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Effects of strain on band structure and effective masses in MoS2
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We use hybrid density functional theory to explore the band structure and effective masses of MoS2, and
the effects of strain on the electronic properties. Strain allows engineering the magnitude as well as the nature
(direct versus indirect) of the band gap. Deformation potentials that quantify these changes are reported. The
calculations also allow us to investigate the transition in band structure from bulk to monolayer, and the nature
and degeneracy of conduction-band valleys. Investigations of strain effects on effective masses reveal that small
uniaxial stresses can lead to large changes in the hole effective mass.
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Molybdenum disulfide (MoS2) is a semiconducting mate-
rial, widely used as a dry lubricant because of its structural
similarity to graphite. It consists of stacked hexagonal S-Mo-S
layers (Fig. 1). These layers, conventionally referred to as
monolayers of MoS2, are weakly bound by van der Waals
forces. Similarly to the production of graphene, MoS2 samples
consisting of a single or a few monolayers can by produced
by micromechanical exfoliation1—but, contrary to graphene,
MoS2 actually has a band gap. Monolayer MoS2 field-effect
transistors have already been demonstrated,2 but devices based
on multilayers show great promise as well.3

Many details about the electronic properties of bulk MoS2

are still lacking. In this Rapid Communication we report
comprehensive results for band structure, addressing direct and
indirect band gaps and multiple conduction-band valleys, as
well as effective masses. We also investigate how strain affects
these properties, in the process also clarifying the differences
in band structure between bulk and monolayer. Strain effects
on monolayers and bilayers have already been investigated,4,5

but results for bulk MoS2 are not yet available. Strain can result
from externally applied stress, or arise from pseudomorphic
growth6–8 or when a MoS2 layer is clamped to a substrate.
We quantify the changes in the band structure as a function of
strain in terms of deformation potentials. All of the quantities
reported here are relevant for further development of electronic
applications of this material as well as for device modeling.

We investigate the two types of deformations that are
relevant for MoS2: uniaxial and biaxial. Uniaxial strain parallel
to the c direction, which we denote by εzz, directly affects
the interlayer separation. In the limit of large tensile strain,
interlayer distances become large and interactions negligible,
and we effectively reach the monolayer limit. Thus the
investigation of the effects of tensile uniaxial strain provides
insight into the transition between the bulk system and the
monolayer. We impose a given value of the c lattice parameter,
corresponding to a given εzz, and allow for a relaxation of the
lattice parameters in the perpendicular direction, as would
occur in a realistic uniaxial stress geometry. For biaxial stress,
we impose a value of the in-plane lattice parameters a (or
equivalently b), corresponding to a strain εxx = εyy . In this
case we also allow for lattice relaxation in the direction parallel
to c, corresponding to biaxial stress.

All calculations are based on generalized Kohn-Sham the-
ory with the screened hybrid functional of Heyd, Scuseria, and

Ernzerhof (HSE06, Ref. 9) and the projector augmented-wave
(PAW) pseudopotential plane-wave method10 as implemented
in the VASP code.11 For the PAW pseudopotential for Mo we
included the full n = 4 shell (4s2, 4p6, and 4d5) plus 5s1 as
valence. For S, the n = 3 shell is included as valence (3s2 and
3p4). A 10 × 10 × 2 Monkhorst-Pack12 k-point grid was used
for all calculations and a plane-wave basis set with an energy
cutoff of 280 eV.

The hybrid functional approach is well suited to describe
both structural properties and band structures,13 in partic-
ular the band gaps of semiconductors, which are severely
underestimated when using standard exchange-correlation
functionals such as the local-density approximation (LDA) or
the generalized gradient approximation (GGA). van der Waals
interactions, which govern the interlayer distance in MoS2, are
not explicitly included in HSE06; in fact, this is still an area of
active research within density functional theory. We therefore
fix the c lattice parameter (which is overestimated by 5.6% in
HSE06) to its experimental value (12.29 Å, Ref. 14), a practice
also applied in previous computational studies.15,16

