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k · p model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices
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We have fitted the k · p model derived recently by one of the authors [Klipstein, Phys. Rev. B 81, 235314
(2010)] to experimentally measured photoabsorption spectra at 77 and 300 K for representative InAs/GaSb
superlattices with band-gap wavelengths between 4.3 and 10.5 μm. The model is able to reproduce the main
features of the absorption spectra, including a strong peak from the zone boundary HH2 → E1 transition. We
have also used the same model to predict the band-gap wavelengths of over 30 more superlattices, measured by
photoluminescence spectroscopy. The maximum error is 0.6 μm, which corresponds to an uncertainty of less
than 0.4 ML in layer width. This is comparable with the experimental uncertainty in layer widths, determined
by in situ beam-flux measurements in the growth reactor. By eliminating all terms from the Hamiltonian, the
energy contribution of which is less than the error due to the uncertainty in layer widths, the number of unknown
fitting parameters has been reduced to six: two Luttinger parameters, three interface parameters, and the valence
band offset. The remaining four Luttinger parameters are not independent and are determined from the two
independent ones. Our set of Luttinger parameters is close to that reported by Lawaetz [Phys. Rev. B 4, 3460
(1971)], with a maximum deviation in any parameter of 0.6. The interface parameters are diagonal and have
values of DS = 3 eV Å, DX = 1.3 eV Å, and DZ = 1.1 eV Å at 77 K. The off-diagonal interface parameters α

and β are too small to be fitted with any accuracy and have negligible effect on the unpolarized photoabsorption
spectra. We also propose values for the room-temperature Luttinger and interface parameters. The fitted unstrained
InAs/GaSb band overlap is 0.142 eV.
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I. INTRODUCTION

The k · p model is perhaps one of the simplest and most
accessible methods for calculating the electronic structure and
physical properties of a wide range of inorganic semicon-
ductors. Sometimes referred to as the “standard model,”1 it
has gained wide popularity because it can be considered to
be a generalization of the familiar one-band effective mass
approach. In a recent ad hoc survey, Cardona estimated that
about 1500 articles bearing the term k · p in the title can be
found in literature bases, and that they have been cited about
15 000 times.2

While the application of the k · p model to bulk semi-
conductor materials is fairly straightforward, for example, in
the form of the Kane3 or Luttinger-Kohn4 Hamiltonians, its
formal application to semiconductor microstructures such as
superlattices and quantum wires has been the subject of wider
discussion. This is due, in part, to some uncertainty over the
precise boundary conditions to use for the envelope functions
at an interface between different semiconductor materials. For
nearly lattice matched materials, an important step towards the
resolution of this problem was to derive the envelope-function
equations using zone-center Bloch functions un(r) from a bulk
reference crystal as the basis states, and to treat the difference
between the microscopic potentials of the real heterostructure
and the reference crystal as a spatially dependent perturbation
δV (r).5 In the early 1990s, Burt used this approach to express
the Schrödinger equation in terms of its Fourier components,
and produced a set of coupled envelope-function equations
which included terms of the form �nn′δ(z − zi) for interfaces
located at zi .6 The mixing potential �nn′ was shown to depend
on the microscopic potential at the interface and the Bloch

functions un(r) and un′ (r) of the reference crystal. It took
the simple form �nn′ = 〈n|δV |n′〉 and described zone-center
mixing between states of different symmetry.7 Subsequently,
Foreman8 calculated typical values for the mixing potential
in a number of cases, including the mixing between heavy-
and light-hole valence states, or between conduction band
electrons and valence band light holes. It should be noted that
the mixing between heavy and light holes was first predicted
explicitly in 1992 by Aleiner and Ivchenko, based on an
analysis of the interface symmetry.9

Burt proposed that in the bulk regions of a superlattice, a
piecewise Kane- or Luttinger-type Hamiltonian could be used,
provided that the quadratic valence band terms were properly
“symmetrized.” Foreman10 implemented Burt’s prescription in
a six-band Kane model to show that terms of the form Nkzkx

should be replaced with kzDkx + kxH1kz, or its Hermitian
conjugate, where D = F − G and F , H1, and G are the Kane
parameters associated with the remote s, p, and d bands,
respectively.3 Foreman also derived a six-band Luttinger-
type Hamiltonian by adding the spin-orbit interaction and
transforming to a basis of heavy, light and spin-orbit split-off
hole states. A consequence of the Burt-Foreman symmetrized
term kzDkx + kxH1kz is that it leads to an additional interface
contribution proportional to kx�D.

The Burt-Foreman treatment did not deal with symmetriza-
tion of the Pkz terms, associated with the k · p interaction
between conduction and valence states in the eight-band case.
Also, as pointed out by Takhtamirov and Volkov in 1997,11

their treatment was not consistent in which of the second-order
perturbation terms it included, and which it omitted. These
terms are of magnitude δV̄ (k̄a)� with � = 2, where δV̄ is a
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typical band offset, h̄k̄ is the average momentum modulus of
the envelope function, and a is the bulk lattice parameter.12

Nevertheless, the Burt-Foreman treatment has become widely
adopted, presumably because of its simplicity and because
effects related to the interface band mixing potentials have
been observed experimentally.13–16 In fact, it can be argued that
the Burt-Foreman model with only the addition of a properly
symmetrized Pkz term provides a satisfactory approach for
fitting experimental data in common atom superlattices,
such as GaAs/AlGaAs, to an eight-band model. Since a
fluctuation of just one monolayer at constant superlattice
period already introduces an error of order � = 1,17 the
inclusion of higher-order terms in the model is of questionable
value.

In 1975, Leibler18 used the Luttinger-Kohn4 basis to
consider the effect of a slow composition variation, such as
might occur when the relative proportion of two materials, A
and B, in a semiconductor alloy is varied with position. His
approach was extended by Takhtamirov and Volkov19,20 to the
case of a semiconductor superlattice where the composition is
switched abruptly and periodically between materials A and
B. Following Leibler’s approach, they defined a composition
modulation function G(z) to describe the composition varia-
tion in the growth direction such that δV (r) = G(z)[UB(r) −
UA(r)] = G(z)δU , and UA(r), UB(r) are the microscopic
potentials of materials A and B, respectively. They derived
a general envelope-function equation in reciprocal space, but
only considered the real-space envelope-function equation in
detail for a single conduction band.

Although the treatment turns out to be somewhat cumber-
some, one of the authors recently used the Takhtamirov and
Volkov approach to derive real-space Kane-type Hamiltonians
for both six and eight bands.17 In that derivation, all of the
important terms up to � = 2 were included. Expressions were
derived for the symmetrization of the Nkzkx and Pkz terms,
which are not the same as Burt’s. A number of additional
interface terms were also introduced. It was shown that in
an ideal no common atom superlattice, G′(z) contains an
antisymmetric part that is essentially absent in an ideal com-
mon atom superlattice, and that this leads to large, diagonal,
first-order interface terms. Moreover, the off-diagonal terms
are expected to be smaller than those typical of a common
atom superlattice. Another useful feature that emerged in
the derivation was a demonstration that only two out of the
six Luttinger parameters needed to define the superlattice
Hamiltonian are independent, and that they can be used to
calculate the other four, without compromising on accuracy
up to order � = 2. As will be demonstrated in this work, this
provides a considerable reduction in the number of adjustable
fitting parameters that are needed to make a comparison with
experimental data, and it should thus lead to a more reliable
result. In the following, we shall refer to the eight-band form
of the Hamiltonian as the Takhtamirov-Volkov-Klipstein-8
Hamiltonian, or TVK8.

The aim of this work is to compare the TVK8 Hamiltonian
with experimental data, for no common atom type-II super-
lattices (T2SLs) in which A = InAs and B = GaSb. Such
InAs/GaSb superlattices were first proposed by Sai-Halacz,
Tsu, and Esaki21 in 1977 and are of current interest for a

number of applications, including as a possible alternative
to mercury cadmium telluride for infrared detection.22–24 We
consider a wide range of superlattice band-gap energies, and
also examine the well-known blue-shift of the band gap
with increasing GaSb thickness when the InAs thickness
is kept constant.25 It was previously claimed that the k · p
method can not reproduce this effect.26 We show here that
the TVK8 formulation of the theory succeeds very well at
reproducing not only the blue-shift of the band gap, but also
the whole absorption spectrum over a useful energy range,
including a strong feature due to zone boundary transitions
between the second heavy-hole band and the first electron
band.

Our approach is as follows. We begin by calculating the
photoabsorption spectra for several representative superlat-
tices, at 77 or 300 K, in order to find a single set of
six independent Luttinger and interface parameters that can
produce a reasonable fit to the data at each temperature.
Using the same 77-K parameters, we then compare the
band gaps determined by low-temperature photoluminescence
measurements with those predicted by the model, for about 30
more superlattices in which the InAs and GaSb layer widths
have been determined independently. All other parameters
used in the model, apart from the layer widths, can be
determined independently, and with sufficient accuracy, from
x-ray, spectroscopic, and mechanical measurements, and are
taken from well-established literature databases.27,28 The
method of layer-width determination is based on in situ beam-
flux measurements in the molecular beam epitaxy reactor
used to grow the structures, combined with x-ray diffraction
measurements of the superlattice period. We show that the
TVK8 model agrees with all of the experimental absorption
and photoluminescence data, to within an uncertainty of
±0.4 ML in any layer width, for band-gap photon wavelengths
spanning 4.3 to 12 μm. The fitted Luttinger parameters are
close to those originally proposed by Lawaetz,29 while the
large diagonal and small off-diagonal parameters deduced for
the first-order interface matrix are consistent with the expected
behavior of the TVK8 Hamiltonian.

