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Helical states in curved bilayer graphene
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We study spin effects of quantum wires formed in bilayer graphene by electrostatic confinement. With a proper
choice of the confinement direction, we show that in the presence of magnetic field, spin orbit interaction induced
by curvature, and intervalley scattering, bound states emerge that are helical. The localization length of these
helical states can be modulated by the gate voltage which enables the control of the tunnel coupling between two
parallel wires. Allowing for proximity effect via an s-wave superconductor, we show that the helical modes give
rise to Majorana fermions in bilayer graphene.
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I. INTRODUCTION

Graphene and its derivatives,1–4 such as bilayer graphene
(BLG) and carbon nanotubes (CNTs), have attracted wide
interest due to their peculiar band structure with low energy
excitations described by Dirac-like Hamiltonians. Moreover,
these materials are usually placed on substrates, which allows
high control of its geometry, doping, and placement of metallic
gates.5–9 Topological insulators were predicted for graphene,10

but later it was found that the intrinsic spin orbit interaction
(SOI) is too weak.11,12 For BLG, first-principle calculations
also show weak SOI.13,14 In another proposal, topologically
confined bound states were predicted to occur in BLG where
a gap and band inversion is enforced by gates.15 Quite
remarkably, these states, which are localized in the region
where the voltage changes sign, are independent of the edges
of the sample, and propagate along the direction of the gates,
thus forming effectively a quantum wire.15–18 At any fixed
energy, the spectrum inside the gap is topologically equivalent
to four Dirac cones, each cone consisting of a pair of states
with opposite momenta.

The spin degrees of freedom in such BLG wires, however,
have not been addressed yet. It is the goal of this work to
include them and to show that they give rise to striking
effects. In particular, we uncover a mechanism enabling helical
modes propagating along the wires. In analogy to Rashba
nanowires,19 topological insulators,20 and CNTs,21,22 such
modes provide the platform for a number of interesting effects
such as spin filtering and Majorana fermions.23 Here the SOI
plays a critical role, and in order to substantially enhance
it, we consider a BLG sheet with local curvature as shown
in Fig. 1. Two pairs of top and bottom gates define the
direction of the quantum wire, which is chosen in such a
way that it corresponds to a “semi-CNT” of zigzag type. In
this geometry, the energy levels of the midgap states cross
in the center of the Brillouin zone. A magnetic field transverse
to the wire, in combination with intervalley scattering, leads
to an opening of a gap 2�g between two Kramers partners
at zero momentum, see Fig. 2. As a result, the number of
Dirac cones changes from even (four) to odd (three), and the
wire becomes helical with opposite spins being transported
into opposite directions. In the following we derive the
spectrum and its characteristics analytically and confirm these
results by independent numerics. We also address the physics
of Majorana fermions which emerge when the wire is in
proximity contact to an s-wave superconductor.

II. CURVED BILAYER GRAPHENE WITH SOI

We consider a gated curved bilayer graphene with a
magnetic field B (along the x ′ axis) applied perpendicular to
the direction of the fold (along the z axis), see Fig. 1. We begin
with a description of the bilayer graphene in the framework of
the tight-binding model.3,4 Each layer is a honeycomb lattice
composed of two types of nonequivalent atoms A1 (A2) and
B1 (B2) and defined by two lattice vectors a1 and a2. We
focus here on AB stacked bilayer, in which two layers are
coupled only via atoms A2 and B1 (see Fig. 1) with a hopping
matrix element t⊥ (t⊥ ≈ 0.34 eV). By analogy with CNTs3 we
introduce a chiral angle θ as the angle between a1 and the x

axis.
The low-energy physics is determined by two valleys

defined as K = −K′ = (4π/3a)(cos θ, sin θ ), where a = |a1|.
The corresponding Hamiltonian in momentum space is written
as

H0 = h̄υF (kxσ1 + τ3kzσ2) + t⊥
2

(σ1η1 + σ2η2) − V η3, (1)

where the Pauli matrices σi (ηi) act in the sublattice (layer)
space, and the Pauli matrices τi act in the valley space. The
first (second) term in Eq. (1) describes hopping between
atoms within the same layer (between two layers). Here
υF = √

3ta/2h̄ is the Fermi velocity (υF ≈ 108 cm/s), with
t ≈ 2.7 eV being the intralayer hopping matrix element. The
kx (kz) is the transversal (longitudinal) momentum calculated
from the points K and K′. The potential difference between
the layers [see third term in Eq. (1)] opens up a gap 2|V | in the
bulk spectrum, while a spatial modulation, that is, V → V (x),
breaks the translation invariance along the x direction, thus
only the total longitudinal momentum K(′)

z + kz remains a good
quantum number.

