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D-algebra structure of topological insulators
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In the quantum Hall effect, the density operators at different wave vectors generally do not commute and
give rise to the Girvin-MacDonald-Plazmann (GMP) algebra, with important consequences such as ground-state
center-of-mass degeneracy at fractional filling fraction, and W1+∞ symmetry of the filled Landau levels. We
show that the natural generalization of the GMP algebra to higher-dimensional topological insulators involves
the concept of a D commutator. For insulators in even-dimensional space, the D commutator is isotropic and
closes, and its structure factors are proportional to the D/2 Chern number. In odd dimensions, the algebra is
not isotropic, contains the weak topological insulator index (layers of the topological insulator in one fewer
dimension), and does not contain the Chern-Simons θ form. This algebraic structure paves the way towards the
identification of fractional topological insulators through the counting of their excitations. The possible relation to
D-dimensional volume-preserving diffeomorphisms and parallel transport of extended objects is also discussed.
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Introduction. Fractional topological insulators (FTIs) are
the strongly correlated states that may appear when a narrow-
bandwidth bulk band of a topological insulator1,2 is fraction-
ally filled and subject to strong interactions. Evidence for their
existence has been provided in a series of analytical and numer-
ical works in two-dimensional Chern insulators3–11 and time-
reversal-invariant topological insulators.12–14 The plethora of
new experimental facts and theoretical ideas discovered in
the noninteracting topological insulators suggests that their
fractional (i.e., interacting) counterparts will also exhibit new
physical properties of topological phases, especially in space
dimensions higher than 2.

The excitation counting of a topological state of matter is
an imprint of the underlying topological phase. It contains
information about the nature of both the excitations and the
edge states. The most studied fractional topological insulator,
the two-dimensional fractional Chern insulator (FCI), has been
identified through the counting of its excitations (in both the
energy and the entanglement spectrum).15 This progress was
made possible by the nontrivial algebra obeyed by its projected
density operators.16 For a smooth enough Berry curvature
in the Brillouin zone (BZ), this algebra is nothing but the
celebrated Girvin-MacDonald-Plazmann (GMP) algebra of
the fractional quantum Hall (FQH) effect.17 This algebra has
far-reaching consequences: it is identical to the algebra of
area-preserving diffeomorphisms, thereby providing for an ex-
planation of the edge modes of an integer quantum Hall liquid
as shape deformations of the liquid droplet. It allows for the
construction of nontrivial many-body symmetry operators of
the Hilbert space, it provides for a center-of-mass degeneracy
(exact in the FQH but approximate in the FCI), and is related
to the Hall viscosity q4 form factor, as well as the edge dipole
moment.18

All numerical studies of FTIs in higher dimensions rely
on excitation counting as conclusive evidence. A prerequisite
is to develop analytical tools that apply to dimensions
greater than 2. In this Rapid Communication, we present a
generalization of the GMP algebra to topological insulators
in higher dimensions. In even space dimensions we consider

Chern insulators (A class19,20), which are characterized by a
Chern number. In odd dimensions we consider Z2 topological
insulators, whose topological number is the average over the
Brillouin zone of the Chern-Simons form. We generalize the
usual commutator structure in D spatial dimensions to a D
commutator by contracting with the antisymmetric tensor in
D dimensions. If this commutator is closed, the relation is
called a D algebra. We find that for topological insulators in
even dimensions, the commutator is closed, and the algebra is
isotropic, under a condition similar to that of the existence of
the GMP in the two-dimensional (2D) Chern insulator.16 Its
structure factors are proportional to the (D/2)th Chern number.
In odd space dimensions, however, the density algebra does not
probe the relevant topological number, as the Chern-Simons
form (F ∧ A + i/3A ∧ A ∧ A in 3D) does not appear. This
algebra is anisotropic in nature, as it is sensitive to layers of
(D − 1)-dimensional topological insulators in the system. This
algebraic structure opens a way towards the identification of
fractional topological insulators through the counting of their
excitations.

Projected density operators and flatband limit. We start
by fixing notations and recalling some well-known results
about band structure and projected density operators for
topological insulators. We consider an N -band topological
insulator described by a translationally invariant Hamiltonian,
and we work on a D-dimensional lattice (with LD sites) with
periodic boundary conditions. After diagonalization of the the
Bloch matrix, the one-body Hamiltonian takes the form

H =
∑

k

En(k)γ n†
k γ n

k , (1)

where the normal modes γ n
k can be written as a matrix

rotation of the original electron operators γ n
k = ∑

β un�
k,βck,β .