The arrangement of this paper is now described. In Sec. II,
the TVK8 Hamiltonian is introduced and terms below the
desired degree of accuracy are eliminated. In Sec. III, we
introduce a method for solving the Hamiltonian and calculating
the absorption coefficient of the superlattice. The experi-
mental methods of photoluminescence spectroscopy, spectral
absorption, and layer-width determination are presented in
Sec. IV. These layer widths are used in Sec. V to calculate
energy dispersions and absorption spectra. The quality of the
agreement between the calculated band gaps and absorption
spectra and their experimental determinations is discussed in
Sec. VI. We present our conclusions in Sec. VII.

II. THE HAMILTONIAN

Our calculation is based on the standard spin-orbit Hamil-
tonian HSO, as quoted for example in Eq. (5) of Ref. 30, to
which is added the following 8 × 8 Hamiltonian matrix made
up of two diagonal blocks M, one for each spin direction,
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where M = M1 + M IF + Mstrain:

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
A′ (k2

x + k2
y

) + kzA
′kz iP kx iP ky i{(1 − f ) Pkz + f kzP }

+EC

}
−iP kx

{
Lk2

x + Mk2
y + kzMkz Nkxky Nkxkz

+Ev

}
−iP ky Nkxky

{
Mk2

x + Lk2
y + kzMkz Nkykz

+Ev

}
−i{f Pkz + (1 − f )kzP } Nkxkz Nkykz

{
M

(
k2
x + k2

y

) + kzLkz

+Ev

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

M IF =
∑

i

δ (z − zi)

⎡⎢⎢⎢⎣
DS 0 0 πiβ

0 DX πiα 0

0 πiα DX 0

πiβ 0 0 DZ

⎤⎥⎥⎥⎦ , (2)

Mstrain =

⎡⎢⎢⎢⎣
ac(2ε‖ + ε⊥) −iP ε‖kx −iP ε‖ky −iP ε⊥kz

iP ε‖kx {av(2ε‖ + ε⊥) + b(ε‖ − ε⊥)} 0 0

iP ε‖ky 0 {av(2ε‖ + ε⊥) + b(ε‖ − ε⊥)} 0

iP ε⊥kz 0 0 {av(2ε‖ + ε⊥) − 2b(ε‖ − ε⊥)}

⎤⎥⎥⎥⎦ . (3)

A full description of the matrices M1 and M IF is given in
Ref. 17, while Mstrain is based on Ref. 31. A′, L, M, N, and
P are the standard Kane k · p parameters,3 and ac, av , and b

are the standard Pikus-Bir deformation potentials.31 ε‖ and ε⊥
are strains parallel and perpendicular to the superlattice layers.
α, β, and the D parameters are interface-related parameters,
the first two of which change sign at normal and inverted
interfaces according to the parameter πi which takes values of
±1. f is a “symmetrization” parameter which also introduces
an interface contribution proportional to the change in the bulk

parameter P at each interface. Note that P = h̄

√
EP

2m0
, where

m0 is the free electron mass.
The Hamiltonian matrix M is the TVK8 Hamiltonian in

which all of the � = 2 perturbation terms have been omitted.
The reason for this is that their contribution is easily masked by
layer-width fluctuations of just a few tenths of a monolayer. It
will be demonstrated in Sec. IV that we are able to define the
layer widths experimentally to a typical accuracy of about
±0.2 ML, which is the standard deviation in a statistical
distribution of about 30 samples. In Sec. VI, we also perform
a direct estimation of the contribution to the band-gap energy
of the leading second-order interface terms that have been
omitted, where it is shown that their contribution is equivalent
to a thickness change of less than 0.3 ML. As expected, this is
comparable with our experimental level of accuracy, thereby
confirming that the omission of these terms is justified.

Terms of the form Nkxkz in Eq. (1) have not been expressed
in their “symmetrized” form because the interface contribution
due to the symmetrization is very small in an 8 × 8 model
and below our stated level of accuracy. In principle, the
f -symmetrization parameter can make a contribution of order

� = 1, and so it has been included formally in Eq. (1). However,
it should be noted that for the InAs/GaSb superlattices
considered in this work, �P ≈ 0 (see Appendix B). The
interface contribution due to �P is therefore quite negligible
in our case, and we simply choose a convenient value of
f = 0.5. Finally, we have not included any relativistic terms in
the Hamiltonian matrix since even the � = 1 relativistic terms
are estimated to be significantly smaller than the equivalent
nonrelativistic ones.17

The spin-orbit matrix and the matrices M1 and Mstrain

are piecewise matrices whose parameter values change from
layer to layer, while the interface matrix M IF has parameters
whose values depend on both superlattice materials, and
some of whose signs πi depend on the way in which they
are ordered. As mentioned in the Introduction, the diagonal
elements in the interface matrix M IF are expected to be
quite large for an ideal InAs/GaSb superlattice, while the
off-diagonal elements are expected to be significantly smaller.
For example, DS has the form 〈S|
a

0 · δU |S〉, in which |S〉
is the antibonding s-orbital crystal periodic function of the
reference crystal, with analogous expressions for DX and DZ .
The off-diagonal elements have the form α = 〈X|
s

0 · δU |Y 〉
and β = 〈S|
s

0 · δU |Z〉. The interface matrix thus depends on
the two functions 
a

0 and 
s
0, which were derived and plotted

at the end of Ref. 17. 
a
0 is an even function whose amplitude

is about five times greater than that of 
s
0, which is an odd

function. This suggests that typical values for DS , DX, and
DZ should be significantly larger than those for α and β.

It is well known that the interfaces can be grown with either
“InSb”-like or “GaAs”-like bonding, depending on the shutter
or valve sequence used in the growth reactor. These two
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interface types are represented by two sets of values for the
elements in the interface matrix M IF. In this work, we consider
only InSb-like interfaces. It should be noted that some authors
have tried to treat the interface without an interface matrix,
simply by inserting the appropriate bulk Hamiltonian matrix
for a single extra monolayer of InSb or GaAs, in a piecewise
treatment.32 This approach can not be correct for a number
of reasons. First, a two-dimensional (2D) monolayer does
not have the same band-edge energies as a three-dimensional
(3D) bulk layer. Second, the derivation of the real-space k · p
equation [Eq. (5) in Ref. 17] contains the integral∫

G(kz − k′
z)Fn(k′

z)dk′
ze

ikzzdkz, (4)

where k′
z and kz are wave vectors limited to the first Brillouin

zone of the bulk reference crystal (period = a), Fn is an enve-
lope function, and G is the composition modulation function
defined in the Introduction. This integral can be reduced to∫

G(z′)F̃n(z′)̃δ(z − z′)dz′ = ˜G(z′)F̃n(z′)

≈ G̃(z′)F̃n(z′), (5)

where the tilde symbol represents the filtering out of all Fourier
components outside the first Brillouin zone, the boundaries
of which are at ±kBZ. The last step in Eq. (5) represents
the standard convolution theorem in the limit kBZ → ∞.
While this step should be a reasonable approximation for
superlattices with layer thicknesses of more than a few
monolayers, as in this work, it may be a poor approximation
for a single monolayer, in which G(z) will contain large
Fourier components close to the Brillouin zone boundary.

III. CALCULATING THE ABSORPTION COEFFICIENT

The Fourier expansion method used to solve the superlattice
Hamiltonian is discussed in Appendix A. Using this method, it
is particularly simple to treat any of the TVK8 interface terms.
The method is used to calculate the energy dispersions of the
superlattice conduction and valence bands. In this Appendix,
we also derive an expression for the oscillator strength
of optical transitions between these bands. In this section,
we present an efficient numerical approach for calculating
the absorption coefficient of the superlattice, starting from the
dispersion and oscillator strength results. We do not include
excitonic effects in our treatment since the exciton binding
energy is very small (∼2 meV) and below our level of accuracy.

We divide k-space into many wedge-shaped cells,33 using
cylindrical polar coordinates. The joint density of states ρ

for transitions between a given pair of bands is calculated
by finding the number of transitions per unit energy interval
within each cell, ρ = �N

�E
, where �N is proportional to the

cell volume and �E is the difference between the maximum
and minimum energies at the eight cell corners. A fine enough
resolution is selected in order to ensure sufficient accuracy.
We have verified that the algorithm works well by comparing
the result obtained with the analytical value calculated for the
density of states of a very anisotropic parabolic dispersion,
with masses m1 = 5m2 = 25m3.

