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Self-similar occurrence of massless Dirac particles in graphene under a magnetic field
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Intricate interplay between the periodicity of the lattice structure and that of the cyclotron motion gives rise
to a well-known self-similar fractal structure of the energy eigenvalue, known as the Hofstadter butterfly, for
an electron moving in lattice under magnetic field. Connected with the n = 0 Landau level, the central band of
the Hofstadter butterfly is especially interesting in the honeycomb lattice. While the entire Hofstadter butterfly
can be in principle obtained by solving Harper’s equations numerically, the weak-field limit, most relevant
for experiment, is intractable owing to the fact that the size of the Hamiltonian matrix, which needs to be
diagonalized, diverges. In this paper, we develop an effective Hamiltonian method that can be used to provide an
accurate analytic description of the central Hofstadter band in the weak-field regime. One of the most important
discoveries obtained in this work is that massless Dirac particles always exist inside the central Hofstadter band
no matter how small the magnetic flux may become. In other words, with its bandwidth broadened by the lattice
effect, the n = 0 Landau level contains massless Dirac particles within itself. In fact, by carefully analyzing the
self-similar recursive pattern of the central Hofstadter band, we conclude that massless Dirac particles should
occur under arbitrary magnetic field. As a corollary, the central Hofstadter band also contains a self-similar
structure of recursive Landau levels associated with such massless Dirac particles. To assess the experimental
feasibility of observing massless Dirac particles inside the central Hofstadter band, we compute the width of the
central Hofstadter band as a function of magnetic field in the weak-field regime.
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I. INTRODUCTION

Observing the behavior of electrons in graphene under
high magnetic field has played an important role not only for
uncovering new quantum Hall states, but also for proving the
very existence of massless Dirac particles.1,2 Affected by the
linear dispersion near Dirac points, Landau levels are formed
in graphene such that their energy is scaled as sgn(n)

√|n| in
units of

√
2h̄vF / lB with n, the Landau level index, allowed

for all integers including positive, zero, and negative.3 In
the above, vF is the Fermi velocity at the Dirac point and
lB = √

h̄c/eB is the magnetic length. The n = 0 Landau
level offers a particularly intriguing departure from the usual
quantum Hall effect (QHE) in that its Hall coefficient is shifted
by half an integer. With both spin and valley degeneracy taken
into account, the consequent Hall conductance is predicted to
be quantized in the form of 4(n + 1/2) in units of e2/h, which
exhibits beautiful agreement with experiment.1,2

There is, however, a glaring omission in the discussion
so far. In the above, the effect of lattice is completely
ignored except that the electron dispersion becomes linear
near Dirac points. The question is how valid this assumption
can be. More specifically, will there be any changes in the
Landau-level structure once the effect of lattice is better
incorporated? Naı̈vely speaking, since the deviation from the
linear dispersion occurs in relatively high energy, one may
expect that the Landau levels should be more or less the
same as before so that they remain as flat bands. In particular,
the n = 0 Landau level is then expected to remain as a flat
band pinned exactly at zero energy due to the particle-hole
symmetry. Seemingly innocuous, if true, this expectation gives
rise to a very puzzling question: what determines which states
within the n = 0 Landau level evolves into the particle (or
the positive energy) branch and which into the hole (or the
negative energy) branch at the edge? A natural resolution of

this puzzle is that the n = 0 Landau level is broadened with its
bandwidth becoming finite. If so, what would be the nature of
such bandwidth-broadened n = 0 Landau level?

The quantum mechanical problem of an electron moving
in lattice under magnetic field is generally known as the
Azbel-Hofstadter problem named after Azbel,4 who originally
proposed the model, and Hofstadter,5 who first obtained a nu-
merical solution in the square lattice and showed the existence
of a self-similar fractal structure in energy eigenvalue, dubbed
as the Hofstadter butterfly. The actual equations, that need to
be solved, are known as Harper’s equations which are in fact
nothing but the energy eigenvalue equation for the Hamiltonian
matrix. By numerically solving Harper’s equations, the self-
similar fractal structure of the Azbel-Hofstadter model was
found also for various other lattices including the triangular
and the honeycomb lattice.6–9

In addition to numerical studies solving Harper’s equa-
tion, there have been extensive efforts to obtain analytic
solutions.10–26 The reason for such efforts is multifaceted. For
one, many researchers have been curious about the very origin
of the self-similar fractal structure seen in the Hofstadter but-
terfly and tried to make a connection to other known systems
exhibiting similar fractal structures. For another, numerical
computations can be performed only in the situation where
the magnetic flux per unit cell φ is a rational fraction of the
magnetic flux quantum φ0 = hc/e. Therefore, what happens
at irrational fractions can be addressed only by the analytic
approaches. Perhaps, the most important reason in connection
with experiment is the fact that the numerical approach cannot
access the weak-field limit where the size of the matrix that
needs to be diagonalized diverges. The weak-field limit is
most relevant for experiment since, even in the quantum Hall
regime, the magnetic flux per unit cell is typically much less
than 1/100 in units of magnetic flux quantum.
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Among various analytic approaches, the Bethe-ansatz
approach is regarded to be most systematic, where the Azbel-
Hofstader problem is converted into solving the Bethe-ansatz
equations whose roots are directly connected to the energy
eigenvalues as well as eigenstates. Despite providing such
insightful relationship to an integrable model, the Bethe-ansatz
approach is proven to be of little practical use since the
Bethe-ansatz equations are generally insoluble except for
special cases. The use of other analytic approaches is also
similarly limited.

In this paper, we develop a method that can be used to
provide an accurate analytic description of the evolution
of the n = 0 Landau level as a function of magnetic field
ranging from being arbitrarily weak to moderately strong.
In this method, it is shown that, for φ/φ0 = p/q with p

and q being coprime positive integers, the central band of
the Hofstadter butterfly, which is obtained from the original
2q × 2q matrix for Harper’s equations, is captured extremely
accurately by diagonalizing the effective Hamiltonian matrix
with a much reduced size of 2p × 2p in the weak-field
regime. The central band of the Hofstadter butterfly is
connected with the n = 0 Landau level in the continuum
limit. Actually, this effective Hamiltonian matrix works quite
well for φ/φ0 as large as 0.3. One of the most important
discoveries of this work is that, no matter how small the
magnetic flux per unit cell may become, the central Hofstadter
band (CHB) always contains massless Dirac particles
whose energy dispersion is completely isomorphic to that
in the absence of magnetic field. In fact, by combining the
self-similar pattern of the central Hofstadter band and some
analytic as well as numerical results for the zero-energy
modes of Harper’s equations, we conclude that there
should be exactly 2q Dirac cones in the magnetic Brillouin
zone (MBZ) for φ/φ0 = p/q with arbitrary p and q. A
corollary of this result is that there should also be a self-similar
occurrence of Landau levels associated with such Dirac cones.

In order to assess the experimental feasibility of observing
such massless Dirac particles within the central Hofstadter
band, we compute the width of the central Hofstadter band
which, for small φ/φ0, is predicted to scale as exp (−γ

φ0

φ
)

in units of the energy level spacing between the n = 0 and 1
Landau level,

√
2h̄vF / lB . Here, γ = |Cl2(5π/3)|/π � 0.323

and Cl2(θ ) =∑∞
n=1 sin (nθ )/n2 is called the Clausen function.

Actually, motivated by an intriguing conjecture proposed by
Thouless27 a while ago, there has been a long history for
addressing how the total bandwidth of the Hofstadter butterfly
scales as a function of magnetic field.7,17,28–32 To the best of
our knowledge, our result is the first report for the scaling of
the Hofstadter butterfly bandwidth in the honeycomb lattice.
Considering difficulties in directly observing the Hofstadter
butterfly under magnetic field with typically available strength,
we believe that a precise measurement of the bandwidth itself
can be used to infer the existence of the Hofstadter butterfly
in addition to the Diophantine equation for the quantized Hall
conductance.33–37

The rest of the paper is organized as follows. In Sec. II,
we present the Azbel-Hofstadter model in graphene with a
particular choice of gauge called the optimal gauge. In Sec. III,
we analyze various properties of the zero-energy solutions for

Harper’s equations, which play a crucial role in our effective
Hamiltonian method by generating basis wave functions for the
central Hofstadter band. A precise mathematical form of the
effective Hamiltonian is presented in Sec. IV, where it is shown
that the resulting magnetic band structure provides an excellent
agreement with that of the central Hofstadter band obtained
from the original Harper’s equations in the weak-field regime.
In Sec. V, by using such an effective Hamiltonian method,
we carefully analyze the self-similar recursive pattern of the
central Hofstadter band, which is then combined with analytic
as well as numerical results for the zero-energy modes to
show that massless Dirac particles should occur under arbitrary
magnetic field. We conclude in Sec. VI.

