
PHYSICAL REVIEW B 86, 235308 (2012)

Geometrical pumping in quantum transport: Quantum master equation approach
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For an open quantum system, we investigate the pumped current induced by a slow modulation of control
parameters on the basis of the quantum master equation and full counting statistics. We find that the average and
the cumulant generating function of the pumped quantity are characterized by the geometrical Berry-phase-like
quantities in the parameter space, which is associated with the generator of the master equation. From our
formulation, we can discuss the geometrical pumping under the control of the chemical potentials and temperatures
of reservoirs. We demonstrate the formulation by spinless electrons in coupled quantum dots. We show that the
geometrical pumping is prohibited for the case of noninteracting electrons if we modulate only temperatures
and chemical potentials of reservoirs, while the geometrical pumping occurs in the presence of an interaction
between electrons.
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I. INTRODUCTION

When a quantum system is slowly and periodically modu-
lated by two or more control parameters such as gate voltages,
a net number of particles can be transported per period of the
modulation even in the absence of dc driving force (e.g., bias
voltage). This phenomenon is known as an adiabatic pumping.
The adiabatic pumping has received much attention because
of its possibilities for quantized charge transport,1–11 spin
pumping,12–18 and qubit manipulation,19 which are difficult
to achieve in conventional stationary transport. The original
idea of the adiabatic pumping was proposed by Thouless,1

where a pumped current of a closed quantum system is related
to the Berry phase20 of the ground state of the Hamiltonian.1–3

Since then, the idea of the adiabatic pumping has been
applied to mesoscopic quantum systems. Experimentally, the
pumping in the Coulomb blockade regime4–8,18,21,22 and in
open quantum systems23,24 has been developed. Theoreti-
cally, the formulation based on the time-dependent scattering
theory25 has been established.9,10,12,13,26–33 According to this
formulation, the average pumped current can be expressed
by the Berry phase associated with the scattering matrix.27

The cumulant generating function of the pumped current
can also be described by geometrical quantities.10 For this
reason, the adiabatic pumping is referred to as the geometrical
pumping. This scattering matrix approach is applicable to
systems where the interaction can be neglected or treated in
the mean-field level. A recent theoretical interest in this field
is to understand the effects of interaction in the system on the
adiabatic pumping.11,14–17,19,34–47

Similar phenomena have been studied in stochastic systems
described by the classical master equation,48–58 which is
referred to as the adiabatic stochastic pumping. The pumped
current in the classical stochastic pumping has also geometrical
properties; the cumulant generating function of the pumped
current is expressed by a Berry-phase-like quantity that is as-
sociated with the generator of the classical master equation. We
shall refer to this quantity as the Berry-Sinitsyn-Nemenman
(BSN) phase.51,52

There have also been several works on the adiabatic
pumping for quantum open systems described by the quantum
master equation (QME).14–16,19,44–47 Although the results for
pumped charge or spin in specific models were provided
in those works, the geometrical formulas for the adiabatic
pumping described by QME have not been discussed so far.

In this paper, we investigate the quantum adiabatic pumping
on the basis of QME, and derive general formulas of the
cumulant generating function and average of the pumped
quantity. These formulas are geometrical and expressed by
a quantum analogy of the BSN phase which is associated
with the generator of the QME. In the QME approach, we
can treat interaction between particles beyond the mean-field
level in any of perturbative, nonperturbative, or exact methods,
depending on the model and analysis. In any methods, we can
apply these formulas as long as we employ the QME, since
our theoretical framework is independent of the details of the
system. Therefore these are useful for analyzing a variety of
applications of the adiabatic pumping such as a qubit rotation
in quantum dots19 and a spin pumping.14–16 We note that the
QME approach is also suitable to analyze systems that include
dissipations and decoherences.19

This paper is organized as follows. In Sec. II A, the QME
approach for an open system is described. The full counting
statistics in the QME approach is discussed in Sec. II B.
For the adiabatic pumping, the geometrical formulas (BSN
phase expressions) for the cumulant generating function and
average of the pumped quantity are derived in Sec. II C. In
this formulation, the temperatures and chemical potentials of
reservoirs are parts of the control parameters. This is in contrast
to most of the conventional studies on the adiabatic pumping,
where only the parameters in the system Hamiltonian or in
the coupling with the reservoirs are considered (for scattering
matrix approach in the presence of ac voltage, see Ref. 33).
In Sec. III, we demonstrate our theory by the spinless electron
transport in quantum dot systems. For noninteracting cases
with (Sec. III A) and without (Sec. III B) the rotating wave
approximation (RWA), we find that no geometrical pumping
occurs if we control only the temperatures and chemical
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potentials of reservoirs. In contrast, the geometrical pumping
occurs for an interacting electron system even when we control
only the reservoir parameters (Sec. III C). Section IV is devoted
to the discussion and conclusion. In Appendix A, we describe
the details of the QME in the framework of the full counting
statistics. In Appendix B, we show the detailed derivation
of the result for the noninteracting case with the RWA. In
Appendix C, we verify the equivalence between without and
within the RWA concerning the unit-time generating function
of the current between the system and reservoirs in a steady
state. In Appendix D, we investigate the consistency of the
results calculated in our scheme with the results in Ref. 16.

