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ac Josephson transport through interacting quantum dots
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We investigate the ac Josephson current through a quantum dot with strong Coulomb interaction attached to
two superconducting and one normal lead. To this end, we perform a perturbation expansion in the tunneling
couplings within a diagrammatic real-time technique. The ac Josephson current is connected to the reduced
density matrix elements that describe superconducting correlations induced on the quantum dot via proximity
effect. We analyze the dependence of the ac signal on the level position of the quantum dot, the charging energy,
and the applied bias voltages.
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I. INTRODUCTION

Josephson junctions can be formed by linking two super-
conductors via an insulator, a normal conductor, or a constric-
tion in an otherwise continuous superconducting material.1,2

Advancements in nanofabrication enabled the contacting
of superconductors with quantum dots (QDs), which can
be formed in carbon nanotubes,3–8 in InAs nanowires,9–12

in graphene,13 or by means of self-organization in InAs
with Al electrodes.14–16 One motivation to investigate hybrid
superconductor-QD devices17,18 is the possibility to tune their
properties via external electrodes that shift the discrete energy
levels of the QD. Another feature characteristic for QDs
is the charging energy that may give rise to effects based
on the interplay of Coulomb repulsion and superconducting
correlations. It is, therefore, an interesting question to ask how
the discrete level spectrum and the charging energy affect the
dc and ac Josephson transport between two superconductors
coupled via a QD.

In the absence of a bias voltage, a finite dc current can
be sustained in such an S-QD-S by the dc Josephson effect.
This has been confirmed experimentally,6,9 which shows that
two electrons forming a Cooper pair can tunnel coherently
one by one through a strongly interacting quantum dot. When
neglecting the charging energy, the dc Josephson effect in
such an S-QD-S system can be studied within a scattering
approach.19 But also Coulomb-interaction effects have been in-
cluded in various formalisms as perturbation expansions in the
tunneling Hamiltonian20–23 and in the Coulomb repulsion,24,25

a mean-field approach,26 quantum Monte Carlo simulations,27

a renormalization-group technique,28 or numerical diagonal-
ization of an effective dot Hamiltonian.29–31

A finite bias voltage gives rise to a more complicated
transport behavior. In addition to a finite dc current, sustained
by quasiparticle tunneling and (multiple) Andreev reflection,
there is a time-dependent component due to the ac Josephson
effect. Theoretical works for this regime have mainly concen-
trated on the limit of vanishing or weak Coulomb repulsion.
The dc component has been studied by focusing on single
quasiparticle tunneling,32–34 using a slave boson mean-field
approximation,5,35 or performing a perturbation expansion in
the charging energy.36 Multiple Andreev reflection processes
not only give rise to a stationary current but also lead to

higher harmonics contributing to the ac Josephson transport. A
quantitative description including this interplay has been inves-
tigated in quantum point contacts by means of a scattering37,38

or a Hamiltonian approach.39 In a noninteracting quantum
dot the dependence of the different harmonics on the bias
voltage has been studied.40 Also dephasing effects introduced
by a third, normal electrode added to the S-QD-S setup have
been investigated within a Keldysh formalism applied to a
noninteracting system to find that for gradually increasing
coupling to the normal conductor the ac signal decreases.41

Further works deal with the time evolution of the current after
switching on a finite bias voltage,42,43 or with polaronic effects
due to coupling to vibrational modes.44

The aim of this paper is to analyze the ac Josephson
effect through QDs with strong Coulomb repulsion that
cannot be neglected or treated perturbatively. We consider
the minimal model of a single-level quantum dot. The
coherent, time-dependent Cooper-pair transport between two
superconducting leads arises for finite bias voltage between
them. However, multiple Andreev reflection (MAR) processes
that involve both Cooper pairs and quasiparticles are also
present. To separate these two transport channels, we consider
the limit of a large superconducting gap in the leads, � → ∞,
for which quasiparticle transport and MAR are suppressed.
In this limit, however, the superconducting leads couple
only the states of the quantum dot being empty and doubly
occupied. Moreover, since the quasiparticles excitations in
the superconductors are unaccessible and no other thermal
bath is present in the model to bring the system to its steady
state, the occupation probabilities of the different states remain
undetermined. For this reason we include a third, normal lead
attached to the quantum dot [see Fig. 1] in our calculations. The
result for a two-terminal device is then reproduced by setting
the electrochemical potential of the normal lead symmetrically
between that of the two superconductors and going to the limit
of vanishing tunnel coupling to the normal lead. In this case, the
normal lead acts as a thermal bath without particle exchange.
But one can also take advantage of a real three-terminal device
by using the electrochemical potential of the normal lead as an
additional control parameter for the ac Josephson amplitudes.
To achieve these goals, we extend a real-time diagrammatic
approach for the dc current presented in Refs. 22 and 23 to

