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Contact-induced spin relaxation in Hanle spin precession measurements
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In the field of spintronics the “conductivity mismatch” problem remains an important issue. Here the difference
between the resistance of ferromagnetic electrodes and a (high resistive) transport channel causes injected spins
to be backscattered into the leads and to lose their spin information. We study the effect of the resulting
contact-induced spin relaxation on spin transport, in particular on nonlocal Hanle precession measurements. As
the Hanle line shape is modified by the contact-induced effects, the fits to Hanle curves can result in incorrectly
determined spin transport properties of the transport channel. We quantify this effect that mimics a decrease of
the spin relaxation time of the channel reaching more than four orders of magnitude and a minor increase of the
diffusion coefficient by less than a factor of two. Then we compare the results to spin transport measurements on
graphene from the literature. We further point out guidelines for a Hanle precession fitting procedure that allows
the reliable extraction of spin transport properties from measurements.
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I. INTRODUCTION

New concepts like the spin transfer torque, the transport
of spin information over long distances, and the prospect
of spin field effect transistors keep spintronics an inspiring
field.1,2 But before new types of spintronic devices can be
build we need both materials that efficiently generate spin
currents as injector and detector electrodes and materials with
long spin relaxation lengths (λ) and times (τ ) to transport
the spins with only little losses. While ferromagnetic metals
can spin polarize currents and are therefore used to inject and
detect spins, semiconductors offer low spin relaxation which
makes them good candidates to be used as transport channels.
One of the main challenges when combining the two types
of materials is the “conductivity mismatch” problem.3,4 As
the electrical resistance in the ferromagnetic electrodes is in
general lower than in the semiconducting transport channel,
the injected spins tend to be reabsorbed by the leads and loose
their spin orientation.

Graphene, being an intermediate between metal and semi-
conductor systems, is a prototype example for the conduc-
tivity mismatch, as graphene based devices can be well
described following simple spin diffusion theory. Here, the
long spin relaxation lengths of several μm measured at room
temperature are already promising5 but still stay behind the
theoretical prospects based on the high mobilities combined
with weak spin orbit coupling and low hyperfine interactions.6

While some research aims to understand the spin relaxation
mechanism in graphene7–12 and to understand the influence of
the direct environment of the graphene transport channel,13–18

the conductivity mismatch can play an important role in the
origin of spin relaxation in the measured devices. To prevent
this mismatch, high resistive barriers between the contacts and
the graphene channel are included.4,19–23

The most common and reliable way to probe spin transport
properties is by performing measurements in the nonlocal spin
valve geometry2,5,24 because it enables the separation of spin
and charge currents, avoiding spurious effects.25 Popinciuc
et al.19 describe, in agreement with Takahashi and Maekawa,26

that the measured amplitude of the spin signal in the nonlocal
geometry is strongly reduced for low contact resistances RC .27

To quantify the effect, Popinciuc et al. introduce the so-called
R parameter that is defined for a two-dimensional channel by
R = (RC/Rsq)W , where Rsq is the square resistance and W

the width of the diffusive channel.19,28

We begin this paper by summarizing the dependence of
the nonlocal amplitude on the contact resistance discussed
in Ref. 19. Then we focus on how Hanle spin precession
measurements are influenced by low contact resistances. These
measurements are performed in the same nonlocal spin-valve
geometry but with a perpendicular magnetic field that causes
the spins to precess. The resulting Hanle curves can be fitted to
determine the spin relaxation time and the diffusion coefficient.
We discuss that not only the amplitude but also the shape
of Hanle precession curves is changed for low values of
the R parameter (corresponding to low contact resistances)
and simulate Hanle measurements including contact-induced
relaxation. We quantify the contacts’ influence by fitting
the data with the standard Hanle formula without taking
contact-induced effects into account, assuming R → ∞. Note
that fitting with the standard Hanle formula is the common
method to analyze experimental spin precession data in
almost all published works. The difference of the extracted
spin relaxation time τ fit and diffusion coefficient Dfit to
the parameters used in the simulations is quantified and we
compare these results to data obtained on graphene spin-valve
devices where a reduction of τ was reported for low contact
resistances.20 Finally, we point out how to extract correctly the
spin transport properties from Hanle precession measurements
by excluding spurious background effects.

