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Tamm plasmon polaritons in multilayered cylindrical structures
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It is shown that cylindrical Bragg reflector structures with either a metal core, a metal cladding, or both can
support Tamm plasmon polaritons (TPPs) that can propagate axially along the interface between the metallic
layer and the adjacent dielectric. A transfer matrix formalism for cylindrical multilayered structures is used in
association with cavity phase matching considerations to design structures that support Tamm plasmon polaritons
at specified frequencies, and to explore the field distributions and the dispersion relations of the excitations. The
cylindrical TPPs can exist in both the TE and TM polarizations for the special cases of modes with either
azimuthal isotropy or zero axial propagation constant and also as hybrid cylindrical modes when neither of those
conditions applies. In the cases considered the TPPs have low effective masses and low group velocities. Also,
when there is both metallic core and cladding, near degenerate modes localized at each metallic interface can
couple to produce symmetric and antisymmetric combinations whose frequency difference is in the terahertz
regime.
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I. INTRODUCTION

Tamm plasmon polaritons (TPPs) are a type of optical
excitation that can occur at the interface between a metal
and a dielectric Bragg mirror and were first proposed theo-
retically in 2007 by Kaliteevski et al.1 following the work
of Kavokin et al. on Tamm states at the interface between
two periodic dielectric structures.2 The existence of TPPs was
subsequently demonstrated experimentally by Sasin et al.3

As for conventional surface plasmon polaritons, the decay of
the electromagnetic field in the metal is due to the negative
dielectric constant. However, the decay in the Bragg mirror is
not due to total internal reflection but to the photonic band gap
arising from the dielectric layered structure. In contrast to the
case of conventional surface plasmons, TPPs can exist in both
the TE and TM polarizations because both the Bragg reflector
and the metal layer are essentially mirrors forming a cavity to
confine the light. It has also been predicted that optical Tamm
states can exist above the bulk plasma frequency for structures
fabricated with appropriate materials.4,5

Since the initial reports of TPPs there has been rapidly
growing interest in their properties, and a number of ap-
plications have been reported. Particular attention has been
devoted to phenomena associated with excitons. For example
TPPs have been shown experimentally to exhibit strong
coupling with quantum well excitons,6 including in extremely
compact structures with just five high refractive index contrast
layers in the Bragg reflector.7 Very recently, lasing in an
optically-pumped hybrid GaAs/silver Tamm structure has been
demonstrated.8 It has also been shown9 that confined Tamm
plasmon modes can exist under metallic microdisks and can
be used to control by over two orders of magnitude the rate
of spontaneous optical emission from quantum dots in their
proximity. In a related development, it has been predicted that
a structure can be designed to exhibit strong coupling between
TPPs and exciton polaritons when a metal film is deposited on

one of the Bragg reflectors forming the quantum microcavity.10

Furthermore it has been suggested that by patterning the
metal film it would be possible to create a guiding channel
for an exciton-polariton condensate, facilitating a method of
producing polariton integrated circuits with potential for use
in ultrafast information processing.11

Recently hybrid states of cavity photons and Tamm plas-
mons have been observed in an organic microcavity with an
incorporated thin silver layer.12 More generally, strong optical
absorbers using TPPs at a thick metal/truncated photonic
crystal interface have been proposed and demonstrated.13 TPPs
have also been proposed for use in switches,14 and highly
efficient, unidirectional transmission in an all-optical diode
has been demonstrated using the interface states between a
one-dimensional photonic crystal structure of SiO2 and TiO2

and a thick layer of silver.15 TPPs have been shown to exist at
an interface between a photonic crystal and a magnetophotonic
crystal16 or a magnetic metal,17 and the enhancement of
Faraday rotation and sharp transmission peaks have been
suggested as useful characteristics for magnetotunable filters.

Hitherto the focus has been on planar structures but
there could well be applications for TPPs in cylindrical
waveguides in the wider field of plasmonics. In particular,
the cylindrical geometry is promising for delivering TPPs
with high resolution to specific points in space, including
surfaces. Cylindrical geometries to support surface plasmon
polaritons have already received some attention. Pfeiffer
et al.18 studied SPPs occurring on the outside of a solid
metal cylinder, and Schröter and Dereux have studied SPPs
in a thin cylindrical tube where they found that there are
two surface plasmon branches corresponding to symmetric
and antisymmetric plasma distributions between the inner
and outer metal/dielectric interfaces.19 Also the inclusion of
a metal core, layer, or cladding in an optical fiber structure
allows SPP and hybrid SPP waveguide modes to be included
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FIG. 1. (Color online) A cylindrical waveguide aligned along the
z axis with a core region surrounded by layers of different refractive
index. The dotted region represents repetition of the alternative
refractive index layers. ρc and ρf indicate the radii of the core and
the final layer of the structure respectively.