235427-11098-0121/2012/86(23)/235427(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.235427
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FIG. 1. (Color online) A sketch of the device under investigation:
A quantum dot with strong Coulomb interaction is weakly tunnel
coupled to one normal and two superconducting leads.

ac transport, and perform a perturbation expansion in tunnel
couplings to lowest order. To sustain (dc and ac) Josephson
currents through the QD to first order in the tunnel-coupling
strengths, superconducting correlations must be induced on
the QD by the proximity of the superconducting leads. We find
that a large ac current between QD and one superconducting
lead requires a large proximity effect induced by the other
superconducting lead which can be achieved by tuning the
gate voltage accordingly. We discuss the amplitude of the ac
components of the current between the superconductors as a
function of gate and bias voltage.

II. MODEL

The considered system consists of a quantum dot tunnel
coupled to one normal and two superconducting leads. Its
total Hamiltonian is given by H = Hdot + Htun + ∑

r Hr . The
index r refers to the leads and can take the values S1,S2,N . The
quantum dot is assumed to accommodate one spin-degenerate
level ε. It is described by the Anderson impurity model,

Hdot = ε
∑

σ

d†
σ dσ + Un↑n↓, (1)

where nσ = d†
σ dσ is the number operator and d (†)

σ annihilates
(creates) an electron with spin σ on the dot. Coulomb
interacting is accounted for by the charging energy U for
double occupation. The Hilbert space of the isolated dot
is four dimensional and is spanned by the kets {|χ〉} with
χ = 0, ↑ , ↓ ,d, corresponding, respectively, to empty, singly
occupied with spin up, singly occupied with spin down, and
doubly occupied dot.

The two superconducting leads are modeled by the mean-
field BCS Hamiltonian

H BCS
r =

∑
k,σ

εkc
†
rkσ crkσ −

(
�∗

r

∑
k

S†
r cr−k↓crk↑ + H.c.

)
.

(2)

Here c
†
rkσ is the creation operator of an electron in lead r

with momentum k and spin σ , and �r is the superconducting
pair potential. The operator S

(†)
r annihilates (creates) a Cooper

pair in lead r , which ensures particle conservation. By making
use of a Bogoliubov transformation, the Hamiltonian can be
diagonalized,

Hr =
∑
rkσ

Erkγ
†
rkσ γrkσ + μrNr, (3)

with the quasiparticle operators γrkσ and the corresponding
eigenenergies Erk =

√
(εk − μr )2 + |�r |2. The chemical po-

tential of superconductor r is given by μr and Nr is the total
number of electrons, which is the number of quasiparticles plus
twice the number of Cooper pairs. Also the normal conductor
can be described by Eq. (2) by simply setting �N = 0.

Tunneling between dot and leads is described by the
tunneling Hamiltonian

Htun =
∑
rkσ

trc
†
rkσ dσ + H.c. (4)

The tunneling amplitude tr as well as the density of states ρr

are assumed to be energy independent in the window relevant
for transport. Furthermore, we define �r = 2π |tr |2ρr . Finally,
we set h̄ = 1 and we reinstate it in the units used for the figures.

Due to tunneling, the superconducting leads can induce
superconducting correlations on the quantum dot.22,23 The
resonance condition for this proximity effect due to supercon-
ductor r is that the energy for the doubly occupied dot 2ε + U

equals the energy for an empty dot plus an extra Cooper pair
in the condensate of the superconductor 2μr . It is, therefore,
convenient to introduce the detunings δr = 2ε + U − 2μr

with r = S1,S2.

III. METHOD

A real-time diagrammatic approach to dc transport through
quantum dots tunnel coupled to normal and superconducting
leads has been introduced in Ref. 23. In the following we
briefly review this formalism and extend it to describe ac
Josephson transport. The system under consideration can
be divided into three subsystems, the dot, the fermionic
states of the leads, and the Cooper pair condensates in the
superconductors. Since we are not interested in the fermionic
dynamics of the leads, we can trace out their degrees of
freedom and arrive at a reduced density matrix for the
remaining part, that is, the dot’s degrees of freedom and the
Cooper pair condensates. Its elements are given by P

ξ1
ξ2

≡
〈ξ1|ρred|ξ2〉, where |ξ 〉 ≡ |χ,{nS1,nS2}〉 includes the dot state
χ = 0, ↑ , ↓ ,d as well as the number of Cooper pairs in
the two superconductors nS1 and nS2, measured relative to an
arbitrary but fixed reference. The diagonal elements Pξ ≡ P