We consider the physics of the (possibly fractionally) occupied
bands and look only at projectors into these bands. The pro-
jection operator in the occupied bands is P = ∑

n,k |k,n〉〈n,k|
where |n,k〉 = γ

n†
k |0〉 and the band index n ranges over all

occupied bands n = 1, . . . ,Nocc. The density operator e−iq·r =∑
j,α e−iq·jc†jαcjα becomes, when projected to the occupied
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bands of a topological insulator,

ρq =
∑

k,n,m

〈
un

k

∣∣um
k+q

〉
γ

n†
k |0〉 〈0| γ m

k+q, (2)

where n,m range over the set of occupied bands.
Fractional topological insulators are usually constructed

and observed in models with fractionally filled bands whose
bandwidth is very small, such that interactions and not the
kinetic energy dominate the physics. The ideal example of
such an insulator is the flatband model, which gives an energy
−1 to occupied bands, and +1 otherwise:

HFB = 1 − 2P. (3)

All projected operators commute with the this deformed one-
body Hamiltonian. Therefore the projected density operators
are an exact symmetry of the flatband Hamiltonian, to which
the true one-body Hamiltonian (1) is adiabatically connected.

Two-dimensional algebra and first Chern number. Before
moving to higher dimensions, we quickly review what is
known about the algebra of projected density operators in two
dimensions, with an emphasis on its main characteristics. We
focus on the appearance of the Chern number in the algebra and
on the link between projected densities and parallel transport
in the background of the Berry curvature. At long wavelength
(q1,q2 → 0), in Ref. 16 the following commutation relation
was found:[

ρq1 ,ρq2

] = −iq
μ

1 qν
2

∑
k,n,m

F n,m
μν (k)γ n†

k |0〉 〈0|γ m
k+q1+q2

, (4)

where the Einstein summation convention over repeated
indices is assumed. This result holds in any dimension.
Fμν = ∂μAν − ∂νAμ − i[Aμ,Aν] is the non-Abelian Berry
field strength in the Brillouin zone, while the vector potential
is Anm

μ (k) = i〈un
k|∂kμ

|um
k 〉.

In two dimensions Fμν(k) = B(k)εμν , and its integral over
the whole Brillouin zone yields the first Chern number C1 =

1
4π

∫
BZ d2kεμνTr[Fμν(k)]. The commutator of two densities

has to be nonzero in a nontrivial Chern insulator. That is so
because the Chern number C1 of the two-dimensional insulator
can be expressed as a trace over the Brillouin zone of the
density commutator,

Tr
([

ρq1 ,ρq2

]
ρ−q1−q2

) ∼
q→0

L2

2πi
(q1 ∧ q2) C1, (5)

where q1 ∧ q2 = εμνq
μ

1 qν
2 . In the continuum limit of the

quantum Hall effect, the projected density algebra of the
lowest Landau level is called the GMP algebra. Its generators
are the generators of the area-preserving diffeomorphisms in
two dimensions. This result is recovered for two-dimensional
topological insulators with an Abelian U(1) uniform Berry
curvature, in the long-wavelength limit. As pointed out in
Ref. 16 (see also Refs. 21 and 15), if the local Berry
curvature can be replaced by its average Fxy(k) = B = C1

2π

then [ρq1 ,ρq2 ] = −iB q1 ∧ q2 ρq1+q2 . Note that q1 ∧ q2 is the
area enclosed in the parallelogram delimited by q1 and q2. This
algebra is nothing but the two-dimensional Aharonov-Bohm
effect in momentum space, in the background of the “magnetic
field” Fxy = B. Expanding the projected densities at long wave
vectors as ρq = 1 + iq · R + O(q2), the algebra of the guiding

center is recovered,

[R1,R2] = iB = i

2π
C1. (6)

The Chern number quantifies the noncommutativity of the
guiding center operators. This Abelian treatment applies to
two-band models (insulators with one band below and one
above the gap) or to many-band insulators where the non-
Abelian components of the field strength can be neglected (up
to an overall prefactor Nocc). We remark that in a two-band
insulator, it is impossible to have a constant Berry curvature
due to the no-hair theorem,22 although this seems possible in
insulators with four or more bands.22

Since projected density operators commute with the flat-
band Hamiltonian (3), it would seem that they are the gen-
erators of a proper symmetry group of the system. However,
this is not quite true, as they suffer from a serious deficiency.
Because of the projection, they are not unitary. The density
operator translates states in momentum space but does not
keep their norm:

