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Visibility recovery by strong interaction in an electronic Mach-Zehnder interferometer
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We study the evolution of a single-electron packet of Lorentzian shape along an edge of the integer quantum
Hall regime or in a Mach-Zehnder interferometer, considering a capacitive Coulomb interaction and using a
bosonization approach. When the packet propagates along a chiral quantum Hall edge, we find that its electron
density profile becomes more distorted from Lorentzian due to the generation of electron-hole excitations, as the
interaction strength increases yet stays in a weak-interaction regime. However, as the interaction strength becomes
larger and enters a strong-interaction regime, the distortion becomes weaker and eventually the Lorentzian packet
shape is recovered. The recovery of the packet shape leads to an interesting feature of the interference visibility
of the symmetric Mach-Zehnder interferometer whose two arms have the same interaction strength. As the
interaction strength increases, the visibility decreases from the maximum value in the weak-interaction regime
and then increases to the maximum value in the strong-interaction regime. We argue that this counterintuitive

result also occurs under other types of interactions.
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I. INTRODUCTION

The effects of electron-electron interactions on electron
interference have been recently investigated in a systematic
way in experiments, by using the electronic Mach-Zehnder
interferometer! realized by one-dimensional chiral edge states
in the quantum Hall regime. The interactions can cause
dephasing, because electrons sense “which-path” information
of other electrons through the interactions. Experiments on
the interferometer have revealed nontrivial interaction-induced
dephasing effects such as the so-called lobe structure’= of the
interference visibility under nonequilibrium. Different aspects
of the dephasing effects have been theoretically studied in
various ways of a bosonization approach,®!3 a shot-noise
argument,'"!® an interedge interaction model,'*!" and an
exactly solvable model.'>'#

Whereas most previous studies dealt with the dephasing
effects in the case that electrons are continuously injected,
by dc bias voltage, into the Mach-Zehnder interferometer,
here we examine a simpler problem where a single isolated
electron wave packet is injected to the interferometer. This
situation may allow to directly investigate the dephasing of a
single electron due to its interaction with the underlying Fermi
sea.!”!3 This situation can be experimentally realized by com-
bining the interferometer with a single-electron source!'®>!
where an electron is pumped by a time-dependent potential.

In this work, we study the interaction-induced dephasing
of a single-electron packet moving along a chiral quantum
Hall edge or through a Mach-Zehnder interferometer at filling
factor v = 1. We consider a packet of Lorentzian shape and a
capacitive Coulomb interaction of charging energy type. We
treat the interaction by using a bosonization method?? and the
exactly solvable model of Kovrizhin and Chalker,'3'* which
allows us to study the interferometer with the beam splitters of
arbitrary transmission probability (see quantum point contacts,
QPCs, in Fig. 1). When the packet propagates along the
chiral edge, we find that its electron density profile becomes
more distorted from Lorentzian due to the generation of
electron-hole excitations, as the interaction strength increases
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yet stays in a weak-interaction regime. However, as the
strength becomes larger and enters a strong-interaction regime,
the distortion becomes weaker and eventually the packet
shape becomes Lorentzian. The recovery of the packet shape
leads to an interesting feature of the interference visibility of
the symmetric Mach-Zehnder interferometer whose two arms
have the same interaction strength. As the interaction strength
increases, the visibility decreases from the maximum value in
the weak-interaction regime, and then increases to the maxi-
mum value in the strong-interaction regime. This behavior of
the revival of coherence is an example®® counterintuitive to
the common expectation that stronger interactions may cause
more dephasing. We argue that this behavior is not specific to
the capacitive interaction but can also appear under other type
of interactions.

This paper is organized as follows. In Sec. II, we introduce
the setup and the bosonization technique. In Sec. III, we
provide the analytical expression of the time evolution of the
electron phase operator. In Sec. IV, we address the dynamics
of a Lorentzian packet along a quantum Hall edge. In Sec. V,
we investigate the dephasing in the interferometer. In Sec. VI,
we argue that our finding can appear in a wide class of
interaction models.

II. SETUP AND BOSONIZATION

The interferometer setup' is shown in Fig. 1. It consists of
two sources (regions 1 and 2), two chiral interferometer arms
(regions 3 and 4), and two drains (regions 5 and 6). Each arm is
realized by a chiral quantum Hall edge channel at filling factor
v = 1 and the beam splitters by quantum point contacts (QPCs
A and B). We focus on the symmetric interferometer whose
two arms have the same length d and the same interaction
strength.