ξ
ξ

give the probability to be in state ξ . The off-diagonal elements
P

ξ1
ξ2

with ξ1 
= ξ2 describe coherent superpositions. The states

ξ1 and ξ2 in P
ξ1
ξ2

provide more information than is needed to
study the electric transport. In fact, only the differences of the
Cooper pair numbers of the states |ξ1〉 and |ξ2〉 are important.
Moreover, particle number conservation sets the constraint that
the total number of electrons in |ξ1〉 has to be the same as in
|ξ2〉. For convenience, we define

P χ1
χ2

({nS1,nS2}) ≡
∑

mS1,mS2

P
(χ1,{mS1+nS1,mS2+nS2})
(χ2,{mS1,mS2}) . (5)

From the definition it follows that the symmetry relation
P χ1

χ2
({nS1,nS2}) = [P χ2

χ1
({−nS1,−nS2})]∗ holds. As a conse-

quence of particle conservation, nS2 is a unique function of
χ1, χ2, and nS1. It is, therefore, enough to keep track of the
Cooper-pair number n of one lead only. We choose here lead
S1, that is, n = nS1, and introduce the definitions Pχ (n) ≡
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P χ
χ ({n,−n}) and P d

0 (n) ≡ P d
0 ({n,−n − 1}). To inherit the

symmetry relation P 0
d (n) = [P d

0 (−n)]∗, we consistently define
P 0

d (n) ≡ P 0
d ({n,−n + 1}).

Finally, we collect all the nonvanishing elements
of the reduced density matrix in the vector π(n) ≡
(P0(n),P↑(n),P↓(n),Pd (n),P d

0 (n),P 0
d (n))T . Its dynamics is

governed by the generalized master equation

d

dt
π(n)(t) + iEnπ (n)(t)

=
∑
n′

∫ t

−∞
dt ′W(n,n′)(t,t ′)π(n′)(t ′), (6)

where the matrix elements of the kernel W
χ1χ

′
1

χ2χ
′
2
(n,n′)(t,t ′) are

the transition rates from an initial state at time t ′ described by

P
χ ′

1

χ ′
2

(n′)(t ′) to a final state at time t described by P χ1
χ2

(n)(t). For
the kernel we have introduced a notation analogous to the one

adopted for the reduced density matrix W
χ1χ

′
1

χ2χ
′
2
(nS1,n

′
S1)(t,t ′) ≡

W
χ1χ

′
1

χ2χ
′
2
({nS1,nS2},{n′

S1,n
′
S2})(t,t ′), where the excess number of

Cooper pairs in the superconductor S2 is fixed by particle
conservation. We get nS1 + nS2 to be equal to 0 for χ1 = χ2,
equal to −1 for χ1 = d, χ2 = 0, and equal to +1 for χ1 = 0,
χ2 = d. In a similar way, n′

S2 is determined in terms of n′
S1,

χ ′
1, and χ ′

2. The only nonvanishing matrix elements of the
matrix En are En

χχ
χχ = 2neV , En

dd
00 = δS2 + 2neV = δS1 +

2(n + 1)eV , and En
00
dd = −E−n

dd
00 , where V is the voltage drop

between S2 and S1 and it reads −eV = μS2 − μS1 with e > 0.
The tunneling current between the dot and lead r is

given by

Ir (t) = e
∑
n′

∫ t

−∞
dt ′eT Wr (0,n′)(t,t ′)π (n′)(t ′), (7)

where eT = (1,1,1,1,0,0) and n = 0 in Wr (0,n′)(t,t ′) ensure
that the final state on the right-hand side is diagonal both in
the dot state and the Cooper pair numbers. The current rates
Wr (n,n′)(t,t ′) are similar to the general rates W(n,n′)(t,t ′) but
take into account the electrons transferred from lead r to the
dot. In addition to tunneling currents, there are, in general,
displacement currents due to the formation of image charges
when the dot occupation varies in time.45 The displacement
currents do not play any role for the dc part. But even for the
ac part they drop out for the symmetrized current IS(t) ≡
[IS1(t) − IS2(t)]/2 when choosing the capacitances of the
tunnel contacts between the dot and the two superconductors
symmetrically. Therefore, we ignore the displacement currents
in the following.

The frequency of the ac Josephson signal is given by the
energy difference of a Cooper pair being in superconductor
S1 or S2, that is, by 2(μS1 − μS2) = 2eV . Therefore, we
perform a Fourier expansion by making use of A(t) =∑∞

n=−∞ Ane2ineV t and An = (1/T )
∫ T

0 dtA(t)e−2ineV t with
T = 2π/(2eV ). Within the diagrammatic approach the factor
exp(−2ineV t) appearing in the nth Fourier component of the
current simply adds a term 2neV to the energy difference of
the states on the upper and lower Keldysh contour. This term
can easily be incorporated into the energy difference arising
from different Cooper pair numbers by shifting Wr (0,n′)(t,t ′)

and π (n′)(t ′) in Eq. (7) to Wr (n,n′ + n)(t,t ′) and π (n′ + n)(t ′),
respectively, that is, only the 0th Fourier components of Wr

and π are needed. Performing the remaining time integral, we
get for the nth Fourier component of the current