in the mode spectrum of the fiber. For example the dispersion
of modes in optical fiber structures with a thin metal layer
between the core and cladding was investigated in 1993
by Al-Bader and Imtaar20 while a comprehensive study of
step-index fibers where the core or cladding has negative
dielectric constant was carried out in 1994 by Prade and
Vinet.21 More recently there has been interest in hybrid waveg-
uides combining the advantages of well localized surface
plasmon polaritons at metal dielectric interfaces and the long
propagation lengths obtainable in traditional optical fiber-type
structures.22,23

In this paper we consider the properties of TPPs in
cylindrical Bragg reflector structures such as that illustrated
in Fig. 1. The required metallic element can be included in
the structure as either the core or as an outer cladding or
placed in both locations. The transfer matrix method provides
a rigorous and effective theoretical description of the TPP
modes in such structures and is introduced in Sec. II A by
describing the relevant formulas of that methodology in the
cylindrical geometry. However, the design of structures that
support modes with desirable properties5 is greatly aided
by consideration of the round trip phase change of a wave
in the radial cavity formed by the Bragg reflector and the
metal, and the details of that approach are presented in
Sec. II B. The application of the theory and design methods to
some example structures is described along with the results in
Sec. III.

II. THEORY

A. Transfer matrix method

The modes of optical fibers and similar cylindrical struc-
tures can be obtained using the transfer matrix method
described by Chew.24 Consider modes at angular frequency
ω with electric and magnetic fields of the form

E = E(ρ) exp [i(βz + mφ)]

B = B(ρ) exp [i(βz + mφ)]

in the cylindrical coordinates indicated in Fig. 1; β is the
propagation constant and m is an integer or zero and describes
the azimuthal variation of the fields.

The transfer matrix method in a circular cylindrical multi-
layered system facilitates the calculation of an electromagnetic

field at a radius ρ given that the field at another radius, ρ0, is
already known. Specifically,⎛

⎜⎜⎜⎝
Ez(ρ)

cBφ(ρ)

cBz(ρ)

Eφ(ρ)

⎞
⎟⎟⎟⎠ = M̂(ρ0,ρ)

⎛
⎜⎜⎜⎝

Ez(ρ0)

cBφ(ρ0)

cBz(ρ0)

Eφ(ρ0)

⎞
⎟⎟⎟⎠ , (1)

where M̂(ρ0,ρ) is the 4 × 4 transfer matrix between the radii ρ0

and ρ and we choose to represent the magnetic field in terms of
cB so that all the vector components are expressed in the same
units. The field components that make up the vectors in Eq. (1)
are parallel to the interfaces in a multilayer waveguide. At the
interface between two layers with different refractive indices
these components must be continuous. The transfer matrix
across a multilayer structure is the product of the transfer ma-
trices for the individual layers correctly ordered to propagate
the fields from the selected start point to the selected end point.
Structures with a refractive index which varies continuously
in the radial direction can be approximated by a multilayer
structure with suitably thin layers. Once the vector on the left
hand side of Eq. (1) has been determined, the radial field com-
ponents may be calculated using Maxwell’s curl equations.

The elements of M̂(ρ0,ρ) for a homogeneous layer are:

M11 = kρ0
π

2
[N

′
m(kρ0)Jm(kρ) − J

′
m(kρ0)Nm(kρ)]

M21 = in2k0ρ0
π

2
[N

′
m(kρ0)J

′
m(kρ) − J

′
m(kρ0)N

′
m(kρ)]

+ iβ2m2

k2k0ρ

π

2
[Nm(kρ0)Jm(kρ) − Jm(kρ0)Nm(kρ)]

M31 = − iβm

k0

π

2
[Nm(kρ0)Jm(kρ) − Jm(kρ0)Nm(kρ)]

M41 = −βm

k

ρ0

ρ

π

2
[N

′
m(kρ0)Jm(kρ) − J

′
m(kρ0)Nm(kρ)]

+ βm

k

π

2
[N

′
m(kρ)Jm(kρ0) − J

′
m(kρ)Nm(kρ0)]

M12 = ik2ρ0

n2k0

π

2
[Nm(kρ0)Jm(kρ) − Jm(kρ0)Nm(kρ)]

M22 = kρ0
π

2
[N

′
m(kρ)Jm(kρ0) − J

′
m(kρ)Nm(kρ0)]

M32 = 0
(2)

M42 = −iβm

n2k0

ρ0

ρ

π

2
[Nm(kρ0)Jm(kρ) − Jm(kρ0)Nm(kρ)]

