O(N)
I (0) = 0.085 in the absence of the gauge field, i.e., for

the pure O(N ) model. Extrapolating to the case of physical
interest N = 2, the conductivity reads as

σb(0) = e2

h̄
× 0.020, O(2) + damped gauge field (41)

= e2

h̄
× 0.170, pure O(2). (42)

We note en passant that this last number for the pure O(2)
model, 0.170, is very close to what was obtained in the small-ε
expansion,22 0.1650. Both these numbers lie near the self-dual
value 1/2π ≈ 0.159 which is associated with a conductivity
equal to the quantum of conductance e2/h.

As the quantity that has a universal jump at the MIT is the
resistivity and not the conductivity (unless we restrict ourselves
to clean systems), we here give the expression for the rotor dc
resistivity ρb = 1/σb:

ρb = h̄

e2
R, R = 49.8 (43)

or ρb = h
e2 × 7.93 = 205 k�. This constitutes one of our main

results: the value of the universal resistivity jump estimated in
the large-N approximation, as shown in Fig. 1.

Although the exact numbers can only be trusted in the
large-N limit, we expect that some semiquantitative features
are captured in our extension to N = 2. First, it is clear that
the damped gauge field will necessarily make the conductivity
smaller because it adds an additional scattering channel. The
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1

1 N 1 ω T

1

N
b ' e2

(a) N 1

no  gauge field

1 2 3 4 ω T
0.020

0.0454

0.170
σσ b ' e2

(b) N = 2

FIG. 8. (Color online) Frequency- and temperature-dependent rotor conductivity (real part). (a) Sketch of σ ′
b in the large-N limit. There is

a Drude-type peak of width 1/N and height N . While it is due to incoherent scattering of thermally excited quasiparticles, the large-frequency
O(1) conductivity is from coherent and elastic scattering of field-excited carriers. (b) Large-N result extrapolated to N = 2, the case of physical
interest for the Mott transition. The solid blue (dotted purple) line corresponds to the conductivity with (without) the emergent gauge field.
The dashed line at intermediate frequencies is a sketch of the expected crossover to the high-frequency regime, where the gauge field becomes
unimportant.

decrease in the rotor conductivity will lead to an increase
in the resistivity, which translates into a bigger jump as one
approaches the QCP from the metallic side, compared to a
treatment that neglects gauge fluctuations. In our calculation,
the increase is by a factor of ∼8, which is substantial. Although
the actual enhancement might not be as large, our result
suggests that the gauge fluctuations are the dominant source
of current dissipation. Moreover, the strong scattering by the
gauge bosons leads to the frequency dependence found in
Fig. 8(b), where the Drude-type peak occurring in the pure
O(N ) model disappears. Indeed, the small-frequency conduc-
tivity is smaller than in the ω/T  1 limit. This “inverse
Drude peak” might naively suggest that vortex excitations, the
conductivity of which is the quasiparticle resistivity σ vortex

b =
ρb = 1/σb would be better suited, at least to describe electric
transport. However, the vortices are known to give unreliable
perturbative results for the superfluid-insulator transition in
the pure O(2) model. As the presence of the damped gauge
boson does not alter the thermodynamic universality class,
we suspect that this remains true in our model and that
the dual vortex formulation does not offer any numerical
advantage.

We briefly comment on the precise frequency dependence
of the conductivity at low frequency, as shown in Fig. 7. It
is possible to determine almost exactly the analytic form of
this frequency dependence for both the pure and gauged O(N )
models,30 which can be surprising given the complicated form
of the QBE. Using the analytic expression, one can evaluate a
low-frequency sum rule for the real part of the conductivity:∫ ∞

0 dω σ ′
b(ω) = const. It is found that this integral equals

the weight of the delta-function Drude peak obtained in the
pure O(N ) NLσM at N = ∞, even in the presence of the
gauge field. In particular, this means that the inclusion of
the interactions at 1/N (λ or gauge boson mediated) only
spreads the spectral weight of the delta function over a
finite range of frequencies, this range being broader in the
presence of the gauge field, as can be seen in the inset of
Fig. 7.

V. CONDUCTIVITY IN THE ENTIRE QC REGION

We now examine how the conductivity changes as the
system is tuned away from g = gc within the QC region, with
g ∝ U/t , the ratio of the Hubbard repulsion to the electronic
bandwidth. The QC regions are defined by T > �±, where �±
are the two energy scales that vanish at the QCP. �+, defined
for g > gc, is the Mott gap of the bosons, while �−, g < gc

is the phase stiffness of the rotors in their condensed phase.
These two scales vanish approaching the QCP according to
the power law

�± ∼ |δ|zν , (44)

where we are again using the signed energy scale associated
with tuning the nonthermal parameter

δ = g−1 − g−1
c ∝ t/U − (t/U )c . (45)

The dynamical exponent z is unity for all N , while the
correlation length exponent ν depends on N : in the N → ∞
limit, ν = 1/(d − 1) so that in d = 2, ν = 1. In the QC region,
the effective mass of the rotors, the saddle-point value of the
λ field, will change as δ is varied. This will naturally affect
the conductivity: as one approaches the SL, the effective mass
of the charge excitations increases and this leads to a larger
electric resistivity. The mass will depend on the ratio of �±/T :
m
T

= X±(�±
T

). At N = ∞, we simply have �± ∝ |δ|, with the
proportionality constants

�+ = 4πδ, g > gc (46)

�− = −δ, g < gc. (47)

There, an analytic solution can be obtained for the mass scaling
function31

m

T
= X

(
δ

T

)
, (48)

X(δ̄) = 2 sinh−1

(
e2πδ̄

2

)
, (49)

which is plotted in Fig. 9.
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FIG. 9. (Color online) Rotor mass scaling function.