I n
r = e

∑
n′

eT Wr (n,n′)π(n′), (8)

with W = ∫ t

−∞ dt ′W(t,t ′)e−0+(t−t ′) being the zero frequency
Laplace transformed rate, that does not depend on the final
time t . The 0th Fourier components π (n′) are readily obtained
from the 0th Fourier component of Eq. (6),

iEnπ (n) =
∑
n′

W(n,n′)π(n′) (9)

together with the normalization condition eT π (n) = δn,0. In
summary, the nth Fourier component of the current can be
evaluated within the diagrammatic technique in exactly the
same way as the dc current (see Ref. 23) but allowing for
off-diagonal final Cooper pair states (n 
= 0) in Wr (n,n′) on the
right-hand side of Eq. (8). The diagrammatic rules to calculate
the kernels W and Wr are given in Appendix A.

IV. RESULTS

In the following we perform a systematic perturbation
expansion of π(n), W (n,n′), W r (n,n′), and I n

r in the tunnel-
coupling strengths � ≡ max{�S1,�S2,�N }. Since we assume
the tunnel couplings to be weak, we restrict ourselves to lowest
(first) order for the kernels W (n,n′) and W r (n,n′). In addition,
we concentrate on the limit of an infinite superconducting gap
in the leads, � → ∞, that is, quasiparticle tunneling between
dot and the superconductors is suppressed. As a consequence,
the current into the superconductors is exclusively sustained
by Cooper pairs. The normal lead affects the occupation of
the quantum dot, which, in turn, affects Cooper-pair transport.
Even a weakly tunnel-coupled normal conductor influences ac
Josephson transport between the two superconductors.

For � → ∞ and to first order in �, all matrix elements
of W(n,n′) and Wr (n,n′) that require either higher-order
tunneling or a finite superconducting gap � in the leads
vanish. The only nonvanishing ones entering Eq. (8) are readily
evaluated, see Appendix B. This results in

I n
S1 = ie�S1

[
P 0

d (n + 1) − P d
0 (n − 1)

]
, (10)

that is, the nth component to the current into superconductor S1
is fully determined by the density matrix elements P d

0 (n − 1)
and P 0

d (n + 1) = [P d
0 (−n − 1)]∗. The latter describe super-

conducting correlations induced on the quantum dot due to the
proximity effect.

The Cooper pair degree of freedom n in π (n) introduces an
apparently infinitely large number of density matrix elements
that are all coupled to each other via Eq. (9). However, in the
limit of a large bias voltage as compared to the tunnel-coupling
strength |eV | � �, only very few of them need to be taken
into account. This is a consequence of En appearing on the
left-hand side of Eq. (9). Most of its matrix elements are of
order eV , while W(n,n′) on the right-hand side scales with
�. This mismatch defines a hierarchy in powers of �/(eV )
for the density matrix elements. The lowest order contains
all matrix elements of π (n) for which the corresponding En
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is zero or of the order of �. This includes all diagonal matrix
elements P χ

χ (0) [and excludes all elements P χ
χ (n) with n 
= 0].

The next order contains all matrix elements of π (n) that can
be connected to lowest order ones by the kernel W(n,n′).
The only off-diagonal matrix elements that can be reached
from the diagonal ones for � → ∞ and to first order in
� are P d

0 (−1) = [P 0
d (1)]∗ and P d

0 (0) = [P 0
d (0)]∗. If the gate

voltage is tuned such that the quantum dot is in resonance
either with superconductor S1 or S2, namely |δS1| � � or
|δS2| � �, then P d

0 (−1) or P d
0 (0) already belongs to the lowest

order in the hierarchy, indicating strong proximity effect with
superconductor S1 or S2, respectively. But in any case, all
off-diagonal matrix elements except P d

0 (−1) = [P 0
d (1)]∗ and

P d
0 (0) = [P 0

d (0)]∗ can be dropped for describing the current
into the superconductors.

