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Anisotropic Fermi contour of (001) GaAs holes in parallel magnetic fields
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We report a severe, spin-dependent, Fermi contour anisotropy induced by parallel magnetic field in a high-
mobility (001) GaAs two-dimensional hole system. Employing commensurability oscillations created by a
unidirectional, surface-strain-induced, periodic potential modulation, we directly probe the anisotropy of the two
spin subband Fermi contours. Their areas are obtained from the Fourier transform of the Shubnikov–de Haas
oscillations. Our findings are in semiquantitative agreement with the results of parameter-free calculations of the
energy bands.
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The complex energy band structure of GaAs two-
dimensional hole systems (2DHSs) has been the subject
of continued research thanks to its fundamental importance
and, more recently, for the potential application of 2DHSs
in spintronics and quantum computing.1–9 The 2D hole
dispersion is characterized by strong spin-orbit interaction,
which leads to spin splitting of the bands even in the absence
of an external magnetic field and makes 2DHSs useful for
spintronic devices.4–6 In addition, the holes’ wave functions
have little overlap with the nuclei. The lack of overlap should
significantly improve the spin coherence time, rendering the
holes’ spins promising candidates for quantum computing
qubits.10–12

Here we address the ability to manipulate the 2D holes’
energy bands using a magnetic field (B‖) applied parallel
to the plane of a 2DHS and to directly probe the resulting
distortions of the spin subband Fermi contours and the ballistic
hole trajectories. The spin-dependent distortions are a result
of the finite (nonzero) thickness of the (quasi-) 2D hole layer
and the coupling of B‖ to the holes’ out-of-plane orbital
motion. As we demonstrate, the Fermi contour distortion for
the majority-spin holes is particularly significant and leads to a
contour anisotropy of ∼ 3 : 1 for B‖ � 15 T in our 175-Å-wide
GaAs quantum well (QW) sample. This anisotropy is much
larger than what is expected in 2D electron systems confined
to a similar GaAs QW.13

A direct and quantitative determination of the anisotropy
of the 2D hole Fermi contours in a strong B‖ is by itself of
fundamental interest. Pioneering magnetotunneling measure-
ments of the 2D hole energy band anisotropy, reported over
twenty years ago, agreed surprisingly well with the results
of simple (4 × 4 Luttinger model) calculations of the bands
at zero magnetic field.1 This is very puzzling because the
experimental data were taken at very high values of B‖ (up
to 25 T) and yet there was good agreement with zero-field
dispersions. Subsequent theoretical calculations validated this
puzzle as they showed that the agreement becomes worse if
one uses more accurate energy band models (at zero magnetic
field)14 or takes the large B‖ into account.15 The anisotropy
is also relevant in measurements where magnetic focusing of
ballistic holes is used for spatial spin separation.6,8 In such
experiments a relatively strong B‖ is often applied to partially

spin-polarize the 2D holes. As we demonstrate here, this B‖
can cause a severe distortion of the hole Fermi contours. Our
measurements of Fermi contour distortions and their close
comparison with the results of state-of-the-art calculations
therefore not only shed light on a long-standing problem, but
they also have implications for the realization of devices whose
operation depends on the ballistic transport of 2D holes.

Figure 1 highlights the key points of our study. In Fig. 1(a)
we show the results of a parameter-free calculation of the
2DHS dispersions, based on an 8 × 8 Kane Hamiltonian
that takes into account the spin-orbit interaction and the
nonparabolicity of the 2D hole bands in our sample.5 The
Fermi contours are given in Fig. 1(b). At B‖ = 0 T, the Fermi
contours of the two spin-split bands differ slightly from each
other. With the application of B‖ along the [110] direction, the
two contours change dramatically. The majority-spin (p+) and
the minority-spin (p−) Fermi contours both become elongated
along the direction perpendicular to B‖. This anisotropy is very
different for the two spin subbands, being ∼ 3 : 1 (∼ 1.6 : 1)
in the majority (minority) spin subband. The pure Zeeman
spin splitting of the hole states at k = 0 is rather small,
but the spin splitting shows a pronounced k dependence,
which reflects the interplay of spin-orbit coupling and heavy
hole–light hole coupling.5 Holes are also transferred from the
p− to the p+ contour with increasing B‖ as evidenced by the
enhanced area of the p+ contour. Note that the real-space hole
trajectories [see Fig. 1(d)] are rotated by 90◦ with respect to
the Fermi contours16 so that, as expected for a quasi-2D carrier
system with finite layer thickness, the real-space trajectories
are longer along the direction of B‖ ([110]) and are squeezed
perpendicular to B‖ ([110]).17