II. GENERAL RESULTS

A. Setup

We consider a quantum system S that is weakly coupled
to reservoirs {Rb}, where b is an index of reservoirs (see
Fig. 1 for a schematic). The total Hamiltonian of the coupled
system is Ĥtot = ĤS + ∑

b(Ĥb + ĤSb), where ĤS is the system
Hamiltonian, Ĥb is the Hamiltonian of the bth reservoir Rb,
and ĤSb is the interaction Hamiltonian between S and Rb. If the
interaction between the system S and the reservoirs is weak,
the dynamics of S can be described by a QME for the reduced
density matrix of S, which is denoted as ρ̂. Suppose that the
initial state of the system S is decoupled with the reservoirs.
Then, up to the second order in the system-reservoir coupling
(Born approximation) with the Markov approximation,59 the
QME for the system S reads

dρ̂(t)

dt
= Kρ̂(t), (1)

where

Kρ̂ ≡ 1

ih̄
[ĤS,ρ̂] +

∑
b

Dbρ̂,

(2)

Dbρ̂ ≡ − 1

h̄2

∫ ∞

0
dt ′Trb[ĤSb,[ȞSb(−t ′),ρ̂ ⊗ ρ̂b]].

Here the symbol “ ˇ ” stands for the interaction picture with
respect to ĤS + ∑

b Ĥb, Trb represents the trace over the bth
reservoir, and ρ̂b = e−βb(Ĥb−μbN̂b)/Zb is the grand-canonical
distribution with the inverse temperature βb, chemical potential
μb, and particle number operator N̂b of the bth reservoir. The
time-evolution generator K of the QME depends on several
parameters: the system parameters in ĤS and ĤSb such as the
energy levels of quantum dots and the tunnel barriers between
them, and the reservoir parameters {βb} and {μb}. We write
the set of these parameters as α. The right eigenvalue equation

System SReservoir L Reservoir R

μL

βL

μR

βR

FIG. 1. (Color online) Illustration of our setup with two reservoirs
(L and R).

for K is written as

Kρ̂n(α) = λn(α)ρ̂n(α), (3)

where λn(α) is an eigenvalue of K, n is a label of the
eigenvalues, and ρ̂n(α) is the corresponding right eigenvector.

By introducing the Hilbert-Schmidt inner product of linear
operators Â and B̂ of the system S as TrS(Â†B̂), where TrS is
the trace over S, we define the adjointK† of the QME generator
such that TrS[(K†Â)†B̂] = TrS(Â†KB̂) holds for any Â, B̂. We
then have the left eigenvalue equation for K:

K†�̂n(α) = λ∗
n(α)�̂n(α), (4)

where �̂n(α) is the left eigenvector corresponding to the
eigenvalue λn(α). In the following, we assume that K has the
zero eigenvalue λ0 = 0 without degeneracy, so that Kρ̂0 = 0
and K†�̂0 = 0 hold. This implies that the QME has a unique
steady solution ρ̂0(α) for fixed α. We note that �̂0(α) = 1̂
(identity operator) holds for any α.

B. Full counting statistics

We consider the statistics of a quantity �q transferred from
the reservoirs to the system S during a time interval τ . The
measurement scheme of �q is as follows. First, at t = 0 we
perform a projection measurement of a reservoir variable Q̂

to obtain a measurement outcome q0. We assume [Q̂,N̂b] = 0
and [Q̂,Ĥb] = 0 for any b. For t > 0, the system S undergoes
the time evolution with interacting with the reservoirs. At
t = τ we again perform a projection measurement of Q̂ to
obtain another measurement outcome qτ . Then �q is defined
as �q = qτ − q0.

The cumulant generating function of the statistics is
given by Sτ (χ ) = ln

∫
Pτ (�q)eiχ�qd�q, where Pτ (�q) is

the probability of �q during τ . χ is called the counting
field, and the derivatives of Sτ (χ ) give the cumulants of
Pτ (�q); e.g., 〈�q〉τ = ∂Sτ (χ )/∂(iχ )|χ=0. Note that if Q̂ is
the bth reservoir’s particle number N̂b (Hamiltonian Ĥb), then
〈�q〉τ /τ is the average of the particle (energy) current from
the bth reservoir into the system S.