II. CONTACT-INDUCED SPIN RELAXATION

Figure 1(a) presents a sketch of the nonlocal measurement
geometry with an injecting electrode at x = L on the right
side, sending a charge current via a resistive barrier4 into the
channel to the right side end and a detecting electrode on
the left side (at x = 0), measuring the voltage difference Vnl

between the contact and the left side end. As the electrodes
are ferromagnetic, the injecting electrode induces a spin
imbalance, described by a nonequilibrium contribution to the
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FIG. 1. (Color online) Sketches of spin diffusion through a
diffusive channel with a spin injector and detector separated by a
distance L in nonlocal geometry for (a) high and (b) low contact
resistances. The width of the contacts in x direction, LC , is small
compared to L and the spin relaxation length λ. (c) The spin chemical
potential μS indicating the spin accumulation below the injector
electrode and the exponential decay of the spin signal (red dotted
curve). The spin accumulation influenced by the contact-induced spin
relaxation is denoted by the black solid curve.

chemical potential μS , that accumulates below the electrode
and diffuses away from it in both the positive and negative x

direction of the channel [red dotted curve in Fig. 1(c)]. The
second ferromagnetic electrode detects the spins at x = 0,
and the measured voltage is Vnl = PμS/e. Here P is the
polarization of the contact and e the electron charge. The
nonlocal resistance Rnl is defined by normalizing Vnl with
the injected current I . Rnl is given by19,26,27

Rnl = ±P 2Rsqλ

2W

(2R/λ)2 exp(−L/λ)

(1 + 2R/λ)2 − exp(−2L/λ)
. (1)

The model leading to this result is based on the one-
dimensional description of a diffusive channel with an injector
and detector on distance L and λ = √

Dτ the spin relaxation
length in the channel with the diffusion coefficient D and
the spin relaxation time τ . The width of the contacts (LC) is
considered to be negligible compared to L and λ.19 Also we as-
sume 1 − P 2 ≈ 1 (applicable to graphene devices where P <

30%20) and are considering an infinite homogeneous transport
channel. The effect of an inhomogeneous transport channel is
discussed elsewhere.16 The R parameter is calculated using
the contact resistance of the injector and detector. In case R

is not the same for the two electrodes an effective single R

parameter can be calculated using 1/Reff ≈ (1/R1 + 1/R2)/2
with the R parameters of the injector and detector R1 and R2

(see Appendix A, see also Tanamoto et al.29). The meaning
of the R parameter gets clear when it is normalized with the
spin relaxation length λ. The normalized value corresponds to
the ratio of the contact resistance and the spin resistance of
the channel Rs

ch = Rsqλ/W so R/λ = RC/Rs
ch. Hence, R/λ

describes the ratio of spins diffusing through the channel and
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FIG. 2. (Color online) Simulated spin precession curves for
different values of R/λ with (a) L/λ = 1 and (b) L/λ = 10. For
the simulations we use D = 0.01 m2/s, τ = 100 ps, W = 1 μm,
and Rsq = 1 k� (representative of graphene devices) with contact
resistances between 1 and 104 �. The amplitude of the curves is
normalized for clarity with Rnl(B = 0). The inset in panel (b) shows
Rnl from Eq. (1) as a function of R/λ for L/λ = 1, normalized by
RR→∞

nl (black solid line) and the asymptote ∝ R2 (red dashed line).

relaxing, versus those being reabsorbed by the contact, making
it a good measure for the influence of the contacts.

Equation (1) shows that the spin signal Rnl has a maximum
for high contact resistances (R → ∞) and is reduced for
low R values. A significant change is observed for R/λ � 1
[Fig. 2(b), inset]. On the other hand the amplitude of the
signal is reduced with increasing L from a maximum at L = 0.
The characteristic length ratio of the system is L/λ. While
the effect on the normalized amplitude (Rnl/R

R→∞
nl with the

amplitude without contact-induced effects RR→∞
nl ) is smaller

for short distances between injector and detector electrode, it
stays approximately constant for L/λ � 1. Popinciuc et al.
discuss in detail the effect of low contact resistances on
the measured nonlocal amplitude but, while included in the
model, the effect on the Hanle curve is only discussed
qualitatively.19 In the following we are going to present a
quantitative analysis of the influence of low contact resistances
on Hanle measurements. We show that the extracted spin
transport properties of the transport channel can be limited by
the contact-induced relaxation and are therefore incorrectly
determined when low R measurements are analyzed without
considering the influence of the contacts.