A. Results

We have solved for the frequency-dependent conductivity
at different values of δ/T . The latter affects the polarization
functions �b and �

j
b via the rotor effective mass. The

polarization functions determine the propagators of the λ and
gauge boson, and thus the associated density of states the rotor
excitations can scatter into. The universal scaling function for
the low-frequency conductivity �I was numerically obtained
in the QC region:

σb = e2

h̄
N�I

(
Nω

T
,
δ

T

)
. (50)

In Fig. 10, we show the behavior of the corresponding
dc resistivity extrapolated to N = 2: ρb(0) = 1/σb(0) =
(h̄/e2)/2�I (0,δzν/T ). These numerical results should be
compared with Fig. 3, where a sketch of the resistivity near
the QCP was given, not restricted to the QC fan. It should
also be compared with Fig. 15, in Appendix A, showing
the rotor contribution without the gauge field, as relevant
for the conventional superfluid-insulator transition. Let us
first examine Fig. 10(c), which shows the resistivity along
constant-δ cuts [Fig. 10(a)]. These curves can be naturally
compared with sheet resistivity versus pressure experimental
data, for instance, where δ ∼ P − Pc plays the role of the
deviation from the quantum critical pressure. As mentioned
above, the rotor resistivity corresponds to the total electronic
resistivity relative to the residual value in the FL: ρb = ρ − ρm.
Curve 3 shows the resistivity at the critical pressure (δ = 0): it
is constant at low temperatures and takes a universal value h̄

e2 R,
with R = 49.8. As one goes down in temperature at pressures
differing from Pc, the resistivity decreases approaching the FL
(curves 4 and 5), or increases near the SL Mott insulator (curves
1 and 2). The more pronounced resistivity jump ρb → 0 occurs
upon exiting the critical Fermi surface state and going to the
(marginal) FL, as is shown in Fig. 3(c). Figure 10(d) presents
the results from a complementary perspective: by fixing T

and tuning pressure following cuts shown in Fig. 10(b). This
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FIG. 10. (Color online) Behavior of the low-temperature dc resistivity near the quantum critical (QC) Mott transition as obtained
from the solution of the quantum Boltzmann equation. Panel (c) shows the resistivity vs T for different ratios of the onsite repulsion
over the bandwidth (tuned by δ). The corresponding cuts are shown in the phase diagram in (a) and correspond to δ = −0.01,

− 0.001,0,0.001,0.01 going from curve 1 to 5. Panel (d) shows the resistivity vs δ at different temperatures, with the corresponding cuts
shown in the phase diagram in (b). Curves 1,2,3 correspond to T = 0.5,1.0,2.5, respectively. The universal rotor resistivity at criticality is
ρb = Rh̄/e2, with R = 49.8. (δ and T are given in a common and arbitrary unit of energy.)
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illustrates how the T = 0 resistivity jump becomes smooth
at finite temperature. By virtue of the scaling nature of the
resistivity data, all curves cross at δ = 0, where the resistivity
is universal, h̄

e2 R. The resistivity data was extracted from a
single universal scaling function

ρb(ω = 0) = h̄

e2
G

(
δzν

T

)
. (51)

We emphasize that, in experiments, it is the resistivity relative
to its residual metallic value that should accordingly be
examined for scaling in the vicinity of a quantum critical
Mott transition. Notes: In obtaining the results shown in
Fig. 10, we have replaced the N = ∞ scaling δ/T by the one
appropriate for N = 2: δzν/T , with ν = 0.67 and z = 1 ∀N .
[When δ < 0, it is understood that δzν = sgn(δ)|δ|zν .] A caveat
with the extrapolation is that we have used the mass scaling
function obtained at N = ∞. Although the specific form of
m/T = X(δzν/T ) will be different for N = 2, we expect it to
be qualitatively similar, at least near criticality.

VI. CONDUCTIVITY AT LARGE FREQUENCIES
AND TEMPERATURES

A. Large frequencies

In this section, we discuss the behavior of the rotor conduc-
tivity in the large-frequency limit ω  m ∼ T . As discussed
above, in the large-N limit, the finite universal conductivity in
that region mainly results from the elastic, coherent transport
of charged excitations created by the external field, as opposed
to the incoherent transport of thermally excited quasiparticles
relevant at small frequencies. In our above treatment of the
quantum Boltzmann equation, we can not obtain that part of the
conductivity as we have neglected precisely those processes
that are dominant for ω  T . Rather, the large-frequency
conductivity σbII = (e2/h̄)�II (ω/T ) can be obtained from
a T = 0 calculation, i.e., in the limit ω/T → ∞. At N = ∞,
the λ and gauge fields do not contribute and we recover the
pure rotor contribution known from previous works,28

�′
II (ω/T  1) = πSd

2dd

∣∣∣∣ωc
∣∣∣∣
d−2

d=2−−→ 1

16
= 0.0625, (52)

where Sd = 2/[�(d/2)(4π )d/2]. Contrary to the dc conduc-
tivity, which was infinite at N = ∞, the fact that the high-
frequency conductivity is already finite in the free limit
testifies about the different mechanisms at play, namely, its
collisionless nature in contrast to the hydrodynamic transport
at small frequencies. Including the 1/N correction that arises
due to interactions of the rotors with the λ field yields28

�′
II (ω/T  1) = 1

16

(
1 − 8

3η
) N=2−−→ 0.03998, (53)

where η = N−1(8/3π2) is the leading correction to the anoma-
lous dimension of the rotor field. We do not include the gauge
fluctuations because they are made “massive” by the Landau
damping. At T = 0, even the static component is ineffective,
lying within the continuum of dynamical excitations. For
a more precise estimate of �′

II (∞), we quote the Monte
Carlo results of Cha et al.,28 i.e., �′

II (∞) = 0.0454. This is
the number we use for the large-frequency conductivity in
Fig. 8(b).

B. Temperature dependence of electrical transport at criticality

In our analysis of the quantum critical resistivity, we have
so far limited our discussion to the universal quantum critical
resistivity of the bosons. As the temperature is decreased to
zero right at the quantum critical point, how is this universal
value approached? To address this we first note that the full
resistivity at low T is given by the Ioffe-Larkin formula as
the sum of boson and fermion resistivities. At low T , the
dependence of the fermion resistivity is dominated by spinons
scattering off the gauge fluctuations. As mentioned in Ref. 5,
this leads to

ρf ∼
(

T

μ

)2

ln

(
μ

T

)
. (54)

To obtain this dependence, the gauge propagator at critical-
ity D−1 ∼ iμ ω

vF q
+ q was used. Regarding the subleading

temperature dependence of the rotor conductivity, we have
indications (see next section) that the treatment of the QBE
requires more care, as in the case of a Fermi surface of
spinons coupled to an emergent gauge field.32–34 We leave
such analysis for future investigation. Notwithstanding, the
leading nonconstant T dependence of the full resistivity will
show a departure from the usual T 2 behavior because the
rotor contribution is not expected to cancel the non-FL term
provided by the spinons. This departure from a T 2 dependence
constitutes a further signature of the non-FL nature of the criti-
cal Fermi-surface state. We note that the logarithmic correction
due to the spinons will persist in the MFL phase because the
gauge field only becomes Higgsed by the rotor condensate at
lower temperatures, where the usual FL is recovered.

