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Transmission line theory of collective plasma excitations in periodic two-dimensional
electron systems: Finite plasmonic crystals and Tamm states
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We present a comprehensive theory of the one-dimensional plasmonic crystal formed in the grating-gated two-
dimensional electron gas (2DEG) in semiconductor heterostructures. To describe collective plasma excitations
in the 2DEG, we develop a generalized transmission line theoretical formalism consistent with the plasma
hydrodynamic model. We then apply this formalism to analyze the plasmonic spectra of 2DEG systems with
steplike periodic changes of electron density, gate screening, or both. We show that in a periodically modulated
2DEG, a plasmonic crystal is formed, and we derive closed-form analytical expressions describing its energy
band spectrum for both infinite and finite size crystals. Our results demonstrate a nonmonotonic dependence
of the plasmonic band gap width on the electron density modulation. At so-called transparency points, where
the plasmon propagates through the periodic 2DEG in a resonant manner, the plasmonic band gaps vanish.
In semi-infinite plasmonic crystals, we demonstrate the formation of plasmonic Tamm states and analytically
derive their energy dispersion and spatial localization. Finally, we present detailed numerical analysis of the
plasmonic band structure of a finite four-period plasmonic crystal terminated either by an ohmic contact or by
an infinite barrier on each side. We trace the evolution of the plasmonic band spectrum, including the Tamm
states, with changing electron density modulation and analyze the boundary conditions necessary for formation
of the Tamm states. We also analyze interaction between the Tamm states formed at the opposite edges of the
short length plasmonic crystal. The validity of our theoretical approach was confirmed in experimental studies
of plasmonic crystals in short, modulated plasmonic cavities [Dyer et al., Phys. Rev. Lett. 109, 126803 (2012)],
which demonstrated excellent quantitative agreement between theory and experiment.
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I. INTRODUCTION

The collective plasma excitations in two-dimensional (2D)
electron channels discovered more than 30 years ago1 have
recently returned as a focal point of vigorous research activity.
This renewed interest is mostly connected with the problem
of the so-called terahertz (THz) gap,2 which refers to the
historic lack of high power sources and sensitive detectors
in the THz band of the electromagnetic (EM) spectrum.2 The
frequencies of 2D plasmons in semiconductor heterostructures
conveniently fall in the THz region and can be easily tuned
by changing the 2D electron density through an applied
field effect. These features make 2D plasmons excellent
candidates for frequency tunable THz detection.3–18 The
predicted instabilities of 2D plasma waves interacting with
incident THz EM radiation also provide opportunities for
designing THz sources.19–21

2D plasmons do not interact directly with free space
radiation because of the momentum mismatch between THz
photons and 2D plasmons. Coupling between free space THz
radiation and 2D plasmon is routinely achieved by using
a periodic grating gate positioned above the 2D electron
channel.1,5–9,17,18 The grating gate modulates the incident EM
wave and defines the plasmon wave vector, thus compensating
for the momentum mismatch.

The grating gate originally used as a coupler between EM
radiation and 2D plasmons in field effect transistors (FETs)
also introduces significant changes into the collective electron
dynamics in the 2D channel. These changes result from the
one-dimensional (1D) periodicity of the various parameters of

the 2D electron gas (2DEG) imposed by the grating gate. In
particular, the gate screening and equilibrium electron density
become periodically modulated with the density modulation
being induced by the applied gate bias. As follows from the
general Bloch–Floquet theorem in this periodic medium, the
plasmon spectrum should have an energy band structure; i.e.,
a 1D plasmonic crystal should be formed.

Plasmonic crystals based upon a 2DEG introduce pos-
sibilities for the design of novel THz devices. Surface
plasmonic crystal devices based upon doped semiconductor22

or metallic23 periodic structures tend to have weak confinement
of the THz field. Also, their plasma frequencies are fixed by the
bulk material properties. Planar THz periodic metamaterials
with unit cells constructed from bulk materials24 are similarly
constrained by the intrinsic material properties and geometry
that define their resonant frequencies and thus cannot be
broadly tuned. Both of these limitations are addressed by 2D
plasmonic crystals, which have both tight field confinement
around the 2DEG and broad tunability of a resonant EM
medium. This field confinement, with scale reduction by sev-
eral orders of magnitude relative to the free space wavelength,
and in situ tunability make 2D plasmonic devices particularly
attractive as tunable passive circuit components25,26 and direct
detectors12,13 at microwave and THz frequencies.

Plasmonic crystals in the 2DEG were first considered
theoretically in the 2D electron system with weak modulation
of electron density by Krasheninnikov and Chaplik.27 They
used perturbation theory to calculate minigaps in the 2D
plasmon dispersion. The opening of minigaps in the 2D
plasmon spectrum has been confirmed experimentally in
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measurements of the transmission of the far infrared EM
radiation in density-modulated Si metal–oxide–semiconductor
field-effect transistors (MOSFETs)28 and GaAs/AlGaAs
heterojunctions.29 Recently, 2D plasmonic crystal effects
have been observed in GaAs/AlGaAs heterostructures with a
periodically modulated width of the 2D channel at microwave
frequencies. In Ref. 26, a plasmonic crystal band gap has
been measured in the energy spectrum of 2D plasmons, and in
Ref. 30, the band gaps have been found in the energy spectrum
of edge magnetoplasmons. In one of the latest developments,
the tunable band spectrum of the finite plasmonic crystal
formed in the plasmonic cavity of GaAs/AlGaAs FETs has
been measured at sub-THz frequencies.31

Progress has also been made in theoretical description of
plasma excitations in the 2D electron channels with period-
ically modulated equilibrium electron density. The plasmon
energy band spectrum has been found numerically in various
approximations.32–36 Density and field distributions in the split
plasmon modes at the edges of the band gap and their inter-
action with incident EM field have also been analyzed.37–39

Recently, plasmonic band spectrum has been calculated in
the gated 2DEG with periodically modulated plasma wave
velocity.40 So far theoretical studies of 2D plasmonic crystals
have been mostly concerned with description of the plasma
modes at the band gap edges corresponding to the boundaries
of the Brillouin zone. These modes are excited when an
incident EM wave is coupled to the 2DEG by a grating gate and
are probed in transmission and absorption experiments. In the
recent experiments, an energy spectrum of plasmonic crystal
was probed in the plasmonic cavities31 or waveguides,26 where
a variety of plasma modes can be excited. The full energy
band structure of the finite plasmonic crystal should be used
for interpretation of these experiments.

In this paper, we develop a theoretical description of finite
plasmonic crystals formed in periodic 2D electron systems. We
derive the energy band structure of both infinite and finite 1D
plasmonic crystals in the 2DEG with steplike periodic changes
of electron density and screening and analyze its evolution
with changing density modulation. For the finite plasmonic
crystal, we also predict formation of the Tamm states at the
crystal boundaries and find their energy spectrum and spatial
localization. To formulate the plasmonic crystal theory, we
develop a generalized transmission line (TL) model equivalent
to the hydrodynamic approximation of the 2D plasmon theory.
This model can be used to describe 2D plasmons in the
long wavelength limit when the plasmon wavelength and
phase velocity are larger than the Fermi wavelength and
Fermi velocity of 2D electrons, respectively. Our theory is
also applicable to a broader class of piecewise 2D electron
systems in semiconductor nanostructures. Some key elements
of the theory were used for interpretation of experimental data
in our recently published experimental study of a spatially
inhomogeneous 2D plasmonic cavity.31

The rest of this paper is organized as follows. In Sec. II,
we develop the TL model and formulate 2D plasmon theory
in terms of this model. In Sec. III, the TL model is used
to describe plasmons in the general case of a piecewise 2D
electron system. These results are used to derive and analyze
the plasmon dispersion equation in the finite, as well as infinite,
plasmonic crystal. The same method is used to describe the

Tamm states formed at the boundary of a semi-infinite crystal.
In Sec. IV, we present detailed numerical analysis of the
finite plasmonic crystal placed into a plasmonic cavity. This
includes the energy band structure, the Tamm states, and the
spatial distributions of voltages in various plasma modes. Our
conclusions and a brief summary of the results are presented
in Sec. V. The details of some calculations are contained in
Appendices A and B.