II. AZBEL-HOFSTADTER PROBLEM FOR GRAPHENE

The Azbel-Hofstadter problem is nothing but an energy
eigenvalue problem of the tight-binding Hamiltonian under
magnetic field:

H =
∑
〈i,j〉

tij c
†
i cj , (1)

where tij is the hopping amplitude between the nearest-
neighboring sites with its phase determined via the Peierls
substitution, tij = t0 → t0e

2πφij , where φij = e
2πh̄c

∫ j

i
A · dl

and A is the vector potential. Here, t0 is the hopping amplitude
in the absence of external magnetic field. For convenience, we
now fix the energy scale by setting t0 = 1. The physical energy
scale can be restored by re-introducing t0, when necessary.
While any vector potential satisfying the condition that the
contour integral,

∮
A · dl, around the hexagonal unit cell equals

the magnetic flux per unit cell, φ, is legitimate, we take a
particular choice of the gauge where only one of the three
φij ’s adjoining the nearest-neighbor carbon pairs is set to be
nonzero. The situation is illustrated in Fig. 1. This gauge is
called the optimal gauge since the size of the magnetic unit cell
(MUC) is optimal with its value being qS0 for φ/φ0 = p/q,
where S0 is the area of a single hexagonal unit cell.9,37,38 Note
that the size of the magnetic unit cell is doubled in the usual
Landau gauge.39,40

In the optimal guage, Harper’s equations can be written as
follows:

EψA
αn = ψB

α,n−1 + ψB
αn + e

2πin
φ

φ0 ψB
α+1,n−1, (2)

EψB
αn = ψA

α,n+1 + ψA
αn + e

−2πi(n+1) φ

φ0 ψA
α−1,n+1, (3)

where α denotes the position of a given magnetic unit cell
along the y direction and the dimer index n indicates the
position of each dimer within the magnetic unit cell. The size
of the magnetic unit cell is determined by the magnetic lattice
translation symmetry. For a rational value of the magnetic flux
per unit cell in units of magnetic flux quantum, φ/φ0 = p/q,
Harper’s equations in Eqs. (2) and (3) become periodic
with respect to the diagonal lattice translation operation of
n → n + lq with l being an arbitrary integer. Thus, in this
situation, the magnetic unit cell covers the dimer index ranging
from n0 to n0 + q − 1 with n0 being an arbitrary initial dimer
index. See Fig. 1 for illustration.
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Harper’s equations in Eqs. (2) and (3) can be simplified by
using the lattice translation symmetry along the y direction.
That is to say, the α dependence can be removed by defining the
crystal momentum ky via the Bloch theorem, ψαn = ψnk̃y

eik̃yα ,

with k̃y = ky

√
3a. In this representation, Harper’s equations

are given by

EψA
nk̃y

= An(k̃y)ψB
n−1,k̃y

+ ψB
nk̃y

, (4)

EψB
nk̃y

= A∗
n+1(k̃y)ψA

n+1,k̃y
+ ψA

nk̃y
, (5)

where

An(k̃y) = 2e
i(nπ

φ

φ0
+ k̃y

2 ) cos

(
nπ

φ

φ0
+ k̃y

2

)
. (6)

By realizing that the Bloch condition along the diagonal
direction, ψnk̃y

= eik̃dnφk̃d k̃y
(n) with φk̃d k̃y

(n) being a periodic
function of n with period q, is equivalent to the boundary
condition, ψn+q,k̃y

= eik̃dqψnk̃y
, one can convert Harper’s

equations to an eigenvalue problem of the following 2q × 2q

Hamiltonian matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 An0e
−ik̃d q

1 0 A∗
n0+1

An0+1 0 1

1 0 A∗
n0+2

An0+2 0

· · ·
0 1

1 0 A∗
n0+q−1

An0+q−1 0 1

A∗
n0

eik̃dq 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where n0, the first dimer index for a given magnetic unit
cell, can be chosen arbitrarily since the choice of n0 does
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FIG. 1. (Color online) Schematic diagram for the gauge used in
this work. The yellow parallelogram depicts a magnetic unit cell
(MUC). Magnetic unit cells are denoted by the MUC index α along
the y direction. Different carbon sites within the same magnetic unit
cell are distinguished by the dimer index n and the A/B sublattice
index. Note that horizontally connected A and B carbon sites share
the same dimer index. Red arrows indicate the directions of the paths,
along which nonzero phases are gained via the Peierls substitution.
The value of the nonzero Peierls phase is written near each arrow
while all the other phases are zero. This gauge is called the optimal
gauge.

not affect the energy eigenvalue. Note that k̃d is the diagonal
momentum measured in units of 1/

√
3a. Figure 2 shows all

energy eigenvalues of the above Hamiltonian matrix as a
function of the magnetic flux per unit cell φ in units of magnetic
flux quantum φ0. This diagram is known as the Hofstadter
butterfly. Note that our result is completely identical to the
previous result obtained by Rammal using the Landau gauge.7

FIG. 2. Hofstadter butterfly showing the energy eigenvalue, E/t0,
as a function of the magnetic flux per unit cell in units of magnetic
flux quantum, φ/φ0. Here, t0 is the hopping amplitude in the absence
of external magnetic field.
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III. ZERO-ENERGY MODE

While every energy eigenvalue of the Azbel-Hofstadter
problem can be in principle found numerically, the size of the
Hamiltonian matrix, that needs to be diagonalized, diverges as
2q × 2q when q → ∞ in the weak-field limit of φ/φ0 = p/q

with fixed p. Obviously, a better approach is necessary in
the weak-field regime. In this work, we present an effective
Hamiltonian method that can be used to provide an accurate
analytic description of the central band of the Hofstadter
butterfly in the weak-field regime.

Our effective Hamiltonian method is based on the obser-
vation that (i) all energy eigenstates of the central Hofstadter
band are well approximated by those of the zero energy, which
we call the zero-energy modes, and thus (ii) a very accurate
effective Hamiltonian can be constructed by generating basis
wave functions from the zero-energy modes. In order to
facilitate the discussion for how to construct the effective
Hamiltonian, let us first investigate various properties of the
zero-energy modes in this section. Actual construction of the
basis wave functions is performed in Sec. IV.

For E = 0, Harper’s equations in Eqs. (4) and (5) become
decoupled between sublattice A and B:

ψA
n = ψA

n0

n∏
m=n0+1

[
− 1

A∗
m(k̃y)

]
, (8)

ψB
n = ψB

n0

n∏
m=n0+1

[−Am(k̃y)], (9)

where ψA
n0

and ψB
n0

(which are the amplitudes of the wave
function at n = n0 for sublattice A and B, respectively) can
be regarded as simple normalization constants. Seemingly
otherwise, Eqs. (8) and (9) are not yet the solutions for
Harper’s equations since the momentum is not specified. The
momentum is fixed by imposing the boundary condition,
ψn+q = eik̃dqψn (which is due to the Bloch theorem). The
situation is a bit unorthodox here since the computation is
performed in reverse order to the conventional scheme where
the energy eigenvalue is determined for a given momentum.
In the current scheme, we seek for the right momentum
corresponding to the zero-energy solution.