In our study we employ surface-strain-induced commen-
surability oscillations (COs),18–22 triggered by a periodic
superlattice, to directly map the Fermi wave vectors in
two perpendicular directions, [110] and [110], as shown
in Figs. 1(b) and 1(c).23 The magnetoresistance of such
samples exhibits minima at the electrostatic commensura-
bility condition 2RC/a = i − 1/4, where i = 1,2,3 . . ..19–31

Here 2RC = 2kF /eB is the cyclotron diameter along the
modulation direction and a is the period of the potential
modulation (kF is the Fermi wave vector perpendicular to
the modulation direction).31 The anisotropy of the cyclotron
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FIG. 1. (Color online) (a) Self-consistently calculated dispersions for the majority-spin (p+) and minority-spin (p−) subbands along the
[110] and [110] directions for a 2DHS of density p = 1.5 × 1011 cm−2 confined to a symmetric 175-Å-wide (001) GaAs QW. Thick solid
and dotted curves represent the dispersions at B‖ = 15 T applied along [110], while thin solid and dashed curves are for B|| = 0. (b) The
calculated 2D hole Fermi contours for the p+ and p− subbands in a parallel magnetic field applied along the [110] direction are given in solid
red and dashed/dotted blue, respectively. (c) Schematic of the experimental setup, indicating the orientation of the Hall bar arms and the applied
magnetic field. The geometry of the Hall bar is designed to use the commensurability of the ballistic cyclotron orbits in real space with the
period of the potential modulation induced by the stripes to probe the size of the Fermi wave vector kF along the [110] and [110] directions
directly (see text).

diameter and/or the Fermi contour can therefore be directly
determined from COs measured along the two perpendicular
arms of an L-shaped Hall bar as shown in Fig. 1(c). The
COs for the arms along [110] and [110] yield kF along
[110] and [110], respectively. In a semiclassical picture, COs
can be understood similarly to Shubnikov–de Haas (SdH)
oscillations16,27 which show that, within the range of validity
of the semiclassical approximation,32 COs yield the (extremal)
Fermi wave vector perpendicular to the modulation direction,
irrespective of details of the dispersion such as nonparabolicity
and anisotropy. In our measurements, we also recorded SdH
oscillations in an unpatterned part of the sample to probe the
area enclosed by each of the Fermi contours.

We prepared strain-induced superlattice samples with a
lattice period of a = 175 nm from a 2DHS confined to a 175-Å-
wide GaAs QW grown via molecular beam epitaxy on a (001)
GaAs substrate. The superlattice is made of negative electron-
beam resist and modulates the 2DHS potential through the
piezoelectric effect in GaAs.22 The QW, located 131 nm
under the surface, is flanked on each side by 95-nm-thick
Al0.24Ga0.76As spacer layers and C δ-doped layers. The 2DHS
density at T � 0.3 K is p � 1.5 × 1011 cm−2, and the mobility
is μ = 1.2 × 106 cm2/V s. The sample has two Hall bars,
oriented along the [110] and [110] directions, as schematically
illustrated in Fig. 1(c). Current was passed along the two Hall
bar arms and the longitudinal resistances along the arms were
measured simultaneously. We made measurements by first
applying a fixed, large magnetic field in the plane of the sample
along [110]. The sample was then slowly rotated to introduce a
small magnetic field (B⊥) perpendicular to the 2DHS; this B⊥
is what induces COs or SdH oscillations in our sample.33 The
magnitude of B⊥ was extracted from the Hall resistance which

we measured in an unpatterned region of the sample along
with the resistances of the two patterned regions. Note that
when the applied field B is large compared to B⊥, the parallel
component of the field, B‖ =

√
B2 − B2

⊥ , remains essentially
fixed and equal to B as we rotate the sample and take data.33

Also, we tilted the sample around the [110] direction so that
B‖ was always along [110]. We performed the experiments
using low-frequency lock-in techniques in a 3He refrigerator
with a base temperature of T � 0.3 K.