Starting with the kinetic equations with off-diagonal final
states,

i(δS2 + 2neV )P d
0 (n) = Wd0

00 (n,0)P0(0) + Wdd
0d (n,0)Pd (0)

+Wdd
00 (n,n)P d

0 (n), (11)

for n = −1,0, and using the rates listed in Appendix B, we
find that the required off-diagonal density matrix elements are
related to the diagonal ones via

P d
0 (−1) = �S1

2AS1
[P0(0) − Pd (0)] , (12a)

P d
0 (0) = �S2

2AS2
[P0(0) − Pd (0)] , (12b)

where we defined the complex resolvents AS1 = δS1 +
iWdd

00 (−1,−1) and AS2 = δS2 + iWdd
00 (0,0). The expressions

for Wdd
00 (−1,−1) and Wdd

00 (0,0) are given in Appendix B. Their
imaginary parts can be interpreted as the renormalization of the
detuning δS1 and δS2, respectively, due to the tunnel coupling
to the normal lead. Their real parts provide a width to the res-
onances. For a systematic perturbation expansion, we replace
the full expressions for the resolvents Ar by their leading-order
term only. To do so, we need to distinguish the two cases of the
quantum dot to be on or off resonance with superconductor r .
On resonance |δr | � � we find that Ar starts to first order, that
is, we can omit the δr appearing in the argument of the Fermi
and the digamma functions to arrive at Re Ar = δr + σ with
σ ≡ �N

π
Re[�( 1

2 + i
ε+U−μN

2πkBT
) − �( 1

2 + i
ε−μN

2πkBT
)] and Im Ar =

−�N [1 + f (ε) − f (ε + U )]. Off resonance |δr | � � we can
replace the resolvent by its zeroth-order term Ar = δr .

In order to determine the nonvanishing elements of the
reduced density matrix we also need the kinetic equations
with diagonal final states,

0 =
∑
χ ′

W
χχ ′
χχ ′ (0,0)Pχ ′ (0) + 2

∑
n′=−1,0

Re
[
W

χd

χ0 (0,n′)P d
0 (n′)

]
.

(13)

The rates with diagonal initial and finite states are related to
single-electron tunneling between dot and normal conductor.
In contrast, the rates connecting superpositions between a
doubly occupied and an empty dot to a diagonal state require
tunneling of one Cooper pair from or to the condensate of a

superconducting lead. As a result, we find

P0(0) − Pd (0) = 1 − f (ε) − f (ε + U )

1 + f (ε) − f (ε + U ) + Im
∑

r=S1,S2
�2

r

�N Ar

.

(14)

Plugging this into Eqs. (12a) and (12b) and employing
Eq. (10) yields the current into superconductor S1 for all values
of ε. This is what we use to calculate all the curves in the fig-
ures. The resulting formulas can be simplified further to obtain
compact analytical results after specifying whether the quan-
tum dot is in resonance with one of the superconductors or not.

First, we observe from Eq. (10) that only the zeroth and first
Fourier component of the current flowing into superconductor
S1 are nonvanishing. Let us start with the dc current I dc

S1 =
I 0
S1 = 2e�S1Im P d

0 (−1), for which it is important whether the
dot is in resonance with the same superconductor the current
is measured in. On resonance |δS1| � � we find

I dc
S1 = e�N�2

S1 [1 − f (ε) − f (ε + U )]

(δS1 + σ )2 + �2
S1 + �2

N [1 + f (ε) − f (ε + U )]2 ,

(15)

which starts in first order in �. Off resonance, the dc current
starts only in third order in �, that is, vanishes to the order
considered here. In summary, a dc current, carried by Andreev
reflection processes, flows only between the normal lead and
the superconductor which is in resonance with the quantum
dot. Out of resonance, this Andreev transport channel starts to
higher order in the tunnel coupling. We explicitly checked that
I dc
S1 = −I dc

N , which guarantees current conservation.
We now turn to the ac current I ac

S1(t). It can be
decomposed39,40 into a cos and a sin term I ac

S1(t) =
I

ac,cos
S1 cos(2eV t) + I

ac,sin
S1 sin(2eV t), with the dissipative part

I
ac,cos
S1 = I 1

S1 + I−1
S1 = 2e�S1Im P d

0 (0) and the nondissipa-
tive one I

ac,sin
S1 = i(I 1

S1 − I−1
S1 ) = 2e�S1Re P d

0 (0). The current
I ac
S2(t) in S2 can be obtained from I ac

S1(t) by replacing �S1 ↔
�S2 and μS1 ↔ μS2.

We immediately see that the behavior of the ac tunneling
current into one superconductor depends on whether the
quantum dot is in resonance with the other superconducting
lead. This can be interpreted in the following way. To
lowest order in �, there is no direct Cooper-pair transfer
from one superconducting lead to the other. If, however, the
quantum dot acquires superconducting correlations via the
proximity effect then it is sufficient to establish a Josephson
coupling between the dot and one of the superconductors.
The superconducting correlations on the quantum dot are
induced by both superconducting leads. However, for the
ac tunneling current into superconductor S1, sustained by
oscillations of Cooper pairs between lead S1 and the quantum
dot, only the proximity effect due to lead S2 matters since,
eventually, only this part is associated with a time-dependent
phase difference to lead S1. The combination of coherent
Cooper-pair oscillations between lead S1 and quantum dot plus
proximity effect in the quantum dot due to lead S2, supports
a complete transfer of a Cooper pair from one superconductor
to the other.

