
PHYSICAL REVIEW B 86, 235315 (2012)

Geometric resonances in the magnetoresistance of hexagonal lateral superlattices
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We have measured magnetoresistance of hexagonal lateral superlattices. We observe three types of oscillations
engendered by periodic potential modulation having hexagonal-lattice symmetry: amplitude modulation of the
Shubnikov-de Haas oscillations, commensurability oscillations, and the geometric resonances of open orbits
generated by Bragg reflections. The latter two reveal the presence of two characteristic periodicities,

√
3a/2

and a/2, inherent in a hexagonal lattice with the lattice constant a. The formation of the hexagonal-superlattice
minibands manifested by the observation of open orbits marks the first step toward realizing massless Dirac
fermions in semiconductor 2DEGs.
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I. INTRODUCTION

A hexagonal lateral superlattice (HLSL)—a two-
dimensional electron gas (2DEG) subjected to periodic po-
tential modulation with hexagonal-lattice symmetry—is of
interest in two different contexts. First, it is envisaged as a
route to artificially generate massless Dirac fermions (MDF)
at the corners of the superlattice Brillouin zone.1–5 Second,
it is expected to stabilize6 the fragile “bubble phase” (the
hexagonal-lattice arrangement of two- or three-electron clus-
ters) in the quantum Hall system, which has been theoretically
predicted to be the ground state at the 1/4 or 3/4 fillings of
the third or higher Landau levels.7–9 Analogous stabilization
is reported for the stripe phase at the half fillings, using
one-dimensional (1D) lateral superlattices.10,11 As an initial
step toward pursuing these intriguing possibilities, we study,
in the present work, low-field magnetoresistance of lateral
superlattices with a weak (a few percent of the Fermi energy
EF) hexagonal-lattice potential modulation, fabricated from
conventional GaAs/AlGaAs 2DEGs. Oscillations observed in
the low-field magnetoresistance serve as a tool to characterize
the HLSL samples we prepare.

Numerous studies have been devoted to lateral superlattices
having 1D12–14 and two-dimensional (2D) square-15–20 or
rectangular-lattice21,22 potential modulations. By comparison,
magnetotransport of HLSLs remains relatively unexplored.
An early experiment by Fang and Stiles23 exhibited, for a
weak modulation amplitude, commensurability oscillations
(CO) similar to those observed in 1D lateral superlattices12

but corresponding to the periodicity half the lattice constant of
the hexagonal lattice. Hexagonal lattices are not uncommon
in antidots,24–28 which represent the strong limit of the
modulation amplitudes. As demonstrated in Ref. 23 (and also
in Ref. 17 for square lattices), however, antidots and weakly
modulated lateral superlattices display qualitatively distinct
behavior.

In the present paper, we report three variants of oscillatory
phenomena in HLSLs qualitatively similar to those known
in 1D lateral superlattices: CO due to the commensurability
between the cyclotron radius and the periodicity in the
superlattice,12 amplitude modulation (AM) of the Shubnikov-
de Haas oscillations (SdHO),29–33 and an alternative type of os-
cillations, geometric resonances of open orbits (GROO).34–36

Open orbits are composed of segments of cyclotron orbits

repeatedly diffracted by Bragg reflections from the superlattice
potential. Resonances take place when the width of the
open orbits coincides with the periodicity. In both CO and
GROO, oscillations are observed as the superposition of two
components originating from the periodicities

√
3a/2 and a/2,

respectively, with a representing the lattice constant of the
hexagonal lattice. The CO for the latter periodicity corresponds
to that observed in Ref. 23 mentioned above. We will discuss
the amplitude of CO in connection with the amplitude of the
potential modulation inferred from the AM of SdHO.

One of the major motivations in the exploration of super-
lattices is to artificially design and generate a band structure
(miniband) that possesses the length and energy scale different
from that in natural crystals,37 with the generation of MDF in
HLSL being one example. In lateral superlattices, however,
clear evidence of the formation of the miniband structure
has not been observed until recently,38,39 probably due to
the technical difficulty in fabricating, with minimal disorder,
superlattices with the period small enough (close to the Fermi
wavelength) to embrace minibands. Note that both CO and
AM of SdHO can be traced back to the oscillation with the
magnetic field of the width of the Landau bands (Landau levels
broadened by the modulation potential), and do not require
minibands for their occurrence. By contrast, the observation of
GROO evinces the formation of miniband structure, attesting
to the high quality of our superlattice samples eligible to seek
for artificial Dirac fermions.

The paper is organized as follows. After describing ex-
perimental details in Sec. II, experimentally obtained magne-
toresistance traces exhibiting CO, AM of SdHO, and GROO
are presented in Secs. III A–III C, respectively. Prospects and
necessary improvements to be made to realize MDF and to
detect the bubble phase are discussed in Secs. IV A and IV B,
respectively, followed by concluding remarks in Sec. V.