The absorption coefficient of a single cell δα, with average
transition energy E, joint density of states ρ, and average

oscillator strength S, is given by30

δα(E)�E = 4π2αf sh̄
2

nactEm2
0

ρSfv(k) [1 − fc(k)] �E, (6)

where αf s is the fine structure constant (αf s = e2

h̄c
≈ 1

137 ), m0

is the free electron mass, and nact is the refractive index
of the material. fv and fc are the Fermi-Dirac functions
of the valence and conduction band states, respectively. In
order to create the full absorption spectrum, we can sum
rectangle contributions with height δα and width �E, over
all cells, centered around the mean transition energy for each
cell, for all pairs of bands. However, it is more physically
realistic to introduce inhomogeneous (Gaussian) broadening
with a characteristic width �Ein. Provided we choose cell
dimensions small enough such that �E < �Ein in every cell,
the result becomes insensitive to the number of cells used in the
calculation. We therefore replace each rectangle by a Gaussian
of the same area, δα(E)�E, centered at the average energy
E and with a standard deviation σ = �Ein

2 . We use symmetry
considerations to reduce the k-space grid to the minimum size.
The calculation is performed only for positive q values and
angles between 0 and π .34 The result is then multiplied by 4.

IV. EXPERIMENTAL METHODS

A. Growth and characterization

The superlattice samples that were grown for this work had
InSb-like interfaces. They were grown on 2- or 3-in GaSb
substrates using a Veeco Gen III molecular beam epitaxy
(MBE) machine, with group-III SUMO cells and group-V
valved cracker cells.

X-ray diffraction (XRD) measurements were performed on
a Bruker D8 Discover diffractometer. They were carried out
to determine the superlattice period L and also the strain in
the sample. We only used samples with an absolute lattice
mismatch of less than 500 ppm, which corresponds to a
separation of less than ±120 arc seconds between the GaSb
substrate peak and the zero-order superlattice peak (assuming
no lattice relaxation in the superlattice). An example of the
XRD measurements can be seen in Fig. 1. Very narrow satellite
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FIG. 1. Example of x-ray diffraction spectrum for a T2SL sample.
Inset: Central peak region.
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FIG. 2. (Color online) Normalized PL spectrum at 10 K and
absorption spectrum at 77 K for sample SLMW02.

peaks can be observed, up to seventh order, indicating a
very high quality of growth. The region close to the central
peak is shown in the inset, and demonstrates the very small
separation between the substrate peak and the zero-order
superlattice peak, indicative of low strain as discussed above.
Measurements of the superlattice period and central peak
separation show very good uniformity from wafer center to
wafer edge. The separation change from center to edge is
typically less than 50 arc seconds, and the change in period is
less than 1 Å.

Photoluminescence (PL) and absorption measurements
were performed on a Bruker Equinox 55 Fourier Transform
InfraRed (FTIR) spectrometer, with a resolution of 4 cm−1.
The PL was measured at 10 K and the absorption at 77
K, using a closed cycle Advanced Research Systems optical
cryostat, and a liquid-nitrogen cooled optical test Dewar, re-
spectively. For the absorption measurements, the transmission
spectrum of the sample was measured before (T1), and after
(T2), etching away part of the superlattice, to a depth of
1–2 μm. The absorption coefficient is then given by α =
1
h

ln( T2
T1

), where h is the etch depth. This depth was mea-
sured with a Wyko interferometric microscope, which has
nanometer-scale resolution in the vertical direction. In Fig. 2,
we show examples of the PL and absorption spectra for sample
SLMW02 (see Table I for details). It can be seen that the PL
peak is very close to the onset wavelength of the absorption
spectrum, showing that both techniques give a good estimate
of the superlattice band gap at 77 K. The sharp features in both

TABLE I. List of the superlattices whose absorption spectra
were used to determine the fitting parameters of the k · p model.
The table lists the measurement temperature of each spectrum and
the layer widths of each superlattice, determined from growth flux
measurements and adjusted by up to ±0.4 ML.

Name Temp. (K) InAs (ML) GaSb (ML)

SLMW01 77 8.7 10.6
SLMW02 77 8.6 13.5
SLMW03 300 8.7 15.7
SLLW01 77 14.4 7.2

spectra at 4.2–4.3 μm are due to atmospheric carbon dioxide
absorption, and can be discounted.

B. Experimental determination of the layer widths

We used an approach based on in situ beam-flux mea-
surements of the In and Ga atomic beams to determine the
individual InAs and GaSb layer widths in each superlattice.
From these flux values, combined with the shutter timings,
and the XRD measurement of the superlattice period, we have
obtained a fairly accurate estimate of the layer widths. As will
be shown below, the typical accuracy is ±0.25 ML, with a
maximum error of about ±0.4 ML.

Our model of the superlattice growth is based on the
usual assumption that the group-III atoms have high sticking
coefficients and are therefore the species that determine the
growth rate. The thickness of an InSb interface was included
into the InAs layer width since both are determined by the In
flux and it is assumed that the sticking coefficient does not
change significantly between a bulk InAs layer and an InSb
interface. Moreover, in order to achieve lattice matching, the
InSb width has to be approximately 10% of the InAs width
since the lattice mismatch between bulk InSb and the GaSb
substrate is roughly 10 times greater than for bulk InAs. We
can now write a simple equation for the total period of the ith
sample as

1.1 × (tInφIn)iKIn + (tGaφGa)iKGa = Li, (7)

where tIn and tGa are the shutter times for InAs and GaSb layer
growth, respectively, φIn and φGa are the In and Ga fluxes,
and KIn and KGa are the growth coefficients that depend on
the geometry of the MBE machine and the sample growth
temperature.

Solving the system of equations⎡⎢⎢⎢⎢⎢⎢⎣

1.1 × (tInφIn)1 (tGaφGa)1

1.1 × (tInφIn)2 (tGaφGa)2

1.1 × (tInφIn)3 (tGaφGa)3

...
...

1.1 × (tInφIn)N (tGaφGa)N

⎤⎥⎥⎥⎥⎥⎥⎦
[

KIn

KGa

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

L1

L2

L3

...

LN

⎤⎥⎥⎥⎥⎥⎥⎦ (8)

for N superlattices with different ratios of InAs to GaSb
gives us the growth coefficients KIn and KGa. Over 30
samples were used in this fit, and a least-squares approach
was used to determine values for the growth coefficients
which gave the smallest error between the left- and right-hand
sides of Eq. (8). The InAs width was then determined as
L′

InAs = 1.05 × tInφInKIn and the GaSb width as L′
GaSb =

0.05 × tInφInKIn + tGaφGaKGa. Note that in this step the InSb
layer is assumed to be divided equally between the InAs and
GaSb layers. Since the period L has a higher accuracy than
either of the widths determined using Eq. (8), the width of
an InAs layer can be defined equally well as either L′

InAs
or L − L′

GaSb, with corresponding expressions for a GaSb
layer. We therefore take the average of the two expressions
in order to obtain the most accurate width values: LInAs =(
L − L′

GaSb + L′
InAs

)
/2 and LGaSb = (

L − L′
InAs + L′

GaSb

)
/2

for InAs and GaSb, respectively. These values always add
up to the most accurate period value L and are the values
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FIG. 3. (Color online) Superlattice layer widths used in the
k · p calculations. Solid: Layer widths determined from the flux
measurements. Diamonds are for the MWIR and circles for the LWIR
band-gap regions. Open circles: Nominal layer widths of the MWIR
samples with InSb-like interfaces, taken from Ref. 35.

that we use in the k · p calculations discussed in the next
section.

The results of the layer-width fitting by the flux method are
shown graphically in Fig. 3, where the solid points show LGaSb

plotted against LInAs. The points fall into distinct groups: the
three samples with an InAs width of between 8 and 9 ML
are plotted as solid diamonds and have band-gap wavelengths
in the mid-wave-infrared (MWIR) atmospheric transmission
window (3–5 μm), while those with InAs widths of between
12 and 16 ML are plotted as solid circles and have band-gap
wavelengths in the long-wave-infrared (LWIR) atmospheric
transmission window (8–12 μm). Note that in growing the
three MWIR samples, the InAs widths were intentionally kept
the same, while the GaSb width was varied by 2 to 3 ML in
each direction. The fitted values agree very well with a constant
value for the InAs width, and with the intended changes to the
GaSb layer. The five open circles are nominal width values
for five MWIR samples with InSb-like interfaces described
in Ref. 35. They have been included in Fig. 3 because we
compare their band-gap wavelengths with those of our own
samples in Sec. V.

The calculated period L′
InAs + L′

GaSb had an error of less
than 1.5 Å, compared with the XRD period value, in more
than 80% of the samples. The maximum error was 2.4 Å.
This corresponds to a typical error in the period of 0.5 ML,
and a maximum error of 0.8. If we assume that the errors in
the flux widths L′

InAs and L′
GaSb are similar and uncorrelated,

and significantly larger than the error in the XRD period L,
then the error in the expression L − L′

GaSb + L′
InAs will be

the same as the error already determined for L′
InAs + L′

GaSb.
Thus, the error in the individual InAs layer width LInAs =
(L − L′

GaSb + L′
InAs)/2 will be half as much, with a maximum

value close to 0.4 ML. This value represents the experimental
uncertainty with which we can compare our theoretical model
with experimental results. As will be shown in the next
section for a set of more than 30 samples, it agrees quite
well with the statistical distribution of the difference �LInAs

between the InAs layer width LInAs, determined as above,
and the InAs layer width calculated by fitting our k · p

model to the measured XRD period and photoluminescence
band-gap wavelength. This distribution has a maximum width
of ±0.4 ML and a standard deviation of about 0.2 ML.
As mentioned in Sec. II, these values justify the inclusion
in this work of terms of order � = 1, while omitting those
with � � 2.