1. Necessity of careful treatment of subleading T
dependence of rotor conductivity

To estimate the temperature dependence of the rotor
conductivity at δ = 0 beyond its universal constant value,
one can try to compute the transport scattering rate, just as
was done for the spinon contribution [Eq. (54)]. We need to
evaluate the imaginary part of the rotor self-energy due to the
gauge fluctuations, with the usual additional factor of 1 − cos θ

in the integrand. The leading-order dependence is universal
and linear in T , in agreement with our QBE calculation. The
subleading term is negative and goes like −T 2/μ, where μ

is the fermionic chemical potential. We believe that such a
negative contribution points to the inability of such a simple
approach to capture the correct T dependence. Indeed, this
scattering rate would imply a conductivity that increases with
temperature via σb ∼ T τb

tr ∼ 1/(1 − T/μ).
Instead of using this semiclassical approach, we can

turn to the full quantum Boltzmann equation. However, a
straightforward approach fails because the QBE contains terms
that diverge due to scattering of low-energy gapless gauge
bosons. This can be related to the divergence of the rotor
self-energy at finite T , which displays a logarithmic singularity
in the infrared. It can not be naively cut off because the
low-energy properties of the gauge field and rotors were
properly treated. This situation is exactly analogous to the
case of fermionic spinons or nonrelativistic bosons coupled to
an emergent gauge field studied in the context of U(1) spin
liquids.32 It was found that the divergence of the self-energy
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(or vanishing of the Green’s function) is a natural consequence
of the gauge fluctuations on a non–gauge-invariant operator,
which in this case is the rotor Green’s function.

This type of singularity in the QBE was previously
encountered in the context of the spinon–gauge-field problem
by Kim et al.,33 revisited latter by Nave and Lee.34 Kim et al.
found that a separation of the gauge fluctuations into static
(with frequency less than the temperature) and dynamic ones
together with the use of a gauge-invariant momentum remove
the singularities and allow the extraction of physical quantities.
It was also noted that the static gauge fluctuations act as a
random magnetic field that contributes to the conductivity by
increasing the scattering of spinons, a situation very analogous
to the effects of the gauge field on the critical rotors analyzed
in this work. However, in the present system, the static gauge
fluctuations dominate the low-temperature transport and we
did not need to take into account the dynamical or quantum
gauge fluctuations, at least for the low-temperature transport.
The latter are essential to determine the higher-temperature
behavior and one needs to perform a careful treatment
analogous to Ref. 33, a task we leave for the future.

VII. THERMAL CONDUCTIVITY

The thermal conductivity also bears a signature of the
critical Fermi surface, in which the emergent gauge field
plays an even more important role than for electric transport.
According to the Ioffe-Larkin composition rule, the thermal
conductivities of the spinons and rotors add32 κ = κb + κf .
In other words, the thermal resistivities add in parallel, which
is in contrast to the rule for electrical resistivity (addition in
series) because of the absence of charge flow in response to the
thermal gradient. In this sense, the thermal current is oblivious
to the slave-rotor constraint relating the rotor charge to the
spinon number, and the relative flow of the partons can proceed
unconstrained.

Let us first consider the rotor thermal conductivity κb. In the
absence of the gauge field, the rotors decouple from the spinons
and their action reduces to the critical theory of the pure O(N )
model. This is a conformal field theory (CFT). On symmetry
grounds, a CFT has infinite thermal conductivity because
the energy current is conserved.35,36 Indeed, by virtue of
conformal invariance, there exists a conserved and symmetric
energy-momentum tensor: ∂μTμν = 0 and Tμν = Tνμ, where
μ,ν are space-time indices. These two conditions imply that
d
dτ

∫
dx Tiτ = 0, with spatial indices i = x,y. Put in words,

the energy current Tiτ is conserved and will not be dissipated
by interactions, contrary to the charge current. In our critical
theory, this situation is avoided because of the damped gauge
fluctuations, which naturally break conformal invariance and
lead to a finite and universal critical thermal conductivity:

κb = k2
B

h̄
KT , (55)

where K is a dimensionless number associated with the Mott
QCP, just like R. The gauge fluctuations are more detrimental
in the determination of the thermal conductivity than for the
electric conductivity: whereas the latter was already a finite
universal constant without the gauge bosons, the former is

formally infinite without the gauge fluctuations. In reality, this
would not be the case due to the presence of irrelevant (in
the RG sense) umklapp scattering by the lattice, which would
lead to a large, nonuniversal but finite conductivity. In the case
under consideration, we do not need to refer to such processes
because the gauge scattering is stronger and leads to a universal
answer [Eq. (55)].

Although the full calculation of κb is beyond the scope of
this work, we mention some of the important aspects. First,
in the electric resistivity calculation performed above, a key
simplification in the large-N framework is that we can neglect
the effect of the electric field on the λ. As was explained in
Sec. IV A, only one rotor flavor is directly coupled to the
electric field so that its effects on the rotor polarization func-
tions, which are obtained by summing over all rotor flavors,
are subleading in N . This is no longer true when a thermal
gradient is present, as all rotor flavors inexorably transport
energy/entropy in the same way. Hence, the nonequilibrium
corrections to the polarization functions can not be neglected.
To obtain the correct QBE describing the heat transport, one
should use the Keldysh formalism, a task beyond the scope of
this work.

We now turn to the spinon conductivity κf . In the presence
of weak disorder, the low-temperature spinon thermal conduc-
tivity will scale like κf = const × T , a form valid on both sides
of the transition. Approaching from the FL, the constant κ/T is
simply Lσm, where L = π2

3 ( kB

e
)2 is the usual Lorentz number,

while σm is the residual metallic conductivity, by virtue of the
Wiedemann-Franz law obeyed in the FL. As the critical point

is reached, κ/T jumps by a universal amount k2
B

h̄
K . Note that

contrary to the electric conductivity, the thermal one is finite
on the SL side, and is dominated by the spinon–gauge-field
sector.

A. Violation of Wiedemann-Franz

Combining the electric resistivity and κ/T jumps, we
predict the Lorenz number L = κ/T σ = ρκ/T will also jump
at the transition, indicating a violation of the Wiedemann-
Franz law. In the clean limit, the violation is drastic as the
Lorenz number will actually diverge directly at the transition
because the electric conductivity is finite but the thermal one is
infinite due to the spinon Fermi surface. The violation is even
worse in the SL where the conductivity also vanishes. In the
presence of weak disorder, as is more relevant for experiments,
the thermal conductivity will be finite throughout, in particular
at the QCP, and this will lead to a universal jump by an amount
KR(kB/e)2, where K and R are the universal numerical
coefficients of the thermal conductivity (divided by T ) and
resistivity of the critical rotors. We emphasize that this T = 0
universal jump will become a rapid increase at finite T , just as
happens in the case of the resistivity. We finally note that
the Lorenz number will take the usual free-fermion value
in the FL, L = (π2/3)(kB/e)2, because elastic scattering by
impurities dominates at small energies. In the clean limit, the
actual numerical coefficient of L in the FL is expected to
differ from π2/3 because of the frequency dependence of the
interaction-induced scattering rate.37 However, we emphasize
that what is important is the relative jump at the QCP.
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VIII. DISCUSSION

A. Experiments

A preliminary analysis of unpublished pressure- and
temperature-dependent resistivity data on both κ-(BEDT-
TTF)2Cu2(CN)3 (Ref. 38) and EtMe3Sb[Pd(dmit)2]2 (Ref. 39)
provide encouraging hints regarding the presence of a quantum
critical Mott transition as described in this work. Indeed, at
sufficiently high temperatures, the sheet resistivity saturates to
a constant ∼10h/e2, as we predict. The qualitative pressure
and temperature dependencies are also roughly in agreement
with our results. A closer analysis of the data will be needed
to make a stronger statement, not to mention the potential
complications with the inhomogeneous effects of pressure on
the relatively soft organic salts.