Similarly as the dc current into lead S1, the cos part of the
ac current starts in third order in � as long as the quantum
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dot is off resonance with lead S2. On resonance |δS2| � � we
obtain

I
ac,cos
S1 = e�N�S1�S2[1 − f (ε) − f (ε + U )]

(δS2 + σ )2 + �2
S2 + �2

N [1 + f (ε) − f (ε + U )]2
.

(16)

The sin part, on the other hand, is on resonance |δS2| � �

given by

I
ac,sin
S1 = e�S1�S2 (δS2 + σ )

(δS2 + σ )2 + �2
S2 + �2

N [1 + f (ε) − f (ε + U )]2

× 1 − f (ε) − f (ε + U )

1 + f (ε) − f (ε + U )
, (17)

while off resonance |δS2| � � we find

I
ac,sin
S1 = e�S1�S2

δS2

1 − f (ε) − f (ε + U )

1 + f (ε) − f (ε + U )
. (18)

It is remarkable that the amplitude and phase of the ac
tunneling current into superconductor S1 does not depend
on the chemical potential μS1 but only on the detuning δS2

between quantum dot and the other superconductor S2. The
chemical potential μS1 only enters the oscillation frequency,
given by the bias voltage 2eV = 2(μS1 − μS2). This can be
interpreted in the following way: The tunnel coupling to the
superconducting leads induces superconducting correlations
on the quantum dot. The total proximity effect is given
by the sum of the contributions stemming from the two
superconductors. The ac Josephson current between quantum
dot and S1, however, only probes the proximity effect induced
by superconductor S2, held at a different chemical potential.

Both the dc current and the cos part of the ac current
describe dissipative transport, which, for the limit � → ∞
considered here, is only possible due to the tunnel coupling to
the normal lead. As a consequence, both I dc

S1 and I
ac,cos
S1 vanish

for �N → 0. The sin part of the ac current, on the other hand,
is associated with dissipationless transport and remains finite
when decoupling the normal lead. In the limit V → 0 this part
exactly reproduces the dc Josephson transport between the two
superconductors that was discussed in Ref. 22. This crossover
has been discussed before in quantum point contacts38,41 as
well as in the three-terminal setup under consideration in this
paper in the noninteracting limit.41

In the following we discuss the amplitude |I ac
S | and the

phase φ of only the symmetrized current I ac
S (t) = [I ac

S1(t) −
I ac
S2(t)]/2 = |I ac

S | sin(2eV t + φ), for which the displacement
currents drop out. Without loss of generality, we choose
the reference energy such that μN = 0. Furthermore, we
concentrate on the limit of symmetric tunnel coupling to the
two superconductors �S1 = �S2 ≡ �S . We distinguish the two
cases of �N ≈ �S and �N � �S .

In Figs. 2 and 3 we plot the amplitudes of the ac Josephson
currents as a function of the dot level position ε for five
different values of the applied bias voltages μS1 and μS2.
Thereby, the voltage is applied either symmetrically or asym-
metrically with respect to μN . Coulomb blockade suppresses
the ac Josephson effect for −U < ε < 0 since in this region
the quantum dot is predominantly singly occupied. This
suppression is also present for dc Josephson transport through
the quantum dot, as has been observed experimentally6,9 and
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FIG. 2. (Color online) Amplitude of the ac Josephson current
in units of 2e�S/h̄ as a function of dot level position ε/U . The
temperature is kBT = U/10, the bias voltage to the normal lead
is μN = 0, and the bias voltages μS1 and μS2 applied to the
superconductors are, respectively, given by (a) −3U/2 and 3U/2 and
(b) −U/4 and U/4. The solid curves are for �N = �S/10 = U/100
and the dashed lines for �N = �S = U/10. The resonance conditions
are indicated by vertical lines.

discussed theoretically.23 Outside this region, an occupation of
the quantum dot with an even number of electrons is possible
and, hence, Josephson transport is possible.

The dot level energies ε around which the resonance
conditions |δS1| � � and |δS2| � � to be in resonance with
superconductor S1 and S2 are fulfilled are given by ε ≈
μS1 − U/2 and ε ≈ μS2 − U/2, respectively. Around these
points, which are indicated in the figure by dotted lines,
the ac tunneling current between quantum dot and the
other superconductor, S2 and S1, respectively, is enhanced.
Depending on the biasing, each of the two resonances lie
either inside or outside the Coulomb-blockade gap. In the first
case, ac Josephson transport is suppressed at the resonances
and the amplitude of the ac Josephson current shows a local
maximum close to the edge of the Coulomb-blockade gap. In
the latter case, a maximum is clearly visible whenever the dot
is resonance with one of the superconductors.