V. RESULTS

In this section, we demonstrate that it is possible to fit
our experimental band-gap data with a single set of 6 fitting
parameters, for more than 30 superlattice samples spanning
the wavelength range 4.3 to 12 μm. The fitting parameters
are three interface parameters DS , DX, and DZ , two Luttinger
parameters γ1 and γ2 for InAs, and the valence band offset. In
Appendix C, it is shown that the other Luttinger parameters are
not independent but can be derived from the two fitted ones. We
do not rely on the literature values of the Luttinger parameters
because there is quite a wide variation of quoted values (e.g.,
see Ref. 36 which gives typical ranges) and because the source
of the most widely used values29 is based on theoretical scaling
arguments rather than precise experimental determinations.
In addition, we find that our results are quite sensitive to
even small changes in some of their values. All other model
parameters are well established, either from x-ray measure-
ments (lattice parameter), spectroscopic measurements (band
gaps, conduction band effective mass, deformation potentials),
or mechanical measurements (compliance coefficients), and
are taken from the databases in Refs. 27 and 28. Special
mention should be made of the values we have used for the
k · p parameter EP in InAs and GaSb. Our values differ from
some of those used by other workers, and are based on a fit
to bulk band gap and conduction band mass data from the
same database sources.37 The fitting procedure uses a bulk
five-band k · p model, as discussed in Appendix C, and gives
values which are very close to those quoted by Lawaetz.29

Table II in Appendix B lists our EP values, and the values of
all the parameters taken from literature databases. The final
values of the fitted parameters are listed in Table III of the
same Appendix. In that table, we quote values of 0.2 eV Å
for both interface parameters α and β. Nonzero values were
chosen for our calculations in order to demonstrate a spin
splitting in the valence band dispersion, as shown in Fig. 4.
However, zero values can be used with negligible effect on
the modeled band gaps or absorption spectra, so these are not
considered to be real fitting parameters. Their small values
are consistent with the theoretical predictions of Sec. II. An
additional fitting parameter η is required to fit the model to
experimental absorption spectra. This parameter simply scales
the absolute value of the modeled absorption, as discussed
in Appendix A, but does not affect the band gaps or the
wavelengths of any spectral features. We use a value of 1.45
in all of the examples discussed in the following.

We begin by discussing the general form of the dispersion
relation in Sec. V A and the absorption spectrum in Sec. V B.
For the absorption spectrum, we show that it is important to use
an energy-dependent inhomogeneous broadening parameter in
the model in order to obtain a true likeness to the measured
spectrum. We then present a detailed comparison between
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FIG. 4. (Color online) Dispersion relation of a 13.8/7.8
InAs/GaSb T2SL with InSb interfaces (superlattice period =
21.6 ML) for several directions in the Brillouin zone.

modeled and experimental results in Sec. V C, for both
absorption spectra and band-gap measurements.

A. Dispersion relation

The calculated dispersion relation of a 13.8/7.8 T2SL is
shown in Fig. 4 for two in-plane directions in the Brillouin
zone, and the perpendicular (growth) direction. This combina-
tion of layer widths was selected because its fundamental band
gap corresponds to λ0 = 9.5 μm, which is a useful wavelength
for infrared detection in the LWIR atmospheric window.

As seen in the figure, there is a spin splitting in the
in-plane direction, along with a small shift of the maximum
energy of each spin band away from the Brillouin zone center.
This occurs when the α parameter is nonzero and is related to
the orthogonal nature of the In-Sb bonds at the two interface
planes of a superlattice period.

B. Absorption spectrum

As mentioned in Sec. III, the k-space grid has to be
dense enough to ensure that the energy difference obeys the
relation �E < �Ein. In short-period superlattices, we expect
that the dominant mechanism that determines �Ein will be
fluctuations in the layer widths. In a simple quantum well,
fluctuations of the well width cause energy-level broadening
by an amount roughly proportional to the confinement energy.
We have therefore chosen to represent the inhomogeneous
broadening by a formula which gives an increasing level
of broadening with increasing transition energy (or shorter
transition wavelength λ):

�Ein = �E0 + �E1 − �E0

λ0 − λ1
(λ0 − λ), (9)

where �E1 and �E0 (<�E1) are the broadening at wave-
lengths λ1 and λ0 (>λ1), respectively.

A typical spectrum contains two main features. One is
the band-gap energy, labeled E0. The other is a peak at a
higher energy, labeled ED , which corresponds to the transition
between the second heavy-hole band (HH2) and the first
conduction band (E1), at the edge of the growth direction
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FIG. 5. (Color online) Calculated absorption spectrum for sample
SLMW01 with �E0 = 3 meV, and with three different values of �E1:
3, 25, and 60 meV.

Brillouin zone. It is convenient to set λ1 and λ0 at these
energies (λ1 for ED and λ0 for E0), using the relation λ = hc

E
.

�E0 is expected to be of the order of the PL line width
and �E1 is determined empirically to give the best fit to
the shape and amplitude of the ED peak in a measured
absorption spectrum. Figure 5 shows the calculated 77-K
absorption spectrum of sample SLMW01 (for sample details,
see Table I) with three values of �E1: 3, 25, and 60 meV,
while �E0 remained constant at 3 meV. The calculation
parameters can be found in Appendix B and are based on
a fitting procedure described in the next section. For the
time being, we simply note the differences in the spectrum
when changing the inhomogeneous broadening. In all three
calculations, λ1 = 2.3 μm and λ0 = 4.6 μm. In addition, the
k-space grid was chosen to be dense enough, so that the
condition �E < �Ein(λ) was maintained over the whole
spectral region, except for the case of �E1 = 3 meV, where
it was maintained over most of the region. It can be seen
that in the case where all broadening is equal to the band-gap
broadening (dashed line), the spectrum looks unphysical and
the ED peak is too sharp and almost singular. On the other
hand, increasing the broadening too much can result in over
broadening, which causes other features in the plot to vanish
(dotted line). The solid line (�E1 = 25 meV) corresponds to
a more realistic value for �E1 and this is the value that was
used to fit the absorption spectra in our three MWIR samples.
For the absorption spectrum of our LWIR sample, SLLW01,
larger values had to be used for both broadening energies
�E0 = 15 meV and �E1 = 60 meV, with λ1 = 2 μm. The
reason for this increase is that a substrate was selected which
had transmission in the LWIR range, and unfortunately this
substrate was of poorer quality than those used for the growth
of our other samples. The surface of the grown wafer was
significantly rougher than for the superlattices that were used
for the MWIR absorption measurements.

We have found that it is possible to decrease the number
of points in the k-space grid considerably, even to the point
where the condition �E < �Ein(λ) no longer applies for all
transitions, before the form of the absorption spectrum starts to
show significant deviations. In our experience, it is crucial to
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FIG. 6. (Color online) Calculated absorption spectrum of sample
SLMW01 with fitted (solid) and zero (dashed) interface parameters.

maintain the condition �E < �Ein(λ) for transitions near the
absorption edge, while some transitions at higher energies,
including ED , can have �E > �Ein. Thus, we find that
when integrating over 10% of the in-plane Brillouin zone,
a reasonable number of points in k-space is 50 values of the
in-plane wave vector K, 5 values of the in-plane polar angle
θ , and 20 values of the growth direction wave vector qz. This
is enough to obtain an absorption plot that is indistinguishable
from a plot like the solid line shown in Fig. 5, where
all transitions comply with the condition �E < �Ein(λ). It
means that we can reduce the running time of the calculation
considerably because we only have 5000 k-space points (this is
about 20% of the number of points used to calculate the plots in
Fig. 5). We have managed to reduce the calculation time for one
spectrum of a typical T2SL to between two and four minutes,
using a MATLAB program optimized for parallel computing, on
a desktop computer with a consumer level quad-core processor.

Finally, we demonstrate the significance of the interface
parameters DS , DX, and DZ on the calculated absorption
spectrum. Figure 6 compares the absorption spectra of sample
SLMW01 when calculated with the fitted or zero interface
parameters. The latter corresponds to a model without an
interface matrix (if we ignore the negligible effect of α and
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FIG. 7. (Color online) Measured (solid line) and calculated
(dashed line) absorption spectrum of sample SLMW01, at 77 K.
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FIG. 8. (Color online) Measured (solid line) and calculated
(dashed line) absorption spectrum of sample SLMW02, at 77 K.

β). As seen in the figure, the interface parameters have a
substantial effect. Every feature in the spectrum, especially
the cutoff wavelength, is shifted and not in the correct place
if zero values are used. If we try to fit the superlattice layer
widths with zero interface parameter values, we get a very
large deviation from the flux-calculated widths (>1 ML), well
beyond the acceptable error discussed in Sec. IV.