For calculating Sτ (χ ), we employ a method developed in
the context of the full counting statistics.60 In this method
Sτ (χ ) is obtained from the solution of the modified equation
of motion which is governed by the χ -dependent Hamiltonian.
In the QME approach, this reads Sτ (χ ) = ln TrSρ̂

χ (τ ), where
ρ̂χ (τ ) is a solution of the generalized QME (GQME):

dρ̂χ (t)

dt
= Kχ ρ̂χ (t). (5)

Here the modified generator Kχ is given by

Kχ ρ̂χ ≡ 1

ih̄
[ĤS,ρ̂

χ ] +
∑

b

Dχ

b ρ̂χ ,

(6)

Dχ

b ρ̂ ≡ − 1

h̄2

∫ ∞

0
dt ′Trb[ĤSb,[ȞSb(−t ′),ρ̂ ⊗ ρ̂b]χ ]χ ,

where [Ô,P̂ ]χ ≡ Ôχ P̂ − P̂ Ô−χ and Ôχ ≡ e−iχQ̂/2ÔeiχQ̂/2.
See Appendix A for details.

We denote the left and right eigenvectors of Kχ (for fixed
α) corresponding to the eigenvalue λ

χ
n (α) as �̂

χ
n (α) and ρ̂

χ
n (α),

respectively. They are normalized as TrS(�̂χ†
m ρ̂

χ
n ) = δmn. We
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assign the label for the eigenvalue with maximum real part
to n = 0. Then ρ̂χ (τ ) ∼ eλ

χ

0 τ for large τ , which results in
limτ→∞ Sτ (χ )/τ = λ

χ

0 . Thus λ
χ

0 (α) is the unit-time cumulant
generating function of the steady state for fixed α.60 Note that
if we set χ = 0, the GQME reduces to the original QME, and
�̂

χ

0 and ρ̂
χ

0 to �̂0 = 1̂ and the steady state ρ̂0, respectively.

C. Geometrical pumping

We slowly modulate the parameters α along a curve C in
the parameter space during a time interval τ . If the system is
in the instantaneous steady state for the value of αt at each
time t in the whole of the process, the cumulant generating
function for �q for this process is equal to the time integral
of the unit-time cumulant generating function λ

χ

0 (αt ) of the
instantaneous steady state. In general, however, there exists an
additional (pumped) contribution:

Sτ (χ ) =
∫ τ

0
dtλ

χ

0 (αt ) + Sex
τ (χ ). (7)

We call the latter contribution the excess part. The excess part
is intrinsic in the transitions between the steady states, and is
of our interest.

We here derive the geometrical expression of the excess
part of the generating function by using the method similar to
those in Refs. 51 and 61. First, to solve the GQME for a given
curve C of α, we expand ρ̂χ (t) as

ρ̂χ (t) =
∑

n

cn(t)e�
χ
n (t)ρ̂χ

n (αt ), (8)

where �
χ
n (t) ≡ ∫ t

0 dt ′λχ
n (αt ′). Inserting this equation into

Eq. (5) and taking the Hilbert-Schmidt inner product with
�̂

χ

0 (αt ), we obtain

dc0(t)

dt
= −

∑
n

cn(t)e�
χ
n (t)−�

χ

0 (t)TrS

(
�̂

χ†
0 (αt )

dρ̂
χ
n (αt )

dt

)
. (9)

Now we assume the adiabatic condition; i.e., the modulation
of the parameters α is sufficiently slower than all the
characteristic time scales of the system S. In many cases,
the relaxation time τrlx, which is determined by the coupling
with the reservoirs, is the longest time scale of S, so that the
adiabatic condition should read (modulation time scale) � τrlx.
[We will numerically confirm the necessity of this condition in
Fig. 2(d).] Under this condition, we can approximate the sum
on the right-hand side of Eq. (9) by the contribution only from
the term with n = 0. By solving this adiabatic approximation
equation we obtain

c0(τ ) = c0(0) exp

[
−

∫
C

TrS
(
�̂

χ†
0 (α)dρ̂

χ

0 (α)
)]

, (10)

where dρ̂
χ

0 (α) ≡ dα · ∂ρ̂
χ

0 (α)/∂α. If the initial state of the
system S is the steady state with α0, ρ̂χ (0) = ρ̂0(α0), then
c0(0) = TrS[�̂χ†

0 (α0)ρ̂0(α0)]. We again use the adiabatic ap-
proximation to obtain

ρ̂χ (τ ) � c0(τ )e�
χ

0 (τ )ρ̂
χ

0 (ατ )

= e�
χ

0 (τ )ρ̂
χ

0 (ατ )TrS
(
�̂

χ†
0 (α0)ρ̂0(α0)

)
× exp

[
−

∫
C

TrS
(
�̂

χ†
0 (α)dρ̂

χ

0 (α)
)]

. (11)

Thus we obtain the excess cumulant generating function
Sex

τ (χ ) = Sτ (χ ) − �
χ

0 (τ ) for the slow modulation:

Sex
τ (χ ) = −

∫
C

TrS
(
�̂

χ†
0 (α)dρ̂

χ

0 (α)
) + ln TrS

(
�̂

χ†
0 (α0)ρ̂0(α0)

)
+ ln TrSρ̂

χ

0 (ατ ). (12)