The Hamiltonain H0 can be simplified for small voltages
|V | � t⊥ by integrating out the A2 and B1 degrees of freedom,
which correspond to much higher energies E ≈ t⊥.15 The
effective Hamiltonian becomes

H̃0 = −V γ3 − h̄2υ2
F

t⊥

(
k2
x − k2

z

)
γ1 − 2h̄2υ2

F

t⊥
kxkzτ3γ2, (2)

where the Pauli matrices γi act in the space of A1 and B2

atoms. If the voltage changes sign at x = 0 [for example,
V (x) = −V (−x)], this results in the closing and reopening
of the gap. As a consequence, bound states, localized around
x = 0, emerge within the bulk gap.15 The eigenstates of H̃0 are
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FIG. 1. (Color online) A bilayer graphene (BLG) sheet with a fold
at x = 0 along the z axis is placed between two pairs of gates that
are set to opposite polarities ±V0/2, inducing the bulk gap. There are
midgap bound states, localized in transverse x direction around x = 0.
At the same time, they freely propagate along the z direction, forming
an effective quantum wire.15 An externally applied magnetic field
B = Bex′ breaks time-reversal symmetry. The spin orbit interaction
β is induced by the curvature of the wire, which is characterized by
the radius R. In the insets we show the BLG structure in momentum
(left) and real (right) space for a chosen chirality θ = 0. The edges of
the BLG sheet can be arbitrary.

characterized by kz and the valley degree of freedom τ = ±1.
For a steplike kink potential V (x) = (V0/2) sgn(x) the energy
spectrum is shown in the inset of Fig. 2.

Now we include spin and aim at the realization of helical
modes in BLG, which requires an analysis of the spin-full
midgap states. At any fixed energy in the bulk gap there are
2 × 4 states, where the factor 2 arises from spin degeneracy.
This means that the spectrum is topologically equivalent to
four Dirac cones, each cone consisting of a pair of states
with opposite momenta. On the other hand, helical modes
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FIG. 2. (Color online) The spectrum of the BLG structure for
V0/2 = 50 meV and chirality θ = 0. The green area in the inset
corresponds to the bulk spectrum. The midgap bound states for valleys
K (full line) and K ′ (dashed line) have opposite velocities. The main
figure shows the details of K-K ′ crossing region (shaded region in
the inset). The curvature induced SOI shifts spin-up and spin-down
levels in opposite directions by the SOI parameter β. A magnetic field
B assisted by intervalley scattering �KK ′ results in the anticrossing
gap 2�g of two Kramers partners at kz = 0. If the chemical potential
μ is tuned inside the gap [shaded area with μ ≈ (V0/2

√
2) ± β], the

system is equivalent to three Dirac cones (only one is shown in the
main figure), resulting in the helical mode regime. Here β ≈ 60 μeV
(R = 5 nm), �KK ′ = 30 μeV, and �Z = 30 μeV, so the opened gap
is 2�g ≈ 30 μeV≈ 300 mK.

are typical for systems with an odd number of Dirac cones.
To effectively eliminate one Dirac cone at a given chemical
potential, the spin degeneracy should be lifted by a magnetic
field B, giving rise to a new gap. Obviously the opening of such
a gap is possible only if there is level crossing in the system.
The spectrum of the midgap states has support around K and
K ′. Therefore, if these points, projected onto the kz axis, are
separated from each other, no crossing can occur. We thus see
that the chiral angle θ is of a crucial importance for our purpose
and the optimal choice is θ = 0 (or very close to it). In this case,
Kz = K′

z = 0, and the level crossing occurs in the center of the
Brillouin zone at kz = 0, see inset of Fig. 2. We emphasize that
in contrast to nanoribbons17 the form of the edges of the BLG
sheet does not matter provided the distance between edges and
wire axis is much larger than the localization length ξ of the
bound state.