Figure 2(a) shows Hanle precession data that was simulated
for different values of R/λ with L/λ = 1 using the model
system of Fig. 1(a) described in Ref.19. Note that the amplitude
of the Hanle curves is normalized at B = 0, which is necessary
as the amplitude scales with (R/λ)2 for R/λ � 1 and changes
by five orders of magnitude between R/λ = 0.001 and R/λ =
10. A significant change in the Hanle shape is visible in
Fig. 2(a), pointing to an effective change of the spin transport
properties. The strongest change in the shape is seen between
R/λ = 0.01 and R/λ = 1 while the curve shape is saturating
for both small and large R/λ values denoting spin transport
limited by the contacts or by the properties of the channel,
respectively. Figure 2(b) shows a similar dataset for L/λ = 10.
We also see a change in the Hanle shape, but the effect is much
weaker for this larger distance of the injector and detector.
Remarkably, in both cases the curves stay in the characteristic
Hanle-like shape for all R/λ. Therefore it is possible to fit the
data using the solutions to the Bloch equations30,31 that do not
take the effect of the low resistive contacts into account (see
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FIG. 3. (Color online) The change in τ fit and Dfit fitted for
different L/λ as a function of R/λ [(a) and (c)] and for different R/λ

as a function of L/λ [(b) and (d)]. For small values of L/λ the fits
become insensitive to the specific value of the diffusion coefficient,
resulting in the nonsmooth behavior shown for L/λ = 0.1 in panel
(c). Therefore the data for L/λ < 0.1 is not shown in panel (c) and
is marked with open symbols in panel (d). Note that τ can still be
consistently obtained [panel (a) and (b)].

Appendix B):

d �μS

dt
= D∇2 �μS − �μS

τ
+ �ωL × �μS. (2)

Here �ωL is the Larmor frequency �ωL = gμB/h̄ �B, with the
gyromagnetic factor g (g factor, g ≈ 2 for free electrons),
the Bohr magneton μB and the magnetic field �B. By fitting
simulated data without taking the effects of the contacts into
account, we can determine what happens when one fits the
data obtained in samples with corresponding R and L values
in the standard manner.32

The results from these fits are presented in Fig. 3. Note that
while the simulations were performed with D = 0.01 m2/s,
τ = 100 ps they do not depend on the specific value of D and τ .
Hence, we get the same results for different D and τ resulting
in the same λ = √

Dτ as the fitting results depend only on the
ratios R/λ and L/λ. The graphs show the fitted values τ fit and
Dfit normalized by the actual values for the channel τ and D

as a function of R/λ for different L/λ [Figs. 3(a) and 3(c)]
and as a function of L/λ with different R/λ [Figs. 3(b) and
3(d)]. While all values converge for high R/λ to the intrinsic
values, we see a strong decrease of τ fit and a moderate increase
of Dfit for small R/λ. Looking at Fig. 3(a) in more detail
we see that the decrease in τ fit is strongest the shorter the
distance L between injector and detector relative to λ. We
also see that the values saturate for small values of R/λ as
already perceivable in Fig. 2(a). In this limit the effect of
the contacts is maximized. τ fit shows changes of nearly up to
five orders of magnitude which means that in a measurement
with parameters of R/λ = 0.001 and L/λ = 0.01 we would
underestimate τ by a factor of 5 × 104.

The length dependence of the effect is more clearly
presented in Fig. 3(b) where the τ fit data is plotted as a function
of L/λ for different R/λ. Here we see that while the decrease of
τ fit is stronger for shorter distances the effect gets negligible
for L/λ � 10. That means that contact-induced effects can
be circumvented by measuring on a longer distance. This is
only limited by the reduced measured amplitude for longer
distances L [see Eq. (1)].

Figures 3(c) and 3(d) show the same plots for Dfit. Also
here we see the strongest effect for small R/λ and L/λ and
no significant change for R/λ = 100 or L/λ = 100. On the
other hand, the values for Dfit show a much weaker change
than the values of τ fit and the change is directed in the opposite
direction than the change of τ fit. Similar to τ fit, the Dfit values
also seem to saturate for small R/λ and the changes are less
than a factor of two.