The electron field operator at coordinate x in each region
i (=1,2,3,4,5,6) is denoted by v¥,(x). For computational
simplicity, we consider the situation that the total length
L of the system is finite but much longer than d, and
assign coordinate as x € (—L/2, —d/2) in regions 1 and 2,
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FIG. 1. (Color online) (a) Schematic view of an electronic Mach-
Zehnder interferometer. A single electron packet is injected from
source 1 (region 1), splits at the first quantum point contact (QPC A),
passes through the two arms (regions 3 and 4), and then is collected
in drain 1 (region 5) after passing the second quantum point contact
(QPC B). The two arms are symmetric, having the same length d and
the same interaction strength, and enclose magnetic flux ®.

x €(—d/2,d/2)in3and4,and x € (d/2,L/2)in5 and 6. The
QPCs A and B are located at x = —d /2 and d /2, respectively.
The scattering of the electron field operators occurs at the
QPCs as

J3(0) _s (V@
Z2(C3) S o))

¥s(x) _ 5use [ P
1/,}6()6) x:%-&-O @[,}4()6) x:%—O’

rj it b
it i T
(= A,B), SjS} = S;Sj =1, and r; (t;) is the reflection
(transmission) coefficient of QPC j; we choose, for simplicity,
t; and r; asreal. The effect of the magnetic flux & (= ®3 — ®y4)
enclosed by the two arms (regions 3 and 4) is described by
i®3

So=(%y o)

Below, we describe the bosonization approach for the low-
energy regime of the system. The total Hamiltonian is decom-
posed into the kinetic and interaction parts, Ayt = Hein + Hige.
The kinetic part has the linear form of (ivp/i) Zi’-:l [dx:

Pl (x) 1,

where S; = ( ) is the scattering matrix at QPC j

. L2 s b
th:vFZ/ dx =0 (D)

I=u,a ¥ ~L/2

where vy is the Fermi velocity, : - - - : stands for the normal
ordering, and we introduced operators v, and 4,

1/53()0 for —%<x<%
Ya(x)

%M(X) =18, 1/A/1(X) for — % <x < —‘5’
Ya(x) Ya(x)

Y, and v, are defined over the entire range of —L/2 <
x < L/2 and continuous at x = +d/2. They capture the
effects of the QPC’s. On the other hand, the electron-electron
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interactions in the two interferometer arms are described, as
in previous studies,”>'3-1% by a capacitive interaction of the
charging energy type,

dxdx': p)px) . (2)

where g is the dimensionless interaction strength and g;(x) =:
1&11'(x)1@1(x) : is the electron density operator in channel /. We
ignore the interactions in the sources and drains (regions 1, 2,
5, 6).

From the form of I:Itot, one notices that 1&,, and @d are com-
pletely decoupled from each other, acting as the “eigenchan-
nels” of H. This simplifies the analysis of Hior. We impose the
periodic boundary conditions &lzu,d(—L /2) = 1/A/l(L /2) onto
each channel and define the electron annihilation operators
¢ and the electron density operators 0;(k) of channel / in

ikx a

the momentum space by 1/7,(x) = \LFL > e, and fi(x) =
13 e py(k), where k =2nn/L and n € Z. j; satisfies
the commutation rules*? of Loi(@), pr(—¢)] = %81,1/6,,,(,/
and [p1(x), o (x')] = 50 8(x — x")8. It is decomposed”
into p;(x) = %(%,qgl(x) + % N = ffﬁz dx p;(x) is the zero-
mode operator counting the number of electrons in channel

I and ¢;(x) is the bosonic operator describing the plasmon
excitations of channel /,

o 2 1
¢i(x) = — E —
L iq

q#0

e 112 b (g), 3)

where a is an infinitesimal positive real constant introduced
to regularize divergent sums. The bosonic operator ¢;(x) is
related to the electronic field v,

1
V2ma

where Fy is the Klein operator that reduces the eigenvalue of
N; by 1. From Eq. (4),A0ne can interpret ¢;(x) as the electron
phase operator. Then Hi;, is bosonized,??