This implies that Sex
τ (χ ) depends not on time τ but only on the

curve C along which the parameters are varied. The right-hand
side of Eq. (12) is analogous to the Berry phase in quantum
mechanics, where �̂0 and ρ̂0 are both replaced by the eigen
wave function of the Schrödinger equation. We also note that
�

χ

0 (τ ) corresponds to the dynamical phase.
By differentiating Eq. (12) with respect to iχ , we obtain a

geometrical expression of the average excess in the quantity
�q:

〈�q〉ex
τ = −

∫
C

TrS

(
�̂

′†
0 (α)

∂ρ̂0

∂α
(α)

)
· dα, (13)

where �̂′
0 ≡ ∂�̂

χ

0 /∂(iχ )|χ=0. Equations (12) and (13) are re-
garded as quantum versions of the Berry-Sinitsyn-Nemenman
(BSN) phases for the cumulant generating function and
average, respectively, in slow parametric modulation.51,56 We
denote the integrand in Eq. (13) as

A(α) ≡ TrS

(
�̂

′†
0 (α)

∂ρ̂0

∂α
(α)

)
, (14)

and refer to as the BSN vector potential for the average excess
quantity.

Equality (13) implies that a finite net quantity of �q can be
transferred to the system S for a slow cyclic modulation of the
parameters (i.e., for the case where the curve C is a closed loop)
even if there is no dc driving force such as temperature and
chemical potential differences. This is an adiabatic pumping.
For a cyclic process, by the Stokes theorem, Eq. (13) is
rewritten as

〈�q〉ex
τc

= −
∫
SC

∑
m,n

1

2
Fαmαn

dαm ∧ dαn, (15)

where ∧ is the wedge product, SC is a surface enclosed by C,
and

Fαmαn
≡ TrS

(
∂�̂

′†
0

∂αm

∂ρ̂0

∂αn

− ∂�̂
′†
0

∂αn

∂ρ̂0

∂αm

)
. (16)

We refer to Eq. (16) as the BSN curvature for average pumped
quantity.

For some cyclic processes, the excess (pumped) quantity
〈�q〉ex

τc
vanishes. A sufficient condition for the “no-pumping”

is that Fαmαn
= 0 holds in SC for all (αm,αn). We note that if

the whole of a curve C (not necessarily closed) lies in a region
of the no-pumping condition, then the average excess quantity
does not depend on the whole of C but depends on only the
initial and final points of C.

III. APPLICATION TO SPINLESS ELECTRON
TRANSPORT IN QUANTUM DOT

In this section, we apply the general framework obtained
in the previous section to the transport of spinless electrons in
systems of coupled quantum dots with single levels which
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are connected to two electron reservoirs (b = L,R). The
assumption of spinless electrons can be employed at least in the
following two cases. One is that the intradot electron-electron
interaction is quite large, so that each dot is at most singly
occupied. In this case, if the system S and the reservoirs are
spin-rotationally invariant, the spin degrees of freedom are
irrelevant. The other case is that a strong magnetic field is
applied to the dots, so that the Zeeman energy of the electron
spin is sufficiently large. In this case, since only the lower
energy spin state for each dot is at most occupied and only
the lower energy states are involved in the dynamics, the spin
degrees of freedom is effectively negligible.

We assume that the reservoir Hamiltonian is given by
Ĥb = ∑

k h̄
bkĉ
†
bkĉbk . Here h̄
bk is the kth mode energy of the

electron in the bth reservoir, and ĉ
†
bk (ĉbk) is the corresponding

creation (annihilation) operator, which satisfies {ĉ†bk,ĉb′k′ } =
δkk′δbb′ and {ĉ†bk,ĉ

†
b′k′ } = {ĉbk,ĉb′k′ } = 0. We here take the

quantity to be counted as the electron number transferred from
the reservoir L to the system S; i.e., Q̂ = N̂L = ∑

k ĉ
†
LkĉLk .

A. Noninteracting electron model with RWA

First we consider a model of noninteracting spinless
electrons in a series of N single-level quantum dots coupled
to two reservoirs (b = L,R). The Hamiltonian of the system S
in this model is

ĤS =
∑

i

εi d̂
†
i d̂i +

∑
ii ′

(vii ′ d̂
†
i d̂i ′ + H.c.), (17)

where εi is the level energy of the ith dot, d̂†
i (d̂i) is the creation

(annihilation) operator of the electron in the ith dot, and vii ′

is the transfer probability amplitude between the ith and i ′th
dots. Note that we can use this Hamiltonian also for many-level
quantum dots (with no electron-electron interaction) if we add
the label of the intradot level to the label i of the dot site,
since it is always possible to rearrange the pairs of the labels
of the site and level to be a single label. Therefore we can
also apply the results in this subsection to the noninteracting
electron system in a series of the many-level quantum dots.