To find the right momentum for the zero-energy mode, it is
convenient to use the following cosine product identity:

n+q∏
m=n+1

cos

(
mπ

p

q
+ α

)
= eiπγpqn

2q−1
sin

((
α + π

2

)
q

)
, (10)

where γpqn = pn + 1 + (q + 1)(p − 1)/2. The derivation of
the cosine product identity is given in Appendix A. By using
the cosine product identity, one can simplify ψB

n+q/ψ
B
n as

follows:

ψB
n+q

ψB
n

=
n+q∏

m=n+1

[−Am(k̃y)]

=
n+q∏

m=n+1

[
− 2e

i(mπ
p

q
+ k̃y

2 ) cos

(
mπ

p

q
+ k̃y

2

)]

= 2eiπδpqnei
qk̃y

2 sin

(
(k̃y + π )

q

2

)
, (11)

where δpqn = 2np + (p + 1)(q + 1) − (q + 1)/2. By noting
that 2np and (p + 1)(q + 1) are always even integers with p

and q being coprime, one can rewrite Eq. (11) as follows:

ψB
n+q

ψB
n

= 2e−i π
2 (q+1)ei

qk̃y

2 sin

(
(k̃y + π )

q

2

)
. (12)

Then, the boundary condition, ψn+q/ψn = eikdq , gives
rise to the following equation for the zero-energy mode
momentum:

2 sin

(
(k̃y + π )

q

2

)
= eik̃dq−i

qk̃y

2 +i π
2 (q+1), (13)

from which k̃y and k̃d can be simultaneously determined. First,
noting that the magnitude of the left-hand side should be unity,
one can determine k̃y by imposing

sin

(
(k̃y + π )

q

2

)
= (−1)j

2
, (14)

with j being an integer. The solution of Eq. (14), k̃∗
y , is given

by

k̃∗
y =

{
π
3q

− π + 2π
q

j

5π
3q

− π + 2π
q

j
. (15)

Then, by inserting Eq. (15) into (13), one can determine the
other momentum for the zero-energy mode k̃∗

d , whose value is
given as follows:

k̃∗
d =

{
5π
3q

− π + 2π
q

l

π
3q

− π + 2π
q

l
, (16)

with l being an integer. Note that, while the preceding
computation is performed only for sublattice B, it can be
shown that the zero-energy momentum is exactly the same
for sublattice A as well. So far, the conclusion is that the
wave function for the zero-energy mode is precisely described
by Eqs. (8) and (9) with the appropriate momenta given by
Eqs. (15) and (16).

At this point, it is illuminating to obtain the locations of
the zero-energy momenta in the magnetic Brillouin zone. To
this end, let us convert k̃d in terms of the usual Cartesian
coordinates. Since k̃d is the diagonal momentum along which
the dimer index n increases within a given magnetic unit cell
index α, the conversion rule is given by

k̃y =
√

3aky, k̃d =
√

3akd = 3

2
akx +

√
3

2
aky, (17)

which, combined with Eqs. (15) and (16), gives rise to to the
following:

k∗
y =

{ 1√
3a

(
π
3q

− π + 2π
q

j
)

1√
3a

(
5π
3q

− π + 2π
q

j
) ,

(18)

k∗
x = 1

a

(
π

q
− π + 2π

3q
l′
)

,

where l′ = 2l − j . Figure 3 presents the energy dispersions
of the central Hofstadter band in the form of a contour plot
for various flux values, where the positions of the zero-energy
momenta are denoted by little x marks. As one can see, the
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FIG. 3. (Color online) Contour plots for the energy dispersion at various flux values of φ/φ0 = p/q, with p = 1 and q increasing from 1 to 6
between panels (a)–(f). In the figure, the energy dispersions are normalized by their respective half bandwidth. The positions of the zero-energy
momenta are denoted by little x marks and the magnetic Brillouin zones are enclosed by red solid lines. The above energy dispersions are
computed by solving either the original Harper’s equations or the effective Hamiltonian method explained in Sec. IV, both of which produce
essentially the identical results. It is interesting to note that the effective Hamiltonian method works well even for p/q = 1 owing to the mirror
structure of the Hofstadter butterfly, which maps the region near p/q = 1 to the weak-field counterpart.

zero-energy momenta occur exactly in the same honeycomb
pattern as the Dirac points in the absence of magnetic field.
Actually, it is shown in Secs. IV C and IV D that, in the
weak-field limit, with proper energy and momentum rescaling,
the energy dispersion of the central Hofstadter band becomes
exactly identical to that of graphene in the absence of magnetic
field, proving that the zero-energy modes are, in fact, nothing
but massless Dirac particles. The energy dispersion remains
very close to that in the absence of magnetic field even when
the magnetic flux per unit cell becomes moderately large.

It is interesting to mention that the number of zero-energy
modes is given by 2q within each magnetic Brillouin zone
and this fact is related to the Landau-level degeneracy of
graphene in the continuum limit. In the lattice model, the
degeneracy of the Landau level can be regarded as the number
of different ways of locating the wave-packet maximum within
the magnetic unit cell. Since the magnetic unit cell contains
2q carbon atoms, the wave-packet maximum can have 2q

different locations and therefore the so-defined Landau-level
degeneracy is 2q, which, in the continuum limit, becomes
infinite, or a macroscopic number proportional to the system
size.

We now investigate the wave-function profile for the zero-
energy mode. The wave function for the zero-energy mode can
be computed numerically by using Eqs. (8) and (9). Figure 4
shows the results for several different flux values. One of the
most salient features of the exact wave-function profile is the
fact that it is asymmetric around its maximum point while, in

the continuum limit, the zero-energy wave function reduces to
the Gaussian wave packet (which is the energy eigenstate in
the n = 0 Landau level) and therefore should be symmetric.
As one can see from Fig. 4, however, the deviation from the
Gaussian shape vanishes rather rapidly as the flux per unit cell
decreases.

Actually, in the weak-field regime, it is possible to derive
a better analytic approximation for the zero-energy wave
function than the simple Gaussian. The basic idea is, first,
to convert the zero-energy wave function represented in a
product form to a summation form by taking the logarithm
and, then, to approximate the summation with an integral
by regarding, xn ≡ nπφ/φ0 + k̃y/2, as a continuous variable.
This procedure is valid when φ/φ0 is small. Relegating the
detailed derivation to Appendix B, here, we present the final
result:

∣∣ψA
n

∣∣ ∝ exp

[
1

2πφ/φ0
Cl2

(
2π

φ

φ0
n + η

)]
,

(19)∣∣ψB
n

∣∣ ∝ exp

[
− 1

2πφ/φ0
Cl2

(
2π

φ

φ0
n + η

)]
,

where η = k̃y + π (φ/φ0 + 1) and Cl2(θ ), called the Clausen
function, is defined such that Cl2(θ ) =∑∞

n=1 sin (nθ )/n2.
From now on, let us call the wave-function profile given
by Eq. (19) the Clausen wave packet. As one can see from
Fig. 4, the Clausen wave packet provides a very accurate
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p/q=1/100

p/q=1/20(b) 

(c) 
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(a) p/q=1/5

n

B n

FIG. 4. (Color online) Wave-function profiles for the zero-energy
mode as a function of dimer index, n, at three different flux values:
(a) φ/φ0 = p/q = 1/5, (b) 1/20, and (c) 1/100. As one can see, at
moderate flux values, say, p/q = 1/5 and 1/20, there is a sizable
asymmetry around the maximum position. The asymmetry is seen
more clearly in contrast to the Gaussian wave packet (red dashed lines)
which is the exact energy eigenstate in the continuum, or weak-field,
limit. It is important to note that, while the Gaussian wave packet
provides a poor representation of the exact results (solid lines) at
moderate flux values, a new analytic expansion method using the
Clausen function (open circles) works very well for a wide range of
flux values.

approximation of the exact results for a wide range of flux
values.