A UF/’Z L2 2 Nl
Ay = — [/ dx : pi(x)" :+—|, )
2 zgd —L)2 L

Pi(x) = —==Frel ¥4, “

therefore the total Hamiltonian H,q is expressed in terms of
the bosonic operators g;(x) and N;.

III. TIME EVOLUTION OF THE PHASE OPERATOR

In this section, we analytically study the time evolution of
the bosonic phase operator ¢31 (x). We note that the introduction
of the “eigenchannels” Iqu and lﬁd in Eq. (1) allows the analytic
study; a similar problem has been studied by Kovrizhin and
Chalker.'>4

The time dependence of ¢31 (x) is written as

A 2w 1 . R
Gix, ) =" ge’“e—'q'“ﬂpz(q,r). 6)

L
q7#0
Here, x = 0 denotes the center of arm and ¢ = 0 stands for an
initial time. After some algebra, one finds that ¢;(x,?) satisfies
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the equation of motion,

[8; 4+ vrd i (x,1)

_ 8VF | 4 d d .
——ﬁ[dﬁ( ) ¢1(——t)+ZN1} @)

for —d/2 < x < d/2, and [0; + vpax]é)l(x,t) = 0 otherwise.
In the noninteracting case g = 0, @;(x,?) satisfies the zeroth-
order solution of ¢3,(°>(x,z) = (;Aﬁg(x — vrt,0). We note that the
time dependence of the zero-mode N, is neglected because of
L — oo.

In the presence of the interaction with nonzero g, q@l (x,t)can
be expanded as @;(x,1) = ¢ (x.1) + P (x.1) + P (x.1) - - -
with respect to the order of g. When x € (—L/2, —d/2) or
x € (d/2,L/2), " (x,1) satisfies (3, + vp,)P" (x,1) = O for
all n. In the case of x € (—d/2,d/2), we derive, from Eq. (7),
the recurrence relation between ¢+ (x,¢) and ¢ (x,r) for
n>1,

[0 + vrd B TV (x,0)

_VE 8 | am _gm( ¢
e [r(3) (2] o

Once qbl(])(x t) is obtained, all ¢(">2)’s can be recursively
obtained from Eq. (8).

To obtain the first-order solution of qA&(l)(x 1), we
first evaluate p1(q.1) = et ot/ (g )it/ — =p”
(q,1) + ﬁ;l)(q 1)+ ,(31(2)(61 t)+ - by usmg the Baker-
Haussdorff lemma of pi(q, t) = (@) + L[ Hot. ()] +
3 (’h’)2[Ht0[,[Hlot, 01(@)]] + - - -. One can easﬂy verify that the
zeroth-order contribution of ,6,(0) (g,1) is given by e =9 p;(q).
The evaluation of the first-order contribution of ﬁ;l)(q,t) is
rather tedious and given in Appendix A. One obtains (ﬁfl)(q,t)
by inserting /' (¢.) into Eq. (6), and ¢">?(q.t) by using
Eq. (8).

Then, we obtain 8431(x,t) = ¢3,(x,t) — </3,(O)(x,t) as

Si(x,1) == K(g;x,0)pi(q)e' 1. ©)
q

For the case of x > d/2 (regions 5 and 6) and t > —xtd/z

(propagation time from the left end of the arms at —d /2 to
x), we find that the kernel K(g;x,t) reduces to the form of
K (g), which is independent of x and ¢,

singd/2\2
d  8CLHH)

K(q)= i2 Sf]ndq/j/Z iqd/2’ (10)
1 + dp ¢

and that Sél(x,t) reduces to qul(x — vrt,0). K(q) shows the
transition amplitude of an electron with momentum difference
q by e-e interaction. Thus this analytic expression is very
useful for understanding single-electron dynamics even in a
strong-interaction regime as below. We note that analytic K (q)
agrees with the kernel obtained in Refs. 13 and 14.

IV. PROPAGATION OF A LORENTZIAN PACKET ALONG
A CHIRAL CHANNEL

We first investigate the propagation of a single electron
wave packet along a chiral channel at v = 1. We consider the
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FIG. 2. (Color online) Schematic view of the single chiral channel
where the electron-electron interaction is present only within the dark
region of length d.

situation in Fig. 2 that the capacitive Coulomb interaction is
present only within a region of length d. The Hamiltonian of
the channel is

ﬁch=vF/L FABERIES

h
L /_ drdx' : pp.

where p(x) =: ¥T(x)¥(x) :. This describes the Mach-Zehnder
interferometer with ro = rg = 0. We will examine in this
section how the wave packet is distorted as it passes through
the interaction region. The insights obtained in this section
will be useful for understanding the the interaction effect on
the interference visibility of the single wave packet in the
Mach-Zehnder interferometer, which is the subject of the next
section.