The magnetoresistance data from the two perpendicular
Hall bar arms are shown in Figs. 2(a) and 2(b). In each figure
the bottom trace, which was taken in the absence of B‖, exhibits
clear COs. The positions of the resistance minima agree
well with those predicted by the commensurability condition
for a 2DHS with a circular, spin-degenerate Fermi contour;
the latter are indicated with indexed vertical lines.22,34 The
Fourier transforms (FTs) of these two traces are shown as
the bottom curves in Figs. 2(c) and 2(d). Each of the two FT
spectra exhibits one peak whose position (� 0.64 T) agrees
with the frequency fCO = 2h̄kF /ea = 0.64 T expected for a
circular, spin-degenerate Fermi contour with kF = √

2πp.22,34

For sufficiently large values of B‖ (�2 T), the peak in the FTs
for the [110] Hall bar data [Fig. 2(c)] splits into two peaks,
and the splitting increases with increasing B‖. This is clear
evidence for the presence of two hole spin subbands with
different cyclotron diameters along [110]. In sharp contrast to
this behavior, the [110] Hall bar data [Fig. 2(d)] show only
one peak whose position moves to smaller frequencies as B‖
increases.

Figure 3 summarizes the measured fCO as a function of
B‖ and the corresponding deduced Fermi wave vectors kF

(left axis). In this figure, we also plot the values of kF as
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FIG. 2. (Color online) (a), (b) Magnetoresistance data measured
across the patterned sections of the L-shaped Hall bar in the [110]
and [110] directions at different values of B‖. Each trace is vertically
offset for clarity. The expected positions i = 2,3,4 of the CO minima
for the bottom (B‖ = 0) traces are indicated with vertical lines. (c), (d)
Normalized Fourier transform spectra of the CO data shown in (a) and
(b), respectively. The B‖ = 0 anticipated CO frequency, based on a
spin-degenerate, circular Fermi contour, is marked with dashed lines.
The low-frequency parts of the spectra (below the vertical dotted
lines) are severely affected by the Hamming window used in the
Fourier analysis and are shown here suppressed by a factor of 100.

predicted by our calculations of the Fermi contour shapes. The
qualitative agreement between the measured and calculated
kF in Fig. 3 is clear. The agreement is in fact quantitatively
good except for the p+ Fermi contour along [110] where
the elongation deduced from the experimental data is smaller
than expected from the calculations [Fig. 3(a)]. We do not
know the source of this disagreement at the moment. Despite
this discrepancy, however, the overall agreement between the
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FIG. 3. (Color online) (a), (b) Summary of the peak positions of
the CO Fourier spectra for the two Hall bar arms. The left axis shows
the deduced Fermi wave vectors kF according to kF = eafCO/2h̄. The
experimental data are shown by square symbols. The lines represent
the corresponding calculated values, based on kF of the p+ and p−

contours.

measured and calculated kF is remarkable, considering that
there are no adjustable parameters in the calculations. The
results of Fig. 3 clearly point to a severe spin-dependent
distortion of the Fermi contours and the associated real-space
ballistic hole trajectories in the presence of a moderately strong
B‖.

The CO data we present in Figs. 2 and 3 probe the size of the
2DHS Fermi contours in two specific directions in k space. For
completeness, we also probed the areas of the Fermi contours
by measuring SdH oscillations in an unpatterned region of
the sample. Figure 4(a) shows the magnetoresistance traces
at different values of B‖. The FTs of these traces are shown
in Fig. 4(b). For B‖ = 0 and also at low values of B‖, we
observe two peaks. The position of the peak at 3.1 T matches
the value of (h/2e)p � 3.1 T expected for spin-unresolved
SdH oscillations of holes of density p � 1.5 × 1011 cm−2,
and the peak at 6.2 T corresponds to spin-resolved oscillations.
Starting at B‖ � 5 T, the spin-unresolved peak at 3.1 T begins
to split, with the upper and lower peaks corresponding to the
areas (hole densities) of the p+ and p− subbands, respectively.