To confirm analytically that the Clausen wave packet
indeed reduces to the Gaussian in the continuum limit, it is
convenient to use the Landau gauge, in which case the Clausen
approximation corresponds to the following:

∣∣ψB
n+1

∣∣ ∝ exp

[
− 1

2πφ/φ0
Cl2

(
2π

φ

φ0
n + κ

)]
, (20)

where κ = k̃y − 5π
3 φ/φ0 + π . Here, we only consider the

amplitudes in sublattice B since the same process can be
applied to sublattice A. With the definition of a new continuous
variable, x = 3a

2 (n − 1) (where a is the lattice constant),
Eq. (20) can be rewritten as follows:

|ψB(x)| ∝ exp

[
− l2

B

S0
Cl2

(√
3a

l2
B

x + κ ′
)]

, (21)

where 2πφ/φ0 = S0/l2
B, with S0 = 3

√
3

2 a2 being the area of
the hexagonal unit cell, is used. In the above, κ ′ = κ + S0/l2

B.
Now, noting that Eq. (21) is maximized when the Clausen

function inside the exponential becomes minimized, we search
for the condition minimizing Cl2(

√
3ax/l2

B + κ ′). To this end,
it is convenient to use the following property of the Clausen
function that Cl2(θ ) has a maximum at θ = π/3 and a mini-

mum at 5π/3 within a single period between 0 and 2π . Note
that Cl2(θ ) is a periodic function with 2π period. Then, one
can determine the maximum position of |ψB(x)| as follows:

xmax(μ) = −qyl
2
B − 1

4
a + l2

B√
3a/2

μπ, (22)

where μ is an integer and qy = ky + 4π

3
√

3a
is the difference

between ky and the momentum of one of the two Dirac points.
(Note that, for sublattice A, qy is defined as the difference
between ky and the momentum of the other Dirac point.) Since
the Clausen function can be expanded around its minimum
positions as follows:

Cl2(θ ) = Cl2(5π/3) +
√

3

4
(θ − θmin)2 + · · · , (23)

where Cl2(5π/3) = −1.0149 and θmin = 5π/3 + 2μπ with μ

being an integer, the next step is to expand the Clausen wave
packet in the vicinity of xmax, assuming |x − xmax|/a � l2

B/S0.
It is important to note that such expansion becomes very
accurate when the inverse coefficient in front of the Clausen
function, l2

B/S0, is much larger than the deviation of the
Clausen function from its minimum position. The expansion
is given as follows:

− l2
B

S0
Cl2

(√
3a

l2
B

x + κ ′
)

≈ − l2
B

S0
[λ0 + λ2(x − xmax)2], (24)

where the linear term vanishes due to the extremum condition.
As shown from the comparison with Eq. (23), the zeroth-order
coefficient λ0 is equal to Cl2(5π/3) and the second-order
coefficient is given by λ2 =

√
3

4 (
√

3a/l2
B)2 = S0/(2l4

B), which
finally gives rise to the desired result that the Clausen
wave packet reduces to the usual Gaussian function of
exp (−(x − xmax)2/2l2

B). Note that this result is exactly
the same as the previous result obtained by Goerbig and
collaborators.40

For later use, it is convenient to compute the maximum
as well as the minimum positions of the zero-energy wave
function for the optimal gauge in the weak-field regime. In
the case of sublattice B, the maximum (minimum) position
arises whenever the cosine factor of An(k̃y) in Eq. (6),

|cos(nπ
φ

φ0
+ k̃y

2 )|, passes through 1/2 from above (below) to

below (above) as a function of dimer index n. Note that nπ
φ

φ0

can be treated roughly as a continuous variable so long as φ/φ0

is sufficiently small. With the maximum and the minimum
position denoted as nB

max and nB
min, respectively, the result is as

follows:

nB
max,s = floor

[
1

πφ/φ0

(
π

3
− k̃y

2
+ sπ

)]
,

(25)

nB
min,s = floor

[
1

πφ/φ0

(
2π

3
− k̃y

2
+ sπ

)]
,

where s is an integer. In the case of sublattice A, it can be
shown that nA

max = nB
min and nA

min = nB
max since the cosine factor

is multiplied inversely in this case. Finally, it is interesting to
mention that, in the strong-field regime where the magnetic
flux is in the vicinity of unity (i.e., |φ/φ0 − 1| � 1), the
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maximum and the minimum-position formula is modified as
follows:

nB
max,s = floor

[
1

π (1 − φ/φ0)

(
π

3
+ k̃y

2
+ sπ

)]
,

(26)

nB
min,s = floor

[
1

π (1 − φ/φ0)

(
2π

3
+ k̃y

2
+ sπ

)]
,

where s is, again, an integer.

IV. EFFECTIVE HAMILTONIAN

In the preceding section, we have carefully investigated
various aspects of the zero-energy solution for Harper’s
equations. Despite many nice, analytic properties, the zero-
energy modes alone consist of only a negligible part of the
entire magnetic Brillouin zone. While all energy eigenvalues
can be, in principle, computed by solving Harper’s equations,
a brute-force numerical diagonalization is prohibited in the
weak-field regime where the size of the Hamiltonian matrix
quickly diverges. To scan the entire Brillouin zone in the
weak-field region, it is necessary to devise a better method.
In this section, we present such a method using the effective
Hamiltonian, which provides a very accurate description of
the central Hofstadter band in the entire Brillouin zone.

A. Basis wave functions

The essence of our effective Hamiltonian method lies in
choosing the right set of basis wave functions most relevant
to the central Hofstadter band. To do so, it is important to
note that, for φ/φ0 = p/q, the central Hofstadter band always
contains 2p subbands. One way of understanding this is,
first, to realize that the wave-function profile of all energy
eigenstates comprising the central Hofstadter band is more or
less identical to that of the zero-energy modes in the weak-field
limit. Then, from Eq. (25), one can see that there should be

exactly p local maxima for the wave-function profile inside
the magnetic unit cell (while their individual maximum values
can be different). Now, imagine that k̃y increases from 0 to
2π so that the entire Brillouin zone is covered along the
y direction. According to Eq. (25), this process is actually
identical to decreasing s by unity, which in turn means that
that the wave function is translated exactly by one unit of
the distance between the nearest maxima. This process covers
only 1/p of the whole magnetic unit cell. To fill the whole
magnetic unit cell, p bands are necessary. Since the same is
true for both sublattices A and B, there should be 2p subbands
for the central Hofstadter band.

Now, we present a scheme for systemically constructing
approximate, but very accurate basis wave functions for such
2p subbands. This basis-constructing scheme is best explained
in the following three steps. (i) First, for a given momentum,
k = (kx,ky), we compute a trial basis wave function by using
the zero-energy formula in Eqs. (8) and (9). For the time being,
let us ignore normalization. (ii) We then slice the so-obtained
trial wave function into equally spaced p pieces such that
each piece contains exactly one local maximum in the region
located between two consecutive minima of the trial basis wave
function. Care must be taken for sublattice A where, according
to our convention, the boundary of the magnetic unit cell sits
right on top of one of the wave-function maxima and thus the
piece-wise basis wave function containing such maximum is
split into two regions separated across the magnetic unit cell.
In this case, to satisfy the periodic boundary condition dictated
by the Bloch theorem, we multiply an additional phase factor,
eik̃dq , to the copied portion of the wave-function amplitude
translated from the outside to the ending part of the magnetic
unit cell. (iii) By normalizing the p piece-wise basis wave
functions separately for each sublattice, we finally obtain 2p

basis wave functions. Note that the finally obtained basis wave
functions are orthonormal to each other. See Fig. 5 for an
illustration of the basis-constructing scheme.

χΑ
1

χΑ
2

χΑ
3

χΒ
1

χΒ
2

χΒ
3

Split each trial wave function into p pieces 
and normalize them separately.

eiqkd

nmin,1
A

nmin,2
A

nmin,3
A

nmin,1
B

nmin,2
B

nmin,3
B

n n

B n
B n

A n
A n

FIG. 5. (Color online) Schematic diagram for the construction of basis wave functions in the case of p/q = 3/152. Basis wave functions
for the central Hofstadter band can be constructed in three steps: (i) for a given momentum, k = (kx,ky), one generates a trial basis wave
function according to the zero-energy formula in Eqs. (8) and (9), (ii) then, slices the so-obtained trial wave function into equally spaced p

pieces such that each piece contains exactly one local maximum, and (iii) finally, normalizes the p piece-wise basis wave functions separately
for each of the sublatttices A and B. Refer the text for details.
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Explicitly, the basis wave function for sublattice B, χB
s (n) with s ranging from 1 to p, can be written as follows:

χB
s (n) =

{
cB
s

∏n

m=nB
min,s−1+1[−Am(k̃y)] for nB

min,s−1 < n � nB
min,s ,

0 otherwise,
(27)

where cB
s is the normalization constant. Note that χB

s (n) is the piece-wise basis wave function containing the sth maximum. For
sublattice A, the situation is similar except for the special case of s = 1 where the wave-function maximum is split into two
regions across the magnetic unit cell:

χA
1 (n) =

⎧⎪⎨
⎪⎩

cA
1

∏n
m=n0+1[−1/A∗

m(k̃y)] for n0 < n � nA
min,1,

eik̃dqcA
1

∏n

m=nA
min,p−1+1[−1/A∗

m(k̃y)] for nA
min,p < n � n0 + q − 1,

0 otherwise,

(28)

where n0 is the first dimer index in the magnetic unit cell, which, according to our convention, is nB
min,0 + 1. Note that the last

dimer index is n0 + q − 1, which is in turn equal to nB
min,p. In the above, cA

1 is the normalization constant. For the other cases
with s �= 1, the formula is given similarly to that of sublattice B:

χA
s (n) =

{
cA
s

∏n

m=nA
min,s−1+1[−1/A∗

m(k̃y)] for nA
min,s−1 < n � nA

min,s ,

0 otherwise,
(29)

where, again, cA
s is the normalization constant.