B. Disorder

We discuss the effects of disorder and provide an estimate
for the temperature at which we expect it to become important
in the context of the organics. We shall assume the disorder is
weak as is appropriate for these materials. Then, its main effect
will be to modify the gauge field’s inverse Green’s function to
(we work in imaginary time)

kF

|�n|√
q2 + 1/l2

+ σ∞
b

√
�2

n + c2q2. (56)

Here, l is the spinon elastic mean-free path, and we have
reinstated c, the rotor velocity, which is on the order of vF . σ∞

b

is a shorthand for the T = 0 rotor conductivity σb(ω/T  1).
The zero Matsubara frequency gauge mode does not respond
to the change in the Landau damping, which vanishes at
zero frequency. So, the question is about the effect on the
nonzero Matsubara frequency components. These will notice
the finite mean-free path when q < 1/l or relating the gauge
boson energy (∼T ) to the momentum via the z = 2 scaling
� ∼ q2, we get T � σ∞

b c

kF l2 . Using c ≈ vF , this can be cast
as

T � σ∞
b μ

(kF l)2
, (57)

where μ is the Fermi energy or chemical potential. The
organics are good metals, so we take kF l ≈ 10, although the
actual mean-free path is probably larger. Also, μ ≈ 103 K and
σ∞

b ≈ 0.05, in units of e2/h̄. We thus conclude that within
our framework, using parameters relevant to the organics
of interest, disorder will start playing an important role at
temperatures

T � 0.5 K. (58)

Above that temperature, we can treat the higher Matsubara
modes without including disorder, and the results of this paper
should provide a valid description.

IX. CONCLUSION

We have analyzed the transport signatures of a quantum
critical Mott transition between a Fermi-liquid metal and a
paramagnetic Mott insulator in two spatial dimensions, at fixed

filling. In this scenario, the Mott phase is characterized by a
Fermi surface of spin-only quasiparticles, resulting in a gapless
U(1) spin liquid. The physics of such a transition is conve-
niently captured by a slave-rotor field theory of the electronic
Hubbard model, in which the charge fluctuations are described
by a quantum XY model of rotors, coupled to an emergent
gauge field. The superfluid phase of the rotors corresponds
to the metal, while a Mott insulator results in the disordered
phase, where only spin fluctuations remain gapless. Directly
at the transition, a strongly correlated non-Fermi-liquid metal
emerges where the electronic Fermi surface is on the brink
of disappearance; it is an instance of a critical Fermi surface.
The zero-temperature electric resistivity of such a critical state
was predicted to be greater than that of the Fermi liquid by a
universal amount Rh̄/e2, where R is a dimensionless number
associated with the Mott quantum critical point (see Fig. 1).
We have obtained an estimate for this number, R ≈ 49.8,
via the solution of a quantum Boltzmann equation for the
charge fluctuations, analyzed in a large-N limit. We found
that the emergent gauge fluctuations strongly contribute to the
universal resistivity jump, albeit being ineffective at changing
the universality class of the charge fluctuations from 3D
XY . This is so because the static gauge fluctuations escape
the Landau damping, and are responsible for the strong,
and universal, scattering of the critical charge fluctuations.
Although we have focused on transport properties which are
best accessed in experiments, we may anticipate that the static
gauge-field fluctuations might also affect other dynamical
quantities (for instance, the low-frequency form of the electron
self-energy at nonzero temperature) in the quantum critical
regime.

We have further examined how this resistivity jump evolves
at finite temperature and as one changes the ratio of the Hub-
bard repulsion to the electronic bandwidth (experimentally
tunable by applying pressure). We have obtained a universal
scaling function that can be used to collapse the temperature-
and pressure-dependent resistivity in the quantum critical
Fermi-surface state: ρ − ρm = (h̄/e2)G(δzν/T ), where ρm is
the residual resistivity in the Fermi liquid, δ can be mapped
to the deviation from the critical pressure, and z and ν

are the usual dynamical and correlation length exponents,
respectively, of the 3D XY universality class. In particular,
G(0) = R.

Turning to thermal transport, we make the prediction
that the low-temperature thermal conductivity (divided by
temperature) κ/T has a universal jump at the transition
(Fig. 1). The gauge fluctuations are responsible for this jump by
breaking the conformal invariance of the charge fluctuations.
Together with the jump of the electric resistivity, the thermal
conductivity jump leads to a violation of the Wiedemann-Franz
law by the critical Fermi-surface state.

Regarding experiments, the organic salts κ-(BEDT-
TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 are candidate ma-
terials for the transition covered in this work. Indeed, at
ambient pressure they display numerous signatures charac-
teristic of a gapless quantum spin liquid, and become metallic
under the application of hydrostatic pressure. As mentioned
in Sec. VIII, recent unpublished data for the temperature- and
pressure-dependent resistivity near the Mott transition seem
to indicate a jump on the order of h/e2 near the transition,
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as well as qualitative agreement with the scaling we propose.
A confirmation would point towards the first experimental
example of a quantum critical Mott transition (of fermions),
as well as a nontrivial signature of spin-charge separation in
two dimensions.

On the theoretical side, it would be interesting to inves-
tigate the charge transport within a controlled dimensional
expansion, with small parameter 3 − d where d is the spatial
dimension, and see how the results compare with the large-N
expansion. Numerical simulations directly in d = 2 and at
N = 2 would also be desired. Regarding the jump of the ther-
mal conductivity, a full treatment within the large-N expansion
is still missing due to the complication of drag of the constraint
field of the O(N ) nonlinear sigma model. A first step would
be to establish the divergence of the thermal conductivity in
the pure XY model, as required by conformal invariance, then
to include the emergent gauge fluctuations. Taking a broader
perspective, we envision that the results regarding the effects of
the damped gauge fluctuations on the transport of relativistic or
particle-hole–symmetric quasiparticles discussed in this work
can be applied to other systems.
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APPENDIX A: TRANSPORT IN THE PURE
O(N) ROTOR THEORY

In this Appendix, we present details regarding transport
properties of the pure O(N ) NLσM, where the N = 2 theory
describes the superfluid-insulator transition of bosons in two
dimensions, as present in the Bose-Hubbard model at integer
filling for instance. Some of these results correct previous
ones, or can not be found in the literature. In addition, they
are important as a comparison ground with the rotor theory
used to describe charge criticality in the Mott transition under
consideration. The latter is a gauged version of the O(N )
model, with a Landau damped gauge boson.