II. EXPERIMENTAL DETAILS

Schematics of the HLSL samples used in the present
study are depicted in Fig. 1. The samples were fabricated
from a conventional GaAs/AlGaAs 2DEG wafer with the
heterointerface residing at the depth d = 60 nm from the
surface. As shown in Fig. 1(a), the 2DEG wafer was patterned
into Hall bar with the width 40 μm and containing two sets
of voltage probes (with the inter-probe distance 320 μm)
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FIG. 1. (Color online) Hexagonal lateral superlattice (HLSL)
sample used in the present study. (a) Hall bar containing both the
section with hexagonal-lattice potential modulation (HLSL) and the
section without modulation (plain 2DEG) for reference. (b) Schematic
drawing of the HLSL section. (c) Scanning electron micrograph of
the hexagonal lattice of EB-resist (black dots) placed on the surface
of the 2DEG wafer.

to measure the section with (HLSL) and without (plain
2DEG, for reference) the hexagonal-lattice modulation. The
potential modulation was introduced by placing a hexagonal
lattice of high-resolution negative electron-beam (EB) resist
(calixarene)40 on the surface [see Figs. 1(b) and 1(c)] and
making use of the strain-induced piezoelectric effect,41 as
has been done to prepare 1D lateral superlattices.10,11,33–36,42,43

Compared with more general methods to introduce potential
modulations, e.g., by placing metallic gate grids or by shallow
etching, the simpleness of our approach (only one-step process,
the EB drawing, is needed to introduce the modulation), along
with the high spatial resolution of the EB resist we employ,
allows us to prepare highly ordered lateral superlattice samples
with minimal damage to the 2DEG. In fact, the mobility μ =
88 m2V−1s−1 and the electron density ne = 3.9 × 1015 m−2

of the 2DEG wafer remained virtually unchanged after the
fabrication of the HLSL devices. We prepared HLSL samples
with the lattice constant a = 200 and 100 nm. Since the mod-
ulation amplitude for a = 100 nm was found to be extremely
small, we mainly present the data taken from a = 200 nm
HLSL in the followings. Note that the modulation strength
rapidly decreases with decreasing a, roughly as exp(−a/d).43

Resistivity measurements were carried out employing standard
low-frequency ac lock-in technique at 4.2 K for CO and GROO
and at 15 mK using a dilution refrigerator for SdHO.

III. EXPERIMENTAL RESULTS

A. Commensurability oscillations

Magnetoresistance �ρ(B)/ρ0 of a HLSL with a = 200 nm
is shown in Fig. 2(a). Here, ρ0 is the resistivity ρ(B) at B = 0
and �ρ(B) ≡ ρ(B) − ρ0. Oscillatory behavior is apparent
above ∼0.1 T [see also the bottom trace in Fig. 2(c)],
which is absent in the trace for the plain 2DEG. Small
oscillations seen above ∼0.35 T for both traces are the SdHO.

FIG. 2. (Color online) (a) Magnetoresistance traces at 4.2 K for
the HLSL with a = 200 nm (solid line) and the adjacent plain 2DEG
(dashed line). Dotted curve represents slowly varying background
for the HLSL section, obtained by polynomial fitting. (b) Inset:
oscillatory part for the HLSL section obtained by taking the second
derivative with respect to B, plotted against B−1. Main: Fourier
spectrum of the oscillatory part shown in the inset. (c) Oscillatory
part of the magnetoresistance for the HLSL section obtained by
subtracting the slowly varying background shown in (a) (bottom),
components having the frequency fA and fB extracted by the Fourier
bandpass filter method (see text for details), and the addition of the
fA and fB components (top). The latter traces are offset by 0.002
for clarity. Vertical ticks for the fA and fB components indicate the
positions of the nth flat-band conditions given by Eq. (2). Dotted
curves are the fit to Eq. (3).
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FIG. 3. (Color online) (a) Representative lattice spacings in the
hexagonal lattice. The periodicities pA and pB account for the
components fA and fB in Fig. 2, respectively. Periodicities equivalent
to those shown are found by rotating them by ±120◦. (b) Drift velocity
vd1 along the direction θ from the y axis and vd2, vd3 along the other
two equivalent directions. θ = 30◦,0◦, and arccot(3

√
3) � 10.9◦ for

the periodicities pA, pB, and pC, respectively.

To analyze the oscillations, we take the second derivative
(d2/dB2)(�ρ(B)/ρ0) numerically to extract the oscillatory
part, plot it against 1/B [inset to Fig. 2(b)], and then perform
Fourier transform. The Fourier spectrum thus obtained is
presented in the main panel of Fig. 2(b). Three eminent
peaks, fA, fB, and fSdH, are seen: fSdH = neh/(2e) represents
the SdHO, while fA and fB coincide with the frequency
2h̄kF/(ep), with kF = √

2πne the Fermi wave number, of the
CO corresponding to the periodicities p = √

3a/2 ≡ pA and
a/2 ≡ pB, respectively. As depicted in Fig. 3(a), both pA and
pB are the representative spacings between the lattice points
contained in the hexagonal lattice. More generally, lattice spac-
ings in the hexagonal lattice are given by p(h,k) = 2π/|g(h,k)|,
with pA, pB, and pC corresponding to (h,k) = (1,0), (1,1),
and (2,1), respectively. Here, g(h,k) = ha∗

1 + ka∗
2 represents

a reciprocal lattice vector with a∗
1 = (2π/a)(1,−1/

√
3) and

a∗
2 = (2π/a)(1,1/

√
3) the primitive reciprocal lattice vectors.

A potential modulation having the hexagonal-lattice symmetry
can generally be written as

V (r) =
∑
h,k

Vp(h,k) cos(g(h,k) · r), (1)

with r = (x,y). We defined the direction of the current in the
measurement of the resistance as the x axis [see Fig. 1(a)]. The
summation is taken over sets of integers (h,k) that yield inde-
pendent periodicities in the 2D plane. 44 Hexagonal modulation
potential often given in the literatures [e.g., Eq. (3) in Ref. 23
and Eq. (1) in Ref. 4, see also Eq. (7) below] corresponds
to Eq. (1) retaining only the components with the largest
spacings pA, namely, Vp(h,k) with (h,k) = (1,0),(1,−1),(0,−1).
The presence of the two peaks fA and fB in the Fourier
spectrum reveals that the observed CO is the superposition
of two components corresponding to the periodicities pA and
pB, and that the components corresponding the periodicity
pB, Vp(h,k) with (h,k) = (1,1),(2,−1),(1,−2), are also present
in the modulation potential Eq. (1).