Table I compares our calculated band gaps of bulk MoS2

with previously published values. Bulk MoS2 is an indirect-
band-gap material, with the valence-band maximum (VBM)
located at the � point and the conduction-band minimum
(CBM) at a point on the �-K line; we denote this minimum
as �min [see Fig. 1(c)]. We also examine the direct K-K
band gap. Both LDA and GGA underestimate the band gaps.
In the GW0 method17 the one-electron Green’s function G

is self-consistently updated, while the screened Coulomb
interaction W is fixed at its initial value. QSGW stands for the
quasiparticle self-consistent GW method utilized in Ref. 16.
The GW methods slightly underestimate the indirect band gap,
but overestimate the direct gap. Our approach based on the
HSE06 functional slightly overestimates the gaps compared to
experiment—though we note that the optically measured gaps
probably reflect excitonic contributions that are not included
in our calculations. Overall, this comparison confirms that the
hybrid functional is the right choice for our study, since in
addition to providing band structures of comparable or better
quality than those obtained with other approaches, it allows
calculating forces (not available in the GW approaches),
needed to relax the system in response to applied stresses.

Figure 2 shows the calculated band structure for dif-
ferent values of uniaxial stress along the c direction. The
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FIG. 1. (Color online) (a) Side view of the bulk unit cell of MoS2.
(b) A monolayer of MoS2. (c) The hexagonal Brillouin zone. High
symmetry points and lines are indicated. The conduction-band valleys
at �min and K are schematically depicted, with ellipsoids representing
constant-energy surfaces.

valence-band maximum (VBM) of the bulk is chosen as the
zero energy reference, and the band structures are aligned using
the Mo 4s electrons as reference states. Since we are interested
in a comparison with the monolayer and in transport within
the layers, we focus on the in-plane part of the Brillouin zone.

As noted above, bulk MoS2 has an indirect band gap �-
�min. The monolayer, on the other hand, has a direct band
gap, located at the K point. As the layers are moved apart
(corresponding to an increase in εzz), a transition from the
indirect band gap to the direct gap occurs, but only when the
interlayer distance is increased by almost 50%. As seen in
Fig. 2, the VBM at � moves down in energy, while the VB
shift at the K point is much smaller. The location of the VBM
thus shifts from � to K. Simultaneously the �min CBM moves
higher in energy compared to the K point, shifting the overall
minimum to the K point. The switch of location of the CBM
occurs for much smaller strains than the switch of the VBM.
Therefore, with increasing tensile strain the nature of the band
gap switches from indirect � to �min, via indirect � to K, to
direct K to K, as illustrated in Fig. 3(a).

The relative shift of the VB − 1 and the CB + 1 bands is
opposite to that of the highest VB and lowest CB, as these
bands originate from the two different S-Mo-S layers that
form the bulk unit cell [Fig. 1(a)], and thus have to merge into
one degenerate band for large εzz (large interlayer distance).

For compressive strains (εzz < 0), the VBM at � moves
up and the CBM at K moves down; the band gap remains
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FIG. 2. (Color online) Band structure of bulk MoS2 under
uniaxial stress along the c axis, plotted along high-symmetry lines in
the in-plane Brillouin zone. The band structure of unstrained bulk and
an unstrained monolayer are also shown. For clarity we only show
the highest two valence bands and lowest two conduction bands. The
labels underneath the segments of the Brillouin zone indicate the
names of the high-symmetry lines [see Fig. 1(c)].

indirect. We note that in unstrained bulk the CBM at �min is
only slightly higher in energy than the minimum at K, and
the energy difference between the �-K and �-�min band gaps
remains smaller than 0.02 eV for strains less than 5%. This
near degeneracy, along with the multiplicity of these off-� CB
valleys, is an important feature for device applications since it
affects the density of states. The CB valleys are schematically
depicted in Fig. 1(c), where the �min has a multiplicity of 6
(inner ellipses) and the valley at K a multiplicity of 2 (ellipses
at edge, 6 × 1/3 = 2).