The bare action for the pure O(N ) theory is

Sb = 1

2g

∫
x

(|∂νbα|2 + iλ(|bα|2 − 1)) , (A1)

where α runs from 1 to N/2, so that the N/2 complex fields
form a real O(N ) vector field. The above action has full
O(N ) global invariance. (The notational choice of using N/2
complex fields instead of N real ones is more convenient from
the point of view of the slave-rotor formulation.) Again, λ

is a Lagrange multiplier field enforcing the constraint that
the rotor is unimodular:

∑
α |bα| = 1. In the N = ∞ limit,

the field theory becomes free, allowing a 1/N perturbative
expansion. At N = ∞, the expectation value of the λ field
plays the role of an effective mass for the rotors in their
insulating phase, as described in Sec. III. The saddle-point
equation for λ is still given by Eq. (12) because the fluctuating
gauge field does not affect the N = ∞ rotors. In the symmetry-
broken phase, the saddle-point equation for the effective mass
has no solution, indicating long-range order (at T = 0 only
for N > 2).

We now turn to the charge transport near the quantum
critical point. Out of the many charges present at large N ,
we couple the electric field to a single one, say the complex
component b1. We focus on the regime where the external field
has a small driving frequency compared with temperature; this
corresponds to the collision-dominated hydrodynamic regime.
At N = ∞, the dc conductivity is infinite because interactions
are entirely suppressed in that limit. At order 1/N , the λ

field acquires a nonzero propagation amplitude and can scatter
the positive and negative charge excitations, the holons and
doublons, respectively. The quantum Boltzmann equation for
the holons and doublons can be read off Eq. (24), where one
simply has to set the gauge propagator ∝D(�,q) to zero.
As explained in the main text, we expand the holon and
doublon distribution functions to linear order in the electric
field: f±(k,ω) = 2πδ(ω)n(εk) ± E · kϕ(k,ω). Linearizing the
QBE, we obtain

−iωϕ(p,ω) + g(p)/T 2

= T

N

{
−Fλ(p)ϕ(p,ω) +

∫
dp′ Kλ(p,p′)ϕ(p′,ω)

}
, (A2)

which is the same as Eq. (31), except that we have set the
scattering rate due to gauge fluctuations Fa to zero. As before,
g(p) = ∂εp

n(εp)/εp. The functions Fλ and Kλ can be written
in the simple form

Fλ(p) =
∫ ∞

0

p′dp′

2π

1

εpεp′
[A(p,p′)|γ (p,p′)|

+Adh(p,p′)γdh(p,p′)], (A3)

Kλ(p,p′) = p′

2π

1

εpεp′
[Ac(p,p′)|γ (p′,p)|

−Ac,dh(p,p′)γdh(p′,p)]
p′

p
, (A4)

where we have defined the two γ functions

γ (p,p′) = n(εp′ − εp) − n(εp′ ) = 1 − e−εp′

(1 − e−εp )(1 − eεp−εp′ )
,

(A5)

γdh(p,p′) = n(εp′ ) − n(εp + εp′) (A6)
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FIG. 11. (Color online) The shaded regions correspond to �′′
b �=

0. The upper one (purple) is due to the on-shell pair production of
holons and doublons, each with mass m.

and the four A functions

A(p,p′) =
∫ 2π

0

dθ

2π
A(|εp − εp′ |,| p + p′|), (A7)

Ac(p,p′) =
∫ 2π

0

dθ

2π
A(|εp − εp′ |,| p + p′|)(− cos θ ), (A8)

Adh(p,p′) =
∫ 2π

0

dθ

2π
A(εp + εp′ ,| p + p′|), (A9)

Ac,dh(p,p′)=
∫ 2π

0

dθ

2π
A(εp+εp′ ,| p+ p′|)(−cosθ ), (A10)

where θ is the angle between p and p′. We have also
defined the scaled spectral function of the λ field: A(�,q) =
−Im[1/�b(�,q)], where the factor of 2/N in the λ propagator
2/N�b was omitted from the definition of A. The sign of A

is such that A(� > 0,q) > 0. The A functions can be readily
seen to be positive and symmetric. The “c” indicates a cosine
in the angle integral, while “dh” stands for doublon-holon. To
understand this last piece of notation, we need to examine �b,
specifically its imaginary part:

�′′
b(�,q)=

∫
d2k

16πεkεk+q

{|n(εk+q) − n(εk)|δ(|εk+q−εk|−�)

+ [1 + n(εk) + n(εk+q)]δ(εk + εk+q − �)},
(A11)

which is nonzero in two separate regions, a low- and high-
energy one: � < q and � >

√
(2m)2 + q2, respectively, as

is illustrated in Fig. 11. The latter region arises from the
production of holon-doublon pairs, which requires an energy
beyond a certain threshold. The λ-boson spectral function has
support in the same regions, being proportional to �′′

b: A =
−Im[1/�b] = �′′

b/[(�′
b)2 + (�′′

b)2]. We plot the numerically
evaluated spectral function in Fig. 12. We note that A vanishes
at the boundaries of the region where �′′

b = 0. Going back
to the A functions, it can be seen that those labeled “dh”
receive contributions precisely from the doublon-holon pair
production region.

By performing the rescaling ω̃ = ωN/T and

�(p,ω̃) = T 3

N
ϕ(p,ω), (A12)

we obtain a universal, parameter-free equation

−iω̃�(p,ω̃) + g(p)

= −Fλ(p)�(p,ω̃) +
∫

dp′Kλ(p,p′)�(p′,ω̃). (A13)

We solve the integral equation numerically by discretizing
the momentum variables and expanding the unknown function
� in terms of Chebyshev polynomials. This procedure converts
the integral equation into a matrix equation, which is solved by
simply inverting the matrix corresponding to the kernel Kλ. We
plot the solution in Fig. 13. �(p,ω̃) goes to a constant as p → 0
and decays exponentially for p  1, i.e., for momenta much
greater than the temperature. Also, as the driving frequency
ω ∝ ω̃ goes to zero, the imaginary part �′′ vanishes as expected
since the dc conductivity is purely real.