We confine ourselves to one particular type of a wave
packet, a Lorentzian packet. Its shape facilitates the analytic
calculation considerably. The Lorentzian packet also has
practical merits as it can be created by a Lorentzian voltage
pulse with minimal noise.'"” A Lorentzian packet created on
top of the filled Fermi sea |F) is expressed as |W:(X)) =

[ dxfe(e; X)UT@)|F) where fi(x: X) = \/; —i. The
electron density (We(X)|p(x)|We (X)) generated by the packet
has the Lorentzian profile of %m with packet center

x = X and width £. In the momentum space, it is written as

4 o
hiid &l X0 py. (11)

k>0

|We (X)) =

Note that the summation over k runs only over positive k
(above the Fermi sea).

We study the time evolution of the packet whose center
is initially located at X <« —d/2 — & in the left side of the
interaction region. As time goes on, it moves to the right.
We calculate the expectation value of the density operator
at position Y > d/2 in the right side of the interaction
region, pcn(Y,t) = (W:(X)|p(Y,1)|We(X)). The time depen-
dence of the density operator is decomposed as Pep(x,1) =
p(x —vpt,0) 4+ 6p(x,t). The first term of p(x — vpt,0) is
the trivial density of the non-interacting case that preserves
the original Lorentzian shape, while the second term of
8p(x,t) = %Bx&f)(x,t) describes the distortion due to the
interaction. From Eq. (9), we obtain the distortion part
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(Y-X-vt)/d

FIG. 3. (a) Electron density profile in (a) a chiral channel and
in (b), a Mach-Zehnder interferometer, after a Lorentzian packet
passes through the interaction region. In (b), only the magnetic-
flux-dependent part p, of the density profile is depicted with 13 =
t2 = 0.5. The profile is shown for different values of the interaction
strength, g/(2m) = 0 (solid line), 0.5 (dot-dashed), 2 (dashed), and
1000 (thick solid). We choose d/L = 0.05 and & = 2d/3.

Spen(Y,1) = (We(X)[6p(Y,1)|We (X)) (See Appendix B):

1 .
sp(Y,t) = E Z _l'qK(q)eflqléezq(lffvam_ (12)
q

By using the analytic expression of K(g) in Eq. (10), the
electron density profile pch(Y,?) is easily evaluated. Note that
f dYpen(Y,t) = 1 because of charge conservation.

The result is shown in Fig. 3(a) as a function of g. As g
grows, the electron density profile more deviates from the
Lorentzian profile, because of the creation of particle-hole
pair excitations due to the interaction. Interestingly, in the
strong-interaction limit of g — oo, the packet recovers its
original Lorentzian profile but with the center shifted by
the extra distance of d. Mathematically, this feature arises
since K(q) — %(e’iqd —1)/q as g — oo [see Eq. (10)],
which  yields  pen(Y,1) = £ Y e 11l elaV=Xvri=d) —
pech(Y —d — vpt,0). Physically, this feature may be
understood as follows. In the g — oo limit, the strong
interaction suppresses the charge fluctuations in the region of
—d/2 < x < d/2. Then as soon as charges are injected to the
interaction region from the left at x = —d /2, the exactly same
amount of charges is ejected from the interaction region to the
right at x = d/2, because of the chiral property. Otherwise,
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the total charge in the interaction region should be modified,
which is energetically very costly. The balance between the
injected charge amount and the ejected charge amount should
be maintained at each time instance. This explains the shift
of the Lorentzian packet by distance d without distortion.
We expect that this feature will also occur under other types
of electron interactions in the strong-interaction limit where
charge fluctuations are suppressed in the interaction region.

V. LORENTZIAN PACKET IN A MACH-ZEHNDER
INTERFEROMETER

In this section, we study the interference of a single
Lorentzian packet in a Mach-Zehnder interferometer at v = 1.
The Lorentzian packet | (X)) = fdxfg(x;X)lﬂ(x)lF) is
incoming from region 1 and detected in region 5 [see Fig. 1(a)].