C. Fit to experimental results

We first compare the calculated absorption spectra of
four representative superlattice samples with their measured
spectra, as shown in Figs. 7–10. Three of these are in the
MWIR spectral region and one in the LWIR region. For two of
the MWIR samples, and the LWIR sample, the fits are shown
for spectra measured at 77 K, while for the third MWIR sample,
the fit is shown for a 300-K spectrum. The four samples are
listed in Table I together with the temperature at which each
of the presented absorption spectra was measured. Although
we only show a fitted room-temperature spectrum for sample
SLMW03, we have obtained similar quality fits for the other
two MWIR samples at room temperature. We did not measure
the absorption spectrum of this sample at 77 K.
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FIG. 9. (Color online) Measured (solid line) and calculated
(dashed line) absorption spectrum of sample SLMW03, at 300 K.
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FIG. 10. (Color online) Measured (solid line) and calculated
(dashed line) absorption spectrum of sample SLLW01, at 77 K.

During the fitting process, great effort was made to fit
both the band-gap energy E0 and the peak energy ED in the
absorption spectrum. We allowed changes of up to ±0.4 ML
in the InAs widths (at constant period), relative to the values
determined experimentally from the beam-flux measurements,
consistent with the precision of the beam-flux measurements
discussed above. In all cases, a much smaller change was
needed in order to find the best match to the measured band-gap
wavelengths. The final width values are also listed in Table I.

After the optimal set of parameters was found from the
four absorption spectra, the same parameter set was used to
calculate the PL peak wavelengths (band-gap wavelengths)
of many other samples. The experimental layer widths were
used without adjustment. The solid points in Fig. 11 show the
deviation between the calculated and measured wavelengths
for our samples

(
�λ = λPL − λk·p

)
. All samples are within

a 0.6-μm wavelength deviation from the measurement, and
most have a deviation of less than 0.4 μm. The value of the
valence band offset (VBO) that was used (0.560 eV), both
to fit the low-temperature absorption spectra and to predict
the PL wavelengths, was found (iteratively) by ensuring that
the wavelength deviations in Fig. 11 had a fairly symmet-
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FIG. 11. (Color online) Deviation of predicted PL wavelengths
from the measured PL peak wavelengths. The dashed and dotted lines
indicate the effect of an error of kBT in band-gap energy at 77 K.
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FIG. 12. (Color online) Deviation of fitted InAs widths from the
growth nominal widths. Solid: Nominal width is the width calculated
by the flux method. Circles: Nominal layer width is taken from
Table VI in Ref. 35.

rical distribution around zero, with no systematic bias. It
corresponds to a band overlap in the unstrained materials of
0.142 eV.

The dashed and dotted lines in Fig. 11 indicate the range of
error for a variation of ±kBT in the band-gap energy at 77 K.
Since one of the main applications of InAs/GaSb superlattices
is as the absorber in an infrared detector operating typically
at 77 K, the fact that all the points lie within these lines
shows that the wavelength deviations are mostly below typical
thermal broadening. The precision of our results is also shown
in Fig. 12, in this case in terms of the layer-width uncertainty.
The solid points in Fig. 12 show a comparison between the
InAs layer width determined by a fit to the measured PL peak
wavelength and XRD period, LInAs,k·p, and that determined
by the flux method, LInAs, for all of our samples. In the
figure, the difference between these two values, �LInAs =
LInAs − LInAs,k·p, is plotted as a function of LInAs. All of our
samples fit within the allowed experimental margin of error of
±0.4 ML discussed in Sec. IV. Indeed, more than 70% of them
fall within a range of ±0.2 ML, which is close to the standard
deviation of the distribution of �LInAs values in Fig. 12.

We have also included data in Fig. 12 as open points, for five
MWIR samples with InSb-like interfaces and with band-gap
wavelengths between 3.5–4.5 μm, taken from Szmulowicz,
Haugan, and Brown,35 where the experimental layer widths
used for LInAs are their quoted nominal values. In this case,
the deviations are larger than for our samples, with the width
deviation increasing as the InAs layer width decreases. Most
of the InAs width deviations for the five samples are between
0.2 and 0.6 ML, and the largest is still less than 0.9 ML. We
take this behavior to indicate reasonable agreement with our
model, noting that the layer widths in that work were standard
nominal values and may not have been calibrated as precisely
as in this work.

VI. DISCUSSION

The optical absorption and photoluminescence results
presented in Figs. 7–12 of the previous section show that our
k · p model provides a reasonably good description of the main
spectral features of InAs/GaSb superlattices with InSb-like
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interfaces, over a wide range of band-gap energies. The
band gap E0 and the peak ED in the absorption spectra are
reproduced quite well, both in energy and form. In addition,
an interesting blue-shift effect is demonstrated in Figs. 7 and
8, which show a shift of nearly 0.3 μm when the GaSb width
is increased by ∼3 ML without changing the InAs width.
Figure 12 shows that the shift can be fitted with a precision
of better than 0.1 ML. Thus, the blue-shift is also reproduced
very well by our model and is an effect that some previous
k · p treatments have failed to predict.26 In the remainder of
this section, we discuss a number of issues concerned with
the accuracy of our treatment and how it compares with other
recent work.

The main source of error in our comparison between mod-
eled and experimental results is an imprecise knowledge of the
layer widths, which are known with an individual uncertainty
of about ±0.4 ML, or with a statistical uncertainty of about
±0.2 ML for our sample set. We can compare this uncertainty
with the effect of some of the second-order terms, of magnitude
� = 2, that we have omitted, namely, the off-diagonal term
hSZ = ∑

i δ (z − zi) iχ1kz and its Hermitian conjugate hZS =
−∑

i iχ1kzδ (z − zi), which appear in Eqs. (28) and (30) of

Ref. 17. Taking a characteristic value of χ1 = 3 eV Å
2
, based

on our best estimate of the momentum, band gap, and interface
parameters on which this coefficient is based, we calculate
a shift in the band gap of the superlattice shown in Fig. 4
equivalent to an InAs width change (at constant period) of
less than 0.3 ML. This is comparable with our experimental
accuracy limit and so justifies our omission of such terms.

In our solution of the Hamiltonian given by Eqs. (1)–(3),
described fully in Appendix A, we do not include Fourier
components for the envelope functions outside the first
Brillouin zone [i.e., j � jmax in Eq. (A2)]. We now consider
how this may affect the accuracy of our approach compared
with other approaches, in particular exact real-space solutions
based, for example, on transfer-matrix techniques.35 The exact
solution can be found in our case by increasing the limits of
the summation in Eq. (A2) beyond the value of jmax given
in Eq. (A3b) until the band-edge energies converge fully. We
have found that for representative superlattices with band-gap
wavelengths between 3.5 and 12 μm, the difference between
these energies and those for j � jmax corresponds to InAs
width changes of less than + 0.3 ML for the conduction band,
and about −0.5 ML for the valence band (at constant period).
Moreover, for two superlattices with the same period and band
gap, calculated with a truncated or a full Fourier summation,
there can be a difference of up to 0.6 ML in the InAs thickness.
The parameters which give the best fit to experimental data
for an exact real-space solution will therefore differ quite
noticeably from those given in Table III of Appendix B for
our truncated solution. We have not checked whether a unique
set of parameters can be found in that case which gives the
same quality of fit to the data. It should be noted, however,
that the truncated solution better reflects the Fourier makeup
of the true envelope functions, which contain no components
outside the first Brillouin zone. Nevertheless, this solution,
or an exact real-space solution, are both approximations. As
discussed at the beginning of Appendix A, the exact solution

must be obtained by solving the k-space Hamiltonian which
contains none of the approximations required to transform it
to real space. Fortunately, these approximations are expected
to introduce errors corresponding to � � 2 (see Appendix A)
which are small enough to be ignored at our stated level of
accuracy, and also appear to be consistent with variations
between the different real-space treatments estimated above.

Two k · p treatments which drew attention to the signifi-
cance of interface effects in InAs/GaSb superlattices are those
of Lau and Flatte38 in 2002, and Szmulowicz, Haugan, and
Brown35 in 2004. The experimental results of the latter work
for samples with InSb-like interfaces were included in Fig. 12
above (see Sec. V). Both works considered short-period super-
lattice samples with band-gap wavelengths in the range 3–4.5
μm. In the work of Lau and Flatte, on mixed interface samples,
limited agreement was obtained between experimental band-
gap and absorption results, while Szmulowicz et al. reported
reasonable agreement of band-gap energies for samples with
either identical or mixed interfaces. Szmulowicz et al. used α

values of αInSb ≈3.5 eV Å and αGaAs ≈ 0 eV Å to model InSb-
like and GaAs-like interfaces, respectively, while diagonal
interface parameters DS , DX, and DZ were not included (Lau
and Flatte used an identical approach to Szmulowicz et al., with
αInSb ≈ 2.6 eV Å and αGaAs ≈ 0.4 eV Å). Most other model
parameters in Szmulowicz et al. are similar to the parameters
listed in Appendix B of this work, although our value of
EP for GaSb (discussed in Appendix B) is ∼3 eV smaller,
which is quite a significant difference. The agreement between
experimental and theoretical results in both their work and our
work highlights the potential ambiguity of k · p treatments,
where good agreement with band-gap data can be obtained
over a limited range of wavelengths for different parameter
sets. This ambiguity must be resolved by fitting additional
features, such as ED , and increasing the wavelength range. In
fact, using α values close to 3.5 eV Å for InSb-like interfaces
and setting all other interface parameters to zero, as in Ref. 35,
we were unable to obtain a reasonable fit to the band gap E0

or the higher-energy ED feature in our measured absorption
spectra shown in Figs. 7 and 8 for SLMW01 and SLMW02.