While most curves presented in Fig. 3 have a smooth shape
and a continuous change with L/λ and R/λ, the data for
Dfit shows for values of L/λ � 0.1 combined with values
of R/λ � 1 a nonsmooth behavior. This is related to the fact
that the diffusion in the channel gets for small L dominated by
the contact-induced effects for short distances and low contact
resistances and the shape of the Hanle curves gets strongly
influenced. The spin accumulation has no significant decay
between the injector and the detector electrode so the system
becomes similar to three-terminal Hanle precession.33 As a
result, the fits become insensitive to the specific value of D, but
one can still consistently determine τ 18,34 (see Appendix B).
Therefore we omitted the data for Dfit for L/λ < 0.1 in
Fig. 3(c) and marked the data with open symbols in Fig. 3(d).
Note that in the limit L/λ � 1 and R/λ < 10 the values for τ fit

saturate as they are dominated by the contact-induced effects
and can be described by a basic formula related to the back
diffusion of the spins into the contact (see Appendix C).

III. DISCUSSION

Figure 3 shows clear trends for τ fit/τ and Dfit/D as a
function of R/λ and L/λ. We are going to discuss in the
following how to understand the physics behind the presented
results. The sketch in Fig. 1(a) presents the spin injection
and detection for high contact resistances, e.g., due to tunnel
barriers between the channel and the contacts. Here the spin
diffusion in the channel remains undisturbed and the injected
spins diffuse freely through the channel before being detected
by the spin sensitive detector. In this way, measurements detect
the intrinsic spin transport properties of the channel and the
simple exponential decay of the spin signal [red dotted curve
in Fig. 1(c)] is obtained.

In the case of low contact resistances the spin transport is
influenced both at the injector and at the detector electrodes.
When diffusing through the channel the low resistive detector
has a high probability of detecting the spins as soon as they are
near the contact as it acts as a spin sink [Fig. 1(b)]. Therefore
the effective traveling time is reduced and the measured
diffusion coefficient enhanced as D = L2/2τD where τD is
the diffusion time for the length L. At the same time the
proximity to the low resistive contacts also causes spins to
relax, which reduces the relaxation time. The extra relaxation
is depicted by the kink at the detector in the black solid curve

235408-3
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FIG. 4. (Color online) (a) The change in λfit/λ calculated using
τ fit and Dfit from Fig. 3. (b) The effective polarization P fit normalized
with the actual polarization P . The values are plotted as a function of
R/λ for different L/λ. The values for L/λ = 100 and 10 overlap in
both panels.

in Fig. 1(c), describing the decay of the in general reduced
spin accumulation in the system. Note that if measuring with
additional electrically floating contacts between the injector
and detector electrode (as done, e.g., in Ref. 18), these can
also result in extra spin relaxation giving further kinks to the
spin accumulation in case the contacts are invasive.

Figures 3(b) and 3(d) show a reduction of the contact-
induced effects for larger L/λ. This can be easily understood
by the fact that for a longer distance between the electrodes
the ratio of the time the spins stay in the channel compared to
in close proximity to the contacts grows, resulting in relatively
less influence of the contacts on the spin transport.

Figure 4(a) shows the spin relaxation length λfit resulting
from the fitting results presented in Fig. 3 for L/λ � 0.1. The
shape of the λfit curve is comparable to the behavior of τ fit.
This is due to the fact that λfit is mainly influenced by the spin
relaxation time τ fit with a change of up to a factor 1000 (for
L/λ � 0.1). As Dfit shows only a change of less than a factor
2 we get a maximum reduction of λfit by a factor 25.

This λfit value would be used in the analysis of a
measurement to calculate the polarization P . If we take
the amplitude simulated with Eq. (1) [inset, Fig. 2(b)] and
assume spin transport without contact-induced spin relaxation
[Eq. (1) for R → ∞] we extract the effective polarization P fit

with Rnl(λfit,P fit,R → ∞) = Rnl(λ,P,R). The resulting value
is up to 500 times reduced for small values of R/λ compared
to the real P value [Fig. 4(b)]. Note that the largest change in
P fit compared with P is observed for long distances.