The current density operator [s = evpps of region
5 (x>d/2) satisfies 0cf5(x,1) = —[eps(x,1), Hioil/(iR),
where ps =: ¥l(x,0)¥s(x,0) 1. [s is expressed in terms
of ¥, and v, using Eq. (1) and decomposed into
Is(xe,t) = Is y(x,t) + L5 (x,1).  Here,  Is,(x,t) = evp :
rélﬁi(x,t)lﬁu(x,t)+t§1ﬁ;(x,t)1ﬁd(x,t): is the  direct
term independent of the magnetic flux &, while
fs0(x,1) = evpRe[: 2irgtpd (x,O0a(x,1) : e71®] is  the
interference term. Accordingly, the current density
I5(Y,t) = (lIJI,g(X)|IA5(Y,t)|\-IfL§(X)) in region 5 is
decomposed into I5,(Y,t) and Is,(Y,r). We find the
direct part of /5 as

I (Y,1) = evp[rg (W (X0 ou (Y. W) £(X))
+tlza(‘PI,E(X)|Pd(YJ)|q’l,g(x))]
= evr(rarg + tatz) pen(Y,1), (13)

where p.n(Y,?) is the electron density profile in the chiral
channel discussed in Sec. IV. The interference part is

15,0(Y3t) = _zeUFrAtArBtB,OO(Y,t)COS q)v (14)

where p,(Y.1) = (W, ¢(X)| : Yl (Y.0)0a(Y.1) : Wy (X)) and
(W1 (X)) =7a|W, (X)) +its|Wqe(X)) from Eq. (1). By
using Eq. (14) and the fact that v, and ¥, are dynamically
decoupled, one obtains p,(Y,t) = x (Y,t)xa(Y,t), where

x(Y,t) = / dx'(FIJn(Y,00, (', 0)|F) fr s X)  (15)

for Y > d/2 (regions 5, 6) and ¢ > Y+U—‘F1/2 (propagation time
from x = —d/2 to Y). By using the bosonization technique,

we evaluate p,(Y,?) as (see Appendix C)
E 6‘ZIm[ZPO K(q)e 45 ¢idY=X—vp)]
Yt)==>
poYo1) = — X0

Using Eq. (10), one computes p,(Y,?).

The result of p,(Y,?) is shown in Fig. 3(b) for various
values of g. In the noninteracting case of g = 0, p,(y,t) has
the Lorenzian shape. As g increases, p,(Y,t) deviates from
the Lorentzian profile due to particle-hole excitations by the
interaction. p,(Y,#) becomes to recover its original Lorentzian
shape but with the center shifted by d, as g further increases
(beyond about 4m) and enters into the strong-interaction
limit of g — oo. This feature has the same origin with the

(16)
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1.0

0.9¢

2m

FIG. 4. Normalized interference visibility ¥ as a function of g.
We choose the packet widths of £ /d = 5 (solid line), 2 (dot-dashed),
1 (dashed), 1/2 (long-dashed), and 1/5 (thick solid), and use d/L =
0.05. Inset: §, as a function of ¢, for the capacitive interaction with
g/2m =2 (solid line), 10 (dot-dashed), 25 (dashed), 1000 (long-
dashed), and for the regularized Coulomb interaction of V,(x,x") =
Eb/v/(x — x")? + b2 and V5(x,x") = £ exp [—|x — x'|/b] with b =
0.1d, d/L = 0.1, and g/27 = 1000 (two thick solid lines); the two
thick solid lines for V,; and V,, almost overlap with each other and
appear as a single line. This result of the linear dispersions of §,
provides the clue that the visibility recovery also appears in the strong-
interaction regime of the regularized Coulomb interactions of V,;
and V,,.

corresponding effect in the single chiral channel discussed in
the last section.