The ability of our parameter set to fit experimental data with
band-gap wavelengths between 3.5 and 12 μm and to provide
a reasonably accurate prediction of the form and energy of the
ED feature for superlattices with band-gap wavelengths in both
the MWIR and LWIR ranges gives us some confidence in the
validity of our approach. In this approach, the only significant
interface contribution is from the three D parameters, while
the α- and β-interface parameters are essentially negligible.
Our approach is consistent with the expectation, mentioned
earlier, of much smaller values for α and β than for the D
parameters in no common atom superlattices. It is interesting
to note that we have succeeded in using a single set of interface
parameters for nearly 40 superlattice samples with InSb-like
interfaces, including those of Ref. 35, grown at different times
and even in two different laboratories (see Fig. 12). This
suggests that these interface parameters are not very sensitive
to variations in interface abruptness. A possible reason is given
by the following argument. Although the functions 
s

0 and 
a
0

in the TVK8 model (see Sec. II) reduce in amplitude as the
interface abruptness is reduced,17 this reduction is not related
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to interface grading where, for example, the In-Sb interface
bonds are distributed over several ML. The TVK8 model
only applies to metallurgically abrupt interfaces, located on a
single atomic plane. Foreman39 has pointed out that when the
interfaces become significantly graded, an atomic description
must be used. Using such an approach, Foreman has shown
that the interface band mixing is actually rather insensitive
to a reduction in interface abruptness: its strength remains
essentially constant and only its width changes.

A nonzero interface parameter α causes the mixing of
heavy and light holes at the zone center. This can introduce
a contribution to the anisotropy of the optical and electrical
properties for samples in which the symmetry along the
growth direction is broken,14–16 for example, when alternating
InSb- and GaAs-like interfaces are used, or when interfaces
of the same type are used and an electric field is applied
perpendicular to the layers. Semenikhin et al.40 calculated
a value of α = 0.23 eV Å for a planar abrupt InAs/GaSb
interface41 using a pseudopotential approach similar to that
introduced by Foreman.8 They showed that for such a small
value of α, other contributions to the optical anisotropy, such as
those due to bulk inversion asymmetry and relativistic effects,
are larger than the nonrelativistic α-interface contribution.42

On the other hand, α values greater than 3 eV Å should result
in quite dramatic optical anisotropies. Our results, in which
α ≈ 0, β ≈ 0, are consistent with the estimate of Semenikhin
et al.40 and suggest that anisotropy effects will be very weak.
Experimental investigations of the strength of the optical
anisotropy for polarizations along [110] and

[
1̄10

]
could

therefore be useful for confirming the magnitude of α, and may
help to provide an independent estimation of its magnitude.

A number of other k · p treatments have recently claimed
good correspondence between the modeled and measured band
gaps. Li et al.43 use an interface matrix in which DS = β =
0 and α = DX = DZ = 0.870 eV × 6.1 Å ≈ 5.3 eV Å for
InAs on GaSb (GaAs like interface) and 0.49 eV × 6.1 Å ≈
3.0 eV Å for GaSb on InAs (InSb-like interface). They studied
superlattices with band-gap wavelengths in the range of ∼3.5
to 5 μm. Hong et al.44 worked over a similar wavelength range
and used a standard piecewise k · p model with no interface
terms. They claimed good correspondence with experimen-
tally measured band-gap wavelengths when the interfaces were
graded over about 2 ML and the superlattice had the composi-
tion InAs0.91Sb0.09/GaSb. This further highlights the ambiguity
of different parameter sets and interface formulations for
a narrow range of band-gap wavelengths. Neither of these
approaches treats the interfaces consistently with the TVK8
model, which we believe to have a stronger physical basis.

VII. CONCLUSIONS

The eight-band TVK8 k · p Hamiltonian has recently been
proposed17 as a successor to the Burt-Foreman model of
semiconductor superlattices. It includes all important bulk and
interface terms up to order � = 2 in δV̄

(
k̄a

)�
, including some

terms that were left out in the Burt treatment. This results
in different symmetrization expressions for the bulk terms
compared with the Burt-Foreman model, and it introduces
important diagonal interface terms for no common atom
superlattices, such as InAs/GaSb, that are absent in ideal
common atom superlattices, such as GaAs/AlAs.

We have used a model based on the TVK8 Hamiltonian
to fit the absorption spectra of representative InAs/GaSb
superlattices measured at 77 and 300 K, with band-gap
wavelengths in the technologically useful 3–5 and 8–12 μm
ranges, corresponding to important transmission windows
in the atmosphere. Our model only includes the Fourier
components of the envelope functions lying in the first bulk
Brillouin zone, and is able to reproduce all of the main
features of the absorption spectra reasonably well, including
the blue-shift of the band-gap wavelength with increasing
GaSb thickness and a strong peak arising from zone boundary
transitions between the second heavy-hole state and the first
electron state. The same model was also able to predict the
band-gap wavelengths of about 30 more superlattice structures,
with a typical accuracy of ±0.3 μm. These wavelengths were
measured by photoluminescence spectroscopy at 10 K and
spanned a range similar to the band-gap wavelength range
of the absorption measurements. If the measured photolumi-
nescence wavelength is used to predict the layer widths, the
typical deviation from the measured value is 0.2 ML with a
maximum error of 0.4 ML. This error agrees very well with
the error in the layer widths calculated from the reactor growth
rate constants, and represents the typical precision with which
an InAs/GaSb superlattice structure can be grown.

A ML change in layer width corresponds to a band-
edge energy shift of order δV̄ (k̄a). Our individual layer-
width accuracy of ±0.4 ML means that the layer widths of
nominally identical superlattices may differ by up to 0.8 ML.
Therefore, the fluctuation in the individual band-gap energies
will also be of order δV̄ (k̄a). However, since we consider
the statistical distribution of more than 30 superlattices, the
center of the distribution can be determined rather more
accurately, to within one or two tenths of a monolayer,
and on this basis we have justified keeping terms in the
TVK8 Hamiltonian with � = 1, while omitting all those with
� > 1. This essentially reduces the number of unknown fitting
parameters to six: two Luttinger parameters, three interface
parameters, and the valence band offset. All other k · p
parameters can be determined with reasonable accuracy from
available experimental x-ray, spectroscopic, and mechanical
data. We have demonstrated that, at the stated level of accuracy,
the remaining four Luttinger parameters are not independent
and can be determined from the two independent ones and
measured band-gap energies in bulk InAs and GaSb. Our full
set of Luttinger parameters is close to the set predicted by
Lawaetz,29 with a maximum deviation in any parameter of
0.6. The diagonal interface parameters have fitted values of
DS = 3 eV Å, DX = 1.3 eV Å, and DZ = 1.1 eV Å at 77 K.
The off-diagonal interface parameters α and β are too small
to be fitted with any accuracy and have negligible effect
on the unpolarized absorption spectra. Measurements of the
absorption difference between [110] and

[
1̄10

]
polarizations

in asymmetric structures, or in the presence of a perpendicular
electric field, may help to establish a more precise value for
α. Our fitted value of the band overlap between unstrained
InAs and unstrained GaSb is 0.142 eV. Note, however, that
since our treatment has a typical error corresponding to � = 2
because terms of this order have been omitted, the accuracy of
the fitted overlap can be no better than about ±0.01 eV.45 We
have also proposed values for the room-temperature Luttinger
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and interface parameters by fitting the TVK8 model to room-
temperature absorption spectra with band-gap wavelengths of
about 5 μm.

We suggest that our method of reducing the number of
independent Luttinger parameters should provide a useful
approach for the determination of the Luttinger parameters in
narrow band-gap semiconductor alloys such as InAsSb, where
there is a significant degree of band-gap bowing. Using the
constraint relations given in Eqs. (C1a)–(C1d) and band-gap
results from spectroscopic measurements, γ3 for the alloy and
the Luttinger parameters of a reference material such as GaAs
can be calculated by adjusting γ1 and γ2 for the alloy until
the error in the three GaAs Luttinger parameter values is
minimized.
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dence with É. E. Takhtamirov. We also thank M. Katz and O.
Westreich of the Soreq Research Center for assistance with
some of the PL measurements.