M13 = iβm

n2k0

π

2
[Nm(kρ0)Jm(kρ) − Jm(kρ0)Nm(kρ)]

M23 = −βm

k

π

2
[Nm(kρ0)J

′
m(kρ) − Jm(kρ0)N

′
m(kρ)]

− βm

k

π

2

ρ0

ρ
[N

′
m(kρ0)Jm(kρ) − J

′
m(kρ0)Nm(kρ)]

M33 = kρ0
π

2
[N

′
m(kρ0)Jm(kρ) − J

′
m(kρ0)Nm(kρ)]

M43 = − iβ2m2

n2k2k0ρ

π

2
[Nm(kρ0)Jm(kρ) − Jm(kρ0)Nm(kρ)]

− ik0ρ0
π

2
[N

′
m(kρ0)J

′
m(kρ) − J

′
m(kρ0)N

′
m(kρ)]
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M14 = 0

M24 = iβm

k0

ρ0

ρ

π

2
[Nm(kρ0)Jm(kρ) − Jm(kρ0)Nm(kρ)]

M34 = − ik2ρ0

k0

π

2
[Nm(kρ0)Jm(kρ) − Jm(kρ0)Nm(kρ)]

M44 = kρ0
π

2
[N

′
m(kρ)Jm(kρ0) − J

′
m(kρ)Nm(kρ0)],

where Jm(x) and Nm(x) are Bessel and Neumann functions
respectively, k2 = n2k2

0 − β2, k0 = ω/c, and n is the refractive
index of the medium.

The fields at the center of the cylindrical core, ρ = 0, must
be finite and the radial dependence of their z components will
have the form

Ez|core = A1cJm(kcρ)

cBz|core = A2cJm(kcρ),

where A1c and A2c are constants and the subscript c denotes
parameter values for the core region. Outside the waveguide at
radius greater than ρ = ρf , if a decaying solution is possible
and is sought, and we can write

Ez|f = B1f Km(kf ρ)

cBz|f = B2f Km(kf ρ)

where Km(x) is a modified Bessel function of the second
kind, B1f and B2f are constants and the subscript f denotes
parameter values outside the final layer of the structure.
Alternatively, for modes which leak from the waveguide the
solution outside would be a propagating wave described by the
Hankel function H (1)

m (x).
It follows that the fields at the inner edge of the core, ρc,

can be written in matrix form as

⎛
⎜⎜⎜⎝

Ez(kcρc)

cBφ(kcρc)

cBz(kcρc)

Eφ(kcρc)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

Jm(kcρc) 0
ik0n

2
c

kc
J

′
m(kcρc) − βm

k2
c ρc

Jm(kcρc)

0 Jm(kcρc)

− βm

k2
c ρc

Jm(kcρc) − ik0
kc

J
′
m(kcρc)

⎞
⎟⎟⎟⎟⎠

(
A1c

A2c

)

= �̂c

(
A1c

A2c

)
(3)

and those at the outside edge of the waveguide at radius ρf as

⎛
⎜⎜⎜⎝

Ez(kf ρf )

cBφ(kf ρf )

cBz(kf ρf )

Eφ(kf ρf )

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

Km(kf ρf ) 0
ik0n

2
f

kf
K

′
m(kf ρf ) − βm

k2
f ρf

Km(kf ρf )

0 Km(kf ρf )

− βm

k2
f ρf

Km(kf ρf ) − ik0
kf

K
′
m(kf ρf )

⎞
⎟⎟⎟⎟⎠

×
(

B1f

B2f

)
= �̂f

(
B1f

B2f

)
. (4)

The fields at the outside edge of the waveguide may also
be found by applying the appropriate transfer matrix M̂ to the
fields at the edge of the core. Using Eq. (1) with ρ0 = ρc and
ρ = ρf and Eqs. (3) and (4) for the fields at the edge of the

core and the edge of the waveguide we have

M̂�̂c

(
A1c

A2c

)
− �̂f

(
B1f

B2f

)
=

(
0

0

)

(
M̂�̂c| − �̂f

)
⎛
⎜⎜⎜⎝

A1c

A2c

B1f

B2f

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎠ , (5)

where (M̂�̂c| − �̂f ) is a 4 × 4 matrix where the first two
columns are given by M̂�̂c and the second two columns are
given by −�̂f . Equation (5) has nonzero solutions for A1c,
A2c, B1f , and B2f when the determinant of (M̂�̂c| − �̂f ) is
equal to zero. Modes of a multilayer structure can be found
numerically by initially specifying the physical parameters
of the structure under consideration, allowing the frequency
to vary and searching for the roots of the determinant. The
coefficients A1c, A2c, B1f , and B2f can then be found for
the given frequency by solving the simultaneous equations in
Eq. (5).