The resulting frequency-dependent conductivity can be
obtained by integrating �(p,ω̃) over momentum, as shown
in Eq. (39). As a result, we obtain a scaling function for
the conductivity: σb = (e2/h̄)N�I (ω̃,δzν/T ). The numerical
solution for the scaling function is shown in Fig. 14, where
(a) shows the frequency dependence of both the real and
imaginary parts of the scaled conductivity for δ = 0, while
(b) shows the real part away from criticality at five different val-
ues of δ/T . Figure 14(b) shows that the conductivity increases
going away from the disordered to the symmetry-broken

FIG. 12. (Color online) (a) Spectral function for the λ bosons: A(�,q) = −Im[1/�b(�,q)]. (b) The corresponding density plot.
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FIG. 13. (Color online) Solution for electric-field-induced
deviation to the rotor distribution function �(p,ω̃) for ω̃ = Nω/

T = 0.5. The solid (dashed) line shows the real (imaginary) part,
multiplied by p2.

phase, corresponding to sweeping δ from negative to positive
values.

For N = 2, the conductivity is given by σb =
(e2/h̄)2�I (2ω/T ,δzν/T ), so that the curves in Fig. 14 give the
conductivity (in units of 2e2/h̄) versus 2 × ω/T . In general,
the scaled frequency ω̃ on the horizontal axis should be
multiplied by 1/N to get the dependence on ω/T . In the
large-N limit, we recover a Drude-type peak, as the charged
quasiparticles interact more weakly. As mentioned at the end
of Sec. IV B, the essentially exact frequency dependence of
the small-frequency conductivity [cf. Fig. 14(a)] was recently
determined.30 This result can be used to prove a sum rule
constraining the integral of the real part of the conductivity to
the weight of the delta-function Drude peak at N = ∞, i.e., in
the free limit of the theory. This provides an excellent check
on the numerics.

Focusing on N = 2, Fig. 15 shows the behavior of the
resistivity in the QC region. We have indicated the presence
of a Kosterlitz-Thouless transition by a solid line at the
interface between the QC regime and the SF. For N > 2,
this finite-T phase transition is converted to a crossover. This
figure should be compared with Fig. 10, where there the
bosons are coupled to a Landau damped gauge field. We see
that not only does the gauge field make the resistivity larger,
but its variations are also more pronounced as δ and T are
changed.

APPENDIX B: THERMAL CONDUCTIVITY

We discuss some aspects of the thermal conductivity of the
rotors. In particular, via the solution of a QBE, we explicitly
show that in the absence of gauge fluctuations, the rotors have
infinite thermal conductivity, as expected based on conformal
invariance. We then go on to argue that with the addition
of the damped gauge field, the conductivity becomes finite,
specifically κb = (k2

B/h̄)KT , where K is a dimensionless
constant. In the large-N formulation, one needs to include
effects of the thermal gradient on the constraint field λ,
complicating the analysis. We thus consider an alternate but
equivalent formulation of the critical theory where the hard
constraint of the XY rotor model |b| = 1 is traded for a soft
one via the addition of quartic term |b|4.

1. Thermal response of pure O(2) model: CFT and zero modes

The critical theory for the “soft” rotor model, without gauge
field, is described by the action

S = 1

2

∫
dd+1x |∂νb|2 + m2|b|2 + u

12
|b|4 , (B1)

where d = 3 − ε is the space-time dimension, and m2 =
ε(4π2/15)T 2 and u = ε(24π2/5). This is the standard Wilson-
Fisher fixed point resulting from a perturbative RG treatment
(see, e.g., Ref. 22, which studies the electric transport
properties of that model). We have thus traded the large-N
expansion for a dimensional expansion in ε, N = 2 being fixed.

We are interested in the linear response of the bosons
to a thermal gradient. As we did above in the case of the
electric transport, we consider the QBE for the holon and
doublon distribution functions f±. The static thermal gradient
is imposed by including a position-dependent temperature
T (x), which in turn generates position dependence for the
distribution functions f±. The corresponding QBE, which can
be found in Refs. 40 and 41, reads as

vk · ∂f±
∂x

= I±[f+,f−] , (B2)

where vk = ∂εk/∂k and εk = √
k2 + m2. The collision term

is different from the large-N expansion as it arises from the
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FIG. 14. (Color online) Conductivity universal scaling function for the pure O(N ) theory. (a) Frequency-dependent scaling at finite T

above the QCP δ = 0: σb = N�I (ω̃), where the argument is ω̃ = Nω/T . The solid (dashed) line corresponds to the real (imaginary) part.
(b) The scaling function (real part) as a function of the departure from criticality δ/T .
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FIG. 15. (Color online) Behavior of the low-temperature dc resistivity near the quantum critical (QC) superfluid–Mott-insulator phase
transition. In (a) and (b), the solid line delimiting the SF indicates a Kosterlitz-Thouless transition. Panel (c) shows the resistivity vs T for
different ratios of the nonthermal parameter δ, which would tune the onsite repulsion U over the tunneling amplitude t in a Bose-Hubbard
model, for example. The corresponding cuts are shown in the phase diagram in (a) and correspond to δ = −0.01, − 0.001,0,0.001,0.01 going
from curve 1 to 5. Panel (d) shows the resistivity vs δ at different temperatures, with the corresponding cuts shown in the phase diagram in (b).
Curves 1,2,3 correspond to T = 0.5,1.0,2.5, respectively. The universal resistivity at criticality is ρb = Rh̄/e2, with R = 5.88. (δ and T are
given in a common and arbitrary unit of energy.)

quartic interaction:

I± = −2u2

9

∫ 3∏
i=1

d2ki

(2π )d2εki

(Fout
± − F in

± )
(2π )d+1

2εk

× δ(k + k1 − k2 − k3)δ(ε + εk1 − εk2 − εk3 ), (B3)

where scattering processes out of state {k,±} have

Fout
± = 2f±(k)f∓(k1)[1 + f±(k2)][1 + f∓(k3)]

+ f±(k)f±(k1)[1 + f±(k2)][1 + f±(k3)], (B4)

F in
± is obtained by interchanging f± and 1 + f±. We now

linearize the QBE to linear order in the temperature gradient.
From the left-hand side,

∂f±
∂x

= −εk∂εk
n(εk)

∇T

T
, (B5)

while the expanded distribution function reads as

f±(k) = n(εk) + k · ∇T

T
φ(k) , (B6)

with φ characterizing the departure from equilibrium due to
the applied thermal gradient; it is analogous to ϕ used above
in the context of electric transport. An important difference
is that the thermal gradient leads to the same nonequilibrium

distribution functions for both the positive and negative charge
excitations: f+ = f−, contrary to the case with an electric field.
In the linear-response regime, the heat current is simply the
energy current:

Jh =
∫

k
vkεk[f+(k) + f−(k)] = 2

∇T

T

∫
k
k2
xφ(k) , (B7)

while we naturally get a vanishing electric current because the
latter involves the integral of f+(k) − f−(k) [see Eq. (35)].
This is as it should be since the thermal conductivity is
measured in an open circuit setup in which there is no electric
charge flow in the steady state.