B. Constructing the effective Hamiltonian

The basic idea behind our effective Hamiltonian method
is to isolate the Hilbert space near zero energy in terms of
the basis wave functions constructed in the preceding section.
With p number of basis wave functions for each sublattice A
and B, say, χA

μ and χB
ν with μ,ν = 1, . . . ,p, our Hamiltonian

can be written as a 2p × 2p matrix as follows:

Heff =
( 0 HAB

HAB† 0

)
, (30)

where HAB is a p × p matrix whose elements are given by

(HAB)μν = 〈χA
μ

∣∣H∣∣χB
ν

〉
. (31)

In the above, H is the original Hamiltonian matrix for Harper’s
equations given in Eq. (7). Note that all elements in the block-
diagonal part of Heff are strictly zero since H allows only the
nearest-neighbor hopping.

C. Approaching the continuum limit along φ/φ0 = 1/q

The effective Hamiltonian takes the most compact form in
the case of φ/φ0 = 1/q. The reason is that, in this case, there
is only a single basis wave function for each sublattice and
thus the size of the effective Hamiltonian becomes just 2 × 2
no matter how large q may become. In fact, it is important
to note that the larger q becomes, the more accurate results
our effective Hamiltonian method provides, as shown later in
this section. In addition to the mathematical simplicity, the

case of φ/φ0 = 1/q is physically important since taking the
large-q limit along φ/φ0 = 1/q is one of the most natural
paths approaching the continuum limit, via which the central
Hofstadter band evolves into the n = 0 Landau level.

With all diagonal elements vanishing (for the reason
explained in the preceding section), the only nonzero, off-
diagonal elements of the 2 × 2 effective Hamiltonian are
(HAB)11 and its complex conjugate:

(HAB)11 = 〈χA
1

∣∣H∣∣χB
1

〉
= (χA

1,n0

)∗(
χB

1,n0
+ An0e

−ik̃d qχB
1,n0+q−1

)
= C

{
1 − e−ik̃d q

n0+q−1∏
m=n0

[−Am(k̃y)]

}

= C{1 + e−ik̃d q[eik̃dq − e−iπq ]}, (32)

where C = (χA
1,n0

)∗χB
1,n0

and the cosine product identity in
Eq. (12) is used to obtain the last line. The step connecting
between the first and the second line of Eq. (32) indicates that
only a single term from the inner product survives. This is due
to the fact that all the other terms vanish strictly by the very
definition of the basis wave functions given in Eqs. (27)–(29),
which, in the case of φ/φ0 = 1/q, is simply identical to the
zero-energy formula in Eqs. (8) and (9) due to the fact that
there is only a single maximum in the magnetic unit cell in
this case.

Diagonalizing the 2 × 2 effective Hamiltonian gives rise to
the following energy eigenvalues:

E±
1/q(�k) = ±|C|

√
1 + 4 cos2

(
(k̃y − k̃d )

q

2

)
− 4(−1)q cos

(
(k̃y − k̃d )

q

2

)
cos

(
(k̃y + k̃d )

q

2

)
, (33)
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as well as the corresponding eigenstates,

�±
1/q = 1√

2

(
χA

1 ± e−iθχB
1

)
, (34)

where θ is defined such that eiθ = (HAB)11/|(HAB)11|. It is
interesting to note that the energy eigenstates are always
composed of an equal mixture between sublattices A and B.

Figure 6 shows evidence for the validity of the effective
Hamiltonian method in terms of the overlap integral between
the eigenstates obtained from the effective Hamiltonian and
the exact counterparts from the original Harper’s equations. As

one can see, the overlap is very close to unity for all momenta
at small flux values up to p/q = 0.2. Actually, the overlap is
not too bad all the way up to p/q = 0.5 when averaged over all
crystal momenta within the magnetic Brillouin zone. Note that,
for general flux values of p/q, the effective energy eigenstates
are obtained by solving the 2p × 2p effective Hamiltonian.
See Sec. IV D for details.

To get more physical insight on the energy dispersion in
Eq. (33), it is convenient to convert k̃d in terms of the usual
Cartesian coordinates as done previously in Eq. (17). The result
is quite illuminating:

E±
1/q(�k) =

⎧⎪⎨
⎪⎩

±|C|
√

1 + 4 cos2
(√

3
2 qaky

)+ 4 cos
(√

3
2 qaky

)
cos
(

3
2qakx

)
(q : odd)

±|C|
√

1 + 4 cos2
(√

3
2 q
(
aky − π√

3q

))+ 4 cos
(√

3
2 q
(
aky − π√

3q

))
cos
(√

3
2 q
(
akx − π

3q

))
(q : even)

, (35)

which shows that, with proper energy and momentum rescal-
ing, the energy dispersion is, in fact, exactly identical to that
in the absence of magnetic field. Note that, for q even, the
momentum is shifted by �k = ( π

3qa
, π√

3qa
). The above energy

dispersions were plotted in the form of the contour graph
previously in Fig. 3 for various flux values, which shows
explicitly that massless Dirac particles exist in the central
Hofstadter band.

Figure 7 shows a detailed comparison between the exact en-
ergy dispersions obtained from the original Harper’s equations
and that from the effective Hamiltonian method for various
φ/φ0 = 1/q. It is important to note that, with proper energy
and momentum rescaling, all energy dispersions obtained from
the effective Hamiltonian collapse into a single curve. In the
figure, the momentum is expressed in units of 1/qa and the
energy dispersion is normalized by the half bandwidth W ,

0 0.1 0.2 0.3 0.4 0.5

0.9

0.95

1

O
ve

rla
p 

In
te

gr
al

p/q
0.1 0.2 0.3 0.4 0.5

0.5

1

0

FIG. 6. (Color online) Overlap integral between the energy
eigenstates obtained from the effective Hamiltonian method and the
exact counterparts from the original Harper’s equations. Stars indicate
the averaged value of the overlap integral over all crystal momenta
within the magnetic Brillouin zone, while circles denote individual
results for different momenta. It is important to note that the overlap
integral approaches unity very rapidly as φ/φ0 = p/q decreases.

which is related to the prefactor, C, via W = 3|C|. As one can
see from Fig. 7(a), the agreement between the exact results for
the normalized energy dispersion and that from the effective
Hamiltonian method is quite good for q as small as 3 and
becomes perfect quickly as q increases. In addition to the

0
−1

0

1

π−π

q=3q=10

E
W

0
Δkx

Δk
y

0

3
2π

3
2π

π

−π

(a)

Δky [1/qa]

0 0.1 0.2 0.30

0.3

0.6

0.9

1
q

(b)

W

Exact
Effective 
Hamiltonian

Exact
Effective 
Hamiltonian

FIG. 7. (Color online) (a) Comparison between the exact energy
dispersions obtained from the original Harper’s equations (black
dashed lines) and that from the effective Hamiltonian method (red
solid line) for various φ/φ0 = 1/q. Note that, with proper energy
and momentum rescaling, all energy dispersions obtained from the
effective Hamiltonian at different φ/φ0 = 1/q collapse into a single
curve. In the figure, the energy dispersions are normalized by their
respective half bandwidth W , and the momentum is expressed in units
of 1/qa. The inset shows the path in the magnetic Brillouin zone,
along which the momentum is scanned. Note that the scanning path
is chosen such that it passes through the Dirac points. (b) Comparison
between the exact half bandwidth and that obtained from the effective
Hamiltonian method as a function of φ/φ0 = 1/q.
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rescaled shape of the energy dispersion, it is shown below that
the bandwidth of the energy dispersion itself is also captured
extremely accurately by the effective Hamiltonian method.