ρq|n,k〉 =
∑
m

〈
um

k−q

∣∣un
k

〉|m,k − q〉. (7)

It is possible to replace the projected density operator ρq by
a unitary operator ρ̃q, while not spoiling the long-wavelength
behavior from Eq. (4). For a uniform Abelian Berry curvature,
the answer is quite straightforward, and is simply the exponen-
tiation of the guiding center operator. Doing this, one recovers
the GMP algebra

[
ρ̃q1 ,ρ̃q2

] = −2i sin
(
B

q1 ∧ q2

2

)
ρ̃q1+q2 . (8)

More generally, for a non-Abelian and nonuniform Berry field
strength, the answer is parallel transport in the background of
the Berry gauge potential Aμ(k):

ρ̃q =
∑
k;n,m

(Pe−i
∫ k+q

k A(k′)dk′
)nmγ

n†
k |0〉〈0|γ m

k+q. (9)

In the Abelian case this result was pointed out in Ref. 16.
Note that the parallel transport also commutes with the
flatband Hamiltonian, and at small momenta coincides with
the projected density operator ρ̃q = ρq + O(q2).

Density algebra in even space dimensions. The density
commutator is natural in two dimensions. In higher space
dimensions D > 2, the commutator algebra Eq. (4) reveals
whether a two-dimensional quantum Hall effect exists on a
given plane of the D-dimensional space defined by the two
vectors q1 and q2. It is apparent then that the commutator
algebra Eq. (4) cannot probe isotropic quantities such as the
topological number. In order to find an isotropic algebraic
structure in higher dimensions, we must look somewhere
else. We first realize that the commutator [ρq1 ,ρq2 ] is, in two
dimensions, simply a rewriting of the operators εαβρqα

ρqβ
. In

D space dimensions, it is then suggestive to look at the operator

[ρqα1
,ρqα2

, . . . ,ρqαD
] = εα1α2,...,αD

ρqα1
ρqα2

· · · ρqαD
, (10)

where εα1,α2,...,αD
is the totally antisymmetric tensor in D di-

mensions. and α = 1, . . . ,D. These generalized commutators
are called D commutators. We will now compute this object
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in the long-wavelength limit and find it is closed, thereby
generating a D algebra.

The density algebra in even space dimensions is sim-
pler to obtain than in odd space dimensions for reasons
that will become apparent. In even space dimensions we
have the Chern-insulator (QH) classes, so we anticipate
that the algebra closes. We first reexpress the D com-
mutator as a product of 2 commutators: [ρq1 , . . . ,ρqD

] =
2−D/2εα1,...,αD

[ρqα1
,ρqα2

] · · · [ρqαD−1
,ρqαD

]. Using the long-
wavelength two-dimensional algebra Eq. (4) and working at
order qD we obtained[

ρq1 ,ρq2 , . . . ,ρqD

] = (−i)D/2 (q1 ∧ q2 ∧ · · · ∧ qD)

×
∑

k,n,m

[F (k) ∧ · · · ∧ F (k)]nm γ
n†
k

× |0〉 〈0| γ m
k+q1+···+qD

. (11)

This equation is the D-dimensional analog of Eq. (4).
In the D commutator appear the matrix F ∧ · · · ∧ F =
2−D/2εμ1,...,μDFμ1μ2 · · ·FμD−1μD

which is the (D/2)th Berry
curvature density of the (D/2)th Chern number:

CD/2 = 1

(D/2)!(2π )D/2

∫
dDkTr [F (k) ∧ · · · ∧ F (k)] .

(12)

For even-dimensional topological insulators, the (D/2)th
Chern number can be expressed as the the trace over the D

commutator of the projected density operator:

Tr([ρq1 ,ρq2 , . . . ,ρqD
]ρ−(q1+···+qD ))

∼
q→0

LD

(2πi)D/2
(D/2)! (q1 ∧ q2 ∧ · · · ∧ qD) CD/2.

(13)

This is the exact analog of the two-dimensional relation (5).
It is possible to obtain an analog of the GMP algebra in D

dimensions. As for topological insulators in two dimensions,
this algebra holds when the Berry density F (k) ∧ · · · ∧ F (k) is
uniform in the Brillouin zone, and proportional to the identity
matrix. This situation is not as restrictive as it may seem, and
we conjecture that Chern insulators are adiabatically connected
to this uniform case. For instance the integer quantum Hall
effect in two, four, and eight dimensions23,24 enjoys these
properties, as inherited from the underlying monopole field
configurations. Under these assumptions the projected density
operator algebra closes in the long-wavelength limit[

ρq1 ,ρq2 , . . . ,ρqD

]
= (D/2)!