Our result for a near degeneracy between the �min and K
CB minima somewhat differs from a previous report based on
HSE06 hybrid functional calculations,15 in which the CB at
K was found to be ∼0.3 eV higher in energy than at �min.
Possible reasons for the discrepancy could be the use of a
different basis set (Gaussians versus plane waves) or the use
of pseudopotentials versus PAWs. This can also be seen in
Table I, where the direct band gap (from K to K) differs in
magnitude between our approaches. We note that our results
are in good agreement with the quasiparticle self-consistent
GW results of Ref. 16.

A similar study can be performed for biaxial stress, where
now the c lattice parameter is allowed to relax in response to
an applied in-plane strain. The biaxial stress results are shown
in Fig. 3(b); we used the data from Fig. 3(a) to correct for
the difference between the calculated and experimental values
of the c lattice parameter. Figure 3(b) shows that for positive
(tensile) strain the CBM at �min shifts up, and the CB at

TABLE I. Band-gap energies (in eV) for bulk MoS2 calculated using different methods.

LDA GGA HSE06 HSE06a GW0
b QSGWc Experimentd

Indirect 0.81 0.86 1.48 1.48 1.23 1.29 1.29
Direct 1.80 1.58 2.16 2.33 2.07 2.10 1.95

aReference 15.
bReference 17.
cReference 16.
dReference 18.
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FIG. 3. (Color online) Band gaps of MoS2 as a function of strain
for (a) uniaxial stress along c and (b) biaxial (in-plane) stress. The
various gaps are indicated by the locations in the Brillouin zone where
the VB and CB extrema occur: indirect �-to-�min and �-to-K gaps,
and direct K-to-K gap. The vertical dashed lines indicate unstrained
MoS2.

K shifts down. The VBM remains at �. The band gap thus
remains indirect for all biaxial stress conditions, switching
from � to �min to � to K at a very small tensile strain.

The variation of band gaps with strain can be expressed in
terms of deformation potentials, which are useful quantities
for device modeling. For small strains in the vicinity of the
equilibrium lattice parameters the variation of the gaps is
approximately linear, and hence can be expressed as

�E�-K
g = D�-K

zz εzz and �E�-K
g = D�-K

⊥ (εxx + εyy), (1)

where the second deformation potential is expressed with
respect to the sum of the in-plane strains, in analogy with
the definition of the deformation potentials D2 and D4 in a
hexagonal system.19 Similar expressions hold for the �-to-
�min and K-to-K gaps.

The calculated deformation potentials are listed in Table II.
The range over which the linear approximation inherent in
Eq. (1) is valid is larger for biaxial strains than in the uniaxial
case (see Fig. 3); for the latter, a change in c by 5% changes
the deformation potentials by as much as 1 eV.

Note that Eq. (1) is formulated in terms of strain, not stress,
and hence the deformation potentials are calculated by varying
only the c lattice parameter (in the case of Dzz), with the a

and b lattice parameters fixed to their equilibrium values. To
obtain the variations under uniaxial or biaxial stress conditions
that were depicted in Fig. 3, strains along directions parallel
as well as perpendicular to c need to be taken into account.

TABLE II. Band-gap energies and deformation potentials (in eV)
for uniaxial (along c) and biaxial (in-plane) strains, as defined in
Eq. (1).

Egap (eV) Dzz (eV) (uniaxial) D⊥ (eV) (biaxial)

E�-�min
g 1.48 6.32 −0.56

E�-K
g 1.50 4.68 −11.65

EK-K
g 2.16 0.28 −7.18
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FIG. 4. (Color online) Effective masses (in units of electron mass
m0) for (a) holes and (b) electrons as a function of strain under uniaxial
stress conditions. The masses are labeled by the band extremum and
(in square brackets) the direction along which the mass is calculated
[see Fig. 1(c)]. The vertical dashed line indicates unstrained MoS2.