After discussing the effects observed in the simulations
let us have a look at measurements on real devices using
graphene as the transport channel. For spin transport samples
on graphene it is difficult to produce high resistive contacts
and to control the quality of the contact-graphene interface. So
a data set with similar quality samples with only a change of
the contact resistance is difficult to produce. On the other hand
in a single device the quality of the contacts is most of the
time comparable. Therefore it is relatively easy to check the
length dependence of the spin transport properties in this kind
of system, assuming similar R parameters for all electrodes.
Two sets of data obtained on two different graphene devices

with three different injector-detector distances are presented
in the work by Wojtaszek et al. in Figs. 4(a) and 5(a) of the
supplementary information of Ref. 35. In both cases a minor
increase of D is reported when measuring on a shorter distance,
and in the first case also a minor decrease of τ , pointing to weak
but apparent contact-induced relaxation.36 With R � 3 μm
and λ ≈ 5 μm the measurements were also performed in a
regime where one would expect this kind of weak contact-
induced effects as L/λ ≈ R/λ ≈ 1 (see Fig. 3).35

Han et al. present a study of the dependence of the spin
transport properties on the quality of the resistive barrier
between the graphene channel and the contacts in Ref. 20.
They show that between tunneling injection of spins and
the injection with transparent contacts the measured spin
relaxation time decreases while the diffusion coefficient is
increased in agreement with our simulations’ results. On the
other hand the results for a “pinhole” barrier with intermediate
resistance present an intermediate spin relaxation time but also
a reduced diffusion coefficient. While the spin relaxation time
fits into the expectations for an intermediate contact resistance,
the reduced diffusion coefficient cannot be explained by the
contact resistance but has to be related to a lower quality
sample or other effects.

Our model also points to the fact that the recent reported
differences between the results for the spin relaxation length,
based on the analysis of four-terminal nonlocal Hanle pre-
cession measurements20 and based on the analysis of the
magnitude of spin-valve measurements in local two-terminal
geometry with very high contact resistances (RC > 1 M�)22

cannot be explained by contact-induced relaxation. If one
would measure with the configuration of Han et al.20 with L =
5.5 μm and R ≈ 200 μm a material with a spin relaxation
length of ∼100 μm and a spin relaxation time of ∼100 ns as
reported in Ref. 22, one would only see a reduction of the fitted
spin relaxation time by a factor of τ fit/τ ≈ 1/3 [see Fig. 3(a)]
leading to a reduced spin relaxation length of λfit/λ ≈ 1/2
[see Fig. 4(a)] as one would have L/λ ≈ 0.05 and R/λ ≈ 2.
Therefore the standard Hanle analysis would yield λfit ≈
50 μm and τ fit ≈ 30 ns, but Han et al. report λfit ≈ 2.5 μm and
τ fit ≈ 0.5 ns.20 With λfit ≈ 2.5 μm Han et al. are in the regime
of negligible contact-induced relaxation with L/λ ≈ 2 and
R/λ ≈ 80, so the difference in the measured λ is not based on
contact-induced relaxation but has to be related to other effects.
Even for a spin relaxation length of λ = 20 μm it would be
L/λ ≈ 0.25 and R/λ ≈ 10 for the system of Han et al., and
they would be able to measure this λ without significant influ-
ence of the contacts [see Fig. 4(a)]. Such strong differences of
the spin signal magnitude between nonlocal and local config-
uration as between Refs. 20 and 22 have also been observed
in traditional semiconductors like silicon in the nonlocal37 and
three-terminal33,38 configuration and recently also in metals.39

IV. GUIDELINES FOR A GOOD AND RELIABLE
HANLE FIT

In this paper we discuss how Hanle measurements are
influenced by contact-induced relaxation that can lead to
incorrectly determined spin transport properties of the channel.
Independently from that, the fitting procedure can also give in-
correct results for the spin transport properties when performed
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incorrectly. In this section we are therefore commenting on
typical pitfalls in analyzing Hanle precession data.