Next, we allow also for spin orbit interaction in our model.
While the intrinsic SOI is known to be weak for graphene,11,12

the strength of SOI in CNT is enhanced by curvature21,24–26 due
to induced overlap between 2py orbitals from the π band and
2px,z, 2s orbitals from the σ band. To take advantage of this
enhancement, we consider a folded BLG which is analogous
to a zigzag semi-CNT with θ = 0. All SOI terms that can
be generated in second-order perturbation theory are listed in
Table I of Refs. 21 and 26. From these terms only Hso = βτ3sz

is relevant for our problem; first, it is the largest term by
magnitude, and second, it is the only term which acts directly
in the A1-B2 space. Here si is the Pauli matrix acting on the
electron spin, and i = x,y,z. The value of the effective SOI
strength β depends on the curvature, defined by the radius
R, and is given by β ≈ 0.31 meV/R[nm].21 We note that β

is constant in the z direction. It can have some x dependence,
perpendicular to the fold, also due to the nonuniform density in
the x direction. However, being interested in the longitudinal
modes only, any weak transverse nonuniformity coming from
the folding is of no relevance, and we use an average value
β = 〈β(x)〉.

In the presence of SOI the states can still be characterized
by the momentum kz, valley index τ = ±1, and spin projection
s = ±1 on the z axis. The spectrum of H̃0 + Hso can be
obtained from the one of H̃0 by simply shifting E → E − βτs.
This transformation goes through the calculation straightfor-
wardly, and the spectrum of curved bilayer graphene in the
presence of the SOI becomes

E = βτs ±
[

h̄υF kzτ

2
√

t⊥
±

√
(h̄υF kz)2

4t⊥
+ V0

2
√

2

]2

∓ V0√
2
. (3)

The spin degeneracy is lifted by the SOI, giving a splitting
2β. As shown in Fig. 2, the level crossings occur between two
Kramers partners at kz = 0: |K, ↑〉 crosses with |K ′, ↓〉, and
|K, ↓〉 crosses with |K ′, ↑〉. The KK ′ crossing can occur
provided that |θ | <

√
3(1 + √

2)t⊥V0/4πt . For the values
from Fig. 2, we estimate this bound to be about 1◦. As
mentioned before, to open a gap at kz = 0, one needs first
a magnetic field perpendicular to the SOI axis to mix the spin
states, and second a K-K ′ scattering to mix the two valleys.
Such valley scattering is described by the Hamiltonian Hsc =
�s

KK ′τ1 + �a
KK ′τ1γ3, where �s

KK ′ + �a
KK ′ (�s

KK ′ − �a
KK ′ ) is

the scattering parameter for the bottom (top) layer of the BLG.
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The Zeeman Hamiltonian for a magnetic field B applied along
the x ′ direction is given by HZ = �Zsx , with �Z = g∗μBB/2,
where μB the Bohr magneton. Here g∗ is an effective g

factor due to the curvature of the fold and the localization
of the bound state. Since sx ′ = sx cos ϕ + sy sin ϕ depends on
x via the azimuthal angle ϕ(x) of the fold, we replace sx ′

by an average over the orbital part of the bound state wave
function. This results in 2/π < g∗/g < 1, the precise value
being dependent on the localization length, where g is the bare
g factor of graphene.

Using second-order perturbation theory for β > �s
KK ′ , �Z ,

we find that the gap opened at kz = 0 is given by

�g = �s
KK ′�Z

β
(4)

(see Fig. 2, which also contains numerical estimates for
realistic parameters). We note that �g is enhanced by electron-
electron interactions,27 however, we neglect this supportive
effect herein. If the chemical potential is tuned inside the
gap 2�g [μ ≈ (V0/2

√
2) ± β], there are three right- and three

left-propagating modes. Four states at finite momentum (two
left-moving and two right-moving states) are only slightly
affected by the magnetic field and thus can still be considered
to carry opposite spins, meaning that the total spin transfer
is close to zero and these modes are not contributing to spin
filtering. In contrast to that, the two modes with kz ≈ 0 are
helical modes: They have opposite velocities and opposite
spins. Thus, similar to Rashba nanowires,19 the BLG quantum
wire can be used as a spin filter device.