To gain more quantitative information from the CO, we
separate out individual components following the prescription
described in Ref. 45: first, we perform Fourier band-pass filter

on (d2/dB2)[�ρ(B)/ρ0] versus B−1 plotted in the inset of
Fig. 2, employing the window that encompasses the peak
fA or fB [shaded areas in Fig. 2(b)]; (d2/dB2)(�ρ(B)/ρ0)
corresponding to a single component thus extracted are
replotted against B and then numerically integrated by B

twice. The traces of single component (�ρ(B)/ρ0)CO for fA

and fB restored by this procedure are plotted in Fig. 2(c). As
demonstrated in the figure, addition of the fA and fB compo-
nents reproduces well the oscillatory part of �ρ(B)/ρ0 directly
obtained by subtracting the slowly varying background found
by polynomial fitting to the data [plotted with the dotted line
in Fig. 2(a)], apart from the SdHO above ∼0.35 T. In Fig. 2(c),
positions of the flat-band conditions, where the drift velocity
vd vanishes,

2Rc

p
= n − 1

4
(n = 1,2,3, . . . ), (2)

are indicated by vertical ticks. Here, Rc = h̄kF/(eB) is the
cyclotron radius. It can be seen for both components that
the minima take place at the flat-band conditions, as is the
case with 1D lateral superlattices.12,46 To be more precise,
the diffusion (band) contribution resulting from the drift
velocity vd takes minima, while the collisional (hopping)
contribution due to the modulation of the density of states
(DOS) takes maxima, at Eq. (2) in 1D lateral superlattices,47,48

with the former being by far the dominant contribution in the
measurement of the resistivity along the principal axis of the
modulation.

We further make an attempt to fit the extracted CO curves to
a formula representing the diffusion contribution for 1D lateral
superlattices V (x) = Vp cos(2πx/p), in which the damping of
the oscillations by scatterings is taken into account:42,49(

�ρ

ρ0

)
CO

= γA

(
T

Tp

)
A

(
π

μwB

)
2π

p
V 2

p B sin

(
2π

2Rc

p

)
,

(3)

where

γ = 1

2(2π )3/2

(
h

e

)−1 (
eh̄

2m∗

)−2
μ2

n
3/2
e

, (4)

and Tp ≡ pkFh̄ωc/(4π2kB), with m∗ the effective mass, kB

the Boltzmann constant, ωc = eB/m∗ the cyclotron angular
frequency, and A(X) ≡ X/ sinh X. We use the modulation
amplitude Vp and the effective mobility μw as fitting param-
eters. As shown by dotted curves in Fig. 2(c), fairly good
fitting is achieved, albeit within a rather limited magnetic-field
range: B � 0.20 T for fA and B � 0.37 T for fB.50 The
values of Vp and μw obtained by the fittings are Vp = 0.025
and 0.016 meV, and μw = 9.1 and 8.2 m2V−1s−1 for fA

and fB (p = pA = 173 nm and pB = 100 nm), respectively.
It has been shown for 1D lateral superlattices42 that μw is
close to the single-particle (or quantum) mobility μs that
describes the damping ∝ exp(−π/μsB) of the SdHO.51 This
is found to be roughly the case also for our HLSL; we obtain
μs = 6.2 m2V−1s−1 from the similar Fourier analysis of SdHO
for the data shown in Fig. 2(a) (and also for the data taken at
T ∼ 15 mK, see Fig. 5; dependence of μs on the temperature
was not observed in this temperature range). The values of
Vp, on the other hand, appear to be too small. Much larger
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values were found for 1D lateral superlattices having similar
modulation periods and fabricated from the same 2DEG wafer
and therefore expected to have similar modulation amplitudes:
0.18 and 0.06 meV for the periods a = 200 and 90 nm,
respectively.52,53 The Vp obtained here for the HLSL cannot be
literally taken to represent the modulation amplitude in Eq. (1)
correctly for the following reasons.

First, it is necessary to note that the observed CO is an ad-
dition of contributions from three equivalent modulations with
the same spacing present in the hexagonal lattice, rotated by
120◦ from each other. The drift velocity vd(∝ Vp) responsible
for the diffusion contribution is pointed perpendicular to the
direction of the modulation axis. As depicted in Fig. 3(b),
the drift velocity is directed toward the angle θ (vd1) and
θ ± 120◦ (vd2, vd3) from the y axis, with θ = 30◦ and 0◦ for
the modulations A and B, respectively. Since ρxx � σyy/σ

2
yx

(with σαβ representing components of the conductivity tensor),
CO is proportional to the y component of the drift veloc-
ity squared, �ρCO ∝ |vd1|2 cos2 θ + |vd2|2 cos2(θ + 120◦) +
|vd3|2 cos2(θ − 120◦). This equals (3/2)v2

d regardless of the
angle θ if we assume |vd1| = |vd2| = |vd3| ≡ vd, 54 leading to
the correction of Vp to the factor of

√
2/3 smaller values.