This Hamiltonian can be diagonalized by a unitary trans-
formation as ĤS = ∑

j h̄ωj â
†
j âj . Here h̄ωj is the j th mode

energy of the electron in the system S, and â
†
j (âj ) is the

corresponding creation (annihilation) operator of the electron,
which satisfies the canonical anticommutation relations of
the fermion: {â†

j ,âj ′ } = δjj ′ and {â†
j ,â

†
j ′ } = {âj ,âj ′ } = 0. The

coupling Hamiltonian between the system S and the bth
reservoir is given by ĤSb = ∑

j,k Vbjkâ
†
j ĉbk + H.c.

To derive the GQME for this system we use the Born (up
to the second order in ĤSb) and the Markov approximations.59

Furthermore, we adopt the RWA, which is a coarse graining
of the time evolution on the time scale longer than that of the
system evolution without the coupling with the reservoirs.59,60

For χ = 0 the RWA leads a Lindblad form of the QME and
guarantees the complete positivity of the time evolution. We
carry out the RWA by averaging over the rapidly oscillating
terms in the Born-Markov GQME in the interaction picture
(see Appendix A for details). Then we obtain the generator
Kχ of the GQME in the form of Kχ = ∑

j Kχ,j . Here the

GQME generator Kχ,j for the j th mode is given by60

Kχ,j ρ̂

≡ 1

ih̄

[
h̄ωj â

†
j âj + Ĥ Lamb

j ,ρ̂
]

− 1

2h̄2

∑
b=L,R

(
�−

bj (ωj )
{
â
†
j âj ρ̂ + ρ̂â

†
j âj − 2e−iχb âj ρ̂â

†
j

}
+�+

bj (ωj )
{
âj â

†
j ρ̂ + ρ̂âj â

†
j − 2eiχb â

†
j ρ̂âj

})
, (18)

where Ĥ Lamb
j ≡ ∑

b{�−
bj (ωj )â†

j âj − �+
bj (ωj )âj â

†
j }/2h̄ is the

Lamb shift Hamiltonian, �±
bj (ω) ≡ 2π

∑
k |Vbjk|2δ(ω −


bk)f ±
b (ω) is the power spectrum of the bth reser-

voir, �±
bj (ω) ≡ P

∫ ∞
−∞(dω′/π )�±

bj (ω′)/(ω′ − ω), and χL = χ ,
χR = 0. Here, P means the principal value, f +

b (ω) = 1/(1 +
e−βb(h̄ω−μb)) is the Fermi distribution function with βb,μb, and
f −

b (ω) = 1 − f +
b (ω). The control parameters α in this model

can be both the system parameters, i.e., the levels {εi} of the
dots and the transfer {vii ′ } between the dots, and the reservoir
parameters {βb,μb}.

In this model within the RWA, we analytically obtain the
BSN vector potential (see Appendix B for the derivation):

A(α) =
∑

j

�Lj (ωj )

�j (ωj )

∂

∂α

(∑
b �bj (ωj )f +

b (ωj )

�j (ωj )

)
, (19)

where �j (ωj ) ≡ ∑
b �bj (ωj ), and �bj (ωj ) ≡ �+

bj (ωj ) +
�−

bj (ωj ) is the spectral function of the bth reservoir. We can
also calculate the BSN curvature as

Fαmαn
=

∑
j

∂

∂αm

(
�Lj (ωj )

�j (ωj )

)
∂

∂αn

(∑
b �bj (ωj )f +

b (ωj )

�j (ωj )

)
.

(20)

From Eq. (20), we find that no net excess number of electrons
flow per cycle if only the reservoir parameters (βL,μL,βR,μR)
are modulated with the system parameters fixed. This
is because the spectral function is written as �bj (ωj ) =
2π

∑
k |Vbjk|2δ(ωj − 
bk), so that �Lj /�j in Eq. (20) is

independent of (βL,μL,βR,μR), and that Eq. (19) can be
written as the gradient of a scalar function of (βL,μL,βR,μR).
We note that this result is characteristic of fermion systems.
Indeed, in a model of a single two-level system connected
to two bosonic heat reservoirs, there exists heat pumping by
cyclic modulations of the temperatures of the two reservoirs.56

This difference between the results for the fermion and boson
reservoirs comes from the particle statistics, which leads that
〈c†c + cc†〉b is independent of (dependent on) the reservoir
parameters for fermion (boson) reservoir. Because �+

bj and �−
bj

are respectively proportional to 〈c†c〉b and 〈cc†〉b, the particle
statistics determines whether �bj = �+

bj + �−
bj depends on the

reservoir parameters.
Before closing this subsection, we make a remark on the

validity of the RWA on the transport systems. The GQME
gives the same result either with or without the RWA, as far as
the transport between the system and the reservoirs is studied,
whereas it is known that the internal current in the system
vanishes in nonequilibrium steady states under the RWA.62 In
Appendix C, we analytically show that the unit-time cumulant
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FIG. 2. (Color online) (a) Quantum double dot coupled to
reservoirs. (b) Excess electron transfer 〈�q〉ex