1

(2πi)D/2

CD/2

Nocc
(q1 ∧ q2 ∧ · · · ∧ qD) ρq1+···+qD

,

(14)

and we recover a D algebra. It is very tempting to ex-
pand the projected densities as ρq = 1 + iq · R + O(q2).
The guiding center algebra is most easily obtained in the
continuum limit. From Eq. (7) the guiding center operators
are simply the covariant derivatives with the Berry potential
in momentum space Rμ(k) = −i[∂kμ

− iAμ(k)]. Using the
relation [Rμ,Rν] = iFμν , it is straightforward to obtain their

D commutator

[R1(k), . . . ,RD(k)] = iD/2F (k) ∧ · · · ∧ F (k). (15)

This elementary derivation in the continuum is not plagued by
the limitations of derivation on the lattice, as there is no need
to suppose the Berry density F (k) ∧ · · · ∧ F (k) to be uniform
or proportional to the identity.

This D-algebra structure may be understood in two ways.
On one hand, as was pointed out in Ref. 15, the projected
position operators can be expressed in terms of the projected
density operators. Therefore an immediate interpretation
of Eq. (15) is the noncommutativity of the coordinates of
particles projected to the occupied bands of a topological
insulator. This is the D-dimensional analog of Eq.(6) for the
quantum Hall effect.

On the other hand, the GMP algebra also describes a
two-dimensional Aharonov-Bohm effect: the projected density
operators implement parallel transport of pointlike objects in
the background of the Berry curvature F . In higher dimen-
sions, an Aharonov-Bohm effect with respect to the D form
F ∧ · · · ∧ F requires parallel transport of higher-dimensional
objects. We conjecture that the algebra (15) is related to
an Aharonov-Bohm effect involving extended excitations
(membranes) coupled to the Berry curvature F ∧ F ∧ · · · ∧ F .
However, unlike in two dimensions, it is not clear how to
interpret the projected density operators as an implementation
of membrane parallel transport.

Density algebra in odd space dimensions. Pursuing the
same strategy in odd dimensions leads to an impasse. The topo-
logical invariant in odd dimensions is defined as the integral
over the Brillouin zone of a Chern-Simons form. For instance,
in three dimensions the Z2 topological invariant is given by

P3 = θ

2π
= 1

8π2

∫
d3k Tr

[
F ∧ A + i

3
A ∧ A ∧ A

]
. (16)

Defined for all odd dimensions, a characteristic feature of
Chern-Simons forms is that their integral is not invariant
under large gauge transformations. However, the variation
has to be an integer.25 In contrast to the even-dimensional
Chern numbers, the odd-dimensional Z2 topological invariant
is gauge invariant only modulo integers. Trying to obtain P3

through the gauge-invariant trace Tr([ρq1 ,ρq2 ,ρq3 ]ρ−q1−q2−q3 )
is doomed to fail. A simple relation like Eq. (13) is ruled out in
odd dimensions. Moreover D commutators in odd dimensions
are known26 be more problematic than their even-dimensional
counterparts. For instance, while even commutators involving
the identity matrix do vanish, this is no longer the case for odd
commutators. This is most easily seen in three dimensions:

[A,B,1] = [A,B] 	= 0. (17)

Consequently, when expanding the 3 commutator of a pro-
jected density operator ρq = 1 + iq · R + O(q2), the lowest-
order contribution is of order q2 and not q3:

[ρq1 ,ρq2 ,ρq3 ] ∼ −i
(
q

μ

1 qν
2 + q

μ

3 qν
1 + q

μ

2 qν
3

)
Fμνρq1+q2+q3 .

(18)

This term is reminiscent of the 2-commutator algebra Eq. (4),
and accounts for a possible two-dimensional topological
structure in the 3D insulator. This would be the case for a
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weak 3D Chern insulator, obtained by stacking layers of the
2D Chern insulator. This structure remains true in all odd
dimensions, where the D commutator contains an anisotropic
O(qD−1) term, in contrast with the isotropic O(qD) term
appearing in Eq. (11) for even dimensions.