More importantly, it has been shown that the amplitudes of
CO for 2D lateral superlattices are usually much smaller than
those for 1D lateral superlattices having a similar modulation
amplitude.16 This was initially attributed to the splitting of the
Landau levels into sublevels (Hofstadter spectrum55,56), which
suppresses the diffusion contribution.16,18 Later, an alternative
explanation was presented by Grant et al.57 based on the cal-
culation of semiclassical trajectories of the electrons showing
that the drifting motion introduced by the modulation in the x

direction is suppressed by the modulation in the y direction.
They showed that the diffusion contribution survives, with the
amplitude reduced compared to 1D modulation, only when
the modulation is asymmetric between x and y directions. For
symmetric modulation, the diffusion contribution vanishes,
leaving only the collisional contribution having the oscillation
phase opposite to that of the diffusion contribution. The
effect of the symmetry between x and y directions was
experimentally confirmed.19 Although these are for a 2D
square lattice, qualitatively similar mechanism is expected to
be operative also in the hexagonal lattice, in which modulations
with differing orientations coexist. Therefore, the value of Vp

obtained by fitting Eq. (3) to the CO trace is expected to be
smaller than the modulation amplitude also in the hexagonal
lattice. This is confirmed by comparing Vp obtained here to
the modulation amplitude inferred from the AM of the SdHO,
as will be shown in the subsequent Sec. III B.

B. Amplitude modulation of Shubnikov-de Haas oscillations

In Fig. 4(a), we plot �ρ/ρ0 taken at T = 15 mK. It
can readily be seen that the SdHO for the HLSL exhibits
modulation in the oscillation amplitude, with the amplitude
maxima at the flat-band conditions Eq. (2) for the period-
icity pA = √

3a/2. The AM is also evident in the Fourier
spectrum shown in Fig. 4(b) taken of (d2/dB2)(�ρ/ρ0)
versus B−1, which exhibits, in addition to the peak repre-
senting the principal frequency fSdH of the SdHO and its
harmonics, side peaks marked with fA+ and fA−, with the

FIG. 4. (Color online) Magnetoresistance traces at 15 mK for the
HLSL with a = 200 nm (solid line) and the adjacent plain 2DEG
(dashed line, offset by 1.0 for clarity), showing rapid SdHO. Slowly
varying background obtained by averaging the upper and lower
envelop curves of the �ρ/ρ0 for the plain 2DEG is shown by dot-
dashed line. (The same background is shown for both traces.) Vertical
ticks indicate the flat-band conditions, Eq. (2), for periodicities pA

and pB. (b) Fourier spectra taken of (d2/dB2)(�ρ/ρ0) vs B−1 for the
HLSL (solid line) and the plain 2DEG (dashed line) sections.

distance |fA± − fSdH| being equal to the frequency of the CO,
2h̄kF/(epA), corresponding to the periodicity pA; the distance
coincides with fA in Fig. 2(b) after the correction of the
small difference in the electron density ne between different
cooling downs. The AM attributable to the periodicity pB was
not clearly observed, probably owing to the weakness of the
modulation. Note that, as mentioned earlier, the amplitude of
the potential modulation rapidly decreases with decreasing
periodicity. The absence of the pB component indicates that
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FIG. 5. (Color online) Oscillatory parts of the magnetoresistance shown in Fig. 4 obtained by subtracting the slowly varying background
(bottom) and those calculated by Eqs. (5) and (8) with ne = 3.9 × 1015 m−2, μs = 6.2 m2V−1s−1, T = 15 mK, C = 2.2, pA = 173 nm, and
the indicated values of VpA for the plain 2DEG (a) and the HLSL (b) sections. Calculated traces are offset by 1.0 for clarity.

the AM of SdHO is more heavily weighted to larger amplitude
components of the potential modulation compared to the CO.

The AM of SdHO is known to also originate from the
two mechanisms, the diffusion contribution and the collisional
contribution, with the amplitude minima (maxima) taking
place at the flat-band conditions for the former (latter)
mechanism.33,47,48 For 1D lateral superlattices, it has been
shown that the collisional contribution dominates at low
magnetic fields (�0.25 T).33 This appears to be also the case
in our HLSL, as can be seen in Fig. 4(a) exhibiting amplitude
maxima at the flat band conditions. The diffusion contribution
in the SdHO in HLSL, if any, is expected to be much smaller
than in 1D lateral superlattices, by analogy with the case for
the CO discussed above.

The collisional contribution to SdHO in 1D lateral super-
lattices V (x) = Vp cos(2πx/p) is described well by33

(
�ρ

ρ0

)col

SdH

= −2CA

(
T

Tc

)
exp

(
− π

μsB

)

×J0

(
2πVB

h̄ωc

)
cos

(
2πEF

h̄ωc

)
, (5)

with

VB = Vp

1

π

√
p

Rc
cos

(
2π

p
Rc − π

4

)
(6)

representing the Landau bandwidth, Tc ≡ h̄ωc/(2π2kB), C

a constant ∼2,58 and J0(x) the Bessel function of order
zero. According to Wang et al.,59 bandwidth of the N -th
Landau level for a 2DEG subjected to the hexagonal potential

modulation60

V (r) = VpA [cos(a∗
1 · r) + cos(a∗

2 · r) + cos(a∗
3 · r)] (7)

with a∗
3 ≡ a∗

1 − a∗
2 is given by 9

4VpAe−u/2LN (u), where u =
(2π/pA)2l2/2 with l = √

h̄/(eB) the magnetic length, and
LN (u) represents the Laguerre polynomial. The Landau
bandwidth at the Fermi energy at a low magnetic field (N 	 1)
is thus approximated well by simply 9/4 times Eq. (6):

VB = 9

4
VpA

1

π

√
pA

Rc
cos

(
2π

pA
Rc − π

4

)
. (8)