Under uniaxial stress, the ratio between εxx and εzz is given
by Poisson’s ratio ν:

εxx = −νεzz with ν = c13/(c11 + c12), (2)

where the cij are the elastic constants of MoS2. Under biaxial
stress, we have

εzz = −(2c13/c33)εxx. (3)

The combination of Eqs. (1) and (2) or (3) then leads to the
results shown in Fig. 3, at least in the linear regime around the
equilibrium lattice parameter. Similarly, hydrostatic pressure
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FIG. 5. (Color online) Effective masses (in units of electron mass
m0) for (a) holes and (b) electrons as a function of strain under biaxial
stress conditions. The masses are labeled by the band extremum and
(in square brackets) the direction along which the mass is calculated
[see Fig. 1(c)]. The vertical dashed line indicates unstrained MoS2.
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TABLE III. Effective masses (in units of electron mass m0) for the unstrained system for bulk
and monolayer MoS2. The masses are labeled by the band extremum and (in square brackets) the
direction of the high-symmetry line [see Fig. 1(c)] along which the mass is calculated. Due to the 2D
nature, only the in-plane masses are given in the case of the monolayer.

Hole masses

K[�] K[T ] K[P ] �[�] = �[�] �[�]

Bulk 0.43 0.47 1.73 0.62 0.80
Monolayer 0.44 0.48 2.80

Electron masses

K[�] K[T ] K[P ] �min[�] �min[⊥�] �min[‖c]
Bulk 0.47 0.45 >100 0.53 0.73 0.49
Monolayer 0.37 0.38 0.57 0.97

leads to

εxx = εyy and εzz = c11 + c12 − 2c13

c33 − c13
εxx. (4)

Strain also changes the curvature of the bands, reflected in a
change in the effective masses of electrons and holes. Table III
reports the effective masses in the unstrained material at the
relevant band extrema and along representative high-symmetry
directions. Because of the relative weak interaction between
layers, we expect out-of-plane masses to be large. This is
indeed true in some cases, but not universally: The hole mass
at � along the � direction is only 0.80, and the out-of-plane
electron mass at �min is only 0.49, of the same order as the
in-plane masses.

Figure 4 displays the changes under uniaxial stress. The
hole masses for the band extremum at K are not very sensitive
to strain, except for the mass along the perpendicular P
direction, which increases when the layers are separated. The
reason for this is that in the monolayer limit the K and H
point become equal. A similar behavior occurs for the other
masses in directions perpendicular to the MoS2 layers, e.g.,
for the mass at � in the � direction and at �min in the
direction parallel to c. For large tensile strains, corresponding
to isolated monolayers, the VBM shifts to the K point [see
Figs. 2 and 3(a)], but the � extremum is the relevant VBM
for all experimentally accessible uniaxial stress situations. The
mass of the holes at � is quite sensitive to strain, and decreases
rapidly under compressive uniaxial stress, with values that are
identical along the � and � in-plane directions. For electrons
[Fig. 4(b)], the relevant CB extrema are at �min and K, and the
mass decreases slightly under compressive uniaxial stress.

For biaxial stress (Fig. 5), where we again applied a
correction to account for the different c parameter, the � hole
mass is the same along the � and � directions and decreases
monotonically with increasing in-plane strain. The electron
mass at the �min CBM exhibits a slow increase with strain,
while the electron masses at K decrease with increasing strain.
Taking into account which of the CB extrema are relevant, K
for tensile and �min for compressive biaxial stress, we notice
that the relevant electron mass never exceeds 0.5m0.

In summary, we have investigated the electronic structure of
MoS2 using first-principles hybrid density functional theory,
and explored strain effects corresponding to experimentally
accessible uniaxial and biaxial stress conditions. The changes
in band structure as a function of tensile uniaxial strain also
allowed us to monitor the transition from the bulk to the
monolayer band structure (Figs. 2 and 3). The changes in band
gaps around the equilibrium lattice parameters are reported in
terms of deformation potentials in Table II. Strain effects on
effective masses of electrons and holes (Table III) are reported
in Figs. 4 and 5. The parameters and insights provided here
will be useful for interpretation of experiments and for device
modeling.
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