In Figs. 2(a) and 3(a) both resonances are outside, in
Fig. 3(b) one is outside and one is inside, and in Figs. 2(b)
and 3(c) both are inside the Coulomb-blockade region.
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FIG. 3. (Color online) Amplitude of the ac Josephson current
in units of 2e�S/h̄ as a function of dot level position ε/U . The
temperature is kBT = U/10, the bias voltage to the normal lead is
μN = 0, and the bias voltages μS1 and μS2 applied to the super-
conductors are, respectively, given by (a) −U and 3U/2, (b) −U/4
and 3U/2, and (c) −U/4 and U/3. The solid curves are for �N =
�S/10 = U/100 and the dashed lines for �N = �S = U/10. The
resonance conditions are indicated by vertical lines.

In Fig. 2 we describe the situation when the bias voltage
between the two superconductors is applied symmetrically
relative to the electrochemical potential μN = 0 of the normal
lead. This results in a symmetric behavior of the amplitude
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FIG. 4. (Color online) Phase of the ac Josephson current in units
of π as a function of dot level position ε/U . The parameters are the
same as in Figs. 2(a) and 2(b).

as a function of gate voltage. For this symmetrically applied
bias voltage, the limit �N → 0 also describes the two-terminal
setup in the absence of the normal lead, when the relative
probability of the quantum dot being occupied with an even
or an odd number of electrons is provided by multiple
Andreev reflection processes that are present for any finite
value of the superconducting gap �. In a real three-terminal
device, however, also asymmetrically applied bias voltages, as
displayed in Fig. 3, are possible. This introduces an additional
control parameter, with which asymmetric dependencies of the
amplitude on the gate charge can be achieved.

The phase of the ac Josephson current for symmetrically
applied bias voltages is shown in Fig. 4. We find that there is 0-
π transition when crossing through the resonances. This means
that away from the resonances, only the sin term contributes to
the ac Josephson current, while the cos term vanishes. At the
resonance, however, the sin term changes sign, that is, goes
through zero, while the cos term remains finite. For �N = �S ,
dashed lines in Figs. 2 and 3, this 0-π transition is not visible in
the amplitude but only in the phase (the phase corresponding
to the asymmetric case of Fig. 3 is not shown). In contrast,
for �N � �S , solid lines in Figs. 2 and 3, the 0-π transition
is indicated by a sharp dip in the amplitude as well. This is a
consequence of the fact that the cos term starts linearly in �N

while the sin term remains finite even for �N → 0.
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V. CONCLUSIONS

We have analyzed ac Josephson transport through a single-
level quantum dot tunnel coupled to two superconductors and
a normal conductor. The amplitude and the phase of the ac
Josephson current depend both on the gate and bias voltages.
As a function of gate voltage, there are two resonances: When
the quantum dot is in resonance with one superconductor, the
ac Josephson current between dot and the other superconductor
is enhanced. There is a 0-π transition at each of the resonances.
For small tunnel coupling to the normal lead, this 0-π transition
is accompanied with a sharp dip in the amplitude of the ac
Josephson current. Inside the Coulomb-blockade region, that
is, the region of gate voltages for which the quantum dot is
predominantly singly occupied, the ac Josephson current is
exponentially suppressed. The frequency of the ac Josephson
oscillations is given by the voltage difference between the two
superconductors.

ACKNOWLEDGMENTS

We acknowledge financial support from DFG via KO
1987/5.

APPENDIX A: DIAGRAMMATIC RULES

The rules for evaluating the generalized rates

W
χ1χ

′
1

χ2χ
′
2
({n1,n2},{n′

1,n
′
2}) are as follows:

(1) Draw all topologically different diagrams with fixed
ordering of the vertices in the real axis. The vertices are
connected in pairs by tunneling lines carrying energy ωi .
The tunneling lines can be normal or anomalous. For each
anomalous line choose the direction (forward or backward
with respect to the Keldysh contour) arbitrarily.

(2) For each vertical cut between two vertices assign a
factor 1/(�E + iη) with η = 0+, where �E is the difference
between the left-going and the right-going energies, including
the energy of the dot states Eχ , the tunneling lines ωi , and
the energy difference in Cooper-pair condensates ECP. The
latter is increased (decreased) at each vertex of an outgoing
(incoming) anomalous line at which the arrow is opposite to
the arbitrarily chosen line direction.