In order to investigate in more detail the kind of problems
that arise in odd dimensions, we computed the subleading term
in the algebra (18) in three dimensions. If the Chern-Simons
density (16) is to appear at all in the triple commutator, this has
to be as an O(q3) term. Upon computing the subleading term of
the 3 commutator [ρq1 ,ρq2 ,ρq3 ], a term (q1 ∧ q2 ∧ q3)F ∧ A

appears. This promising term is part of the Chern-Simons form,
although the i

3A ∧ A ∧ A part is missing. However, in order
to close the algebra we need to multiply the 3 commutator
by ρ−q1−q2−q3 , and rather than completing the Chern-Simons
term, it destroys it altogether. We are left with

[ρq1 ,ρq2 ,ρq3 ]ρ−q1−q2−q3

= −i
∑

k,n,m

(
q

μ

1 qν
2 + q

μ

2 qν
3 + q

μ

3 qν
1

)
(Fμν)nmγ

n†
k |0〉 〈0| γ m

k

+ εα1α2α3q
μ
α1

qν
α1

qσ
α2

1

2

∑
k,n,m

(Cμνσ )nmγ
n†
k |0〉 〈0| γ m

k . (19)

The subleading term does not contain the expected anti-
symmetric tensor (q1 ∧ q2 ∧ q3)εμνσ . Instead we have the
tensor εα1α2α3q

μ
α1

qν
α1

qσ
α2

, which is symmetric under μ ↔ ν,
and cannot be contracted to the antisymmetric Chern-Simons
tensor. Instead it comes with the tensor

Cμνσ = iDσBμν − i∂μ∂νAσ − (Aμ∂ν + Aν∂μ)Aσ

+FμσAν + FνσAμ, (20)

where Dσ · = ∂σ · +i[Aσ ,·] and Bμν is the O(q2) regular-
ization of the density operator ρq = ∑

k,n,m(1 − iqμAμ −
i
2qμqνBμν)nmγ

n†
k |0〉〈0|γ m

k+q. The 3-tensor Cμνσ being μ ↔ ν

symmetric, it can never yield the fully antisymmetric Chern-
Simons term, and this calculation shows explicitly that the
Berry curvature does appear in the algebra of projected density
operators in three dimensions, no matter what regularization
Bμν is chosen for the density operator.

A way to get around this no-go theorem is to involve
non-gauge-invariant operators, such as the pure translation
Tq |n,k〉 = |n,k − q〉. This can be used to generate the Chern-
Simons form as

P3 = 1

32π2
εijkTr

{[
ρqi

ρqj
(ρqk

− Tqk
)

− 1

3

(
ρqi

− Iqi

)(
ρqj

− Tqj

)(
ρqk

− Tqk

)]
ρ−qi−qj −qk

}
,

(21)

but the physical picture behind this relation is still unclear.

Concluding remarks. We have presented a generalization
of the GMP algebra to D-dimensional topological insulators
by generalizing the commutator, algebra, and Berry phase to
their higher-dimensional counterparts. At this level, the even
and odd dimensions are fundamentally different—in even di-
mensions, the structure factors of the algebra are proportional
to the (D/2)th Chern number, while in odd dimensions they are
not proportional to the expected Chern-Simons form. The D

commutator hints at a different group structure from the usual
gauge theories, such as higher gauge theories.27,28 In light of
this, the recent proposal29 to describe topological insulators by
a BF theory30 looks very promising. In two dimensions, the
classical limit of the GMP algebra is isomorphic to the algebra
of area-preserving diffeomorphisms, and is related to incom-
pressibility. A D algebra on the other hand is related to volume-
preserving differomorphisms.31 Indeed it is a quantization of
the classical Nambu-Poisson bracket,32 which is known to be
invariant under volume-preserving diffeomorphisms. It would
be interesting to make this connection more explicit and to
understand its link to the incompressibility of TIs in higher
dimensions.

Moreover, the GMP algebra is related to a two-dimensional
Aharonov-Bohm effect of pointlike objects moving in the
background of the Berry curvature F . In higher dimensions,
the D algebra involves the D form F ∧ · · · ∧ F . The natural
objects that can couple to a D form are (D − 2)-dimensional
membranes.28 Interestingly, the classical limit of the D

commutator is the Nambu-Poisson bracket,33 which is a natural
setup to describe the dynamics of classical membranes.32 The
appearance of extended objects in the field theory description
of topological insulators in dimensions greater than 3 is also
expected from the BF proposal of Ref. 29. This suggests that
the correct “effective” description of the higher-dimensional
topological insulators is in terms of parallel transport not of
electrons but of extended objects, such as strings in three
dimensions. We speculate that the Chern-Simons term could
appear when such algebras are constructed.

Note added. We recently became aware of a related paper.34

While most of our results are similar, our conclusions in odd
space dimensions are exactly the opposite. We have shown that
it is not possible to obtain the Z2 topological invariant through
the algebra of the projected density operators.
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