We therefore make an attempt to analyze AM of SdHO
shown in Fig. 4(a) using Eqs. (5) and (8). In Fig. 5, we
compare traces calculated by Eqs. (5) and (8) with SdHO
extracted from the experimental �ρ/ρ0 shown in Fig. 4(a) by
subtracting the slowly varying background. As can be seen in
Fig. 5(a), the trace calculated with VpA = 0 reproduces the
experimental trace for the plain 2DEG section quite well.
Figure 5(b) shows that AM is barely visible if we use the
value VpA = 0.021 meV obtained by fitting the CO trace
to Eq. (3) and applying the correction for the factor

√
2/3

to account for three different directions of the drift velocity
outlined in Sec. III A. To reproduce experimental AM, a much
larger value VpA = 0.12 meV is required. Note that Eq. (8)
already includes the contribution from the three equivalent
orientations [see Eq. (7)]. Since the collisional contribution is
the effect of modulated DOS that alters the scattering rate of
electrons, it essentially does not depend on the direction of the
modulation,47,48 and therefore interference between different
directions as in the diffusion contribution is considered to
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FIG. 6. (Color online) (a) Low-field magnetoresistance traces of
the HLSL section (a = 200 nm) at 4.2 K for B > 0 and B < 0
(offset by 1.0 × 10−3), plotted against the absolute value |B|. Slowly
varying backgrounds acquired by polynomial fitting are shown by
dot-dashed lines. (b) Oscillatory parts for B > 0 and B < 0 (offset by
0.2 × 10−3), obtained by subtracting the slowly varying background.
Downward triangles mark the positions for the transverse resonance
of the orbit X(j,k) (X = A or B), Eq. (9). Vertical ticks indicate the
positions for the n-th longitudinal resonance, Eq. (11).

be absent. We thus expect the value of Vp derived from the
analysis of the SdHO presented here to represent better the
amplitude of the modulation. The value is also consistent
with the modulation amplitude of 1D lateral superlattices with
similar modulation periods mentioned earlier.

C. Geometric resonances of open orbits

We find yet another type of oscillations in the magnetic-
field range below the regime where CO is observed. The
small amplitude oscillations become clearly visible after the
subtraction of slowly varying background, as illustrated in
Fig. 6. Figure 6(b) reveals that the oscillations observed at
B > 0 are reproduced, including minute structures, in the trace
taken at B < 0, ruling out the possibility that they simply result
from external noises. Since the measurement was performed

FIG. 7. (Color online) Open orbits in the hexagonal lateral
superlattice. (a) Open orbits in the reciprocal space. Open orbits
generated by the periodicities pA, A(0,1), A(1,2), and by pB,
B(0,1), are shown by thick lines. Black dots and circles represent
the reciprocal lattice points and the Fermi circles, respectively.
(b) Illustration in the reciprocal space of the index (j,k) of the open
orbits. (c) Open orbits in the real space. Width b and periodicity along
the length c are shown.

on a large (40 × 320 μm2) Hall bar at a relatively high
temperature, T = 4.2 K, the oscillations are unlikely to be
related to the well-known universal conductance fluctuations
(UCF).61,62 The patterns of the oscillations do not change
between separate cooling downs (see Fig. 9 below), which is
also at variance with UCF. Similar small amplitude oscillations
have been reported in 1D lateral superlattices, and interpreted
as the geometric resonances of open orbits (GROO).34–36 The
oscillations observed here in HLSL can also be interpreted
with the same mechanism.

Open orbits are generated by Bragg reflections due to
the superlattice potential. Figure 7(a) shows Fermi circles
in the reciprocal space in the extended zone scheme, with
the open orbits depicted as chains of Fermi circle segments
(thick curves). As illustrated in Figs. 7(a) and 7(b), we
denote the open orbit composed of arcs from j -th and k-th
nearest-neighbor Fermi circles as X(j,k), with X = A, B for
the open orbits engendered by the periodicities pA and pB,
respectively. The open orbit X(j,k) is generated by the Bragg
reflections from j th and kth harmonics of the modulation
potential with the periodicity pX. Open orbits in the real space
are obtained by rotating those in the reciprocal space by 90◦
and multiplying by the factor h̄/(eB), as portrayed in Fig. 7(c).
The width bX(j,k) of the orbit X(j,k), therefore, decreases
inversely proportional to B. The transverse resonance takes
place, leading to the maxima in the conductivity (hence in the
resistivity as well), at magnetic fields,34

Bt,n
X(j,k) = h̄kF

npXe

[√
1 −

(
jπ

pXkF

)2

−
√

1 −
(

kπ

pXkF

)2]
,

(9)

when the width bX(j,k) coincides with n times the periodicity
pX, as depicted in Fig. 8 (left) for n = 1, taking the open
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FIG. 8. (Color online) Resonance conditions for the open orbit
A(0,1) generated by the periodicity pA. Resonance takes place when
the width bA of the open orbits coincides with the periodicity pA

responsible for the generation of the orbit (transverse resonance, B =
Bt ) or when the period cA along the length of the orbit matches the
periodicity of the modulation p′

A in the direction of the propagation
(longitudinal resonance, B = Bl).

orbit A(0,1) generated by the periodicity pA as an example.
The positions given by Eq. (9) with n = 1 are indicated
by downward triangles in Fig. 6(b), showing that the major
features are explicable with the transverse resonances with
lower indices (j,k) for the periodicity either pA or pB.