Moreover, if the BLG is brought into proximity to an
s-wave superconductor, the states with opposite momenta
and spins get paired. Working in the linearized model of
left-right movers,28 we obtain the effective Bogoliubov–de
Gennes Hamiltonian for each of the three pairs j = 1,2,3
written in Nambu space,

Hj
s = h̄υj kjχ3 + �sω2χ2, (5)

where υj is the velocity for the j th pair at the Fermi level, �s

is the strength of the proximity-induced superconductivity,
and the Pauli matrices χi (ωi) act in the left-right mover
(electron-hole) space. We note that we are in the regime
corresponding to strong SOI where we keep only the slowest
decaying contributions of the wave functions.28 To determine
the potential existence of Majorana fermions (MFs) in the
system, one can study the topological class of H

j
s .29 This

Hamiltonian belongs to the topological class BDI. However,
by analogy with multiband nanowires,30 additional scattering
between states would bring the system into the D class. An
alternative way of classification, which determines explicitly
the number of MF bound states, is to study the null space of
the Wronskian associated with the Schrödinger equation.31 In
our case, we find three MFs at each wire end in the topological
phase defined by �2

g � �2
s + δμ2, where δμ is the chemical

potential counted from the midgap level �g . These MFs are
generically hybridized into one MF and one nonzero energy
fermion by perturbations such as electron-electron interactions
and interband scattering.
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FIG. 3. (Color online) (a) The profile of the gate potential V (x)
along the curved BLG. The reversed polarity at the two ends gives rise
to midgap states, localized in x direction. The density profile of three
right-moving states, whose energy E is inside the gap �g , allows
us to estimate the localization lengths ξ : (b) V0 = 100 meV, E =
29.13 meV, d = R (dashed white line in Fig. 2), ξ ≈ 9 and 8 nm, and
(c) V0 = 10 meV, E = 3.49 meV, d = R, ξ ≈ 30 and 24 nm. We note
that states with larger momenta have shorter localization lengths. (d)
The localization length follows approximately ξ̃ = ξ − ξ0 ∝ 1/

√
V0.

The circles are extracted from our numerical calculations ξ = 〈x2〉
for energies in the middle of the gap �g , equivalent to the white
dashed line in Fig. 2. The lines are fits ξ̃ ∝ 1/V

p

0 for the states at
large kz (p = 0.59), shown as dashed lines, and for the states near
kz = 0 (p = 0.52), shown as full lines.

III. TUNNEL JUNCTION

Above we have studied the system analytically, assuming
a steplike potential. In this section we compare our results
with the numerical solution of the Schrödinger equation for
the effective Hamiltonian H̃0 + Hso + Hsc + HZ , with a more
realistic (smooth) potential V (x) = (V0/2) tanh(x/d), where
2d is the distance between the gates. We impose vanishing
boundary conditions far away from the fold, which is valid
for energies within the bulk gap. The spin orbit interaction
β(x) is finite only within the curved region of the BLG sheet.
Along the z direction, the system is translationally invariant,
so the envelope function is given by �(x,z) = eikzzψkz

(x).
The profile of ψkz

(x) is presented in Fig. 3. The localization
length follows a power law ξ − ξ0 ∝ 1/V

p

0 , with p ≈ 1/2,
and the shift ξ0 < d is due to the finite distance between
gates. In the limit d → 0, where the analytical solution is
applicable, the localization length is essentially given by
ξ = 25/4h̄υF /

√
V0t⊥15 since corrections due to SOI are of

negligible higher order in β.
The dependence of ξ on the potential V0 can be exploited

to couple parallel wires. For instance, consider two similar
quantum wires, running parallel to each other at a distance D.
If ξ � D for each wire, then they are completely decoupled.
However, lowering the potential in both wires locally around
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a point z0 on the z axis, such that ξ0 ≈ D, we can enforce
wave function overlap, leading to a transverse tunnel junction
between the two wires at z0. In this way, an entire network of
helical wires can be envisaged. We mention that such networks
could provide a platform for implementing braiding schemes
for MFs.32

IV. CONCLUSIONS

The confinement of states in bilayer graphene into an
effective quantum wire is achieved by pairs of gates with
opposite polarities, leading to eight propagating modes.15

If the direction of the wire is chosen such that the chiral
angle vanishes, both valleys K and K ′ are projected onto
zero momentum kz. The spin orbit interaction, substantially
enhanced by curvature, defines a spin quantization axis and

splits spin-up and spin-down states. A magnetic field assisted
by intervalley scattering opens up a gap at the center of the
Brillouin zone. If the chemical potential is tuned inside the gap,
three right- and three left-propagating modes emerge, so that
the system possesses helical modes, which are of potential use
for spin filtering. In the proximity to an s-wave superconductor,
the bilayer graphene wire hosts Majorana fermions arising
from the helical modes. By locally changing the confinement
potential and thus the localization lengths, parallel wires can
be tunnel coupled. This mechanism can be used to implement
braiding of Majorana fermions in bilayer graphene.
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