To determine the bandwidth of the energy dispersion, it is
necessary to compute the prefactor C in Eq. (33):

|C| = ∣∣χA
1,n0

∣∣∣∣χB
1,n0

∣∣ ≈ |CA||CB|, (36)

where the Clausen approximation for the zero-energy wave
function in Eq. (19) is used:∣∣χA

1,n0

∣∣ ≈ |CA|e 1
2πφ/φ0

Cl2(2π
φ

φ0
n0+η)

,
(37)∣∣χB

1,n0

∣∣ ≈ |CB|e− 1
2πφ/φ0

Cl2(2π
φ

φ0
n0+η)

.

Here, CA and CB are the normalization constants for sublattices
A and B, respectively. Note that η = k̃y + π (φ/φ0 + 1) can be
regarded as just a constant for the current purposes.

We now need to compute the normalization constants, CA

and CB. First, due to the sublattice symmetry, |CA| = |CB|, and
therefore |C| = |CB|2. Mathematically, this is a consequence
of the property of the Clausen function: −Cl2(θ ) = Cl2(2π −
θ ). Second, with the substitution of θ = 2π

φ

φ0
n + η, the

normalization condition can be approximated by the following
integral form:

1 = |CB|2
n0+q−1∑
n=n0

e
− 1

πφ/φ0
Cl2(2π

φ

φ0
n+η)

≈ |CB|2 1

2πφ/φ0

∫ 2π

0
dθe

− 1
πφ/φ0

Cl2(θ)

≈ |CB|2 1

2πφ/φ0

∫ ∞

−∞
dθe

− 1
πφ/φ0

Cl2(5π/3)− l2B
3a2 θ2

, (38)

where the last line is obtained in the limit of small φ/φ0,
in which the integrand becomes sharply peaked around the
minimum position of the Clausen function occurring at θ =
5π/3 [see Eq. (23)]. In this limit, it is also safe to extend the
integral range to (−∞,∞). Following is the final result for the
half width of the central Hofstadter band W/t0:

W

t0
= 3|C| ≈ 35/4

√
φ/φ0 exp

[
1

πφ/φ0
Cl2(5π/3)

]
, (39)

where we have reintroduced the hopping amplitude t0 for
convenience. Figure 7(b) shows the comparison between the
exact half bandwidth and that from the effective Hamiltonian
method in Eq. (39) as a function of φ/φ0 = 1/q, which, as
one can see, are in excellent agreement. It is interesting to note
that, in units of the energy level spacing between the n = 1 and
0 Landau level, � = √

2h̄vF / lB, the half width of the central
Hofstadter band becomes simplified as follows:

W

�
= 3√

2π
exp

[
1

πφ/φ0
Cl2(5π/3)

]
, (40)

where Cl2(5π/3) = −1.0149.

D. General flux

At general flux, φ/φ0 = p/q, the mathematical expression
for the energy eigenvalue as well as eigenstate are not as
simple as those at φ/φ0 = 1/q, which are given by Eqs. (33)
and (34), respectively, in the preceding section. Nevertheless,
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1

−4

0

4

−8

0

8

−4

0

4
x 10−2

0 2π−2π π−π 0 2π−2π π−π

E

p/q=2/15
p/q=3/28

p/q=5/41 p/q=7/64

Δky [1/qa] Δky [1/qa]

x 10−1

x 10−2

x 10−2

FIG. 8. (Color online) Comparison between the energy disper-
sions obtained from the original Harper’s equations (black lines)
and those from the effective Hamiltonian method (red lines) at
various φ/φ0 = p/q. For clarity, the energy dispersions from the
effective Hamiltonian method are plotted only within the window of
−π/qa � �ky � π/qa. Note that the momentum is scanned along
the same path as in Fig. 7(a).

it is emphasized that, for p/q � 1, the size of the effective
Hamiltonian, which is 2p × 2p, is much reduced from that of
the original Harper’s equation, which is 2q × 2q. This means
that the fine self-similar structures of the central Hofstadter
band in the weak-field regime can be computed in a much
efficient manner. As shown in the following section, this,
combined with some analytic results obtained at φ/φ0 = 1/q,
in turn enables us to make a prediction that massless Dirac
particles should occur under arbitrary magnetic field.

Postponing the detailed discussion to the following section,
here, we present the comparison between the results obtained
from the effective Hamiltonian method and those from the
original Harper’s equations for general φ/φ0 = p/q. Figure 8
provides numerical results for the energy dispersion at various
flux values in comparison with those from the effective
Hamiltonian method. As one can see, the agreement is
excellent not only for the bands near zero energy, but also
for the entire 2p bands within the central Hofstadter band.

V. SELF-SIMILAR OCCURRENCE OF MASSLESS
DIRAC PARTICLES

It is mentioned in the preceding section that the effective
Hamiltonian method can help reveal the fine self-similar
structures of the central Hofstadter band in the weak-field
regime much efficiently. The results obtained from the effec-
tive Hamiltonian method are shown in Fig. 9, which provides a
sequence of zoomed views unveiling the self-similar recursive
patterns of the central Hofstadter band.

One of the most salient features of the Hofstadter butterfly
seen in Fig. 9 is that the central Hofstadter band is partitioned
by a series of special flux values, at which the central Hofs-
tadter band is entirely composed of a single band appearing as a
vertical line in the figure. Note that, for example, in the topmost
panel of Fig. 9, the central Hofstadter band is partitioned by a
series of vertical lines occurring at φ/φ0 = 1/q and 1 − 1/q
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E
t 0

φ
φ0

FIG. 9. (Color online) A sequence of zoomed views for the
Hofstadter butterfly in graphene showing various self-similar recur-
sive patterns. Note that a fan of narrow energy bands are emanated
from each single-band boundary flux (SBF), φSBF, which, as indicated
by blue guiding curves, scale as sgn(n)

√|n(φ − φSBF)| with n being
an integer. This scaling behavior is a signature of the formation
of recursive Landau levels associated with self-similarly occurring
massless Dirac particles.

with q being a positive integer. Similar patterns are observed in
subsequently zoomed views. For later convenience, we name
the flux belonging to this series of special flux values as the
single-band boundary flux (SBF).

In fact, owing to the self-similar recursive pattern of
the central Hofstadter band, it is convenient to coin the
name the “nth level” central Hofstadter band (CHB) and the
corresponding “nth level” single-band boundary flux (SBF). In

this nomenclature, the first level SBF values are given by 1/q

and 1 − 1/q with q being a positive integer. Meanwhile, the
second panel of Fig. 9 shows that the second level SBF values
are given by 5/49, 4/39, 3/29, 2/19, 3/28, 4/37, 5/46, and
so on. The third level SBF values can be determined similarly
from the third panel. At this point, it is natural to ask the
question if there is a rule for the SBF values and, if so, what
mathematical form it takes.

The answer is that, indeed, there is a single rule for all SBF
values, the mathematical form of which is given as follows:

f = s1 + (−1)s1

n1 + s2 + (−1)s2

n2+s3+ (−1)s3
n3+··· ,

, (41)

where ni , a positive integer larger than 2, and si , either
0 or 1, are determined by the following recursion rule.
Suppose that f is one of the SBF values. Then, we first
define f0 = f . If floor(1/f0) � 2, we set n1 = floor(1/f0)
and s1 = 0. Otherwise [i.e., if floor(1/f0) = 1], we set n1 =
floor[1/(1 − f0)] and s1 = 1. As the next recursion step, we
then define f1 = 1/f0 − n1 for the former and 1/(1 − f0) − n1

for the latter case. We now repeat the same procedure to
determine n2 and s2 from f1. This procedure can be continued
until we get fn = 0 with n indicating that f is the nth level
SBF.

It is instructive to explain the above rule by using an
example. As an example, let us take φ/φ0 = 4/39, which
is one of the second-level SBF values. According to the
above-mentioned rule, we first define f0 = 4/39. Since 1/f0 =
39/4 = 9 + 3/4, n1 = 9, s1 = 0, and subsequently f1 = 3/4.
Now that 1/f1 = 4/3 = 1 + 1/3, we have to set n2 =
floor[1/(1 − f1)] = 4, in which case s2 = 1. The recursion
steps terminate at the second level since f2 = 0. In conclusion,
f = 4/39 can be expressed as follows:

f = 4/39 = 1

9 + 1 + (−1)
4

. (42)

It is now convenient to devise a simplified notation scheme
where the SBF is represented by a sequence of ni along with
whether si is 0 or 1. One way of denoting the fact that si = 1
is to put a bar on top of the corresponding ni . In this notation,
f = 4/39 = (9,4̄). Similar computations can be performed
to show that f = 19/186 and 17/166, which are among the
third-level SBF values shown in the third panel in Fig. 9, are
represented by (9,4̄,4̄) and (9,4̄,4), respectively. On the other
hand, f = 91/891, which is one of the fourth-level SBF values
shown in the fourth panel in Fig. 9, is given by (9,4̄,4̄,4̄).