II. TL FORMULATION OF THE 2D PLASMON THEORY

In the quasistatic approximation and long wavelength limit,
collective plasma excitations in the 2DEG can be described
by the hydrodynamic model, which includes the Euler and
continuity equations, together with the Poisson equation for the
self-consistent electric potential ϕ(�r,t) of the plasma wave.41

For a plasmon propagating in the x direction in the 2DEG
layer positioned in the plane z = 0, as shown in Fig. 1(a),
these equations are

∂ν

∂t
+ ν

∂ν

∂x
= e

m∗
∂ϕ

∂x
− ν

τ
, (1)

∂n

∂t
+ ∂ (nsν)

∂x
= 0, (2)

∇2
x,zϕ = 4πen

ε
δ(z). (3)

Here, ns = n0 + n, where n0 is an equilibrium 2D electron
density; n(x,t) and ν(x,t) are fluctuations of 2D electron
density and average velocity, respectively; and −e and m∗
are the electron charge and effective mass, respectively. A
phenomenological damping term is included into the Euler
equation in Eq. (1) to account for collisional damping of the
plasmon with characteristic relaxation time τ . In Eq. (3), it
is assumed that the 2DEG is embedded into a medium with
dielectric constant ε.

To find the connection between the electric potential ϕ

and the 2D electron charge density fluctuation ρ = −en,
we assume that an ideal metal gate parallel to the 2D
plane is positioned at z = d, as shown in Fig. 1(a). Then,
Eq. (3) must be supplemented by the boundary condition
∂ϕ(x,z = d,t)/∂x = 0. In a plasma plane wave of frequency
ω propagating in the positive x-direction, the fluctuations
νqω(x,t),ρqω(x,t) ∝ exp(−iqx + iωt), where q = q ′ − iq ′′

FIG. 1. (Color online) (a) Gated 2D electron channel and (b) its
equivalent TL diagram.
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(q ′,q ′′ > 0) is a complex wave vector. In this case, solving
Eq. (3) with gate boundary conditions, we find

ϕqω(x,z,t) = 4πρqω(x,t)e−qd

εq

⎧⎨
⎩

eqz sinh qd, z < 0
sinh q(d − z), 0 < z < d

0, z > d

.

(4)

For small fluctuations nqω and νqω, linearized Eqs. (1) and (2),
together with Eq. (4), yield the following two equations:

∂jqω(x,t)

∂t
= −e2n0

m∗
∂ϕqω(x,z = 0,t)

∂x
− jqω(x,t)

τ
, (5)

εq (1 + coth qd)

4π

∂ϕqω(x,z = 0,t)

∂t
+ ∂jqω(x,t)

∂x
= 0, (6)

where jqω = −en0νqω is the 2D current density fluctuation.
For plane wave fluctuations jqω and ϕqω, it follows from
Eqs. (5) and (6) that a nontrivial solution is possible only
if

ω

(
ω − i

τ

)
= 4πe2n0q

m∗ε (1 + coth qd)
. (7)

The last equation represents the well-known 2D plasmon
dispersion law in the gated 2D electron system.42 For a 2D
plasma wave of frequency ω, it determines the complex wave
vector q.

To develop a TL description of the 2D plasma wave of
frequency ω, we rewrite the hydrodynamic Eqs. (5) and (6) as
follows:

∂Vω(x,t)

∂x
= −L

∂Iω(x,t)

∂t
− RIω(x,t), (8)

∂Iω(x,t)

∂x
= −C(ω)

∂Vω(x,t)

∂t
, (9)

R = m∗

e2n0τW
, L = m∗

e2n0W
, C(ω) = Wεq (1 + coth qd)

4π
.

(10)

Here, Iω(x,t) = Iω(x) exp (iωt) ≡ jqω(x,t)W is the total
plasma current in a 2D channel of width W , and Vω(x,t) =
Vω(x) exp (iωt) ≡ ϕqω(x,z = 0,t) is the voltage along the 2D
channel. In these equations and later in this article, we omitted
q dependence in all formulas because at given ω, wave
vector q is uniquely determined by Eq. (7). Equations (8)
and (9) are the telegrapher’s equations of a standard TL
theory.43 The coefficients R, L, and C(ω) in Eq. (10)
represent distributed resistance, inductance, and capacitance,
respectively, per unit length of the equivalent TL shown in
Fig. 1(b) and allow direct physical interpretation. R and L

are resistance and kinetic inductance, respectively, per unit
length of the 2D electron channel in the classical Drude
model.25 The coefficient C(ω) can be interpreted as an effective
electrostatic capacitance per unit length of the gated 2D
channel, with δρω(x,t) = C(ω)δϕω(x,z = 0,t). In the limit
qd → 0 (strong gate screening), C(ω) reduces to the standard
local gate capacitance C = Wε/4πd. In the opposite limit
qd → ∞ (ungated 2D electron channel), we recover the
expression C = Wεq/2π , first derived in Ref. 44. In the lossy
TL (q ′′ 
= 0), the capacitance C(ω) has a nonzero imaginary
part. It can be represented as a shunt conductor in the TL
equivalent circuit with conductance G(ω) = −ωImC(ω); see

Fig. 1(b). The characteristic impedance of the plasmonic TL
is determined as

Z0(ω) = Vω

Iω

=
√

R + iωL

iωC
= 4π

εωW (1 + coth qd)
. (11)

Solution of the telegrapher’s equations, Eqs. (8) and (9),
reproduces the plasmon dispersion law in the form

q = −i
√

iωC(ω)(R + iωL), (12)

equivalent to Eq. (7), as well as spatial distributions of the
in-plane electric potential, current, and charge density of the
plasma wave.31

Additional complications in the TL formulation of the 2D
plasmon theory arise from the non-transverse electromagnetic
(non-TEM) character of the 2D plasma mode. The electric
field of the 2D plasmon has a longitudinal component except
for the case of strong gate screening, whereas the standard
TL model describes the TEM modes. This inconsistency is
evident in the calculation of the energy flow by the non-TEM
2D plasma mode.44 The average complex power carried by the
plasmon wave in the x direction can be found as

Pω(x) =
∫ ∞

−∞
dz

∫ W/2

−W/2
dy〈Sx〉, (13)

where 〈Sx〉 = (c/8π ) �E × �H ∗ is the Poynting vector averaged
over the THz period. The integral in Eq. (13) is evaluated in
Appendix A to yield

Pω(x) = 1
2Vω(x)I ∗

ω(x)ξ ∗(ω,d), (14)

where

ξ (ω,d) = 1 − q
(
1 − e−2q ′d cos 2q ′′d

)
2q ′(1 − e−2q∗d )

+ qe−2q ′d sin 2q ′′d
2q ′′(1 − e−2q∗d )

.