We investigate the implication of the above interesting
feature on the interference visibility. We compute the total
charge transmission Q5(®) to drain 1 (region 5). Q5(®P) is de-
composed into the flux-independent part Qs ,, = f dtls ,(Y,t)
and the flux-dependent part Qs ,(P) = fdtIS,O(Y,t;CD) =
Q2 , cos @, where QY _ is the oscillation amplitude of Qs ,(P).
Note that both Qs, and Qs, are independent of Y. The
evaluation of Qs , is straight forward, Qs , = e(r3ry + 1312),
since vp f dtpn(Y,t) =1 due to the charge conservation.
On the other hand, Q(S),o = 2eratargtpvr fdt,o,,(Y,t) needs
to be explicitly evaluated. In Fig. 4, we show the visi-
bility V = (QS,max - QS,min)/(QS.max + QS,min) = Q(S)’O/QSJ’!
of the charge transmission as a function of g/2m, where
O5,max(min) 1S the maximum (minimum) value of Qs(®). V

depends on r4, t4, 7, tp through the combination of %’
A"B A'B

thus the normalized visibility V = V/[ 24’88 ] s plotted

r§r§+t§t§

instead. In the noninteracting limit of g — 0, V becomes 1.
As g grows, V decreases, implying the dephasing induced by
the interaction. However, as g further increases beyond ~ 4,
V becomes larger and revives, approaching to the maximum
value of 1 in the strong-interaction limit of g — oo. Namely,
the interference visibility is not a monotonically decaying
function of the interaction strength, which is in contrast to
the conventional expectation that stronger interactions cause
more severe dephasing. The revival of the electron coherence in
the strong-interaction limit is the consequence of the restored
density profile of p,(Y,?) along the chiral channel [see Fig. 3(b)
and Sec. IV].
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Note that Fig. 4 also shows that V increases as the packet
width & increases. This is natural, because larger £ implies
smaller excitation energy.

VI. DISCUSSION AND CONCLUSION

The origin of the revival of the visibility in the strong-
interaction regime can be understood from the suppression of
particle-hole creation in the interaction regions. This implies
that the revival can also occur in the strong-interaction
regime of the other types of Coulomb interactions. We find
numerically that the visibility revival indeed occurs in the
cases of the regularized Coulomb interaction V,i(x,x’) =
gb/[d+/(x — x")? + b?] and the exponentially screened inter-
action V,o(x,x") = (g/d) exp [—|x — x’|/b] (results not shown
here).

We discuss the revival of the visibility in another way,
based on the form of the kernel K(g) in Eq. (9). For general
types of electron interaction, the kernel has the form'>!* of
—igK(q) = 2m(e "% — 1)/L. §, is the phase that the bosonic
field ¢(¢g) acquires in the middle region of length d and
interaction strength g. In general, §, is nonlinear in g. In
this case, there occurs dephasing, i.e., visibility reduction,
because of the phase randomization in interaction-induced
scattering processes between momentum states. On the other
hand, there is no dephasing (i.e., no phase randomization)
in the case that §, is linear in g. For example, in the case
of the short-range interaction of V(x,x’) o« §(x — x’), one
finds §, o< g and no dephasing; in the case of the short-range
interaction, the only effect of the interaction is the shift of the
propagation velocity. In the cases of the capacitive interaction,
the regularized Coulomb interaction V|, and the exponentially
screened interaction V., 8, becomes proportional to g in the
strong-interaction limit (see the inset of Fig. 4), resulting in no
dephasing in the limit. This discussion of the linear dispersion
of §, is consistent with the suppression of particle-hole creation
in the interaction region of the chiral channel (see Sec. IV).

We comment on the case of an asymmetric Mach-Zehnder
interferometer, for example, where the interaction exists only
in one (saying region 3) of the two arms but the two arms have
the same length d. In the strong-interaction limit of this case,
the packet that propagated through either region 3 or 4 remains
in the Lorentzian form in region 5. However, the center of the
packet that propagated through region 3 is located at advanced
position by d, compared with that of the packet through region
4. The shift of the packet center by d is due to the strong
interaction in region 3. Hence the visibility ¥ cannot reach
the maximum value of 1, and it will be suppressed. For larger
&/d, the suppression is weaker, as the two packets (one moved
along region 3, and the other along 4) have more overlap in
region 5. We note thatin Ref. 18, an asymmetric Mach-Zehnder
interferometer was discussed in a context different from our
study, to show that a voltage pulse is applied to undo the
distortion of a single-particle wave packet due to a capacitive
Coulomb interaction.