Since the open orbits possess the periodicity cX =
h/(eBpX) [regardless of the indices (j,k)] in the direction of
the propagation as illustrated in Fig. 7(c), and the periodicity
of the potential modulation, p′

X, is present also in that
direction (p′

A = a and p′
B = √

3a), an alternative type of the
resonances, longitudinal resonances, can be considered when
cX equals np′

X, namely, at

Bl,n
X = h

npXp′
Xe

, (10)

as exemplified in Fig. 8 (right). Note that Eq. (10) reduces to

Bl,n = 2√
3

h

na2e
(11)

for both the periodicities pA and pB in HLSL. A similar
resonance has been reported in a 1D lateral superlattice slightly
modified to have the modulation also along the direction
perpendicular to the principal axis (strictly speaking, therefore,
it is a 2D rectangular lateral superlattice), showing a resistivity
maximum at the condition corresponding to Eq. (10).34 The
positions of the resonances described by Eq. (11) are marked
by vertical ticks in Fig. 6(b), suggesting that some of the minor
structures in the magnetoresistance are actually originating
from the longitudinal resonances. Remnant unidentified
minor structures could possibly be resulting from higher-order
terms (n � 2) in Eq. (9) for periodicities pA and pB, or from
the transverse resonances for still smaller lattice spacings

FIG. 9. (Color online) Oscillatory part of the low-field magne-
toresistance for the HLSL with a = 100 nm obtained by subtracting
slowly varying polynomial background. Downward triangles indicate
the positions for transverse resonances given by Eq. (9). The lower
trace is taken with dB/dt = 1 mT/s. The upper trace, offset by 0.02
for clarity, is taken on a different cooling down roughly one month
after the bottom trace was acquired, with five times slower sweep rate
dB/dt = 0.2 mT/s thus exhibiting higher resolution.

embedded in the hexagonal lattice exemplified by pC in
Fig. 3(a). [Positions for longitudinal resonances are still
described by Eq. (11) for such periodicities.] However, these
resonances are so densely distributed in the magnetic-field
range shown in Fig. 6 that it is rather difficult to unambiguously
identify the small features in Fig. 6(b) with these resonances
within the resolution of the present experiment.

Finally, we plot in Fig. 9 the oscillatory part of low-field
magnetoresistance for an HLSL with a = 100 nm analogous
to that shown in Fig. 6(b) for a = 200 nm. We found that
both CO and AM of SdHO are extremely small for a =
100 nm, hindering us from drawing out reliable information
on the potential modulation through the analyses similar to
those done for a = 200 nm in the preceding Secs. III A
and III B. This is attributed to the weakness of the potential
modulation, owing to the smallness of the period a. Compared
with these oscillations, GROO can be identified clearer as
demonstrated in Fig. 9. This is consistent with the higher
sensitivity of GROO, compared with CO, to a small periodicity
p, mainly resulting from a higher characteristic temperature
that governs the decrease of the oscillation amplitude with
increasing temperature or decreasing magnetic field.35 In
Fig. 9, two traces taken on different cooling downs are shown.
Major peaks clearly recognizable in both traces take place
at the positions, indicated by the downward triangles, of the
transverse resonances Eq. (9) with n = 1 having lower indices
(j,k) for periodicity pA or pB, similar to the case in Fig. 6(b).
Slight shifts in the peak positions between the two traces are
possibly due to the small difference in the electron density
between different cooling downs. Some of the remnant features
in Fig. 9 are probably resulting from higher n transverse
resonances or from longitudinal resonances Eq. (11), although
unambiguous identification turned out to be difficult as was
the case for a = 200 nm.
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IV. DISCUSSION

A. Towards artificial massless Dirac fermions

Generation of artificial massless Dirac fermions (MDF)
in conventional 2DEGs is an enticing possibility. Not only
does it provide an alternative arena to pursue the physics of
Dirac fermions, but it also offers an opportunity to precisely
control or modify the properties of Dirac fermions; modern
semiconductor nanolithography technology, along with the
length scale orders of magnitude larger than the interatomic
distance, allows us to manipulate the hexagonal lattice at will.
For instance, we will be able to introduce designed strain into
the lattice to generate an effective magnetic field,63 or fabricate
nanoribbons truncated at the edges along desired orientations
(zigzag or armchair),64 which will be extremely difficult to be
performed on natural graphene.

Several attempts have been made to generate MDF in
conventional GaAs/AlGaAs 2DEGs,2–4 reporting (i) nar-
rowing of a photoluminescence peak,2 (ii) small amplitude
magnetoresistance oscillations periodic in B in the quantum
Hall regime3 (qualitatively resembling those observed in the
antidot lattices27), and (iii) splitting of the cyclotron resonance
absorption.4 The splitting in (iii) is similar to AM of SdHO
in the present study in the sense that both directly reflect the
broadening of the Landau levels due to the modulation (Landau
bands). Although these phenomena undoubtedly stem from
the potential modulation introduced into 2DEGs, they are not
particularly sensitive to the lattice type of the 2D modulation.
Above all, they are not probing the key ingredient in the
generation of the artificial MDF, the formation of minibands
by Bragg reflections. We believe that our observation of the
open orbits engendered by Bragg reflections represents one
step forward toward the realization of MDF.