By knowing the continued-fraction representation of a
given SBF value f , one can extract two important pieces of
information. First, how many ni’s exist indicates the level of
f as an SBF value. Second, more importantly, provided that
f is the mth level SBF, f is related to the first-level SBF
occurring at 1/nm (or 1 − 1/nm via the reflection symmetry).
For example, f = 19/186 = (9,4̄,4̄) has four ni’s and the last
integer is 4, which tells us that f = 19/186 is the fourth-level
SBF related to the first-level SBF occurring 1/4.

Once the relationship between a given SBF and its first-level
counterpart is established, there is a far-reaching consequence.
To understand this, it is important to note that (i) the first-level
SBF values are always either 1/q or 1 − 1/q with q being
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a positive integer and (ii) for φ/φ0 = 1/q and 1 − 1/q, the
energy dispersion is isomorphic to that in the absence of
magnetic field, as proven in Sec. IV C. Therefore, if all SBF
values are related to their respective first-level counterparts, the
energy dispersion at all SBF values should also be isomorphic
to that in the absence of magnetic field. In other words,
massless Dirac particles should exist at all SBF values. In fact,
since all rational fractions can be represented by a continued
fraction via Eq. (41), massless Dirac particles should exist
at all rational flux values. This conclusion is supported by
explicit numerical results obtained from both the original
Harper’s equations and the effective Hamiltonian method,
which show that the energy dispersion is indeed isomorphic to
that of graphene in the absence of magnetic field. This is, also,
fully consistent with an analytic result that zero-energy modes
always exist for general φ/φ0 = p/q as shown in Sec. III.
Moreover, since any irrational number can be represented as a
continued fraction with an infinite number of levels, the energy
dispersion at irrational flux values can be regarded as that of
massless Dirac particles in the limit where the energy scale
goes to zero. In this sense, we arrive at the final conclusion
that, however small their energy scale may be, massless Dirac
particles should exist at all flux values, rational or irrational.

A corollary of the above conclusion is that the central
Hofstadter band should also contain a self-similar structure
of recursive Landau levels associated with those self-similarly
occurring massless Dirac particles. Figure 9 shows that each
single-band boundary flux (SBF), φSBF, indeed emanates a fan
of narrow energy bands which, as indicated by blue guiding
curves in the figure, scale as sgn(n)

√|n(φ − φSBF)| with n

being an integer. This scaling behavior is a signature of the
formation of recursive Landau levels.

VI. CONCLUSION

In this paper, we develop an effective Hamiltonian method
that can be used to provide an accurate analytic description of
the central Hofstadter band in graphene much more efficiently
than directly solving the original Harper’s equations in the
weak-field regime. The source of the efficiency is due to the
fact that, in the weak-field regime where the magnetic flux per
unit cell in units of magnetic flux quantum, φ/φ0 = p/q � 1,
the size of the effective Hamiltonian is given by 2p × 2p,
which is greatly reduced from that of the original Hamiltonian,
2q × 2q. The benefit of using the effective Hamiltonian
method is maximized at φ/φ0 = 1/q, where the size of the
effective Hamiltonian remains to be 2 × 2 no matter how large
q may become. Actually, the advantage of using the effective
Hamiltonian is not simply due to the reduction of the matrix
size, but rather the separation of the low-energy sector. It is
important to note that solving the original Harper’s equations
generates unreliable, noisy data below certain small flux values
where the low-energy sector becomes so narrow that the energy
resolution falls below numerical accuracy.

By using such an effective Hamiltonian method, we show
explicitly that the energy dispersion is isomorphic to that in
the absence of magnetic field for all flux values satisfying
φ/φ0 = 1/q, which in turn indicates that massless Dirac
particles should exist no matter how small the magnetic flux
may become. In fact, by combing numerical results showing

the self-similar recursive structure of the central Hofstadter
band, we conclude that massless Dirac particles should occur
under arbitrary magnetic flux. If so, as a corollary, the central
Hofstadter band should also contain a self-similar structure of
recursive Landau levels.

As a useful by-product of the effective Hamiltonian method,
we are also able to compute the width of the central Hofstadter
band as a function of magnetic field, which can be used
to assess the experimental feasibility of actually observing
massless Dirac particles inside the central Hofstadter band.
In units of the energy level spacing between the n = 1 and
0 Landau level, � = √

2h̄vF / lB, where vF is the Fermi
velocity at Dirac point and lB is the magnetic length, we
show that the width of the central Hofstadter band is given by
W/� = 1√

2π
exp (−γ

φ0

φ
) with γ = |Cl2(5π/3)|/π � 0.323.

As one can see from the above formula for the width of
the central Hofstadter band, the biggest obstacle in exper-
imentally observing the self-similar occurrence of massless
Dirac particles is the smallness of the magnetic flux per unit
cell, φ/φ0. There are apparently two ways of overcoming this
obstacle: (i) increasing the magnetic field or (ii) enlarging
the unit cell. As it turns out, the first option is not feasible
in the current experimental technology due to various limi-
tations in achieving the desired strength of steady magnetic
field. Fortunately, the second option is within the realm of
experimental realization. Specifically, there was a report for
observing evidence of the Hofstadter butterfly in laterally
arranged two-dimensional superlattices patterned as a square
lattice on top of a two-dimensional electron gas (2DEG).36

To the best of our knowledge, no such experiment has been
performed for the honeycomb lattice so far. Recently, however,
it is proposed via first-principles calculations that an ordinary
2DEG under an appropriate external periodic potential of the
hexagonal symmetry can generate massless Dirac particles
near the corners of the supercell Brillouin zone.41 Importantly,
it is argued in the same proposal that the required potential
parameters are found to be achievable under or close to
laboratory conditions.

Finally, we mention that the above effective Hamiltonian
method is not applicable in the square lattice. The reason is as
follows. The validity of the effective Hamiltonian method de-
pends crucially on the fact that the zero-energy wave function
has a well localized shape with exponentially negligible tails
so that it can be safely split into linearly independent pieces
with each forming the basis wave functions for the effective
Hamiltonian. No such simplification is possible in the square
lattice where the zero-energy wave functions are extended all
over the magnetic unit cell. The situation is not improved in
the case of nonzero energy states, whose wave-function forms
are no longer given by a simple product form and thus prohibit
a systematic construction of the analytic basis wave functions
from the outset.
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APPENDIX A: DERIVATION OF THE
COSINE PRODUCT IDENTITY

In this section of the appendix, we prove the following
cosine product identity:

n+q∏
m=n+1

cos

(
mπ

p

q
+ α

)
= eiπγpqn

2q−1
sin

((
α + π

2

)
q

)
,

(A1)

where γpqn = pn + 1 + (q + 1)(p − 1)/2. Here, p and q are
coprime natural numbers.