For the special cases of either the azimuthal number, m = 0,
or the propagation constant, β = 0, the problem is reduced to
a more straightforward one involving 2 × 2 matrices. That is
because the field components Eρ , Eφ , cBρ , and cBφ can each
be expressed in terms of just Ez and cBz using Maxwell’s curl
equations and although, in general, the formulas involve both
Ez and cBz, setting m = 0 or β = 0 results in a decoupling.
For the case of β = 0, which corresponds to no propagation
of the mode along the waveguide axis, there are two distinct
types of mode: those with just the components Eρ , Eφ , and
cBz (TE modes), or those with Ez, cBρ , and cBφ (TM modes).
Similarly for m = 0, there is a mode with components Eφ ,
cBρ , and cBz (a TE mode), and a mode with components Eρ ,
Ez, and cBφ (a TM mode).

The 2 × 2 transfer matrices, T̂ T E for the TE modes are
defined by (

cBz(ρ)

Eφ(ρ)

)
= T̂ T E

(
cBz(ρ0)

Eφ(ρ0)

)
, (6)

and for the TM modes by(
Ez(ρ)

cBφ(ρ)

)
= T̂ T M

(
Ez(ρ0)

cBφ(ρ0)

)
. (7)

In each case the expressions for the matrix elements may be
deduced by comparison with M̂ in Eq. (2).

For the general case where m �= 0 and β �= 0 there is
no decoupling of the fields which results in hybrid modes
containing all six field components. These modes may be
envisaged as skew rays in the ray picture that spiral about
the axis as they propagate along the length of the waveguide
mixing the TE and TM components.25,26

B. Cavity design

To produce a cavity to support TPPs at a certain frequency
it is necessary to provide a Bragg reflector with a stop band at
that frequency. For optimum reflectivity, the reflected waves
from all the dielectric interfaces of the Bragg reflector should
be in phase, which in a planar Bragg reflector is achieved
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FIG. 2. (Color online) The round trip phase difference in a cavity
adjacent to a metal core is given by the phase change on reflection
from the Bragg reflector (r1), the phase change on reflection from the
metal (r2), and twice the phase change of a wave traveling across the
dielectric layer marked x. The dots represent repeated layers of
the Bragg reflector. Key radii are marked: ρc is the core radius, ρ1 is
the outer radius of the first dielectric layer, and ρf is the outer radius
of the final layer of the structure.

when each type of layer has a specific thickness, which is
independent of its position within the structure. However, in
a cylindrical Bragg reflector the optimal thickness of each
layer varies with its radial position. A numerical method for
calculating the layer thicknesses for the optimum cylindrical
Bragg reflector is given in Ref. 27 but here for simplicity we use
constant, quarter wavelength thicknesses which are generally
accepted to provide effective reflection of cylindrical waves in
most circumstances.28 Also, for a TPP to exist there should be
a phase change equal to an integer multiple of 2π or zero in a
“round trip” of the radiation in the cavity formed by the metal
and the Bragg reflector, as illustrated in Fig. 2 for a metal core
and in Fig. 3 for a metal cladding.

There are three components to the round trip phase
difference: the phase changes on reflection from the metal
and the Bragg reflector and the phase change of the wave on
traveling from the inner to the outer radius of the dielectric
layer and back again. We note that for cylindrical waves
the initial and final radii are significant for calculating the
phase change resulting from propagation and not just the layer
thickness as is the case for plane waves.

A method for calculating the reflection coefficient from the
inside of a cylindrical Bragg reflector, the reflection marked
r1 in Fig. 2, is presented in Ref. 28 for the case of TE- and
TM-polarized waves (β = 0). The same approach can be used
to obtain the reflection coefficients marked r2 in Fig. 2 and r3

and r4 in Fig. 3. For r1 in the TM case we have

rT M
1 = inf C

(1)
mf A(1)T M

m − T T M
21 − in1C

(1)
m1T

T M
22

T T M
21 + in1C

(2)
m1T

T M
22 − inf C

(1)
mf A

(2)T M
m

, (8)

where

A(j )T M
m = T T M

11 + in1C
(j )
m1T

T M
12 ,

......

x

r3

r4
c

f
Layer i

i-1

FIG. 3. (Color online) The round trip phase difference in a cavity
adjacent to an essentially infinite metal cladding is given by the phase
change on reflection from the Bragg reflector (r3), the phase change on
reflection from the metal (r4), and twice the phase change of a wave
traveling across the dielectric layer marked x. The dots represent
repeating layers of the Bragg reflector.

n1 is the refractive index of the dielectric layer adjacent to the
metal core, nf the refractive index outside the structure, the
Tij are the elements of the transfer matrix T relating the field
at ρf to that at ρ1, and

C
(1,2)
mi = H (1,2)′

m (kiρ)

H
(1,2)
m (kiρ)

,

where the H (1,2)
m (kiρ) are Hankel functions and i denotes the

layer.
For the TE mode:

rT E
1 =

− i
nf

C
(1)
mf A(1)T E

m − T T E
21 + i

n1
C

(1)
m1T

T E
22

T T E
21 − i

n1
C

(2)
m1T

T E
22 + i

nf
C

(1)
mf A

(2)T E
m

(9)

where

A(j )T E
m = T T E

11 − i

n1
C

(j )
m1T

T E
12 .