τ when the reservoir
parameters βL, μL, and μR are slowly varied along the curves (A,
B, and C) shown in the inset, where βR and the system parameters
are fixed (βR = 1 K−1, ε1 = ε2 = 0.5 meV, and v = 0.2 meV). The
initial values of the parameters are β ini

L = 1 K−1 and μini
L = μini

R =
0.2 meV. The dependence on the final value μfin

R is plotted, where
βfin

L = β ini
L and μfin

L = μini
L . The calculations are performed by RWA

and NonRWA1. (c) BSN curvature Fε1ε2 as a function of ε1 and
ε2, calculated by NonRWA1. The reservoir parameters are set to
βL = βR = 1 K−1 and μL = μR = 0.2 meV. (d) Excess electron
transfer 〈�q〉ex

τc
for a cyclic process along the circle depicted in

(c). The horizontal axis is the period τc of the cyclic process. The
calculations are performed by RWA, NonRWA1, and NonRWA2. The
results by NonRWA2 are plotted for various values of the amplitude
� of the reservoir spectral function, while it is fixed to 0.001 meV for
the other methods.

generating function λ
χ

0 (α) of the quantity transferred from
the reservoirs to the system in the steady state for fixed α

is equivalent between the GQMEs within and without the
RWA. We also confirm numerically that the results of the
adiabatic pumping within the RWA quantitatively agree with
those without the RWA in the next subsection.

B. Noninteracting electron in double quantum
dot without RWA

Next we consider a noninteracting double quantum dot
system coupled to two reservoirs, as illustrated in Fig. 2(a)
(the transfer probability amplitude between the dot 1 and
2 is denoted by v). Here we assume the wide band limit,
�bj (ω) = �b = const. (b = L,R), and the symmetric coupling,
�L = �R = �. In this subsection we use three different meth-
ods for calculating 〈�q〉ex

τ under modulations of the control
parameters of the model. In the first method (denoted by RWA),
we apply our results within the RWA [Eqs. (19) and (20)].
In the second one (denoted by NonRWA1), we numerically
solve the eigenvalue problem of the GQME generator Kχ

without RWA, and use the geometrical formula (13). In the

third method (denoted by NonRWA2), we numerically solve
the time evolution differential equation of the GQME without
RWA, and use Sτ (χ ) = TrSρ̂

χ (τ ).
In Fig. 2(b), we plot the excess electron number 〈�q〉ex

τ

transferred from the reservoir L to the system for noncyclic
modulations of βL,μL, and μR along the curves illustrated in
the inset of Fig. 2(b). We plot the dependence of 〈�q〉ex

τ on
the final value of the right reservoir chemical potential μfin

R
of the modulations. We see that all the results agree within
the numerical precision. This implies that the no-pumping
condition described below Eq. (20) within the RWA still holds
without the RWA. We have also confirmed that the absolute
value of the BSN curvature computed without the RWA is less
than 10−6 in the space of the reservoir parameters, which is
zero within the numerical precision.

In Fig. 2(c), we plot the BSN curvature Fε1ε2 calculated
by the method of NonRWA1 as a function of ε1 and ε2. We
see that the curvature takes the nonzero values in this case.
Therefore we have a finite geometrical pumping for the slow
periodic modulation of the dot levels (system parameters). We
note that this result of the BSN curvature also agrees with
the RWA result given by Eq. (20), although not shown in the
figure.

We also calculate 〈�q〉ex
τc

for the cyclic process depicted in
Fig. 2(c). In Fig. 2(d), we plot 〈�q〉ex

τc
calculated by NonRWA2

as a function of the cycle period τc for various values of the
amplitude � of the spectral function. We see that for large
τc the asymptotic results by NonRWA2 agree with the results
by RWA and NonRWA1. This supports the validity of the
adiabatic approximation used in deriving Eq. (13) for slow
modulations. We also see that the characteristic time for the
validity of the adiabatic approximation becomes shorter as �

increases. This implies that τc � τrlx ≡ h̄/� is the adiabatic
condition, as is mentioned below Eq. (9) in the previous
section.

We note that all the results by RWA and NonRWA1 agree
with each other not only qualitatively but also quantitatively.
This implies that the rotating wave approximation is valid in
discussing transport between the system and the reservoirs
under slow modulations of the parameters.

C. Interacting electron model

We next consider an interacting spinless electron system
in a double quantum dot. As is mentioned at the beginning
of this section, we can use the single-level dot model under
certain conditions. Even in this case, the interdot interaction
exists, and in some situations (e.g., short interdot distance) it
is not negligible. We here consider such a situation, where the
system Hamiltonian is given by

ĤS =
∑
i=1,2

εi d̂
†
i d̂i + v(d̂†

1 d̂2 + d̂
†
2 d̂1) + Ud̂

†
1 d̂1d̂

†
2 d̂2. (21)

In this model, an electron in one dot interacts with an electron
in the other dot. We investigate the excess electron transfer
〈�q〉ex