APPENDIX A: METHOD OF SOLUTION

1. Fourier-transformed Hamiltonian

We have followed the work of Gershoni et al.30 in
the solution of the Hamiltonian given by Eq. (1). Making
the substitution kz → −i d

dz
, we start by writing the 8 × 8

Hamiltonian for the superlattice as a set of eight coupled
equations:

8∑
n′=1

Hnn′

(
z,kx,ky, − i

d

dz

)
Fn′(z) = EFn(z). (A1)

The one-dimensional envelope functions Fn (z) are ex-
panded into a discrete Fourier series:

Fn(z) =
jmax∑

j=−jmax

Fn(j )φj (z), (A2)

where

φj (z) = 1√
L

ei 2π
L

(j+qz)z, (A3a)

jmax = L

aav
. (A3b)

L is the superlattice period and aav is the average cubic
lattice constant in the growth direction. The summation in
Eq. (A2) has been limited to jmax so that only Fourier com-
ponents within the first bulk Brillouin zone are included. This
reflects the Fourier makeup of the envelope functions which
are exact solutions of the k-space Hamiltonian.17,20 It should
be noted, however, that in the transformation to real space, the
limitation of Fourier components to the first Brillouin zone was
dropped. This resulted in a real-space Hamiltonian whose exact
mathematical solution requires envelope functions with all
Fourier components. Takhtamirov and Volkov argued that the
contributions with j > jmax should correspond to corrections

of order � � 2,20 in which case they are small enough to be
neglected. In Sec. VI, solutions with j � jmax and j � j ′

max are
discussed, where j ′

max → ∞, and it is shown that the difference
between the two solutions, both of which are approximations
to the exact solution, is in fact quite significant.

The parameter qz is inserted in order to satisfy Bloch’s
theorem that in the z direction,

Fn(z + L) = Fn(z)eiqL, (A4)

where qz is defined as q = 2πqz

L
and spans the entire mini-

Brillouin zone of the superlattice (−0.5 � qz � 0.5).
The set of coupled differential equations in Eq. (A1) can

be converted into a set of coupled algebraic equations by
multiplying by φ∗

j (z) and integrating over the superlattice
period. The result is

8∑
n′=1

jmax∑
j ′=−jmax

Hnn′ (j + qz,j
′ + qz)Fn′(j ′ + qz)

= EFn(j + qz), (A5)

where

Hnn′ (j + qz,j
′ + qz)

=
∫

dz φ∗
j+qz

(z)Hnn′(z,kx,ky,kz)φj ′+qz
(z). (A6)

When performing the Fourier-transform integral for Hnn′ ,
we need to remember that the superlattice is constructed of
two materials (A and B) and two interfaces (B on A, labeled
BA, and A on B, labeled AB). We can divide the integral into
four parts:∫

period
=

∫ LA−ε

ε

+
∫ LA+ε

LA−ε

+
∫ LA+LB−ε

LA+ε

+
∫ LA+LB+ε

LA+LB−ε

,

(A7)

where ε → 0 indicates the interface layer. The first and third
integrals are on materials A and B, respectively, and the
second and fourth integrals are on the BA and AB interfaces,
respectively. All yield simple linear or exponential terms which
depend on the Fourier indices j and j ′ and the coordinates of
the interfaces.

The dispersion relation is obtained by diagonalizing the
Hamiltonian [Eq. (A5)], with different values of kx, ky , and
qz.

2. Transition oscillator strength

The oscillator strength for a given energy transition can be
calculated by taking the square of the absolute value of the
optical matrix element of the selected transition. The optical
matrix element is given by

Mv,c = 〈�c(z)|ê · h̄

i
∇|�v(z)〉, (A8)

where ê is the polarization vector of the optical electric field
and �v and �c are the wave functions of the hole and electron
states, respectively, involved in the transition. At this stage,
we assume that these wave functions have the general form∑8

n=1 Fn (z) un (r), where un (r) is a zone-center Bloch state
of the bulk reference crystal.
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When we insert the wave functions into Eq. (A8), we obtain

Mv,c =
8∑

n,n′=1

∑
j

∑
j ′

Fc∗
n,jF

v
n′,j

×
∫

φ∗
j (z)u∗

n(r)ê · h̄

i
∇[φj ′(z)un′(r)]d3r. (A9)

The integral can be written as∫
φ∗

j (z)φj ′(z) · u∗
n(r)ê·h̄

i
∇un′ (r)d3r

+
∫

u∗
n(r)un′ (r) · φ∗

j (z)ê · h̄

i
∇φj ′(z)d3r. (A10)

Let us denote the first integral I1. Under the assumption
discussed above, that the Fourier components of the envelope
functions lying outside the first bulk Brillouin zone are small
enough to be ignored, the integral can be separated into the
product of integrals over the superlattice unit cell and the bulk
unit cell of the reference crystal:4

I1 = h̄

i

∫
SL cell

φ∗
j (z)φj ′(z)dz

∫
Bulk cell

u∗
n (r)

×
∑

i=x,y,z

ei

∂

∂i
un′ (r) d3r. (A11)

Substituting the expression for φ in Eq. (A3a), and
noting that the P parameter of the reference crystal is P =
−i h̄

m0
〈uS |px |uX〉, this expression becomes

I1 = iP
m0

h̄
δjj ′

×
∑

i=X,Y,Z

[
ei

∑
k=↑,↓

(
δn,Sk

δn′,ik − δn,ik δn′,Sk

) ]
, (A12)

where we only consider near-band-gap optical transitions
between p-like valence states and s-like conduction states. The
two summations are over three polarization directions and two
electron spin directions. For example, the first element in the
double summation is i = X and k =↑. In this case, the sum
argument is

δn,S↑δn′,X↑ − δn,X↑δn′,S↑.

The second integral in Eq. (A10), denoted I2, is zero for
optical polarization in the plane when considering interband
transitions.

Finally, the oscillator strength Sv,c is given by

Sv,c = |Mv,c|2

=
(

ηP
m0

h̄

)2

×
∣∣∣∣∣

jmax∑
j=−jmax

∑
i=X,Y,Z

[
ei

∑
k=↑,↓

(
Fc∗

Sk,j
F v

ik,j
− Fc∗

ik ,j
F v

Sk,j

)]∣∣∣∣∣
2

.

(A13)

η is an empirical constant, inserted to account for the fact
that the basis wave functions of the 8 × 8 Hamiltonian are not
in fact pure S, X, Y, and Z orbitals of the reference crystal,
but contain small (spatially dependent) admixtures of other

TABLE II. Material parameters of InAs and GaSb used in the
calculations for temperatures of 77 and 300 K. All values, except EP,
were taken from Refs. 27 and 28. The EP values are close to those
predicted by Lawaetz (Ref. 29) and were determined independently
(Ref. 37) by the five-band k · p treatment discussed in Appendix C.
The temperature dependence of the lattice parameters has negligible
influence on our results and has been ignored.

77 K 300 K

Parameter InAs GaSb InAs GaSb

a0 (Å) 6.0584 6.0954 6.0584 6.0954
E0(eV) 0.418 0.814 0.359 0.725
�0 (eV) 0.38 0.76 0.38 0.76
E′

0 (eV) 4.52 3.2 4.52 3.2
�′

0 (eV) 0.175 0.4 0.175 0.4
EP (eV) 22.42 22.75 22.19 23.47
m∗

e 0.022 0.042 0.019 0.037
c11 (GPa) 832.9 884.2 832.9 884.2
c12 (GPa) 452.6 402.6 452.6 402.6
ac (eV) − 5.08 − 6.85 − 5.08 − 6.85
av (eV) 1.0 0.79 1.0 0.79
b (eV) − 1.8 − 2.0 − 1.8 − 2.0

zone-center states, as a result of the transformation that is used
to reduce the infinite k · p Hamiltonian to a Hamiltonian of
eight bands.11,17 To treat these basis functions properly would
introduce many additional unknown interaction parameters
with remote bands, and is not practically useful.

APPENDIX B: CALCULATION PARAMETERS

The bulk material parameters that were used in the
calculations, and the sources from which they were obtained,
are given in Table II.

The k · p parameters that were deduced by fitting the TVK8
model to experimental data are given in Table III. The fitting
procedure is described in Sec. V. Note that the only Luttinger
parameters that are independent at a given temperature are γ1

and γ2 for InAs. All others are marked with a superscript “a” to
indicate that they have been calculated from the independent

TABLE III. Fitted k · p parameters of InAs and GaSb used in the
calculations, for temperatures of 77 and 300 K. Valence band offsets
of the unstrained materials (VBO) are relative to the GaSb VB.

77 K 300 K

Parameter InAs GaSb InAs GaSb

α (eVÅ) 0.2 0.2
β (eVÅ) 0.2 0.2
DS (eVÅ) 3 2.9
DX (eVÅ) 1.3 1.5
DZ (eVÅ) 1.1 1.3
γ1 20.0 11.87a 23.8 14.48a

γ2 9.0 4.61a 10.7 5.67a

γ3 9.16a 4.99a 10.39a 5.60a

VBO (eV) −0.560 0 −0.501 0

aNot independent parameters: calculated from γ1 and γ2 of InAs using
the method described in Appendix C.
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ones according to the method described in Appendix C. The
interface parameters must be used with πi = +1 for the GaSb
on InAs interface (πi = −1 for InAs on GaSb).

APPENDIX C: CONSTRAINTS ON THE LUTTINGER
PARAMETERS FOR NEARLY LATTICE MATCHED

SUPERLATTICES

In Eq. (33) of Ref. 17, one of the authors proposed a set
of constraint relations to predict four out of the six Luttinger
parameters in an unstrained superlattice from the other two,
with an accuracy of � = 2. We now consider how to apply
the constraint relations when one of the superlattice materials
is slightly strained, for example, in an InAs/GaSb type-II
superlattice grown on GaSb. As discussed in Sec. V, this allows
us to reduce the number of independent fitting parameters in
our model.