The reflection coefficient marked r2 in Fig. 2, for light
incident on a cylindrical metal core, with refractive index nM =
iα, from a dielectric material with refractive index n1 is for
the TM mode given by

rT M
2 = −

[
1 − (

n1C
(2)
m1

/
αdm

)
1 − (

n1C
(1)
m1

/
αdm

)
]

, (10)

where dm = I
′
m(αk0ρc)/Im(αk0ρc) in terms of modified Han-

kel functions. For the TE polarization

rT E
2 = −

[
1 + (

αC
(2)
m1

/
n1dm

)
1 + (

αC
(1)
m1

/
n1dm

)
]

. (11)

In the case of a metal-clad Bragg reflector, we must consider
the reflection coefficients denoted by r3 and r4 in Fig. 3. At the
Bragg reflector rT M

3 is

rT M
3 = inf C

(2)
mf P − Q

Q − inf C
(1)
mf P

, (12)
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where P = T T M
11 Jm(kcρc) + T T M

12 incJ
′
m(kcρc), Q = T T M

21 Jm

(kcρc) + T T M
22 incJ

′
m(kcρc) and the transfer matrix elements

have been calculated to describe the field as it evolves from
core to exterior. The corresponding reflection coefficient for
the TE polarization is

rT E
3 = −q + (

iC
(2)
mf p

)
/nf

q + (
iC

(1)
mf p

)
/nf

, (13)

where p = T T E
11 Jm(kcρc) − T T E

12 iJ
′
m(kcρc)/nf and q =

T T E
21 Jm(kcρc) − T T E

22 iJ
′
m(kcρc)/nf .

At the metal cladding, the reflection coefficients are:

rT M
4 = −

[
1 − (

niC
(1)
mi

/
αgm

)
1 − (

niC
(2)
mi

/
αgm

)
]

, (14)

rT E
4 = −

[
1 − (

αC
(1)
mi

/
nigm

)
1 − (

αC
(2)
mi

/
nigm

)
]

, (15)

where = gm = K
′
m(αk0ρf )/Km(αk0ρf ).

Finally, we point out that reflection spectra can sometimes
be used as a relatively quick and easy method of seeking
out the modes of cavities. For example, Fig. 4 shows the
phase spectrum of the TM, m = 0 reflection coefficient for
an incoming cylindrical wave incident on a cavity with a TiO2

core surrounded by a cylindrical Bragg reflector comprising
nine pairs of SiO2/TiO2 layers. The sharp feature is the
signature of a TM cavity mode at 0.9234 eV. Similar behavior
has been reported in planar Bragg reflector structures, e.g.,
Ref. 29. It should be noted that the magnitude of the reflection
coefficient is unity at all frequencies when all the materials in
the structure are lossless, as is apparent from Eq. (12) and the
geometry of the system and the incident wave.

FIG. 4. The phase of the TM, m = 0 reflection coefficient of an
incoming cylindrical wave incident on the outside of an optical cavity
formed from a 150 nm TiO2 core and a Bragg reflector with nine pairs
of SiO2/TiO2 layers of thicknesses 211 nm and 131 nm and refractive
indexes 1.47 and 2.37, respectively. There is a distinct feature in the
phase variation at 0.9234 eV.

III. RESULTS

A. Metal core

To illustrate the properties of Tamm plasmon polaritons
(TPPs) in cylindrical structures, we look at examples of
systems that can support the excitations at energies close to
1 eV. As the first example we consider a cylindrical Bragg
reflector with a metallic core as illustrated in Fig. 2. The core
is chosen to be gold, which we take to have a plasma frequency
ωp = 8.9 eV, and for simplicity we neglect the loss term in its
dielectric response. The core has a radius of 30 nm and the layer
adjacent to it is TiO2, which is surrounded by eight pairs of
SiO2/TiO2 layers forming a reflector. The optical thickness of
each layer in the reflector is chosen to be a quarter wavelength
to create a photonic stop band centered close to 1 eV (free
space wavelength of 1240 nm), giving layer thicknesses of
211 nm and 131 nm for the SiO2 (refractive index n = 1.47)
and TiO2 (refractive index n = 2.37), respectively.