(15)

The result in Eq. (14) differs from the standard TL expression
(1/2)Vω(x)I ∗

ω(x) by the form factor ξ ∗(ω,d). This problem is
known in the theory of non-TEM waveguide systems such as
microstrip lines and can be resolved in the following way.45

The expression for power in Eq. (14) can be reduced to the
standard TL form by defining the effective voltage Ṽω(x) and
current Ĩω(x) so as to include the form factor ξ (ω,d). Ṽ and Ĩ

are not unique, as in the case of standard TL definitions of V

and I . They are in general some abstract quantities connected
to V and I . However, Ṽ and Ĩ should be defined to satisfy
Pω(x) = (1/2)Ṽω(x)Ĩ ∗

ω(x), consistent with Eq. (14). Once one
of these quantities is defined in terms of V and I , the second
quantity is determined by the power relationship. As shown in
the next section for the plasmonic structures considered in this
paper, the most convenient and physically sensible choice is:
Ṽω(x) ≡ Vω(x) and Ĩω(x) ≡ Iω(x)ξ (ω,d). This is equivalent
to redefining the characteristic impedance as

Z̃0 = Z0

ξ (ω,d)
. (16)

It follows from Eq. (15) that in the case of strong gate
screening, ξ (ω,d) = 1, as expected for the TEM plasmon
mode. In the opposite limit of an unscreened 2D electron
layer, ξ (ω,d) = q∗/2q ′ so that Reξ = 1/2. The latter limit
was considered in Ref. 44. Physically, the form factor ξ (ω,d)
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can be understood as accounting for the contribution of the
displacement current due to the longitudinal component of the
electric field to the power carried by the plasma wave.

III. TL THEORY OF PLASMONIC CRYSTALS IN
PERIODIC 2D ELECTRON SYSTEMS

In this section, we apply the plasmonic TL model developed
in Sec. II to the description of collective excitations in
periodic semiconductor heterostructures with a 2D electron
gas. Examples of these structures include Si-, GaAs-, and
GaN-based FETs with periodic multifinger grating gates;1,5,6,14

Si MOSFETs with a periodically modulated oxide thickness;28

and recently GaAs/AlGaAs heterostructures with a periodi-
cally modulated width of the 2D electron channel.26 All of
these systems feature steplike periodic changes of various
parameters of the 2D electron channel, such as electron density,
screening, and geometric size. These periodically changing
parameters enter Eqs. (8) and (9) that define collective plasma
excitations in the 2D channel.

As an illustration, a basic design of the grating-gated
FET with 2D electron channel is shown in Fig. 2(a). The
2D channel consists of alternating ungated and gated regions
of lengths L1 and L2, respectively. In this system, we can
periodically modulate an equilibrium electron density by
applying a constant gate bias. Also, the grating gate produces
periodically changing screening of electron fluctuations in
the channel. We assume that at the boundary between gated
and ungated regions, the equilibrium electron density, the
gate screening, or both change in a steplike manner. This
approximation is justified if the effective Bohr radius aB and
the distance between the gate and the 2D channel d are small
enough that aB,d 
 L1,L2. These conditions can be easily
met experimentally. Then, the whole 2D structure can be
viewed as a stepped TL if proper boundary conditions are set
at the interfaces between gated and ungated regions.

As boundary conditions, we assume continuity of the power
flow Pω(x) defined in Eq. (14) and the voltage Ṽω(x) = Vω(x)
in the plane of the 2DEG. These boundary conditions imply

FIG. 2. (Color online) (a) 2D electron channel with a periodic
grating gate and (b) its equivalent segmented TL diagram; (c) seg-
mented TL diagram for a semi-infinite plasmonic crystal terminated
at one side.

continuity of the effective plasma current Ĩω(x) but disconti-
nuity of the actual plasma current Iω(x). The latter condition
is justified if we allow an edge charge accumulation at the
boundaries. The edge charge accumulation was confirmed
by direct numerical solution of the Maxwell equations in
the grating-gated 2D electron channel.46 With these boundary
conditions, each segment of the stepped plasmonic TL is repre-
sented by the equivalent TL circuit elements defined in Eq. (10)
but has characteristic impedance Z̃0 determined by Eq. (16).

In the grating-gated structure shown in Fig. 2(a), two types
of segments correspond to ungated (j = 1) and gated (j = 2)
regions, as shown on the equivalent plasmonic TL diagram in
Fig. 2(b). The equivalent stepped TL is a two-port network
consisting of a series of individual segments. Currents and
voltages at the opposite sides of each segment are connected
by the transfer matrix t̂j (ω):43(

V
(j )
ωl

Ĩ
(j )
ωl

)
= t̃j (ω)

(
V

(j )
ωr

Ĩ
(j )
ωr

)

=
(

cos qjLj iZ̃0j sin qjLj

i

Z̃0j
sin qjLj cos qjLj

)(
V

(j )
ωr

Ĩ
(j )
ωr

)
, (17)

where j = 1,2; Lj and Z̃0j are the length and characteristic
impedance, respectively, of the j th segment; and qj is
determined by the dispersion equation, Eq. (12), for a given
segment. Indices r and l refer to the right- and left-hand sides
of the segment, respectively; see Fig. 2(b). The currents Ĩr(l)

and voltages Vr(l) at the right (left) termination points of the
whole structure are connected by the equation(

Vl

Ĩl

)
=

(
T11 T12

T21 T22

) (
Vr

Ĩr

)
, (18)

where the total transfer matrix T̂ (ω) is the product of the
segment matrices t̂j (ω) ordered in a sequence determined
by the geometry of the structure. The plasmon dispersion
law in this structure depends on the boundary conditions at
termination points. If the external load impedance at the right
(left) termination point is equal to Zr(l), we have

Vr(l) = Z̃r(l)Ĩr(l), (19)

where Z̃r(l) = Zr(l)/ξr(l) and ξr(l) is the form factor of the right
(left) terminating segment determined by Eq. (15). Combining
Eqs. (18) and (19), we obtain

T11(ω)Z̃r + T12(ω)

T21(ω)Z̃r + T22(ω)
= Z̃l . (20)

The last equation is identical to the expression for the input
impedance at the left port of a two-port network with a
load impedance of Z̃r at its right port.43 Here, however, the
terminal impedances are fixed by the boundary conditions;
Eq. (20) thus defines the plasmon dispersion law of the stepped
plasmonic TL.

In the subsequent sections, we restrict our consideration
of the plasmon dispersion law to the limiting cases of zero
and infinite terminal impedances of a stepped plasmonic TL.
For example, in a FET structure, an ohmic contact to the 2D
channel can be modeled by zero load impedance, whereas a
terminating region of fully depleted 2DEG can be modeled by

235316-4



TRANSMISSION LINE THEORY OF COLLECTIVE PLASMA . . . PHYSICAL REVIEW B 86, 235316 (2012)

infinite load impedance.19 This latter condition can be achieved
by biasing an individual gate finger well beyond pinch off to
induce a barrier in the 2D electron channel. If Zl = Zr =
0 (two terminating ohmic contacts) or Zl = Zr = ∞ (two
terminating infinite barriers), Eq. (20) yields the dispersion
equation T12(ω) = 0 or T21(ω) = 0, respectively. If Zl = 0,
Zr = ∞ (ohmic contact and infinite barrier), the dispersion
equation is T11(ω) = 0. After the plasmon spectrum is found,
the spatial distributions of the voltage Vω(x) and current Iω(x)
in the plasma wave can be determined in a straightforward way
by introducing x-dependent transfer matrices in Eq. (17).

The method presented here is applicable to any segmented
2DEG plasmonic structure with steplike changes of the
plasmonic medium properties at the segment boundaries.
Next, we consider periodic plasmonic structures in which
a plasmonic crystal is formed provided that the plasmon
scattering length is larger than the sample size. Detailed
numerical results and analysis of the finite plasmonic crystals
are presented in Sec. IV.