The fit to a Hanle curve is unambiguous if performed in the
right way. Figure 5(a) illustrates how a fit can still give wrong
results on the example of a Hanle precession fit when assuming
a wrong background resistance. The background resistance
is represented by the Rnl(B → ∞) value and is the fitting
baseline. Figure 5(a) shows a fit to the central peak of a Hanle
curve (without contact-induced effects) with a baseline shifted
by +5% of the amplitude. The fit results in an increase of τ

by >10% and of D by >45% and therefore a misestimation of
λ by more than 25% compared to the values used to simulate
the data. However, when fitting the curve with these values
the fit presents itself faulty when including the high field tails
of the curve as shown in the inset of Fig. 5(a). Fitting to
high B-field values gives therefore a good indication of the
quality of the fit. However, this identification of a bad fit can be
partly masked by data noise in combination with anisotropic
magnetoresistance effects or the out-of-plane tilting of the
magnetization of the ferromagnetic electrodes at high field
values, adding an additional background resistance.40 Another
indication of a good fit is the fitted curve reproducing the
“shoulders” of the measured curve, where Rnl has a minimum
(for parallel alignment of the injector and detector electrode).
This is obviously not accomplished in the presented case
[Fig. 5(a), inset]. The larger the ratio L/λ the more pronounced
are the shoulders, so measuring on a longer distance enhances
the reliability of the fit. The significant effect of an uncertainty
of the fit baseline on the determination of D has been mentioned
by Salis et al.41 for measurements on Fe/GaAs devices.

While measuring to high magnetic field values to determine
the background resistance is in any case advisable, there
is a way to avoid such spurious background effects in a
fit. Measuring the spin precession both for parallel and
for antiparallel orientation of the electrodes and subtracting
the signals from each other removes most spurious (not
spin related) background effects as done in several recent
works.16,18,35,42 By taking the mean of the parallel and the
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FIG. 5. (Color online) (a) The influence of a baseline shift shown
by means of a Hanle spin precession curve, shifted +5% of the
precession amplitude upwards (black solid curve) and a fit assuming
no shift (red dotted curve). The baseline of the fit is therefore at
Rnl = 0 while the baseline of the data is denoted by the black dashed
line. The same Hanle curves on a larger B-field range are shown in the
inset. A clear difference is visible for |B| > 0.3 T. (b) The change of
the diffusion coefficient and the spin relaxation time resulting from
data with a baseline shift and fits assuming no baseline shift. The
presented data was simulated using D = 0.01m2/s, τ = 100 ps and
L = 1 μm.

antiparallel measurements, one can also extract the B-field
dependent background resistance. Finally, a minor error in a
fit can also occur if the magnetic field values are not properly
calibrated. The effect of a correction factor for the magnetic
field value is the same as the effect of a changed g factor as
ωL ∝ B and ωL ∝ g. A wrong B-field calibration is therefore
linearly passed on to τ and 1/D.43

V. CONCLUSIONS

We discuss the effect of low resistance contact-induced
spin relaxation on Hanle precession data and quantify the
misinterpretation of spin transport properties in a transport
channel that can arise from this effect. As fitting Hanle curves
is a common way to extract spin transport properties we use the
model presented in Ref. 19 to simulate Hanle measurements
and fit the data using the standard formula, neglecting the
contact-induced effects. The observed rescaling of the spin
relaxation time and the diffusion coefficient only depend on
the ratios R/λ and L/λ, and the fitting results show that a
strongly decreased τ fit by up to nearly five orders of magnitude
and a moderately increased Dfit by less than a factor of two
can be observed for small R/λ and L/λ. On the other hand
large values for both R/λ or L/λ show a convergence of
τ fit and Dfit on the undisturbed values τ and D, independent
on L or R, respectively. This shows that the spin relaxation
induced by the contacts can in principle be avoided when
measuring on a longer distance. We then discuss how these
values of τ fit and Dfit lead to a wrong estimate of the contact
polarization before comparing our results for τ fit and Dfit

qualitatively with measurements on graphene in the literature.
The modeled effect of the contacts on spin transport only
depends on the resistance of the barrier and not on the type
of barrier. Hence, although most contact interfaces used in
the nonlocal geometry to study spin transport in graphene are
not truly in the tunneling regime, we can conclude that with
the resistance of the commonly used barriers the effect of
back diffusion into the contacts on the spin transport is only
minor and the spin transport properties are mainly limited by
other effects.5,7,10,14,16,18–20,35,42,44 While explicitly discussing
the effect of low resistive contacts on the nonlocal geometry,
similar effects also play a role for local measurements.45 We
also briefly discussed the guidelines for a good and reliable
Hanle fit as an incorrectly performed fit can also lead to
misinterpretations of the spin transport properties of a diffusive
channel while a correct fit leads to unambiguous results.
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APPENDIX A: THE R PARAMETER FOR DISSIMILAR
CONTACTS