(3) For each tunneling line assign a factor
1

2π
�rDr (ωi)f ±

r (ωi), where f +
r (ωi) = fr (ωi) = [1 +

exp(ωi − μr )/(kBT )]−1 and f −
r (ωi) = 1 − fr (ωi), and

Dr (ωi) = |ωi−μr |√
(ωi−μr )2−|�r |2

θ (|ω − μr | − |�r |). The upper

(lower) sign applies for lines going backward (forward) with
respect to the Keldysh contour. For anomalous lines multiply
an additional factor46 ±sign(ωi − μr ) |�r |

|ωi−μr | . Moreover,

assign a factor e−i�r for an outgoing and ei�r for an incoming
anomalous line. [For normal leads, only normal lines with
Dr (ωi) ≡ 1 appear.]

(4) Assign an overall prefactor −i. Furthermore, assign a
factor −1 for each

(a) vertex on the lower propagator;

(b) crossing of tunneling lines;

(c) vertex that connects the doubly occupied dot state
|d〉 = d

†
↑d

†
↓|0〉 to spin up |↑〉; and

(d) outgoing (incoming) anomalous tunneling line in
which the earlier (later) tunnel vertex with respect to the
Keldysh contour involves a spin up dot electron.

[The factors in (c) and (d) arise due to Fermi statistics
from the order of the dot and lead operators, respectively.]

(5) For each diagram, integrate over all energies ωi . Sum
over all diagrams.

The generalized current rates47 W
χχ1,r

χχ ′
2

({n1,n2},{n′
1,n

′
2})

are evaluated in the following way:
(6) Multiply the value of the corresponding generalized rate

W
χχ ′

1

χχ ′
2
({n1,n2},{n′

1,n
′
2}) with a factor given by adding up the

following numbers for each tunneling line that is associated
with lead r:

(a) For normal lines: 1 if the line is going from the lower
to the upper, −1 if it is going from the upper to the lower
propagator, and 0 otherwise.

(b) For anomalous lines: 1 for incoming lines within the
upper propagator and outgoing lines within the lower
propagator, −1 for outgoing lines within the upper propa-
gator and incoming lines within the lower propagator, and
0 otherwise.

APPENDIX B: RATES AND CURRENT RATES

In this Appendix we list all the rates and current rates
entering the calculation. Thereby, we omit all rates that can
be obtained from the listed ones via the symmetry rela-

tions W
χ1χ

′
1

χ2χ
′
2
(n,n′) = [W

χ2χ
′
2

χ1χ
′
1
(−n, − n′)]∗ and W

χ1χ
′
1,r

χ2χ
′
2

(n,n′) =
[W

χ2χ
′
2,r

χ1χ
′
1

(−n, − n′)]∗.

1. Superconductor

To lowest order in � and for � → ∞, many rates and
currents rates involving a superconducting tunneling line
vanish. The nonvanishing ones turn out to be independent of
the Cooper-pair numbers of the condensates. We find

W 0d
00 (n,n − 1) = Wd0

00 (n,n + 1) = i�S1/2,

Wdd
d0 (n,n − 1) = Wdd

0d (n,n + 1) = −i�S1/2,

W 0d
00 (n,n) = Wd0

00 (n,n) = i�S2/2,

Wdd
d0 (n,n) = Wdd

0d (n,n) = −i�S2/2 ,

for the rates and

W
0d,S1
00 (n,n − 1) = W

dd,S1
d0 (n,n − 1) = −i�S1/2,

W
0d,S2
00 (n,n) = W

dd,S2
d0 (n,n) = −i�S2/2 ,

for the current rates.

2. Normal Conductor

Changing the state of the dot due to tunneling from and to
the normal conductor is described by the rates Wχχ ′ (0,0) ≡
W

χχ ′
χχ ′ (0,0) with

Wσ0(0,0) = �Nf (ε),

W0σ (0,0) = �N [1 − f (ε)],

Wdσ (0,0) = �Nf (ε + U ),

Wσd (0,0) = �N [1 − f (ε + U )],
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and W00(0,0) = −2Wσ0(0,0), Wσσ (0,0) = −W0σ (0,0) −
Wdσ (0,0), as well as Wdd (0,0) = −2Wσd (0,0). The
nonvanishing current rates are given by WN

χχ ′(0,0) ≡
W

χχ ′,N
χχ ′ (0,0) with

WN
σ0(0,0) = �Nf (ε),

WN
0σ (0,0) = −�N [1 − f (ε)],

WN
dσ (0,0) = �Nf (ε + U ),

WN
σd (0,0) = −�N [1 − f (ε + U )].

Finally, we need the kernels Wdd
00 (n,n) for n = −1,0. For

n = −1 we find

Wdd
00 (−1,−1) = −�N [1 + f (ε − δS1) − f (ε + U − δS1)]

+ i�N

π
Re

[
�

(
1

2
+ i

ε − δS1 − μN

2πkBT

)]

− i�N

π
Re

[
�

(
1

2
+ i

ε + U − δS1 − μN

2πkBT

)]
.

For Wdd
00 (0,0) we get the same but with δS1 being replaced

by δS2.
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