We begin by multiplying both sides of Eq. (A1) with 2q , in
which case the left-hand side becomes

n+q∏
m=n+1

[
2 cos

(
mπ

p

q
+ α

)]

=
n+q∏

m=n+1

[ei(mπ
p

q
+α) + e

−i(mπ
p

q
+α)]

=
n+q∏

m=n+1

e
−i(mπ

p

q
+α)

n+q∏
m=n+1

[1 + e
i(2mπ

p

q
+2α)]

= e−i π
2 p(2n+q+1)−iαq

n+q∏
m=n+1

[1 + e
i(2mπ

p

q
+2α)]. (A2)

Now, let us consider the product in the last line of Eq. (A2),
S =∏n+q

m=n+1[1 + e
i(2mπ

p

q
+2α)], whose logarithm is written as

follows:

ln S =
n+q∑

m=n+1

ln [1 + e
i(2mπ

p

q
+2α)]

=
n+q∑

m=n+1

∞∑
s=1

(−1)s−1

s
e
i(2mπ

p

q
+2α)s

, (A3)

where the Taylor expansion of the logarithm, ln (1 + x) =∑∞
s=1

(−1)s−1

s
xs , is used. Note that the above Taylor expansion

of the logarithm is valid for |x| � 1 with exception of x =
−1. This condition is satisfied for x = e

i(2mπ
p

q
+2α) unless

e
i(2mπ

p

q
+2α) = −1. Fortunately, in the case when there is such

m that e
i(2mπ

p

q
+2α) = −1, Eq. (A1) is automatically satisfied

with both sides becoming simultaneously zero. The reason is
that e

i(2mπ
p

q
+2α) = −1 means 2mπ

p

q
+ 2α = (2l − 1)π with l

being an integer, which is in turn equivalent to(
α + π

2

)
q = (ql − pm)π. (A4)

Since ql − pm is an integer, the right-hand side of Eq. (A1)
becomes zero. It is shown in Eq. (A2) that the left-hand side
also vanishes when e

i(2mπ
p

q
+2α) = −1. Therefore, it can be

concluded that the Taylor expansion in the above can be safely
used.

Then, Eq. (A3) can be simplified as follows:

ln S =
∞∑

s=1

(−1)s−1

s
ei2αs

n+q∑
m=n+1

e
i2mπ

p

q
s

=
∑

s �=0(modq)

(−1)s−1

s
ei2αs 1 − ei2πps

1 − e
i2π

p

q
s
e
i2π

p

q
s(n+1)

+
∑

s=0(modq)

(−1)s−1

s
ei2αsq

=
∑

l

(−1)ql−1

ql
ei2αqlq

=
∑

l

(−1)ql−1

l
ei2αql

=
∑

l

(−1)l−1

l
ei2αqleiπ(q−1)l

=
∑

l

(−1)l−1

l
{ei2[αq+ π

2 (q+1)]}l

= ln{1 + ei2[αq+ π
2 (q+1)]}, (A5)

where the last step in the above equation is obtained when
ei2[αq+ π

2 (q+1)] �= −1. Fortunately, this condition is identical
to the previous one that there is no such m satisfying
e
i(2mπ

p

q
+2α) = −1 as described in Eq. (A4). The reason is

as follows. First, ei2[αq+ π
2 (q+1)] �= −1 indicates that (α +

π/2)q = kπ with k being an integer. Now that p and q

are coprime, there should exist integers, n1 and n2, such
that n1p + n2q = 1 according to Bézout’s identity, which
means, in turn, that any integer, say k, can be re-written as
(kn1)p + (kn2)q. The comparison between this condition and
that in Eq. (A4) shows that they are in fact identical since one
can always choose l = kn2 and m = −kn1.

Exponentiating both sides of Eq. (A5) gives rise to the
following result:

S = 1 + ei2[αq+ π
2 (q+1)]

= 2ei[αq+ π
2 (q+1)] cos

(
αq + π

2
(q + 1)

)

= −2ei[αq+ π
2 (q+1)] sin

((
α + π

2

)
q

)
. (A6)

By using this result, one can then show that Eq. (A2) becomes
as follows:

n+q∏
m=n+1

[
2 cos

(
mπ

p

q
+ α

)]

= −2e−i π
2 p(2n+q+1)−iαqei[αq+ π

2 (q+1)] sin

((
α + π

2

)
q

)

= 2e−iπ[pn+1+(q+1)(p−1)/2] sin

((
α + π

2

)
q

)

= 2eiπγpqn sin

((
α + π

2

)
q

)
, (A7)

where γpqn = pn + 1 + (q + 1)(p − 1)/2. Dividing both
sides of Eq. (A7) by 2q finally results in Eq. (A1).
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APPENDIX B: CLAUSEN APPROXIMATION
FOR THE ZERO-ENERGY MODE

In this section of the appendix, we derive the analytic
expression for the wave-function profile of the zero-energy
mode, which becomes exact in the weak-field limit, and pro-
vides a very approximation to the exact solution at moderately
small flux values. For completeness, here, we consider both
the optimal and the Landau gauge.

In the case of the optimal gauge, let us begin with the
following Harper’s equation for the zero-energy mode in
sublattice B:

ψB
n

ψB
0

=
n∏

m=1

[−Am(k̃y)], (B1)

where Am(k̃y) = 2e
i(mπ

φ

φ0
+ k̃y

2 ) cos (mπ
φ

φ0
+ k̃y

2 ). Taking the
absolute value and the logarithm of both sides of Eq. (B1)
gives rise to the following:

ln

∣∣∣∣ψB
n

ψB
0

∣∣∣∣ =
n∑

m=1

ln

[
2

∣∣∣∣ cos

(
mπ

φ

φ0
+ k̃y

2

)∣∣∣∣
]
. (B2)

In the weak-field limit when φ/φ0 � 1, one can approxi-
mate the summation in the right-hand side of Eq. (B2) with an

integral via the substitution of x = mπ
φ

φ0
+ k̃y

2 and dx = π
φ

φ0
.

That is to say, by using the midpoint rectangle method, one
can approximate the above summation as follows:

ln

∣∣∣∣ψB
n

ψB
0

∣∣∣∣ ≈ 1

πφ

∫ xn+ π
2

φ

φ0

x1− π
2

φ

φ0

dx ln (2| cos x|)

= 1

πφ

∫ xn+ π
2

φ

φ0

x1− π
2

φ

φ0

dx ln |1 + e−2ix |

= 1

πφ

∫ xn+ π
2

φ

φ0

x1− π
2

φ

φ0

∞∑
s=1

(−1)s+1 cos(2sx)

s

= − 1

πφ

∞∑
s=1

sin [s(2x + π )]

2s2

∣∣∣∣
xn+ π

2
φ

φ0

x1− π
2

φ

φ0

= − 1

2πφ

[
Cl2

(
2xn + π

φ

φ0
+ π

)

− Cl2

(
2x1 − π

φ

φ0
+ π

)]
, (B3)

where xn = nπ
φ

φ0
+ k̃y

2 and x1 = xn=1. Note that Cl2(θ ) =∑∞
n=1 sin (nθ )/n2 is called the Clausen function. Neglecting

the proportionality constant which is independent of n, we
arrive at the final result:

∣∣ψB
n

∣∣ ∝ exp

[
− 1

2πφ/φ0
Cl2

(
2π

φ

φ0
n + η

)]
, (B4)

where η = k̃y + π (φ/φ0 + 1). By noting that Harper’s equa-
tion for sublattice A is simply the inverse of that for sublattice
B, one can obtain the following expression for the wave-
function profile in sublattice A:

∣∣ψA
n

∣∣ ∝ exp

[
1

2πφ/φ0
Cl2

(
2π

φ

φ0
n + η

)]
. (B5)

Now, let us switch gears to the Landau gauge, �A =
(0,Bx). In the Landau gauge, the hopping amplitude gains the
following phase whose value is determined by the line integral
between the nearest neighboring sites, φij = e

2πh̄c

∫ j

i
A · dl:

φαnA,α′n′B = [2(α′ − α) − (−1)n]δnn′φn,
(B6)

φαnB,α′n′A = [2(α′ − α) + (−1)n]δnn′φn,

where φn = φ

φ0
(n/2 − 5/12). As before, n is the dimer index

and α labels a unit cell along the y direction (see Fig. 1).
At this point, it is convenient to consider a semi-infinite

configuration of graphene with a zigzag edge, in which case
the wave-function amplitude on one of the sublattices can
be chosen to be identically zero. Defining sublattice B as the
one with nonzero wave function amplitudes, one can show
that the wave-function amplitude in sublattice B is given as
follows:

ψB
n+1

ψB
1

=
n∏

m=1

[
− 2 cos

(
mπ

φ

φ0
+ k̃y

2
− 5π

6
φ

)]
. (B7)

Since the above formula is basically identical to that of the
optimal gauge in Eq. (B1), the same computation procedure
previously applied in the optimal gauge can be performed to
show that, in the weak-field limit,

∣∣ψB
n+1

∣∣ ∝ exp

[
− 1

2πφ/φ0
Cl2

(
2π

φ

φ0
n + κ

)]
, (B8)

where κ = k̃y − 5π
3 φ/φ0 + π .
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