The discussion in the main text focused on the symmetric
case when the injector and the detector contacts have equal
R parameters. Here we address the general case of dissimilar
injector and detector contacts and demonstrate an equivalence
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that allows us to map this general case to the more symmetric
one presented above.

Takahashi and Maekawa26 analytically derive the general
expression for the nonlocal resistance Rnl as a function of the
contact resistances of the injector and detector electrode by
assuming a channel in the spin diffusive transport regime. We

consider that the spin resistance of the contact is dominated by
either the interfacial barriers (a condition fully applicable to the
case of oxide barriers and metallic ferromagnetic electrodes),
or alternatively by the ferromagnetic electrodes for the case of
transparent contacts.27 Then it follows from Eq. (3) in Ref. 26
with minor changes in notation

Rnl = ±Rsqλ

2W
exp

(
−L

λ

) 2∏
i=1

(
P 2Ri

λ

1 − P 2

) [
2∏

i=1

(
1 +

2Ri

λ

1 − P 2

)
− exp

(
−2L

λ

)]−1

, (A1)

where R1,2 correspond to the R parameters of the injector and detector contacts, and the rest of the parameters are the same as
those presented in the discussion of Eq. (1).

This equation can be simplified by realizing that for highly spin polarized contacts (P ≈ 1) there is no contact-induced spin
relaxation, even for low resistance contacts. Therefore if we consider 1 − P 2 ≈ 1 we obtain

Rnl = ±P 2Rsqλ

2W

( 2R1
λ

)( 2R2
λ

)
exp

( − L
λ

)
(
1 + 2R1

λ

)(
1 + 2R2

λ

) − exp
(− 2L

λ

) , (A2)

which has a similar structure as Eq. (1).19 Following simple algebra, we can equate both equations and solve for the R parameter
of Eq. (1), which can be understood as an effective R parameter Reff(R1,R2,L,λ) given by

2Reff

λ
=

( 2R1
λ

2R2
λ

) +
√( 2R1

λ
2R2
λ

)2 − (
1 + 2R1

λ
+ 2R2

λ
− e−2L/λ

)( 2R1
λ

2R2
λ

)
(e−2L/λ − 1)

1 + 2R1
λ

+ 2R2
λ

− e−2L/λ
, (A3)

allowing us to map the case of dissimilar contacts into
the symmetric case of equal contacts with R1,2 = Reff . One
example of such a mapping is shown in Fig. 6(a) for
the representative case of L/λ = 1 and Ri/λ = 0.1–10. We
observe that when R1 �= R2 then Reff ≈ min (R1,R2) and also
the trivial case of R1 = R2 = Reff .

The exact mapping depends on L and on λ, which requires
careful application to analyze experimental data. We remark
that this issue is absent for the case of 2L/λ ≈ 0, where

(a) (b)
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FIG. 6. (Color online) Mapping the problem of dissimilar con-
tacts R1 �= R2 into the simpler one of identical contacts with a com-
mon Reff . (a) Two-dimensional map of equivalent Reff/λ as a function
of Ri/λ of the contacts for L/λ = 1 from Eq. (A3). (b) Normalized
deviation of Reff/λ obtained from Eq. (A4) relative to the exact result
from Eq. (A3) in the limit of L/λ � 1. The values are normalized
using [Reff (L/λ = 10) − Reff (L/λ = 0)]/Reff (L/λ = 10).

Eq. (A3) reduces to the simple form

1

Reff
= 1

2

(
1

R1
+ 1

R2

)
(A4)

equivalent to a three-terminal measurement where both con-
tacts are in a parallel configuration.