However, a number of improvements are still needed to be
made. (Criteria for achieving MDF in 2DEGs are discussed in
detail in Ref. 4). First, the electron density ne has to be reduced
to ∼nD = (4/

√
3)a−2 in order to tune the Fermi energy EF

close to the Dirac point. The density nD equals 6 × 1013 and
2 × 1014 m−2 for a = 200 and 100 nm, respectively. For this
purpose, we prepared HLSL devices equipped with a backgate
which allows us to vary ne.65 However, the values of nD appear
to be too small to be achieved with the 2DEG wafer used in the
present study, preserving the quality (mobility) good enough
for the minibands to be formed without being hampered by
the disorder. It will be necessary to start with a 2DEG having
a higher mobility and a much smaller ne. Reducing the lattice
constant a will also be of help; by reducing a to 50 nm,
which is not impossible using our high-resolution resist, nD

is augmented to a more amenable value of 9 × 1014 m−2.66

Second, in order to avoid the Dirac cones from energetically
overlapping with other minibands, the sign of the hexagonal
potential modulation ought to be positive (repulsive).1,4,5

Unfortunately, none of the oscillations discussed in the present
study (CO, AM of SdHO, and GROO) is sensitive to the sign
of the modulation, and we therefore do not know whether our
hexagonal potential modulation is repulsive or attractive. If
the strain induced by the resist turns out to introduce attractive
potential, it will be necessary to switch to the honeycomb
lattice modulation dual to the hexagonal lattice.2

Very recently, Gomes et al. reported5 the generation
of MDF on a 2DEG at a copper surface, using carbon
monoxide molecules as a negative gate working on the 2DEG.
The molecules were assembled by the atomic manipulation
technique employing a scanning tunneling microscope (STM).
They probed the resulting Dirac cones using the scanning
tunneling spectroscopy. Although their result is impressive,
their method requires acrobatic operation of the STM. Also,
it will be probably not very easy to perform transport
measurement on a 2DEG at the copper surface residing
just above the bulk of the copper. We therefore believe that
generating MDF in a conventional semiconductor 2DEG is a
challenge still worth pursuing.

B. Towards the observation of the bubble phase

We extended the magnetoresistance measurement in the
dilution refrigerator (15 mK) up to 9 T, in search of the effect
induced by the hexagonal modulation in the quantum Hall
regime. We especially focused on 1/4 and 3/4 fillings of the
N = 2 and higher Landau levels, seeking for signals related to
the bubble phase theoretically predicted to be the ground state
at these fillings.7–9

The bubble phase is a charge density wave (CDW) state in
which clusters of two or three electrons are arranged in the
hexagonal lattice. Experimentally, reentrant integer quantum
Hall effect (RIQHE) observed at filling factors ν = 17/4,
19/4, . . . was interpreted as resulting from the bubble state
pinned by impurities.67 Later, microwave resonances were
observed at these fillings, which were ascribed to the pinning
mode of the bubble state.68 For these experiments, 2DEGs
having a very high mobility (μ � 1000 m2V−1s−1) were
required, since the formation of the fragile bubble state is
readily quenched by disorder. On the other hand, external
modulation having the same lattice constant and the lattice
type, namely, the hexagonal lattice, as the bubble state is
theoretically predicted to stabilize the bubble phase.6 We
therefore expect the bubble states to be formed in optimally
designed HLSLs even if the mobility is not as high. In fact,
anisotropic magnetotransport was observed to be induced by
external modulation in 1D lateral superlattices with a mobility
μ � 100 m2V−1s−1, which was ascribed to the stabilization
of the stripe phase,10,11 similarly fragile phase predicted to
be the ground state at the half fillings.7–9 Stabilization of the
bubble phase by the external modulation in HLSLs would
provide direct information on the spatial distribution of the
charge through the lateral size and the shape of the introduced
modulation. Note that experimental findings related to the
bubble phase reported so far67,68 do not have sensitivity to
the spatial distribution.

Unfortunately, we have found no changes above 1 T
attributable to the introduction of the modulation in HLSLs
thus far for both a = 200 and 100 nm. This is probably because
either the introduced lattice constant a or the strength of the
potential modulation was not appropriate. The lattice constant
aCDW of the bubble state is theoretically predicted to be
aCDW ∼ 3Rc = 3

√
2N + 1l.7,8 For our ne = 3.9 × 1015 m−2,

aCDW = 88, 93, 98, and 102 nm for ν = 17/4, 19/4, 21/4, and
23/4, respectively. Therefore a = 200 nm appears to be rather
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too large to promote the formation of the bubble phase. On the
other hand, a = 100 nm roughly matches the predicted aCDW.
In this case, however, the modulation was probably too weak
to overcome the detrimental effect exerted by the disorder.

Since the magnetic length l hence the lattice constant aCDW

at a fixed filling factor ν = neh/(eB) increases with decreasing
ne, we can increase the suitable a hence the modulation
amplitude by using smaller ne. Therefore it will be desirable,
here again, to prepare HLSL samples with 2DEGs with higher
mobility and smaller ne.

V. CONCLUSIONS

We have observed three types of oscillatory phenomena
in the magnetoresistance of hexagonal lateral superlattices
(HLSLs): commensurability oscillations (CO), amplitude
modulation (AM) of Shubnikov-de Haas oscillations (SdHO),
and the geometric resonances of open orbits (GROO). Both
CO and GROO contain components deriving from two
periodicities, pA = √

3a/2 and pB = a/2, immanent in the
hexagonal lattice with the lattice constant a, while only the
larger periodicity pA manifests itself in the AM of SdHO. As
in the case of square or rectangular 2D lateral superlattices,
amplitude of CO in HLSL is much smaller than that in 1D

lateral superlattices having a similar strength of the potential
modulation. By contrast, magnitude of AM in the SdHO is
comparable to that in 1D lateral superlattices and represents the
strength of the potential modulation correctly. The information
obtained here on the landscape (characterized by the Fourier
components and their amplitudes) of the hexagonal potential
modulation will form the basis of understanding intriguing
phenomena expected to be observed in the future studies.