The linearized QBE reads as

−∂knk = I [φ(k)] , (B8)

where the functional for the linearized collision integral is

I [φ(k)] = − πε2

75k4

{
18k2φk

nk

∫
dk1dk2 I1(k,k1,k2)nk1nk2

× (1 + nk2+k1−k) (B9)
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−6(1 + nk)
∫

dk1dk2
φk1

nk1

I2(k,k1,k2)nk2nk+k1−k2 (B10)

−12nk

∫
dk1dk2

φk1

nk1

I3(k,k1,k2)nk2

(
1 + nk2+k−k1

)}
. (B11)

The functions Ii result from the angle and k3 angle integrations
of the δ functions and are given in Ref. 22. We are using the
shorthand nk = n(k), having dropped the mass O(

√
ε) in the

dispersion relation εk = √
k2 + m2 ≈ k to leading order in ε.

By conformal invariance, we expect the thermal conduc-
tivity, which is given by an integral over φ, to be infinite as
explained in Sec. VII. If we could invert the linear functional
I [φ], we would obtain φ(k) = I−1[−∂knk], yielding a finite
function φ(k), as is the case for the electric conductivity. This
would in turn imply a finite thermal conductivity, running
against general symmetry arguments. In fact, I [φ] can not be
inverted. In other words, the linearized scattering integral has
a zero mode, i.e., a zero eigenvalue eigenfunction φ0(k) such
that I [φ0(k)] = 0. This zero mode turns out to be the left-hand
side of the linearized QBE:

φ0(k) = −∂knk = nk(1 + nk), (B12)

as we have verified by direct substitution. Hence, the equation
has no solution, or formally φ = ∞, which implies that the
CFT describing the Wilson-Fisher fixed point has infinite
thermal conductivity. It is an excellent check on the formalism,
as it is a priori not obvious how this divergence would come
about within the QBE framework.

2. Thermal response of gauged O(2) model

Let us now return to the case of relevance for the QC Mott
transition. In that case, the rotors are coupled to a damped
gauge field. As was explained in the main body, only the
static gauge fluctuations are effective at scattering the rotor
excitations. These provide a simple elastic scattering term to
the QBE:

−∂knk = Ĩ [φ(k)], Ĩ [φ] = I [φ] − φ

τa

. (B13)

Although I itself is not invertible, Ĩ is for any finite value of the
scattering time τa . In particular, the zero mode of I no longer
is one for Ĩ : Ĩ [−∂knk] = ∂knk/τa , i.e., it now has eigenvalue
−1/τa .

We have solved the QBE [Eq. (B13)] numerically and have
verified the presence of a singularity when the gauge scattering
rate is absent. (For simplicity, we have used a momentum-
independent scattering rate, but the same conclusions will hold
generically.) More precisely, the numerics yield a very large
value of κ/T ∼ 7 × 104 in the CFT limit, i.e., when 1/τa = 0.
This value grows as we increase the number of Chebyshev
polynomials used to expand φ suggesting a divergence in the
limit where an infinite number of basis polynomials is used.
Moreover, it becomes O(1) even for very small values of 1/τa ,
consistent with the fact that the gauge scattering rate moves
the system away from the conformal point, thus rendering the
thermal conductivity finite.

3. Similarity with fermionic CFT of Dirac fermions

A similar analysis of conformal zero modes in the context
of thermal transport in a fermionic CFT of Dirac fermions
was performed in Ref. 42. A zero mode was identified in the
corresponding linearized QBE, the analog of Eq. (B8). It was
was found that the zero mode is essentially given by φ0(k) =
−∂knF (k) = nF (k)[1 − nF (k)], where nF is the Fermi-Dirac
distribution. This is the fermionic analog of the bosonic
mode obtained above [Eq. (B12)]. It was further found that
the introduction of anisotropy for the Dirac fermions breaks
conformal invariance and makes the zero mode massive. As
such, the anisotropy can be seen as the analog of the gauge
scattering rate in our case.

APPENDIX C: ROTOR CURRENT POLARIZATION
FUNCTION

The static, nonregularized rotor current polarization func-
tion is obtained from

�
j
b(0,q) = −T

∑
n

∫
d2 p

(2π )2

(2q̂ × p)2

ω2
n + ε2

p

1

ω2
n + ε2

p+q

, (C1)

where εp =
√

p2 + m2 is the rotor energy. Note the presence of
a factor of 4 due to the (squared) vertex between the transverse
component of the gauge field and the rotor current. Performing
the Matsubara sum, we obtain

�
j
b(0,q) =

∫
d2 p

(2π )2

1

2

(2q̂ × p)2

ε2
p+q − ε2

p

×
[

1 + 2n(εp+q)

εp+q

− 1 + 2n(εp)

εp

]
. (C2)

This integral is UV divergent; putting a cutoff would lead to
�

j
b(0,0) �= 0, which would violate the U(1) gauge invariance.

We regulate by subtracting the integrand evaluated at q =
0. Slight care must be used in doing so because of an
undetermined limit 0/0. The regulated expression reads as

�
j
b(0,q) = 2

∫
d2 p

(2π )2
(q̂ × p)2

{
1

ε2
p+q − ε2

p

[
1 + 2n(εp+q)

εp+q

− 1 + 2n(εp)

εp

]
+ 1

2ε3
p

[1 + 2n(εp) − εpn′(εp)]

}
,

(C3)
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FIG. 16. (Color online) Rotor current polarization function at δ =
0 so that the rotor mass is m = �T . At small q, �

j
b ∼ q2, while for

q > T , it is linear.
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where n′(ε) = ∂εn(ε). This integral can be evaluated
numerically and the result is plotted in Fig. 16. As expected,
for q  T the polarization function scales like q, as in
that regime the mass (∼T ) is negligible and we recover the
zero-temperature behavior. At small q, we obtain a q2 scaling,
consistent with the diamagnetic response of massive bosons.

We can numerically extract the slope of the po-
larization function at large q/T to obtain the result
quoted in Eq. (18), i.e., σ∞

b ≈ 0.063. This corresponds
to the rotor conductivity in the ω/T  1 limit, and
agrees with the analytic expression 1/16 = 0.0625 given in
Sec. VI A.

1M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039
(1998).