A. Energy spectrum of an infinite 1D plasmonic crystal

It is instructive to derive the plasmonic dispersion law
in a translationally invariant periodic plasmonic medium in
which an infinite plasmonic crystal is formed. We restrict our
consideration to a system like that depicted in Fig. 2, with
two different segments in the elementary cell of the plasmonic
lattice with the lattice constant L = L1 + L2. We also neglect
plasmon damping, assuming τ → ∞ and R = 0 in Eq. (12).

Currents and voltages at the opposite sides of elementary
cell positioned at x = 0 and x = L are connected by the Bloch
condition (

Vω(L)
Ĩω(L)

)
=

(
Vω(0)
Ĩω(0)

)
eikL, (21)

where k ∈ [−π/L,π/L] is the plasmon Bloch wave vector.
From the TL model, we also have(

Vω(0)
Ĩω(0)

)
= t̂2 t̂1

(
Vω(L)
Ĩω(L)

)
, (22)

where t̂2 t̂1 is a transfer matrix of the elementary cell, with the
transfer matrices of individual segments t̂j ,j = 1,2 defined
in Eq. (17). Combining Eqs. (21) and (22) and using the
explicit expressions for matrices t̂j from Eq. (17), we find
the dispersion relation for the infinite plasmonic crystal:

cos kL = cos q1L1 cos q2L2

− 1

2

(
Z̃01

Z̃02
+ Z̃02

Z̃01

)
sin q1L1 sin q2L2, (23)

where qj , j = 1,2 are defined in Eq. (12). Equation (23)
is a particular case of the well-known general equation of
the Kronig–Penney model47 also used to describe the energy
spectrum of 1D electron and photonic crystals.48 Numerical
analysis of Eq. (23) is presented in Sec. IV.

In Ref. 40, the dispersion equation for an infinite 1D
plasmonic crystal similar to Eq. (23) was derived in the
hydrodynamic approximation in the special case that both
segments in a crystal elementary cell are strongly screened by
the gate but have either different equilibrium electron densities
or different gate-to-channel distances d. In the limit of strong

gate screening (qd 
 1) and τ → ∞, Eq. (7) yields the linear
plasmon dispersion law42

ω = νpq, νp =
√

4πe2n0d

m∗ε
, (24)

where νp is the plasma wave velocity. In the same limit,
Eqs. (11), (15), and (16) yield

Z̃0 = 4πd

εWνp

. (25)

Combining Eqs. (24) and (25) with Eq. (23), we obtain

cos kL = cos
ωL1

νp1
cos

ωL2

νp2

− 1

2

(
d1νp2

d2νp1
+ d2νp1

d1νp2

)
sin

ωL1

νp1
sin

ωL2

νp2
. (26)

The last equation coincides with the dispersion relation found
in Ref. 40 only when d1 = d2.

B. Tamm states in a semi-infinite 1D plasmonic crystal

If the crystal lattice is terminated, the broken translational
symmetry results in the localization of the Bloch waves
near the termination point. These states, known as the
Tamm states,49 have been thoroughly studied theoretically50

and observed experimentally in electron superlattices51 and
photonic crystals.52 Here, we analyze the Tamm states in a
plasmonic crystal and find their spectrum and localization
length.

The geometry of the semi-infinite plasmonic lattice is
shown in Fig. 2(c), where the lattice is terminated by the
impedance ZT at x = −L1. In this geometry, the general
solution of the telegrapher’s equations, Eqs. (8) and (9), is43

{
V (x) = Ae−iq1x + Beiq1x

Ĩ (x) = A

Z̃01
e−iq1x − B

Z̃01
eiq1x

− L1 � x � 0,

(27){
V (x) = Ce−iq2x + Deiq2x

Ĩ (x) = C

Z̃02
e−iq2x − D

Z̃02
eiq2x

0 � x � L2.

It follows from the Bloch condition that⎧⎨
⎩

V (x) = eikL(Ae−iq1(x−L) + Beiq1(x−L))

Ĩ (x) = eikL

(
A

Z̃01
e−iq1(x−L) − B

Z̃01
eiq1(x−L)

)
L2 � x � L.

(28)

Continuity of V (x) and Ĩ (x) at x = 0 and x = L2 yields the
system of four linear homogeneous equations for the constant
coefficients A, B, C, and D. This system has a nontrivial
solution if the dispersion equation, Eq. (23), is satisfied. In
this case, the coefficients B, C, and D can be written in terms
of a single coefficient A. In particular,

B =
cos q2L2 − iZ̃02

Z̃01
sin q2L2 − eikLeiq1L1

eikLe−iq1L1 − cos q2L2 − iZ̃02

Z̃01
sin q2L2

A. (29)
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Voltage and current at the termination point x = −L1 can be
found from Eqs. (27) and (29):

V (−L1)

= 2iA
sin q1L1 cos q2L2 + Z̃02

Z̃01
cos q1L1 sin q2L2

cos q2L2 + iZ̃02

Z̃01
sin q2L2 − eikLe−iq1L1

, (30a)

Ĩ (−L1)

= 2A

Z̃01

cos q1L1 cos q2L2 − Z̃02

Z̃01
sin q1L1 sin q2L2 − eikL

cos q2L2 + iZ̃02

Z̃01
sin q2L2 − eikLe−iq1L1

.

(30b)

At the termination point, the current and voltage are
connected by Eq. (19):

V (−L1) = Z̃T Ĩ (−L1). (31)

Equations (23), (30), and (31) determine the energy spectrum
and spatial localization of the plasmonic Tamm states formed
near the termination point. Solutions of these equations for
a plasmonic crystal lattice terminated by the ohmic contact
(ẐT = 0) or the infinite barrier (ẐT = ∞) are presented in
Appendix B with the following results.

The Bloch wave vector k of the Tamm states is complex:

k = πn

L
+ iμ, n = 0,1,2, . . . . (32)

It describes the plasmonic energy states positioned in the nth
energy gap of the band spectrum of the infinite plasmonic
crystal.50 The imaginary part of the wave vector represents an
inverse localization length of the plasmonic Tamm state. For
geometry shown in Fig. 2(c), only solutions with μ > 0 should
be retained.

If the plasmonic crystal is terminated by an ohmic contact,
then energies of the Tamm states are determined by the
equation

sin q1L1 cos q2L2 + Z̃02

Z̃01
cos q1L1 sin q2L2 = 0, (33a)

and its localization length can be found from the equation

(−1)ne−μL = cos q1L1 cos q2L2 − Z̃01

Z̃02
sin q1L1 sin q2L2.

(34a)

If the plasmonic crystal is terminated by an infinite barrier, the
respective equations are

sin q1L1 cos q2L2 + Z̃01

Z̃02
cos q1L1 sin q2L2 = 0, (33b)

(−1)ne−μL = cos q1L1 cos q2L2 − Z̃02

Z̃01
sin q1L1 sin q2L2.

(34b)

It follows from Eqs. (33) and (34) that in the semi-infinite
crystal terminated by the infinite barrier (ohmic contact),
condition μ > 0 can be satisfied only if Z̃01 > Z̃02 (Z̃01 <

Z̃02). We present numerical analysis of the Tamm states in the
next section.

IV. RESULTS AND DISCUSSION

In this section, we apply the theoretical formalism
developed in Sec. III to analyze numerically the energy band
structure and the Tamm states in a plasmonic crystal formed
in the grating-gated 2D electron system shown in Fig. 2(a).
In all of the calculations presented in this section, we neglect
plasmon damping. We also assume that the lengths of gated
and ungated regions are the same, L1 = L2, and that the gate
is positioned at a distance d = 0.1L from the 2D channel [see
the system’s geometry in Fig. 2(a)].