τc
under the modulation of the chemical potentials (μL

and μR). We also assume the wide band limit and symmetric
coupling: �bj (ω) = � (b = L,R). This model is essentially the
same as that considered in Sec. III of Ref. 16. In Appendix D,
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FIG. 3. (Color online) (a)–(c) BSN curvature FμLμR for the
interacting electron system in the double dot, as a function of
μL and μR. The interaction strength is U = 0.25 meV for (a),
U = 0.5 meV for (b), and U = 1.0 meV for (c). The other parameters
are βL = βR = 1 K−1, ε1 = ε2 = 0.5 meV, v = 0.2 meV, and � =
0.001 meV. (d) Positions of the peaks of the BSN curvature, as
a function of U . The position (μposi

L , μ
posi
R ) of the positive peak

with μ
posi
L > μ

posi
R and that (μnega

L , μ
nega
R ) of the negative peaks with

μ
nega
L > μ

nega
R are shown. The solid lines are h̄ωA + U and h̄ωB + U ,

and the dashed lines are the mode energies, h̄ωA and h̄ωB , of
the system Hamiltonian (h̄ωA > h̄ωB ). (e) Excess electron transfer
〈�q〉ex

τc
for cyclic processes along the circles (1 and 2) depicted in (c).

The horizontal axis is the interaction strength U . The direction of the
cycle 2 is opposite to that of the cycle 1.

we will check the consistency of the results calculated in our
scheme with the results in Ref. 16.

In Figs. 3(a)–3(c), we plot the BSN curvature FμLμR for
various values of the interaction strength U obtained from
the numerical diagonalization method without the RWA. We
find that there exist two positive and two negative peaks.
In Fig. 3(d), we plot the position of one of the positive
peaks and that of one of the negative peaks. We see that
the positions of the negative peaks move as U increases,
whereas those of the positive ones do not. Moreover we find
that these peak positions are located around at the energies
necessary to add one electron; the positions of the positive
peaks are (μL,μR) = (h̄ωA,h̄ωB) and (h̄ωB,h̄ωA), and those
of the negative ones are (μL,μR) = (h̄ωA + U,h̄ωB + U ) and
(h̄ωB + U,h̄ωA + U ), where the mode energies are given by
h̄ωA,B = (1/2){ε1 + ε2 ±

√
(ε1 − ε2)2 + 4v2} (the subscripts

A and B stand for the antibonding and bonding modes,
respectively). This implies that the positive and negative peaks
merge for the noninteracting system (U = 0), and thus the
curvature FμLμR becomes zero in (μL,μR) space to achieve the
no-pumping condition mentioned below Eq. (20). This result
also implies that, for U > 0, an adiabatic pumping can occur
even if only the reservoir parameters are modulated.

Indeed, Fig. 3(e) shows the U dependence of the excess
electron transfer 〈�q〉ex

τc
for cyclic processes [cycle 1 and 2

depicted in Fig. 3(c)], where 〈�q〉ex
τc

is nonzero for U > 0.
Note that the direction of the cycle 2 is opposite to that of
the cycle 1. We observe that 〈�q〉ex

τc
for the cycle 1 becomes

a constant for U � 1 meV. In contrast, 〈�q〉ex
τc

for the cycle
2 has a peak at U � 0.5 meV and becomes nearly zero for
U � 1 meV. These results are consistent with the behaviors
of the peak positions of the BSN curvature FμLμR shown in
Figs. 3(a)–3(c) and 3(d): As U increases, the positive peak
positions of FμLμR stay around the location of the cycle 1
whereas the negative peak positions of FμLμR pass across the
location of the cycle 2.

Qualitatively, these results are understood as follows.
The pumped current resonantly flows when the chemical
potential of the reservoirs agrees with the energy necessary
to add (or remove) one electron.32 In the present model,
these energies are h̄ωB for the transition |0〉 ↔ |B〉, h̄ωA

for |0〉 ↔ |A〉, h̄ωB + U for |A〉 ↔ |D〉, and h̄ωA + U for
|B〉 ↔ |D〉. Here |0〉, |A〉, |B〉, and |D〉 are the eigenstates of
ĤS (the empty, antibonding, bonding, and doubly occupied
states, respectively). The transitions |0〉 ↔ |B〉 and |A〉 ↔
|D〉 (or |0〉 ↔ |A〉 and |B〉 ↔ |D〉) have oppositely directed
contribution to the pumping. For U = 0, since these two
resonant points locate at the same position, the contribution
from these two cancels out. The interdot interaction breaks this
degeneracy of the resonant points; for U �= 0, the locations
of the resonant points separate and thus nonzero pumped
current can flow. The nonmonotonic behavior for the cycle
2 in Fig. 3(e) can be also understood as follows. In the smaller
U region, the resonant points come into the cycle 2 as U

increases, which results in the increase of 〈�q〉ex
τc

in this region.
In the larger U region, on the other hand, the resonant points go
out of the cycle 2 as U increases, which results in the decrease
of 〈�q〉ex

τc
in this region.