It remains to calculate the required thickness of the TiO2

layer adjacent to the metal for the structure to support a
Tamm plasmon-polariton mode close to 1 eV, and that can
be done by recognizing that the total phase change for a round
trip in the TiO2 layer surrounding the metal should be an
integer multiple of 2π or zero. In the case of a TE mode,
the phase change on reflection from the Bragg reflector may
be calculated from Eq. (9) and for reflection from the metal
core using Eq. (11). The phase change associated with the
propagation across the TiO2 layer is obtained by considering
the ratio of the appropriate Hankel functions. By following
that procedure we are able to show that there are TE and TM
modes with frequency 1 eV at β = 0 with the instantaneous
fields illustrated in Fig. 5. Both structures consist of a 30 nm
metal core surrounded by a TiO2 layer and then eight pairs of
SiO2/TiO2 Bragg reflector layers. The only difference is in the
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FIG. 5. (Color online) (a) cBz (curve 1, red) and Eφ (2, black)
field components for the TE mode with β = 0 and frequency 1 eV
in a structure with a metal core of radius 30 nm and a TiO2 layer
adjacent to the metal of thickness of 426 nm. (b) cBφ (curve 1, red)
and Ez (2, black) field components for the TM mode with β = 0 and
frequency 1 eV in an identical structure except that the TiO2 layer
adjacent to the metal has a thickness of 346 nm. The vertical dashed
lines indicate the radii of the metal-dielectric and dielectric-dielectric
interfaces.
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FIG. 6. (Color online) (a) cBz (curve 1, red) and Eφ (2, black) field
components for the TE mode with β = 0 and frequency 0.9976 eV in
a multilayer structure with a TiO2 core of radius 456 nm surrounded
by eight pairs of SiO2/TiO2 layers. (b) cBφ (1, red) and Ez (2,
black) field components for the TM mode with β = 0 and frequency
0.9200 eV in an identical structure except that the TiO2 core radius is
376 nm. The vertical dashed lines indicate the radii of the dielectric
interfaces.

thickness of the TiO2 layer adjacent to the metal; in the case of
the TE mode the thickness is 426 nm and for the TM mode, 346
nm. The vertical dashed lines indicate the dielectric boundaries
and it is clear that the field components have the characteristic
decay of a TPP state in the metal and the Bragg reflector.

In a planar structure, light in TiO2 normally incident on
an infinite SiO2/TiO2 Bragg reflector at the center frequency
of its first stop band would have an (electric field) reflection
coefficient equal to unity and hence the electric field would
have an antinode at the first TiO2-SiO2 interface. A similar
behavior is to be seen in the cylindrical structures considered
here where for the TE mode Eφ has an antinode (and hence
according to Maxwell’s ∇ × E equation, Bz has a node) and
for the TM mode Ez an antinode (and Bφ a node).

Figure 6 shows the instantaneous field components for the
TE and TM modes that exist for β = 0 for the same structures
as considered in connection with Fig. 5 but without the metal
core. In each case the 30 nm metal core has been replaced by
TiO2. Comparing Fig. 6 to Fig. 5 it is clear that the removal of
the metal makes very little difference to the field components
of the TE mode but the changes at the center of the structure
are substantial for the TM mode.

For the structures with the metallic core, increasing the
propagation constant β from zero and finding the correspond-
ing mode frequencies gives the dispersion curves shown in
Fig. 7 exhibiting TE-TM splitting at nonzero β. Also shown
are the curves for the same structures but with the metal core
removed and replaced by TiO2, and the dispersion curve for
a hybrid mode with m = 1, β = 0 in a structure consisting
of a 30 nm metal core surrounded by a SiO2 cavity layer
of thickness 483 nm and eight pairs of TiO2/SiO2 layers.
The dispersion curves for the TE modes with and without
the metallic core are very similar but there is a significant
frequency difference in the TM curves (80 meV at β = 0)
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FIG. 7. (Color online) Dispersion curves for: a hybrid mode with
m = 1 in a cavity with a 30 nm radius metal core surrounded by an
SiO2 cavity layer of thickness 483 nm and eight pairs of TiO2/SiO2

layers [(a), solid blue line]; TM [(b), solid red)] and TE [(c), solid
black] modes for the structures required to give a mode frequency
at β = 0 of 1 eV; TE [(d), dashed black] and TM [(e), dashed red]
modes for an identical structure except that the metal core has been
replaced by TiO2.

reflecting the substantial difference in the fields between
Figs. 5 and 6 for that mode.