In Ref. 17, it was suggested that before applying the
constraint relations, the InAs should first be deformed hydro-
statically, in order to achieve a perfect lattice match with GaSb,
and that EP and all the band gaps should be adjusted, according
to the known deformation potentials and strain values. We shall
term the hydrostatically deformed material InAs′. Based on the
following argument, we show that an even simpler approach
can be used, where the constraint relations are applied directly
to the unstrained pair of materials.

The constraint relations were derived for a superlat-
tice A/B/A/B/. . ., which is assumed to be perfectly lattice
matched.17 They are based on four equations involving the
Kane parameters F ′, H1, and G associated with the s, p, and d

bands, respectively:46 F ′
A ≈ 0, F ′

B ≈ 0, H1B − H1A ≈ χH1A

and GB − GA ≈ 0, where χ = 1 − E′
G(B)

E′
G(A) and E′

G is the band
gap between bonding and antibonding p states in the absence
of the spin-orbit interaction (E′

G = E�15c
− E�15v

). For a small
amount of strain, such as the ∼0.6% between InAs and InAs′,
the changes in H1 and G turn out to be negligible (typically

<2%), due to the relatively large band gaps that appear in the
denominators of these parameters. In addition, F ′ ≈ 0 for any
cubic narrow band-gap material, so this applies equally well to
InAs or InAs′. Thus, since none of the three Kane parameters
change significantly between InAs and InAs′, the constraint
relations can be applied directly to unstrained InAs, i.e., the
above four equations still hold with sufficient accuracy, when
A and B represent the unstrained materials.

In order to be consistent with standard definitions for
the Luttinger parameters of narrow band-gap materials,29,47,48

Klipstein’s γ4 parameter should be written as γ4 = EP

E0
, where

E0 is the fundamental band gap.49 As will be discussed below,
γ4 can be determined quite accurately in both materials, using
spectroscopic data in a bulk five-band k · p model. Thus, the
Luttinger parameters γ A

1 and γ A
2 (for material A) turn out to be

the only independent Luttinger parameters, because Eq. (33)
of Ref. 17 can be rearranged to express the other Luttinger
parameters in terms of the four parameters: γ A

1 , γ A
2 , γ A

4 and
γ B

4 as follows:

γ A
3 ≈ 1

12
+ 1

12
γ A

1 − 2

3
γ A

2 + γ A
4

4
, (C1a)

γ B
1 ≈ 2χ

3
+

(
1 + 2χ

3

)
γ A

1 − 4

3
χγ A

2 − 1

3
γ A

4 + 1

3
γ B

4 ,

(C1b)

γ B
2 = −χ

6
− χ

6
γ A

1 +
(

1 + χ

3

)
γ A

2 − 1

6
γ A

4 + 1

6
γ B

4 , (C1c)

γ B
3 =

(
2χ + 1

12

)
+

(
2χ + 1

12

)
γ A

1 −
(

χ + 2

3

)
γ A

2

+ 1

12
γ A

4 + 1

6
γ B

4 . (C1d)

Table IV shows the Luttinger parameters deduced from the
preceding equations for several pairs of nearly lattice matched
materials, and compares them with the widely used values

TABLE IV. Using Eqs. (C1a)–(C1d) for pairs of nearly lattice matched semiconductors at 77 K, the four Luttinger parameters with a
superscript “a” are calculated from the two independent Luttinger parameters. The latter are adjusted until the error relative to the Lawaetz
(Ref. 29) values is minimized, as shown in the last three rows. The band-gap parameters for the calculation are listed in the first five rows.
For the binary materials, these are based on Refs. 27 and 28 and are close or equal to those used by Lawaetz (Ref. 29). For In0.57Ga0.47As,
bowing parameters were used for E0, �0, and EP , taken from Ref. 36. The Luttinger parameters shown in parentheses for In0.57Ga0.47As were
calculated using the interpolation method proposed by Vurgaftman et al. (Ref. 36).

GaAs AlAs GaSb AlSb InAs GaSb In0.53Ga0.47As InP

E0 (eV) 1.519 3.13 0.814 2.32 0.418 0.814 0.817 1.424
�0 (eV) 0.34 0.28 0.76 0.65 0.38 0.76 0.32 0.108
E′

0 (eV) 4.488 4.34 3.2 3.7 4.52 3.2 4.52 4.8
�′

0 (eV) 0.171 0.14 0.4 0.3 0.18 0.4 0.19 0.065
EP (eV) 25.7 21.1 22.4 18.7 22.2 22.4 24.2 20.4
γ1 7.4 4.1a 11.14 4.38a 19.8 11.84a 11.45 (10.9) 6.29a

γ2 2.48 0.76a 4.16 0.98a 8.45 4.04a 4.65 (4.1) 2.11a

γ3 3.28a 1.6a 5.12a 1.81a 9.38a 5.25a 5.35a (5.0) 2.78a

�γ1 (%) −3.3 +1.5 −5.6 +5.6 +0.7 +0.3 +0.1
�γ2 (%) +2.9 −2.5 +3.2 −2.5 +1.0 +0.3 +1.4
�γ3 (%) −0.1 2.1 −2.7 3.3 +0.9 −0.1 +0.8

aNot independent parameters: calculated from γ1 and γ2 of the narrower band-gap material.
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of Lawaetz.29 With the exception of InGaAs/InP, which is
discussed below, the Luttinger parameters γ1 and γ2 of the
material with the narrower band gap were chosen to be close
to the Lawaetz values29 and were used to calculate the γ3

value of the narrower band-gap material (left-hand column)
and the γ1, γ2 , and γ3 values of the wider band-gap material
(right-hand column). These four calculated values also turn out
to agree quite well with the corresponding values determined
by Lawaetz. The quality of the agreement is discussed further
in the following.

Table IV also lists the band-gap values for E0 (�6c − �8v),
�0 (�8v − �7v), E′

0 (�7c − �8v), and �′
0 (�8c − �7c) that were

used in the calculation. They are close to the experimentally
determined values quoted both by Lawaetz29 and also in
more recent data sources.27,28 Note that E′

G = E′
0 + 2�′

0
3 + �0

3 .
The values of EP listed in Table IV for the six binary
materials are those due to Lawaetz.29 For the direct band-gap
materials, they are within a few percent of the values that
we have determined experimentally using a five-level k · p
treatment50,51 and spectroscopic data.37 Although we use the
latter in our model (see Table II), we consider the Lawaetz
values to be very close to ours and so use his values here
without modification, in order to be more consistent in our
comparison with his Luttinger parameters.

For In0.57Ga0.47As, weighted averages of the band gap and
EP values of InAs and GaAs were calculated, after which E0,
�0, and EP were modified according to the bowing parameters
given by Vurgaftman et al.36 for the alloy. γ1, γ2 , and γ3

of In0.57Ga0.47As were then calculated in two ways: first, by
varying γ1 and γ2 until the three Luttinger parameters of InP
obtained using Eqs. (C1a)–(C1d) were all within 1% of those
quoted by Lawaetz;29 second, by using the method proposed
by Vurgaftman et al., where γ1, γ2 , and γ3 are deduced from
linear interpolations of the quantity γ2 − γ3, and the heavy-
and light-hole effective masses along [001]. The Luttinger
parameters determined in this way are shown in parentheses.

The last three lines in Table IV give the error in the Luttinger
parameters of the binary materials relative to those determined
by Lawaetz.29 It may be seen that it is possible to find values
for two independent Luttinger parameters such that the error
in these and the four computed Luttinger parameters is less
than 6% in all cases, and usually, it is considerably smaller.52

Table IV thus provides good support for the approach adopted
in this work, where only γ1 and γ2 of InAs are used as
independent fitting parameters, when making comparisons
with experimental data. It shows that the four computed
Luttinger parameters should be close to their expected values.
Nevertheless, we do not simply use the six Lawaetz values
in our model, unchanged, since this gives a poorer fit to our
measured absorption spectra and photoluminescence data than
using our fitting procedure based on two parameters. This
is true even though our fitted values for InAs of γ1 = 20.0
and γ2 = 9.0 in Table III differ from the Lawaetz values by
less than 8%. We do not expect precise agreement due to
the different approximations used in each work. However,
it does highlight the sensitivity of the calculated absorption
spectrum to even small changes in these parameters and hence
the importance of using the correct fitting procedure.

Finally, the good consistency between the calculated values
of the InP Luttinger parameters in Table IV and the Lawaetz
values gives some confidence that our approach of determining
the Luttinger parameters for the ternary alloy, based on
Eqs. (C1a)–(C1d), may be a better method than that proposed
by Vurgaftman et al.,36 whose values, shown in parentheses,
are lower by up to 12%. Presumably, this is because the linear
interpolation of the masses in the Vurgaftman et al. treatment
does not properly take bowing effects into account. We note
that the difference between the two approaches is even more
significant for superlattice systems such as InAs/InAs1−xSbx

lattice matched to GaSb, where the constituent materials have
smaller band gaps and the band-gap bowing in the alloy is
much stronger.53–55
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