First, we analyze the plasmonic band spectrum of the
infinite crystal by solving numerically Eq. (23). In this
calculation, we assume that characteristic impedances of the
ungated regions Z̃01 in Fig. 2(b) are given by Eqs. (11), (15),
and (16) taken in the limit d → ∞ and at zero damping,
q ′′ = Imq = 0, so that ξ = 1/2 in Eq. (15) and

Z̃01 = 4π

εωW
. (35)

Characteristic impedances of the gated regions are given by
the same equations with q ′′ = 0 but d = 0.1L. The results are
presented in Fig. 3(a), where the crystal energy band structure
is shown as a function of γ = ñ0/n0, where ñ0 and n0 are
equilibrium electron densities in the gated and ungated regions,
respectively. The value of γ can be changed experimentally
by varying the applied gate bias. All plasma frequencies ω are
normalized to the plasma frequency in the ungated region at
wave vector q = 2π/L:

ω1 =
√

4π2e2n0

εm∗L
, (36)

which is the fundamental frequency of the size-quantized
transverse plasma oscillations in an ungated 2D electron strip
of width L/2. The gray shaded areas in Fig. 3(a) represent the
energy gaps in the infinite plasmonic crystal spectrum, while
the white nonshaded areas represent the energy bands. It should
be pointed out that the energy gaps in the plasmonic spectrum
do not disappear at γ = 1 when the electron density in the 2D
channel is uniform. This happens because the 2DEG is still
periodically screened, and Z̃01 
= Z̃02. In general, the band
gap width is a nonmonotonic function of γ . For higher order
band gaps, the band gap width is equal to zero for some values
of γ . These points can be called the transparency points, and
they have a rather straightforward explanation. The grating
gate-induced plasmonic lattice in Fig. 2(a) consists of two
sublattices: one composed of the gated segments and another
composed of the ungated segments. The energy band spectrum
is formed due to coherent coupling of the plasma oscillations
in individual segments. The plasmon wave vectors in segments
of length L/2 are quantized: qp = 2πp/L, p = 1,2, . . . .
The plasmon eigenfrequencies in individual ungated (ωp) and
gated (ω̄p) segments are determined by Eq. (7) at τ−1 = 0:

ωp = √
pω1 p = 1,2, . . . , ω̄p =

√
2pγω1√

1 + coth qpd
, (37)

where ω1 is defined in Eq. (36). The plasma eigenfrequencies
in the gated segments are lower than those in the ungated
ones because of the gate screening and lower 2D electron
densities. Therefore, at low frequencies, only gated sublattice
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FIG. 3. (Color online) (a) The energy band diagram of an infinite
1D plasmonic crystal in the grating-gated 2D electron channel as a
function of electron density modulation γ . Band gaps are shown in
gray. Dashed lines indicate the energies of the plasma eigenmodes in
ungated (ωp) and gated (ω̄p) regions. The Tamm states for a semi-
infinite crystal are shown by dotted lines. (b) Voltage distribution in
the plasma mode at the transparency point, indicated by the arrow in
(a). (c) Localization length of the Tamm state in the second band gap as
a function of electron density modulation. Inset: Voltage distribution
in the Tamm state near the center of the band gap.

plasma modes are excited, as was confirmed experimentally
in Ref. 31. At higher frequencies, both gated and ungated
sublattice modes are excited, producing an entangled and more
condensed band structure, as shown in Fig. 3(a). The band gaps
disappear when plasma eigenmodes in both gated and ungated
segments resonate with each other; that is, at ωp = ω̄p′ for any
integer p and p′. In Fig. 3(a), we illustrate these conclusions by
plotting the frequencies from Eq. (37) as a function of γ with
dashed lines. Transparency points correspond to the resonant
propagation of the plasma wave through the entire crystal. In
Fig. 3(b), we plot the spatial distribution of the voltage in the

plasma wave calculated for the transparency point, indicated
by an arrow in Fig. 3(a), to demonstrate this resonant behavior.

We also analyzed the Tamm states for the semi-infinite
crystal in this model, assuming that the last segment before
the termination point is an ungated one, as shown in Fig. 2(c).
The Tamm states are described by Eqs. (33) and (34). In this
model of the plasmonic crystal, Z̃01 > Z̃02, so the Tamm states
are formed only if the semi-infinite crystal is terminated by a
barrier, i.e., ẐT = ∞ in Fig. 2(c). Energies of the Tamm states
found numerically from Eq. (33b) are shown in Fig. 3(a) by
dotted lines. When the value of γ changes, these states cross the
band gaps as expected.50 Localization length of the Tamm state
lloc = μ−1, found from Eq. (34b), takes the minimum value at
the center of the band gap and diverges as the Tamm state
approaches the band boundary. This behavior is demonstrated
in Fig. 3(c), where we plot lloc as a function of γ for the Tamm
state positioned in the second band gap in Fig. 3(a). The voltage
distribution in the typical Tamm state near the center of the
band gap is shown in the inset in Fig. 3(c).

As the next step, we considered a finite plasmonic crystal
formed in the grating-gated 2D electron channel with four

FIG. 4. (Color online) (a) The energy band structure of a finite
four-period 1D plasmonic crystal terminated by an ohmic contact
and an infinite barrier at the opposite boundaries as a function of
electron density modulation γ . Calculated plasma modes are shown
by dotted lines. The background shows the energy band spectrum of
the corresponding infinite plasmonic crystal. (b) Voltage distributions
in the Tamm states calculated at points indicated by arrows in (a).
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grating fingers. The crystal can be terminated either by the
ohmic contact or by the infinite barrier on each side. To make
our calculations more relevant to recent experimental work,31

we assume that 2DEG in the ungated regions is still screened
by the neighboring gates and surrounding metallization but that
2D electron density can be tuned in the gated regions only. In
this model, both Z̃01 and Z̃02 are determined by Eqs. (11), (15),
and (16), with Imq = 0, but only Z̃02 changes when the value
of γ is varied.

We calculated the transfer matrix T̂ of the four-period plas-
monic crystal from Eqs. (17) and (18). Because the dispersion
relation defined in Eq. (12) is in general a transcendental
equation, the plasmon wave vector qj was found numerically
for the segments of 2DEG (j = 1,2) forming the crystal. We
then numerically solved Eq. (20) to find the plasmon energy
spectrum. We present our results for the plasmonic crystal
terminated by the ohmic contact and the infinite barrier on
the opposite sides, by the two ohmic contacts, and by the two
infinite barriers in Figs. 4(a), 5(a), and 6(a), respectively. The
energy band spectrum of the relevant infinite plasmonic crystal

FIG. 5. (Color online) (a) The energy band structure of a finite
four-period 1D plasmonic crystal terminated by ohmic contacts at
both boundaries as a function of electron density modulation γ .
Calculated plasma modes are shown by dotted lines. The background
shows the energy band spectrum of the corresponding infinite
plasmonic crystal. (b) Voltage distributions in the split symmetric and
antisymmetric Tamm states calculated at points indicated by arrows
in (a).