Finally, we crudely estimate the interaction parameter g in
experiments. One has the capacitive interaction ~e’\?/(2C),
where capacitance C ~ ed and N is the amount of electric
charges in the interferometer arm.’> By comparing this with
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Eq. (2), one has g/(2m) ~ e*/(ehvr). Inserting typical ex-
perimental parameters'>?* of € = 12.5¢; and vy = (2-15) x
10*m/s, one estimates g/(2m) ~ 2.3-17.5; €; = 8.85 x
10~12C/Vm. This value falls in the range where the visibility
revival occurs (see Fig. 4). As vp or € may be modulated in
experiments>> by about factor 2, the visibility revival may be
studied in experiments.

In summary, we examined the interaction effect on the
coherence of a single-electron wave packet of Lorentzian shape
in an electronic Mach-Zehnder interferometer. In particular,
we found that the visibility of the interference of the packet
shows the nonmonotonic behavior as a function of interaction
strength, and that in the strong-interaction limit, the visibility
is restored to the value of the noninteracting case. This
counterintuitive result is attributed to the suppression of
particle-hole excitations in the strong-interaction limit and to
the fact that the packet propagates along the chiral channels.
We discuss the parameter regime where one may observe the
revival of the visibility in experiments.

Our study is valid and useful for the case of filling factor
v = 1, as it is based on the exactly solvable model for arbitrary
intraedge interaction strength and arbitrary transmission prob-
ability at the quantum point contacts. On the other hand, it does
not describe the case of filling factor v = 2, where interedge
interactions play an important role. It will be interesting to
investigate a combined effect of our findings and the interedge
interactions in the filling factor v = 2.

o0 [0} . h n
58" (q.1) = —%”Fh Si“qd/z[z 3 (”'i') "

m=1n=m
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APPENDIX A: 4" (g,t) AND 8¢y (x,1)

In this section, we derive the expression of /3; )(q,t) and
) d31 (x,t)in Eq. (9). The commutation relation between density
operators leads to the following relations:

[Hyin, 51(q)] = —qurhpi(q),

Aine, pr(@)] = —-2-vphi singd /2,
wd
(A1)
. 2
Aians X = ivph f dxd pi(x),
—d/2
. d/2 dj2
[Hkm, f dxa,'f,@z(x)]zivph / 0 o),
—d/2 —d/2

where N, = fi/iz dxp;(x) and n is a positive integer. Using
the relations, one finds

The integral in Eq. (A2) is rewritten in the terms of p;(g), the Fourier transformation of g;(x), as

dj2
/ dxd" ' pi(x) =

—d/2

To evaluate the summation in the above

ZZOOZZ =0

to an integral as Y, o = [0, 54 /L

d
5pM(q.0) = 2= singd 2%
by (q,1) —q Sing / 7 ;
By inserting Eq. (A4) into Eq. (6), we find

81" (x, 1

equation,
— > (m =0). Since the total system length L is much larger than d and vgt, a summation over ¢ is converted
This yields 5" (x,1) = e~4"" p,(¢,0) and

sing’d/2 ,
“d2 i ( )|:

dj2
queh)" " (ivph)" ! / dxa;”%(x)}. (A2)
—d/2
m—1 Sin sing'd/2 'd/2
Z( = 7z P (A3)
we use DU DT =D al0 D e — Dono(m =0) =

Z smq d/2 e )Z

q7#0

(et — giavrt (Ad)

9% p—lala/2 | p—iqurt _ ,—iq'vrt ' qd
sin —. (A5)

q9—9q 2

We next derive Egs. (7) and (9). The equation of motion of the first-order 843,(1)(x,t) is obtained from the partial derivative

of the right-hand side of Eq. (A5), [3; + vrd.]1 > 40 %eing*\q\a/Z sin qd/Z[ﬁ(e*iqvpt —e
+1 for x
[, + vrdu1d(x,1) = —vp L[4 (L.1) — V(= L,0) + LRy for —d/2 <

d/2) —sgn(x —d/2)] when a — 0. Here, sgn(x) =
Similarly, we obtain the recursive relation as

[0 + vrd B (x,0) =

,iqfv,.-t)] — —%pe*"q/”"t[sgn(x +
2 0 and sgn(x) =0 for x = 0. Then, one can verify that

x <d/2, and [0; + vpOy ]¢“)(x,t) = 0 otherwise.