As a result of the transverse confinement afforded by the
cylindrical Bragg reflector, all the dispersion curves are very
different from those of a conventional optical fiber, which all
lie between the light lines for the fiber core and cladding.
In the structures considered here, the mode frequencies are
nonzero at zero propagation constant β and have an essentially
parabolic dependence on β, with effective masses of 1.4 ×
10−6me for the TE mode, 1.2 × 10−6me for the TM mode,
and 0.83 × 10−6me for the m = 1 mode. The group velocity
may also be calculated; for example at β = 1 × 10−6 nm−1

the group velocity is 0.8 × 105 ms−1 for the TE mode, 1.0 ×
105 ms−1 for the TM mode, and 1.4 × 105 ms−1 for the m = 1
hybrid mode, all of which are orders of magnitude lower than
the speed of light in vacuum or in TiO2.

B. Metal cladding

Next we consider a structure, such as that illustrated in
Fig. 3, which is a cylindrical Bragg reflector surrounded by a
cavity layer with an infinite metal cladding. Figure 8 shows
the instantaneous, real Ez and cBφ field components for a TM
mode with m = 0, β = 0 and frequency 1 eV, for a structure
with a TiO2 core of radius 150 nm surrounded by 14 pairs of
TiO2/SiO2 layers. As previously, the thicknesses of the SiO2

and TiO2 layers are 211 nm and 131 nm, respectively. Within
the metal cladding there is a SiO2 cavity layer of thickness
400 nm surrounding the Bragg reflector structure. Again we
take the plasma frequency of the metal to be 8.9 eV and neglect
the loss term in its dielectric response. The radius of the core
was chosen so that it would not support a mode at the center
of the structure. The thickness of the cavity layer was chosen
to support a round trip phase change of 2π . The fields can
be seen to decay both into the metal (to the right of the final
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FIG. 8. (Color online) cBφ (curve 1, red) and Ez (2, black) field
components of a TM mode of frequency 1.0 eV in a multilayer
structure with a 150 nm TiO2 core, 14 pairs of TiO2/ SiO2 layers
and a SiO2 cavity layer of thickness 400 nm all surrounded by an
infinite metal cladding. The vertical dashed lines indicate the radii of
the metal-dielectric and dielectric-dielectric interfaces.

boundary line) and into the Bragg reflector (to the left of the
final boundary line).

As another example, Fig. 9 shows the real cBz and Eφ

fields for the TE, m = 0, β = 0 mode at frequency 1 eV in
a multilayer cylindrical structure with a TiO2 core of radius
150 nm surrounded by 14 pairs of SiO2/TiO2 layers and a
TiO2 cavity layer of thickness 130 nm all enclosed in a lossless
metal with plasma frequency 8.9 eV. It can be seen that the
field is greatest inside the cavity layer adjacent to the metal
and decays very rapidly into the metal and more slowly into
the Bragg reflector structure.
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FIG. 9. (Color online) cBz (curve 1, red) and Eφ (2, black) field
components of a TE mode with frequency 1 eV and β = 0 in a
structure with a TiO2 core of radius 150 nm surrounded by 14 pairs
of SiO2/TiO2 layers and a TiO2 cavity layer with a thickness of 130 nm
adjacent to the metal cladding. The vertical dashed lines indicate the
radii of the metal-dielectric and dielectric-dielectric interfaces.
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FIG. 10. (Color online) Ez field components for two split modes,
one with frequency 1.00589 eV (curve 1, red) and the other with
frequency 1.00406 eV (2, black). Both were calculated for m = 1, β =
0 in a structure consisting of: a metal core of radius 30 nm; a SiO2

cavity layer adjacent to the core of thickness 483 nm; 14 pairs of layers
alternating TiO2/SiO2 with respective thickness 131 nm/211 nm;
a final TiO2 cavity layer of thickness 370 nm adjacent to the
semi-infinite metal cladding. The vertical dashed lines indicate the
radii of the metal-dielectric and dielectric-dielectric interfaces.

In both these examples the frequency at the center of the
photonic band gap of the Bragg reflector was chosen to be
1 eV and the structure was designed accordingly. Note that
the order of the layers in the Bragg reflector to support a TE
mode is the opposite of that required to support a TM mode.