FIG. 6. (Color online) (a) The energy band structure of a finite
four-period 1D plasmonic crystal terminated by infinite barriers at
both boundaries as a function of electron density modulation γ .
Calculated plasma modes are shown by dotted lines. The background
shows the energy band spectrum of the corresponding infinite
plasmonic crystal. (b) Voltage distributions in the split symmetric and
antisymmetric Tamm states calculated at points indicated by arrows
in (a).

was also found from Eq. (23), and the infinite crystal band gaps
are indicated in gray in the figures. We have also extended
the range of γ to include the values of γ > 1 achievable at
positive gate biases. There are some noticeable changes in
the infinite crystal band structure in this case in comparison
to the one shown in Fig. 3(a). These changes result from the
different behavior of the characteristic impedances Z̃01 and
Z̃02. In particular, all band gaps vanish at γ = 1 because at this
degeneracy point, where Z̃01 = Z̃02, any periodicity in the 2D
electron channel disappears and there are no Bragg reflections
at the boundary between gated and ungated regions.

The plasmon energies shown in Figs. 4(a), 5(a), and
6(a) by dotted lines tend to bundle in groups of four, as
expected for the four-period finite crystal. These groups are
primarily localized within the bounds of the proper energy
bands of the infinite crystal. However, there are also some
states positioned in the band gaps of the infinite crystal. These
states represent the Tamm states in the finite crystal. Spatial
localization of the Tamm states depends on the boundary
conditions at the termination points and the value of γ . At
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γ < 1 (γ > 1), we have Z̃01 < Z̃02 (Z̃01 > Z̃02), so the Tamm
states, if any, should be localized near the terminating Ohmic
contact (infinite barrier). These qualitative conclusions have
been confirmed by direct numerical simulations.

In Fig. 4(a), the plasmonic energy spectrum is presented for
the four-period crystal terminated by an ohmic contact on one
side and a barrier on the opposite side. The spatial distributions
of voltage in the plasmonic Tamm state positioned in the first
band gap at two different values of γ , indicated by arrows in
Fig. 4(a), are plotted in Fig. 4(b). These plots demonstrate that
at γ < 1 the Tamm state is localized near the ohmic contact,
whereas at γ > 1 it is localized near the infinite barrier on the
opposite side of the plasmonic crystal.

In Fig. 5(a), the plasmonic energy spectrum is shown for
the four-period crystal terminated by ohmic contacts on both
sides. With these boundary conditions, the Tamm states are
not formed if γ > 1. With γ < 1, identical Tamm states
are formed near both ohmic contacts. In the finite crystal,
they interact with each other and split into symmetric and
antisymmetric combinations, producing two hybridized Tamm
states in the band gap, as shown in Fig. 5(a). This conclusion is
confirmed in Fig. 5(b), where we plotted the spatial distribution
of voltage calculated for these two states at the point indicated
by arrows in Fig. 5(a).

Similar behavior is found for the four-period crystal
terminated by infinite barriers on both sides in Fig. 6. In this
case, the Tamm states are not formed if γ < 1. With γ > 1,
two hybridized symmetric and antisymmetric Tamm states are
formed in every band gap, as shown in Fig. 6(a). The spatial
distributions of voltage for these hybridized Tamm states at
the value of γ indicated by arrows in Fig. 6(a) are plotted in
Fig. 6(b) and confirm our conclusions.

The interaction of the Tamm states formed at the opposing
edges of the planar plasmonic crystal exposes an interesting
by-product of the finite crystal. In the semi-infinite crystal,
the plasmonic Tamm state is an edge state localized over a
few periods of the crystal. However, when the crystal itself is
only several periods long, both edges contribute to the spatial
distribution of the Tamm states and effectively interact with
each other via the hybridized Tamm state. The strength of
the interaction depends on the spatial overlap of the Tamm
states at opposing edges of the crystal and therefore depends
on the ratio of the localization length lloc to the crystal size.
The value of lloc can be tuned by an applied gate bias, as
shown in Fig. 3(c), providing additional control of the EM
link between the crystal edges. In this paper, the Tamm states
were considered in two ideal limits of the boundary conditions
at the crystal edge: the ohmic contact with zero impedance
and the barrier with infinite impedance. Termination with a
finite impedance Z̃T changes both the Tamm state energy and
its spatial distribution, providing significant versatility in the
design of the EM coupling between the plasmonic crystal
edges. This work is in progress.

V. CONCLUSIONS AND SUMMARY

The results presented in this study have a variety of
implications concerning the development of 2DEG-based
plasmonic crystal devices. We have shown the versatility of
the plasmonic crystal energy spectrum and the possibility to

devise a crystal with required properties by choosing the proper
geometry of a structure. The plasmonic spectrum can be tuned
in situ by varying the gate bias. For typical semiconductor
2DEG densities and readily accessible crystal geometries, the
tunable plasmonic spectra naturally span microwave26 and
THz6 frequencies. Further range in the frequencies accessible
in the midinfrared may be achieved as the graphene material
system evolves into a viable plasmonic device platform.53,54

Plasmonic Tamm states in these various material systems have
special potential when applied for the field enhancement they
can produce at the crystal boundary. Similar to the effect of a
plasmonic crystal defect,55 the Tamm state can be harnessed
for its strong near-field enhancement, in combination with
the subwavelength nature of the 2D plasmon. For example,
the Tamm state could be coupled to an adjacent detection
element.56

In summary, we have developed a description of the collec-
tive plasma oscillations in 2D electron systems in terms of the
TL theory equivalent to their description in the hydrodynamic
approximation. Based on this theoretical formalism, we have
developed a general theory of collective plasma excitations in
periodic 2D electron systems, such as grating-gated FETs.
We have shown that collective plasma excitations in this
system form a plasmonic crystal and have derived closed-form
analytical expressions describing its energy band spectrum.
Our results show that the widths of the plasmonic band
gaps depend on the 2D electron density modulation and
vanish in the so-called transparency points, where the plasmon
propagates through the entire periodic 2D electron system in
a resonant manner. In semi-infinite plasmonic crystals, we
have demonstrated the formation of plasmonic Tamm states
and have found analytically their energy dispersion and spatial
localization. This general theoretical formalism has been used
to analyze the energy band structure of the finite plasmonic
crystal most relevant to the current experimental studies of
plasmonic effects in grating-gated FETs.31 We have performed
numerical simulations of the plasmonic band structure, in-
cluding the Tamm states for the four-period plasmonic crystal
terminated either by the ohmic contact or by the infinite barrier
on each side. Such a barrier can be produced by a single
gate finger biased beyond its pinch-off voltage with complete
depletion of the 2D electron channel underneath the finger.
We have traced evolution of the plasmonic band spectrum
as a function of the electron density modulation induced by
the grating gate voltage and found conditions necessary for
formation of Tamm states in the finite plasmonic crystal.
Recent experimental studies of the plasmonic crystal energy
structure in short, modulated plasmonic cavities31 confirm
validity of our theoretical approach and demonstrate excellent
quantitative agreement between theory and experiment.
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APPENDIX A

To evaluate an integral in Eq. (13), we notice that the
electric field of the 2D plasma wave of frequency ω has
both transverse,Ez,ω(x,z,t), and longitudinal, Ex,ω(x,z,t),
components, whereas the magnetic field has only one nonzero
component,Hy,ω(x,z,t). These components are determined by
the following equations:

Ez,ω = −∂ϕω

∂z
, Ex,ω = −∂ϕω

∂x
, (A1)

−∂Hy,ω

∂z
= 4π

c
jωδ(z) + ε

c

∂Ex,ω

∂t
, (A2)

where ϕω(x,z,t) is defined in Eq. (4). Therefore, the x

component of the time-averaged Poynting vector in Eq. (13)
is given by

〈Sx〉 = − c

8π
Ez,ωH ∗

y,ω. (A3)

Substituting the expression for Sx from Eq. (A3) into Eq. (13)
and using Eq. (1), we obtain, after integrating by parts,

Pω(x) = −cW

8π

∫ ∞

−∞
ϕω

∂Hy,ω

∂z
dz. (A4)

Then, from Eqs. (A2) and (A4), we find

Pω(x) = W

2
ϕω(x,z = 0)j ∗

ω

− iεωW

8π

∫ ∞

−∞
ϕω(x,z)

∂ϕ∗
ω(x,z)

∂x
dz. (A5)

Integration in the last equation can be performed with ϕω,
given by Eq. (4), to yield Eq. (14).