In Fig. 4(c) we plot, as a function of B‖, a summary of the
three measured SdH frequencies (fSdH ), corresponding to p+,
p−, and the total density, p. We also plot (open triangles) the
difference between the measured frequencies p and p+ as an
alternative measure of p−. To compare the experimental data
with the results of our energy band calculations, in Fig. 4(c)
we show two curves corresponding to the areas (divided by
e/h) of the calculated Fermi contours [see contours shown
in Fig. 1(b)]. There is overall good agreement between the
measured and calculated Fermi contour areas in Fig. 4(c),
although the measured splitting between the p+ and p− bands
is somewhat smaller than the calculations predict. A similar
discrepancy has been reported before indicating that the SdH
oscillations may not be simply related to the zero-magnetic-
field hole densities.32 This precludes us from making a direct
comparison between the CO and SdH data.

241302-3



RAPID COMMUNICATIONS

D. KAMBUROV et al. PHYSICAL REVIEW B 86, 241302(R) (2012)

(b)

0 2 4 6 8 10
fSdH (T) 

50 Ω 

0-0.5 1
B┴ (T) 

÷100

B|| = 0T

4

6

8

10

12

R
es

is
ta

nc
e 

(Ω
)

B|| = 0T

4

5

6

8

10

12

 )stinu .bra( ytis ne tni TF

p -
p +
p

p +

p -

p - p +

f
Hd

S
)

T(

(a)
(c)

Measured:

Calculated:

0

2

4

6

8

0 2 4 6 8 10 12
B|| (T)

FIG. 4. (Color online) (a) Shubnikov–de Haas oscillations measured in the reference (unpatterned) region of the Hall bar as B‖ increases.
Similar to Figs. 2(a) and 2(b), the traces are vertically offset for clarity. (b) Fourier transform spectra of the SdH oscillations as a function of
B‖. The dashed line shows the expected position of the B‖ = 0 spin-unresolved FT peak. The signal in the region to the left of the vertical
dotted line is shown suppressed. (c) Summary of the measured (symbols) and calculated (lines) SdH frequencies.

Our results presented here demonstrate the tuning of the
GaAs 2D hole dispersion anisotropy through the application
of an in-plane magnetic field. We provide data which directly
probe the anisotropy and the size of the Fermi contours.
The experimental data are in semiquantitative agreement with
the results of a parameter-free energy band model based
on the 8 × 8 Kane Hamiltonian. We find a severe spin-
dependent anisotropy of the 2D hole Fermi contours stemming
from the combined effect of the strong B‖ coupling to
the orbital motion, the large spin-orbit interaction in the
GaAs valence band, and heavy hole–light hole coupling.5 We
emphasize that the anisotropy in our hole sample is much larger

than our calculations predict for quasi-2D electrons confined
to a similar QW.13

We acknowledge support through the DOE BES (DE-
FG02-00-ER45841) for measurements, and the Moore Foun-
dation and the NSF (ECCS-1001719, DMR-0904117, and
MRSEC DMR-0819860) for sample fabrication and character-
ization. Work at Argonne was supported by DOE BES under
Contract No. DE-AC02-06CH11357. We thank Tokoyama
Corporation for supplying the negative e-beam resist TEBN-1
used to make the samples.

1R. K. Hayden, D. K. Maude, L. Eaves, E. C. Valadares, M. Henini,
F. W. Sheard, O. H. Hughes, J. C. Portal, and L. Cury, Phys. Rev.
Lett. 66, 1749 (1991).

2J. J. Heremans, M. B. Santos, and M. Shayegan, Surf. Sci. 305, 348
(1994).

3B. Brosh, M. Y. Simmons, S. N. Holmes, A. R. Hamilton, D. A.
Ritchie, and M. Pepper, Phys. Rev. B 54, 14273 (1996).

4J. P. Lu, J. B. Yau, S. P. Shukla, M. Shayegan, L. Wissinger,
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