2S. Florens and A. Georges, Phys. Rev. B 70, 035114 (2004).
3S.-S. Lee and P. A. Lee, Phys. Rev. Lett. 95, 036403 (2005).
4T. Senthil, Phys. Rev. B 78, 035103 (2008).
5T. Senthil, Phys. Rev. B 78, 045109 (2008).
6D. Podolsky, A. Paramekanti, Y. B. Kim, and T. Senthil, Phys. Rev.
Lett. 102, 186401 (2009).

7A. C. Potter, M. Barkeshli, J. McGreevy, and T. Senthil, Phys. Rev.
Lett. 109, 077205 (2012).

8R. Nandkishore, M. A. Metlitski, and T. Senthil, Phys. Rev. B 86,
045128 (2012).

9P. Anderson, Mater. Res. Bull. 8, 153 (1973).
10Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito,

Phys. Rev. Lett. 91, 107001 (2003).
11S. Yamashita, T. Yamamoto, Y. Nakazawa, M. Tamura, and R. Kato,

Nat. Commun. 2, 275 (2011).
12T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato, Phys.

Rev. B 77, 104413 (2008).
13S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima, H. Nojiri,

Y. Shimizu, K. Miyagawa, and K. Kanoda, Nat. Phys. 4, 459
(2008).

14M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, N. Yoneyama,
N. Kobayashi, S. Fujimoto, T. Shibauchi, and Y. Matsuda, Nat.
Phys. 5, 44 (2008).

15K. Kanoda and R. Kato, Annu. Rev. Condens. Matter Phys. 2, 167
(2011).

16Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys.
Rev. Lett. 99, 137207 (2007).

17Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda, and G. Saito,
Phys. Rev. Lett. 95, 177001 (2005).

18O. I. Motrunich, Phys. Rev. B 72, 045105 (2005).
19D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Phys. Rev. B

79, 205112 (2009); M. S. Block, D. N. Sheng, O. I. Motrunich, and
M. P. A. Fisher, Phys. Rev. Lett. 106, 157202 (2011).

20T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111
(2004).

21S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, England, 2011).

22K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
23S.-S. Lee, Phys. Rev. B 80, 165102 (2009).
24C. Nayak and F. Wilczek, Nucl. Phys. B 417, 359 (1994).
25D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82,

045121 (2010).
26R. K. Kaul, M. A. Metlitski, S. Sachdev, and C. Xu, Phys. Rev. B

78, 045110 (2008).
27L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988 (1989).
28M.-C. Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P.

Young, Phys. Rev. B 44, 6883 (1991).
29S. Sachdev, Phys. Rev. B 57, 7157 (1998).
30W. Witczak-Krempa and S. Sachdev, arXiv:1210.4166 [Phys. Rev.

B (to be published)].
31A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919

(1994).
32P. A. Lee and N. Nagaosa, Phys. Rev. B 46, 5621 (1992).
33Y. B. Kim, P. A. Lee, and X.-G. Wen, Phys. Rev. B 52, 17275

(1995).
34C. P. Nave and P. A. Lee, Phys. Rev. B 76, 235124 (2007).
35T. Senthil (unpublished).
36M. Vojta, Y. Zhang, and S. Sachdev, Int. J. Mod. Phys. B 14, 3719

(2000).
37G. Pálsson and G. Kotliar, Phys. Rev. Lett. 80, 4775

(1998).
38K. Kanoda et al. (unpublished).
39R. Kato et al. (unpublished).
40M. J. Bhaseen, A. G. Green, and S. L. Sondhi, Phys. Rev. Lett. 98,

166801 (2007).
41M. J. Bhaseen, A. G. Green, and S. L. Sondhi, Phys. Rev. B 79,

094502 (2009).
42L. Fritz and S. Sachdev, Phys. Rev. B 80, 144503 (2009).

245102-20

http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/PhysRevB.70.035114
http://dx.doi.org/10.1103/PhysRevLett.95.036403
http://dx.doi.org/10.1103/PhysRevB.78.035103
http://dx.doi.org/10.1103/PhysRevB.78.045109
http://dx.doi.org/10.1103/PhysRevLett.102.186401
http://dx.doi.org/10.1103/PhysRevLett.102.186401
http://dx.doi.org/10.1103/PhysRevLett.109.077205
http://dx.doi.org/10.1103/PhysRevLett.109.077205
http://dx.doi.org/10.1103/PhysRevB.86.045128
http://dx.doi.org/10.1103/PhysRevB.86.045128
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1038/ncomms1274
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1103/PhysRevB.77.104413
http://dx.doi.org/10.1038/nphys942
http://dx.doi.org/10.1038/nphys942
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1103/PhysRevLett.99.137207
http://dx.doi.org/10.1103/PhysRevLett.99.137207
http://dx.doi.org/10.1103/PhysRevLett.95.177001
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevB.79.205112
http://dx.doi.org/10.1103/PhysRevB.79.205112
http://dx.doi.org/10.1103/PhysRevLett.106.157202
http://dx.doi.org/10.1103/PhysRevB.69.035111
http://dx.doi.org/10.1103/PhysRevB.69.035111
http://dx.doi.org/10.1103/PhysRevB.56.8714
http://dx.doi.org/10.1103/PhysRevB.80.165102
http://dx.doi.org/10.1016/0550-3213(94)90477-4
http://dx.doi.org/10.1103/PhysRevB.82.045121
http://dx.doi.org/10.1103/PhysRevB.82.045121
http://dx.doi.org/10.1103/PhysRevB.78.045110
http://dx.doi.org/10.1103/PhysRevB.78.045110
http://dx.doi.org/10.1103/PhysRevB.39.8988
http://dx.doi.org/10.1103/PhysRevB.44.6883
http://dx.doi.org/10.1103/PhysRevB.57.7157
http://arXiv.org/abs/1210.4166
http://dx.doi.org/10.1103/PhysRevB.49.11919
http://dx.doi.org/10.1103/PhysRevB.49.11919
http://dx.doi.org/10.1103/PhysRevB.46.5621
http://dx.doi.org/10.1103/PhysRevB.52.17275
http://dx.doi.org/10.1103/PhysRevB.52.17275
http://dx.doi.org/10.1103/PhysRevB.76.235124
http://dx.doi.org/10.1142/S0217979200004271
http://dx.doi.org/10.1142/S0217979200004271
http://dx.doi.org/10.1103/PhysRevLett.80.4775
http://dx.doi.org/10.1103/PhysRevLett.80.4775
http://dx.doi.org/10.1103/PhysRevLett.98.166801
http://dx.doi.org/10.1103/PhysRevLett.98.166801
http://dx.doi.org/10.1103/PhysRevB.79.094502
http://dx.doi.org/10.1103/PhysRevB.79.094502
http://dx.doi.org/10.1103/PhysRevB.80.144503