APPENDIX B

We are looking for the Bloch-type solutions for the plasma
waves localized near the termination point of the plasmonic
crystal lattice in Fig. 2(c), that is, solutions with the Bloch
vector

k = ς + iμ, ς,μ > 0. (B1)

We neglect the damping effects and assume that the plasmonic
lattice is terminated by a purely reactive load Z̃T = iZ̃′′

T .
Substituting Eqs. (30a) and (30b) into Eq. (19), we obtain

cos q1L1 cos q2L2 − Z̃02

Z̃01
sin q1L1 sin q2L2 − Z̃01

Z̃′′
Z

(
sin q1L1 cos q2L2 + Z̃02

Z̃01
cos q1L1 sin q2L2

)
− ei(ς+iμ)L = 0. (B2)

After separation of the real and imaginary parts, Eq. (B2) yields

ς = πn

L
, n = 0,1,2, . . . , (B3)

(−1)ne−μL = cos q1L1 cos q2L2 − Z̃02

Z̃01
sin q1L1 sin q2L2 − Z̃01

Z̃
′′
T

(
sin q1L1 cos q2L2 + Z̃02

Z̃01
cos q1L1 sin q2L2

)
. (B4)

Now, with k given by Eq. (32), the dispersion relation in Eq. (23) takes the form

(−1)n cosh μL = cos q1L1 cos q2L2 − 1

2

(
Z̃01

Z̃02
+ Z̃02

Z̃01

)
sin q1L1 sin q2L2. (B5)

Excluding μ from Eqs. (B4) and (B5), we obtain dispersion relation for the Tamm states

sin q1L1 cos q2L2 + Z̃01

Z̃02
cos q1L1 sin q2L2 + Z̃01

Z̃′′
T

(
Z̃02

Z̃01
− Z̃01

Z̃02

)
sin q1L1 sin q2L2

+ Z̃2
01

Z̃2
02

(
sin q1L1 cos q2L2 + Z̃02

Z̃01
cos q1L1 sin q2L2

)
= 0. (B6)

Energies of the Tamm states can be found from Eq. (B6). Then, the localization length μ−1 can be determined from Eq. (B4).
Using Eq. (B6), we can rewrite Eq. (B4) in another equivalent form:

(−1)ne−μL = cos q1L1 cos q2L2 − Z̃01

Z̃02
sin q1L1 sin q2L2 + Z̃′′

T

Z̃01

(
sin q1L1 cos q2L2 + Z̃01

Z̃02
cos q1L1 sin q2L2

)
. (B4a)

Equations (33a) and (33b) follow from Eq. (B6) in the limits Z̃T = 0 and Z̃T = ∞, respectively, whereas Eqs. (34a) and (34b)
follow from Eqs. (B4) and (B4a) taken in the same respective limits.

235316-10



TRANSMISSION LINE THEORY OF COLLECTIVE PLASMA . . . PHYSICAL REVIEW B 86, 235316 (2012)

*gregory.aizin@kbcc.cuny.edu
†gcdyer@sandia.gov
1S. J. Allen, D. C. Tsui, and R. A. Logan, Phys. Rev. Lett. 38, 980
(1977).

2D. M. Mittleman (ed.), Sensing with Terahertz Radiation (Springer-
Verlag, Berlin, Germany, 2003).

3M. Dyakonov and M. Shur, IEEE Trans. Electron Dev. 43, 380
(1996).

4W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova,
J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta,
I. Kasalynas, A. El Fatimy, Y. M. Meziani, and T. Otsuji, J. Infrared
Mili. Terahz Waves 30, 1319 (2009).

5X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons,
M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, Appl. Phys.
Lett. 81, 1627 (2002).

6E. A. Shaner, M. Lee, M. C. Wanke, A. D. Grine, J. L. Reno, and
S. J. Allen, Appl. Phys. Lett. 87, 193507 (2005).

7E. A. Shaner, A. D. Grine, M. C. Wanke, M. Lee, J. L. Reno, and
S. J. Allen, IEEE Photon. Technol. Lett. 18, 1925 (2006).

8E. A. Shaner, M. C. Wanke, A. D. Grine, S. K. Lyo, J. L. Reno, and
S. J. Allen, Appl. Phys. Lett. 90, 181127 (2007).

9G. C. Dyer, J. D. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke,
J. L. Reno, and S. J. Allen, J. Phys. Condens. Matter 21, 195803
(2009).

10G. C. Dyer, N. Q. Vinh, S. J. Allen, G. R. Aizin, J. Mikalopas, J. L.
Reno, and E. A. Shaner, Appl. Phys. Lett. 97, 193507 (2010).

11G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen,
IEEE J. Sel. Top. Quant. Electron. 17, 85 (2011).

12G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L.
Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin,
S. J. Allen, and E. A. Shaner, Appl. Phys. Lett. 100, 083506 (2012).

13V. M. Muravev and I. V. Kukushkin, Appl. Phys. Lett. 100, 082102
(2012).

14A. V. Muravjov, D. B. Veksler, V. V. Popov, O. V. Polischuk,
N. Pala, X. Hu, R. Gaska, H. Saxena, R. E. Peale, and M. S. Shur,
Appl. Phys. Lett. 96, 042105 (2010).

15V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev,
V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, Appl. Phys.
Lett. 98, 153504 (2011).

16A. D. Gaspare, R. Casini, V. Foglietti, V. Giliberti, E. Giovine, and
M. Ortolani, Appl. Phys. Lett. 100, 203504 (2012).

17D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S. Boubanga-
Tombet, W. Knap, T. Nishimura, T. Otsuji, Y. M. Meziani, G. M.
Tsymbalo, and V. V. Popov, Opt. Express 18, 6024 (2010).

18V. V. Popov, D. V. Fateev, T. Otsuji, Y. M. Meziani, D. Coquilat,
and W. Knap, Appl. Phys. Lett. 99, 243504 (2011).

19M. I. Dyakonov and M. S. Shur, Phys. Rev. Lett. 71, 2465 (1993).
20W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V.

Popov, and M. S. Shur, Appl. Phys. Lett. 84, 2331 (2004).
21T. Otsuji, Y. M. Meziani, T. Nishimura, T. Suemitsu, W. Knap,

E. Sano, T. Asano, and V. V. Popov, J. Phys. Condens. Matter 20,
384206 (2008).

22J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sanchez-Gil,
Phys. Rev. Lett. 93, 256804 (2004).

23D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, IEEE
J. Sel. Top. Quant. Electron. 14, 513 (2008).

24W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt,
Phys. Rev. Lett. 96, 107401 (2006).

25P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and
K. W. West, Appl. Phys. Lett. 76, 745 (2000).

26W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West,
L. Pfeiffer, and D. Ham, Nano Lett. 12, 2272 (2012).

27M. V. Krasheninnikov and A. V. Chaplik, Fiz. Tekh. Poluprovodn.
15, 32 (1981) [Sov. Phys. Semicond. 15, 19 (1982)].

28U. Mackens, D. Heitman, L. Prager, J. P. Kotthaus, and W. Beinvogl,
Phys. Rev. Lett. 53, 1485 (1984).