C. Metal core and cladding

Figure 10 shows the instantaneous, real, Ez field compo-
nents for the split modes of a coupled multilayered system with
m = 1 and β = 0. The structure has a 30 nm metal core and
semi-infinite metal cladding outside. There is a SiO2 cavity
layer adjacent to the metal core with a thickness of 483 nm
and a TiO2 cavity layer adjacent to the metal cladding with a
thickness of 370 nm. The interim Bragg reflector structure
has 14 pairs of alternating TiO2/SiO2 layers of thickness
131 nm/211 nm respectively. Close to the core, this structure
is the same as that considered for supporting the m = 1, β = 0
mode for the case with metal in the core only. The fields of the
two modes in Fig. 10 can be seen to follow essentially the same
pattern close to the core but progressively become out of phase
in the Bragg reflector layers and are in antiphase at the outer
edge. As such they represent symmetric and antisymmetric
modes and are characterized by dispersion curves and group
velocities very similar to those of the m = 1 mode in Fig. 6.
The frequency splitting between the modes is just 1.83 meV
or 0.44 THz and since that depends on the overlap of the
electromagnetic fields of the inner and outer modes in the
Bragg reflector layers when they are considered separately, it
can be varied by changing the number of layers in the Bragg
reflector.
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IV. DISCUSSION

It has been shown that TPPs in cylindrical structures have
low group velocities, as is the case for planar TPPs. Slow
light has a compressed spatial pulse length which may give a
longer interaction time and an enhancement of the light-matter
interaction compared with light traveling at more conventional
speeds.30 Slow light has also been proposed as a useful tool
in information processing;31 some logic elements require a
time delay in processing and current attempts to achieve this
in photonics make use of long optical fibers, which means that
the scale of the components is necessarily large. Another area
of potential applications is terahertz technology. The terahertz
frequency splitting of the modes of cylindrical structures with
both metallic core and cladding is analogous to that which
can occur with suitably designed coupled planar cavities in
semiconductor structures (see for example Ref. 32) and makes
possible the production of radiation with a terahertz beat
frequency. However, the waveguide geometry has the great
advantage of facilitating flexible spatial control in the delivery
of that radiation. More generally, the cylindrical waveguide
structure provides opportunities to manipulate the azimuthal
properties of TPPs and of light emerging from the end of guide
by the use of longitudinal metallic stripes and helices on the
outer cylindrical surface.

The materials in the Bragg reflector structures considered,
TiO2 and SiO2 were chosen due to their large refractive
index contrast while having a relatively mechanically robust
and chemically inert nature. Both materials have widespread
technological uses, and SiO2 is routinely used in the fabrication
of optical fibers. Coating a fiber with metal by evaporation
would be straightforward but there are substantial technical
challenges in producing the other features of the structures we
have considered. It may be possible to produce multilayer
dielectric structures by sputtering additional layers on an
initial core dielectric fiber or metal wire, but the precision
required in the thickness of each layer needs to be of the
order of a few nanometers and would prove challenging using
current technology. However, despite the obvious difficulties
in fabricating cylindrical multilayer structures, the current
intense interest in optics and plasmonics on the nanoscale
can be expected to encourage the necessary innovations.

Optical loss through the cylindrical Bragg reflector struc-
tures is normally small and can safely be neglected. Also, all
the materials have been modeled as lossless for calculational
simplicity. The electronic band gaps of both SiO2 and TiO2

are large enough to avoid significant absorption at the photon
energies of interest. The precise values of the refractive indices
depend on the fabrication process as well as wavelength and
therefore the values used here are merely representative. Loss
in the metal could be included by having a complex relative
permittivity. Including losses in the calculations would then
involve finding zeros in the determinant of the matrix in Eq. (5)
in the complex plane. However, the waveguide attenuation can
also be estimated using the fields obtained for the lossless
case by treating the imaginary part of the susceptibility of
the metal as a perturbation. Using that approach, we find
quality factors Q that are generally greater than 103 for the
cylindrical cavities considered here. The inverse attenuation
constant follows as 2Qvg/ω giving values, depending on the
group velocity vg of up to several hundred micrometers, and
similar to conventional surface plasmon technology.33 In fact,
in practice TPP structures can be expected to have significantly
lower attenuation due to the much smaller proportion of the
field energy that resides in the metal as a result of the different
confinement mechanism on the dielectric side of the interface.

V. CONCLUSIONS

It has been shown theoretically that cylindrical Bragg
reflector structures are capable of supporting Tamm plasmon
polaritons by having a metal core, metal cladding around the
outside of the structure, or metal in both of these locations. The
cylindrical TPPs can exist in both the TE and TM polarizations
for the special cases m = 0 or β = 0 and can also be formed
from hybrid cylindrical modes when m �= 0 and β �= 0. In the
cases considered, the excitations have low effective masses
and group velocities that are smaller by a factor of 103 than
light, making the phenomenon attractive as the basis of optical
delay lines. When there is metal both at the core and around
the outside of the Bragg reflector, structures can be designed
in which pairs of modes have a frequency difference in the
terahertz regime suggesting that the structures could have
applications in related technologies.
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