(A6)

e [ (51) 9 (31)]
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forn >

iq'd)2

4 1 'd
):_gz_sinq_ _Ee
L? " q'd 2 7 q'd

5($l(n+l)(x,t

Here, we used % Zq;ﬁ — e—id'vet)
1 . 'd gl i ( ) ( )
= — sin L1 d/2e=i1avr! for ¢ (d/2,t), and ¢,"(—d/2,1)

= 0. By summing all the orders, we derive Eq. (9).

_eiqd/Z sin qzd 1 (e—tqvpl

APPENDIX B: §pn(Y,t) IN THE CHIRAL-CHANNEL CASE

In this section, we derive Eq. (12). For Y > d/2,
Spen(Y,1) = (Ve(X)[8p(Y,1)|W: (X)) is written as

2
8pen = x > =itk — KK — k)
k,k'>0
X ei(k/—k)vF(X+Y—vpt)e—(k+k’)€_ (B1)
By putting g = k' — k and Q = k' + k, we obtain
8peh = — Z—qu(q)eW” 0N e (B2)

0>q|

Notice that the discrete unit of Q is2Ak = 4x /L. This relation
isreduced to Eq. (12), after the summation over Q is performed
in the limit of L — oo.

APPENDIX C: p,(Y,¢) IN THE INTERFEROMETER CASE

In this section, we derive p,(Y,?) in Eq. (16). x;(Y,?) in
Eq. (15) is reexpressed in terms of bosonic field operators in
Eq. (4) as

1 g o
x(Y.0) = / dx' s—(F | #0100 O F) £ (x; X). (C1)
a
¢A)1,0(x’ ,0) stands for the bosonic field of the
noninteracting case, satisfying ¢y 0(x’,0) = ¢y o(x") =

z Z#o—e”’x e 1925 (q).  $i(Y,r) is decomposed to

PHYSICAL REVIEW B 86, 235444 (2012)

e*iqvpt _ e*iq’vpt
; .
q9—49

1. The trial solution of the (n + 1)th order for the long-time limit of t > d /v is

sin —) bi(g )

(A7)

be divided into an annihilation operator and a creation operator
of the bosonic field, @, o) =N o €1 pi(g) and

Pl = EY, el "“/”pz(q) Similarly, 8¢ (z) is also

divided into §¢;(z) = — Zq>0 K(q)e'%%pi(q) and (S(pl () =
— Y0 K@epi(q).  Since  §ro(x)|F) = ¢i(2)|F) =
(FI@!o(x) = (F|§](z) =0, one can move annihilation
(creation) operators to the right (left) side in Eq. (C1).
Using eAT8) = eAeBe=114B] and edeB = eBedeld Bl we
find that the integrand of Eq. (C1) has the form of

L 10010101, 0] 00).0100 1010080

2ma
We compute [@](2).¢1.0(2)] = [¢] (x),¢(x)] = In 24, by

exp(=2nra/L) (] — e~ *i*). Similarly, [¢;(z),

using >, .
@,T_O(x/)] = [@1,0(Z),¢;0(x/)] +[8¢1(2),9; (X)), exp([P1,0(2),

@ o(xN]) =~ iL/[ZJT(z —x'+ia)] in the limit of L — oo,
and [8¢(2).9, O(x’) —i) 0 K (q)et1@—*'*+ia/2)  The last
relation captures interaction effects.
Then, we compute the integral of Eq. (C1), by using the
contour integration of complex variable x" — 7/,
jo Lo Klgyeiae i

_ /& /
x(@) = \/ngdz (@ —z—ia)Z — X +iE)’

One pole exists at 77 = z + ia in the upper plane. And another
atz’ = X — i€ inthe lower plane. By choosing the lower-plane
contour including the pole at 7/ = X — i€, we obtain

= f 1 I K iq(z—X) ,—q&
Z hase x - pmi o K(@e e ]’
xi(z) =p ,/ pul 15

(C2)

where a — 0. Since y,(z) = x4(z) = x(2) in the symmetric
case, po(Y,t) = |x(2)|>. After evaluating |x(z)|*>, we derive
Eq. (16).

¢1(Z) = $r0(z) + 8¢i(z) with z =Y —vpr where 8¢(z) =
— Z#O K(g)e'?*pi(q) for Y > d/2 (regions 5, 6) and
t > "+d/2 (propagation time from x = —d/2to x). ¢1 o(x’) can
“phylove @postech.ac kr
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