29R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko,
H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, and G. A.
C. Jones, J. Appl. Phys. 71, 6049 (1992).

30V. M. Muravev, A. A. Fortunatov, I. V. Kukushkin, J. H. Smet,
W. Dietsche, and K. von Klitzing, Phys. Rev. Lett. 101, 216801
(2008).

31G. C. Dyer, G. R. Aizin, S. Preu, N. Q. Vinh, S. J. Allen, J. L. Reno,
and E. A. Shaner, Phys. Rev. Lett. 109, 126803 (2012).

32G. Eliasson, P. Hawrylak, J.-W. Wu, and J. J. Quinn, Solid State
Comm. 60, 3 (1986).

33V. Cataudella and V. M. Ramaglia, Phys. Rev. B 38, 1828 (1988).
34C. Dahl, Phys. Rev. B 41, 5763 (1990).
35C. D. Ager and H. P. Hughes, Phys. Rev. B 44, 13452 (1991).
36B. P. van Zyl and E. Zaremba, Phys. Rev. B 59, 2079 (1999).
37C. D. Ager, R. J. Wilkinson, and H. P. Hughes, J. Appl. Phys. 71,

1322 (1992).
38R. E. Tyson, D. E. Bangert, and H. P. Hughes, J. Appl. Phys. 76,

5909 (1994).
39O. R. Matov, O. F. Meshkov, and V. V. Popov, Zh. Eksp. Teor. Fiz.

113, 988 (1998) [Sov. Phys. JETP 86, 538 (1998)].
40V. Yu. Kachorovskii and M. S. Shur, Appl. Phys. Lett. 100, 232108

(2012).
41A. L. Fetter, Ann. Phys. (NY) 81, 367 (1973); 88, 1 (1974).
42T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437

(1982).
43C. Paul, Analysis of Multiconductor Transmission Lines (John

Wiley, Hoboken, NJ, 2008), 2nd ed.
44F. Rana, IEEE Trans. Nanotech. 7, 91 (2008).
45J. R. Brews, IEEE Trans. Microw. Theor. Tech. 35, 30 (1987).
46V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta, S. J.

Allen, N. J. M. Horing, and M. C. Wanke, J. Appl. Phys. 94, 3556
(2003).

47R. de L. Kronig and W. G. Penney, Proc. Roy. Soc. Lond. A 130,
499 (1931).

48P. Markos and C. M. Soukoulis, Wave Propagation: From Elec-
trons to Photonic Crystals and Left-Handed Materials (Princeton
University Press, Princeton, NJ, 2008), 1st ed.

49I. E. Tamm, Phys. Z. Sowjetunion 1, 733 (1932).
50S. G. Davison and M. Steslicka, Basic Theory of Surface States

(Clarendon Press, Oxford, UK, 1996), 2nd ed.
51H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agullo-Rueda,

L. L. Chang, and L. Esaki, Phys. Rev. Lett. 64, 2555 (1990).
52T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev,

A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky,
Phys. Rev. Lett. 101, 113902 (2008).

53L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel,
X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Nat. Nano 6, 630 (2011).

54H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu,
P. Avoris, and F. Xia, Nat. Nano 7, 330 (2012).

55A. R. Davoyan, V. V. Popov, and S. A. Nikitov, Phys. Rev. Lett.
108, 127401 (2012).

56S. Preu, S. Kim, R. Verma, P. G. Burke, N. Q. Vinh, M. S.
Sherwin, and A. C. Gossard, IEEE Trans. THz Sci. Technol. 2, 278
(2012).

235316-11

http://dx.doi.org/10.1103/PhysRevLett.38.980
http://dx.doi.org/10.1103/PhysRevLett.38.980
http://dx.doi.org/10.1109/16.485650
http://dx.doi.org/10.1109/16.485650
http://dx.doi.org/10.1007/s10762-009-9564-9
http://dx.doi.org/10.1007/s10762-009-9564-9
http://dx.doi.org/10.1063/1.1497433
http://dx.doi.org/10.1063/1.1497433
http://dx.doi.org/10.1063/1.2128057
http://dx.doi.org/10.1109/LPT.2006.881670
http://dx.doi.org/10.1063/1.2735943
http://dx.doi.org/10.1088/0953-8984/21/19/195803
http://dx.doi.org/10.1088/0953-8984/21/19/195803
http://dx.doi.org/10.1063/1.3513339
http://dx.doi.org/10.1109/JSTQE.2010.2049096
http://dx.doi.org/10.1063/1.3687698
http://dx.doi.org/10.1063/1.3688049
http://dx.doi.org/10.1063/1.3688049
http://dx.doi.org/10.1063/1.3292019
http://dx.doi.org/10.1063/1.3573825
http://dx.doi.org/10.1063/1.3573825
http://dx.doi.org/10.1063/1.4717464
http://dx.doi.org/10.1364/OE.18.006024
http://dx.doi.org/10.1063/1.3670321
http://dx.doi.org/10.1103/PhysRevLett.71.2465
http://dx.doi.org/10.1063/1.1689401
http://dx.doi.org/10.1088/0953-8984/20/38/384206
http://dx.doi.org/10.1088/0953-8984/20/38/384206
http://dx.doi.org/10.1103/PhysRevLett.93.256804
http://dx.doi.org/10.1109/JSTQE.2007.910766
http://dx.doi.org/10.1109/JSTQE.2007.910766
http://dx.doi.org/10.1103/PhysRevLett.96.107401
http://dx.doi.org/10.1063/1.125881
http://dx.doi.org/10.1021/nl300046g
http://dx.doi.org/10.1103/PhysRevLett.53.1485
http://dx.doi.org/10.1063/1.350462
http://dx.doi.org/10.1103/PhysRevLett.101.216801
http://dx.doi.org/10.1103/PhysRevLett.101.216801
http://dx.doi.org/10.1103/PhysRevLett.109.126803
http://dx.doi.org/10.1016/0038-1098(86)90003-7
http://dx.doi.org/10.1016/0038-1098(86)90003-7
http://dx.doi.org/10.1103/PhysRevB.38.1828
http://dx.doi.org/10.1103/PhysRevB.41.5763
http://dx.doi.org/10.1103/PhysRevB.44.13452
http://dx.doi.org/10.1103/PhysRevB.59.2079
http://dx.doi.org/10.1063/1.351250
http://dx.doi.org/10.1063/1.351250
http://dx.doi.org/10.1063/1.358413
http://dx.doi.org/10.1063/1.358413
http://dx.doi.org/10.1134/1.558500
http://dx.doi.org/10.1063/1.4726273
http://dx.doi.org/10.1063/1.4726273
http://dx.doi.org/10.1016/0003-4916(73)90161-9
http://dx.doi.org/10.1016/0003-4916(74)90397-2
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1109/TNANO.2007.910334
http://dx.doi.org/10.1109/TMTT.1987.1133591
http://dx.doi.org/10.1063/1.1599051
http://dx.doi.org/10.1063/1.1599051
http://dx.doi.org/10.1098/rspa.1931.0019
http://dx.doi.org/10.1098/rspa.1931.0019
http://dx.doi.org/10.1103/PhysRevLett.64.2555
http://dx.doi.org/10.1103/PhysRevLett.101.113902
http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1038/nnano.2012.59
http://dx.doi.org/10.1103/PhysRevLett.108.127401
http://dx.doi.org/10.1103/PhysRevLett.108.127401
http://dx.doi.org/10.1109/TTHZ.2012.2191671
http://dx.doi.org/10.1109/TTHZ.2012.2191671