The observation of GROO reveals that minibands are gen-
erated by Bragg reflections from the hexagonal superlattices,
which requires highly ordered modulation potential with a
small enough lattice constant close to the Fermi wavelength.
With further adjustment of the parameters of the 2DEG and
of the modulation potential, it might become possible in the
future to probe by magnetotransport experiments artificially
designed massless Dirac fermions (MDF) generated in the
miniband structure.
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49A. D. Mirlin and P. Wölfle, Phys. Rev. B 58, 12986 (1998).
50Above this B range, the oscillation amplitude grows with B slower

than predicted by Eq. (3).
51P. T. Coleridge, Phys. Rev. B 44, 3793 (1991).
52K. Koike, A. Endo, and Y. Iye (unpublished).
53T. Kajioka, Master’s thesis, University of Tokyo, 2011.
54This is equivalent to assuming that the amplitude Vp is the same

for the three directions, e.g., V(1,0) = V(1,−1) = V(0,−1) = VpA and

V(1,1) = V(2,−1) = V(0,−2) = VpB . This is not obvious in our sample,
since potential modulation is introduced by the piezoelectric effect,
which depends on the crystallographic directions. (In our Hall bars,
x axis is set parallel to one of the 〈110〉 directions, the directions
with the most prominent piezoelectric effect.) The effect of the
possible anisotropy in the modulation amplitude is too complicated
to be discussed with the data available in the present study.

55D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
56F. H. Claro and G. H. Wannier, Phys. Rev. B 19, 6068 (1979).
57D. E. Grant, A. R. Long, and J. H. Davies, Phys. Rev. B 61, 13127

(2000).
58C = 2 for ideally uniform 2DEGs but deviates from 2 in 2DEGs

with small (a few percent) inhomogeneity in the electron density,
see Ref. 51 .

59X. F. Wang, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 69,
035331 (2004).

60Equation (7) corresponds to Eq. (1) with Vp(1,0) = Vp(1,−1) =
Vp(0,−1) = VpA and Vp(h,k) = 0 for all the other (h,k).

61P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).
62T. J. Thornton, M. Pepper, H. Ahmed, G. J. Davies, and D. Andrews,

Phys. Rev. B 36, 4514 (1987).
63F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30

(2010).
64K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys.

Rev. B 54, 17954 (1996).
65Y. Kato, Master’s thesis, University of Tokyo, 2012.
66Generally, a 2DEG wafer with a high mobility and a low electron

density possesses a wide spacer layer that separates the 2DEG layer
from the doping layer, and thus located at a large depth from the
surface [typically d � 500 nm, see, e.g., L. Pfeiffer, K. W. West,
H. L. Stormer, and K. W. Baldwin, Appl. Phys. Lett. 55, 1888
(1989)], which is incompatible with the introduction of short length-
scale modulation. One way to circumvent the problem is to resort to
inverted structure that has the spacer and the doping layers beneath
the 2DEG layer.

67K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W.
West, Phys. Rev. B 60, 11285 (1999).

68R. M. Lewis, P. D. Ye, L. W. Engel, D. C. Tsui, L. N. Pfeiffer, and
K. W. West, Phys. Rev. Lett. 89, 136804 (2002).

235315-10

http://dx.doi.org/10.1016/S1386-9477(99)00107-1
http://dx.doi.org/10.1103/PhysRevB.64.041303
http://dx.doi.org/10.1103/PhysRevB.66.035328
http://dx.doi.org/10.1103/PhysRevB.66.035328
http://dx.doi.org/10.1143/JPSJ.77.054709
http://dx.doi.org/10.1103/PhysRevB.71.081303
http://dx.doi.org/10.1016/j.physe.2006.03.048
http://dx.doi.org/10.1016/j.ssc.2008.07.041
http://dx.doi.org/10.1147/rd.141.0061
http://dx.doi.org/10.1103/PhysRevLett.83.2234
http://dx.doi.org/10.1103/PhysRevLett.86.1857
http://dx.doi.org/10.1103/PhysRevLett.86.1857
http://dx.doi.org/10.1063/1.115958
http://dx.doi.org/10.1063/1.115958
http://dx.doi.org/10.1063/1.118301
http://dx.doi.org/10.1103/PhysRevB.62.16761
http://dx.doi.org/10.1143/JPSJ.74.2797
http://dx.doi.org/10.1103/PhysRevB.78.085311
http://dx.doi.org/10.1103/PhysRevB.41.12850
http://dx.doi.org/10.1103/PhysRevB.46.4667
http://dx.doi.org/10.1103/PhysRevB.58.12986
http://dx.doi.org/10.1103/PhysRevB.44.3793
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.19.6068
http://dx.doi.org/10.1103/PhysRevB.61.13127
http://dx.doi.org/10.1103/PhysRevB.61.13127
http://dx.doi.org/10.1103/PhysRevB.69.035331
http://dx.doi.org/10.1103/PhysRevB.69.035331
http://dx.doi.org/10.1103/PhysRevLett.55.1622
http://dx.doi.org/10.1103/PhysRevB.36.4514
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1038/nphys1420
http://dx.doi.org/10.1103/PhysRevB.54.17954
http://dx.doi.org/10.1103/PhysRevB.54.17954
http://dx.doi.org/10.1063/1.102162
http://dx.doi.org/10.1063/1.102162
http://dx.doi.org/10.1103/PhysRevB.60.R11285
http://dx.doi.org/10.1103/PhysRevLett.89.136804