Although Eq. (A4) is strictly speaking valid only when
both contacts are closely spaced, we have observed that it
offers a reasonable approximation even at finite separation L

between the contacts. In Fig. 6(b) we compare the resulting
Reff/λ for the extreme case of large separation (2L/λ � 1)
from Eq. (A3), to the value obtained from the simpler
Eq. (A4). Surprisingly, in the experimentally relevant range of
intermediate conductivity mismatch Ri/λ = 0.3–10, Eq. (A4)
deviates from the exact result at infinite separation only by less
than 20%. For a strong conductivity mismatch (Ri/λ � 0.1)
one should apply the exact result of Eq. (A3).

APEENDIX B: FITTING SIMULATED HANLE CURVES

The research presented in this paper is based on the follow-
ing concept: Hanle precession curves are simulated following
the model presented in Ref. 19 including contact-induced spin
relaxation and are fitted neglecting the contact-induced effects.
Figure 7 shows how well the simulated data can be fitted with a
Hanle curve for different values of R/λ and L/λ. The curve for
R/λ = 0.1 and L/λ = 3 shows that even for small R/λ values
(corresponding to a contact resistance of R = 100 � when
Rsq = 1 k� and W = 1 μm) we get an excellent fit (although
with a reduced τ fit and increased Dfit). On the other hand the
curve and fit for the combination R/λ = 0.01 and L/λ = 0.1
points out that the fit is not describing the curve properly for
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sim. data
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FIG. 7. (Color online) Two sets of simulated data with the
corresponding fits assuming an amplitude of 1 and a baseline at
0. Both sets were simulated for D = 0.01 m2/s, τ = 100 ps and the
values for L/λ and R/λ shown in the legend. Panel (a) shows the full
Hanle curve, panel (b) zooms in on the part close to B = 0. The B

scale for the curve with the red dashed fit is on the bottom, the scale
for the curve with the light blue dotted fit on top.

very small values of the two parameters. This is especially
well visible close to B = 0 [Fig. 7(b)] where due to the strong
contact-induced relaxation we observe a distinct drop of Rnl

which the fit cannot describe. In Figs. 3(c) and 3(d) of the main
text it is visible for which sets of parameters the fits do not
describe the Hanle curves well, as those are the points that do
not show a smooth line shape when plotting Dfit as a function
of R/λ or L/λ.

APPENDIX C: τ fit IN THE LIMIT L/λ � 1

We can obtain τ fit by performing a standard Hanle fit on
simulated data that includes contact-induced relaxation. Here
we show that we can approximate the value of τ fit for small L

using an easy reasoning.

In the limit L/λ � 1 our system resembles the three-
terminal Hanle geometry33 as we have two contacts connected
to approximately the same point of the transport channel with
one of the contacts injecting spins and the other detecting them.
At the same time there is the transport channel pointing in two
directions away from the injection point. Therefore we get for
the spin resistance 1/R∗

spin = 1/Rs
ch + 1/RC . If we now take

the ratio of the spin resistance including the contact resistance
(R∗

spin) and Rspin = Rs
ch, which is R∗

spin for RC → ∞, we get

R∗
spin

Rspin
= 1/Rspin

1/R∗
spin

= 1/Rs
ch

1/Rs
ch + 1/RC

= R/λ

1 + R/λ
. (C1)

The spin resistance is proportional to the nonlocal signal
(Rspin ∝ Rnl) and for L = 0 and R → ∞ the nonlocal signal is
proportional to the spin relaxation length Rnl ∝ λ [see Eq. (1)].
Therefore we get

R∗
spin

Rspin
= λfit

λ
≈

√
τ fit

τ
. (C2)

We can use here for both R∗
spin and Rspin the relation Rnl ∝ λ.

This is obviously valid for Rspin, and for R∗
spin ∝ λfit we have

to keep in mind that λfit is obtained assuming R → ∞ so we
have to assume this also here in this analysis.

The relation between the ratio of the spin relaxation lengths
and the ratio of the spin relaxation times is valid as Dfit/D ≈ 1.
Hence, we get the result

τ fit

τ
≈

(
R/λ

1 + R/λ

)2

. (C3)

In the limit L/λ � 1 we therefore expect τ fit/τ =
(0.98,0.83,0.25,8.3 × 10−3,9.8 × 10−5) for R/λ =
(100,10,1,0.1,0.01) in good agreement with the values
in Fig. 3(b) in the limit L/λ � 1.
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