IV. DISCUSSION AND CONCLUSION

By using a QME approach, we have derived a geometrical
expressions of the cumulant generating function and average
of the pumped (excess) quantity transferred from reservoirs
to the system under slow modulation of control parameters,
where the BSN phases, vector potential, and curvature of the
QME play crucial roles.

For noninteracting electrons in quantum dot systems, there
is no pumped current when only the temperatures and chemical
potentials of the reservoirs are modulated. In contrast, for an
interacting system, the pumped current can be observed even in
this situation. We note that the modulations of only the chemi-
cal potentials of the reservoirs are required for the pumping (in
the interacting system). This has an advantage for the control of
the pumping in experiments, since the modulation of chemical
potential is easier than that of the temperatures. As shown in
Fig. 3(e), for a cyclic modulation of the chemical potentials,
the pumped current depends not only on the difference of the
chemical potentials but also on their average. This implies
that the average number of electrons in the system S is
important for the pumping. For example, when we modulate
the chemical potentials as μL(t) = μc + μrad cos(2πt/τc) and
μR(t) = μc + μrad sin(2πt/τc), μc affects the quantity of the
pumping. This fact may be applicable for switching the
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pumping by the change of μc or the electron density, which
can be controlled by a gate voltage.

Since we have employed the method of the full counting
statistics, we can also calculate the fluctuation (noise) of
the pumped quantity. It is a future issue to analyze the
detailed properties of the fluctuation in the adiabatic pumping.
Although we have applied our formulation only to the
examples of spinless systems in this paper, we can apply
it also to the QME description of spin pumping.14–18 It is
also interesting to investigate the relation between the present
geometrical expression of the adiabatic pumping based on
the QME and the conventional geometrical expressions based
on the scattering theory,9,10,26,27 and to clarify the condition
for quantized charge pumping (topological effect) as in the
case of the classical master equation.57,58 The investigations
of nonadiabatic pumping, non-Markovian situation, and spin
effect are also future issues. For example, it is important to
consider the electron system with spin in a single dot with the
on-site Hubbard Hamiltonian (Anderson model),35,37,45,46 and
to compare with our results of the spinless case.63
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APPENDIX A: GENERALIZED QUANTUM MASTER
EQUATION WITHOUT AND WITHIN THE RWA

We here derive the concrete form of the GQME (5) and
(6) without and within the RWA. We start from the total
Hamiltonian (system plus reservoirs) given as

Ĥtot = ĤS +
∑

b

Ĥb + u
∑

b

ĤSb. (A1)

Here, for simplicity, we assume that the reservoir Hamilto-
nian Ĥb and the coupling Hamiltonian ĤSb between the system
and the reservoir are respectively written as

Ĥb =
∑

k

h̄
bkĉ
†
bkĉbk, (A2)

ĤSb =
∑

k

(Vbkâ
†
ib
ĉbk + V ∗

bkâib ĉ
†
bk), (A3)

where âi is a single-particle mode annihilation operator in the
system S, ib is the index of the system mode that couples
to the bth reservoir, and ĉbk is the kth mode annihilation
operator in the bth reservoir. We denote the eigenenergy of the
system Hamiltonian ĤS as Ex , and the corresponding energy
eigenstate as |Ex〉. We also assume that all the eigenenergies
of ĤS are nondegenerate. We consider the quantity Q̂ =∑

b

∑
k qbkĉ

†
bkĉbk to be counted, and define the current of Q̂

from the reservoirs to the system S as positive.
For the derivation of the GQME, it is convenient to

introduce the eigenoperators59 from âib :

â
(ωS)
ib

=
∑
Ex

|Ex − h̄ωS〉〈Ex − h̄ωS|âib |Ex〉〈Ex |, (A4)

â
†(ωS)
ib

=
∑
Ex

|Ex + h̄ωS〉〈Ex + h̄ωS|â†
ib
|Ex〉〈Ex |. (A5)

Then the modified coupling Hamiltonian in the interaction
picture is written as

Ȟ
χ

Sb(t) = e−iχQ̂/2e−(ĤS+Ĥb)t/ih̄Ĥ
χ

Sbe
(ĤS+Ĥb)t/ih̄eiχQ̂/2

=
∑

k

∑
ωS

(
Vbkâ

†(ωS)
ib

ĉbke
iχqbk/2ei(ωS−
bk )t

+V ∗
bkâ

(ωS)
ib

ĉ
†
bke

−iχqbk/2e−i(ωS−
bk)t
)
. (A6)

We assume that the initial state of the total system is written
as ρ̂tot(0) = ρ̂0 ⊗ ρ̂res, where ρ̂0 is an initial state of the system
S, ρ̂res = ⊗

b ρ̂G
b , and ρ̂G

b = e−βb(Ĥb−μbN̂b)/Zb is the grand-
canonical state of the bth reservoir. Then substituting Eq. (A6)
into Eq. (5), we obtain the GQME

d

dt
ρ̂χ (t) = 1

ih̄
[ĤS,ρ̂

χ (t)] − u2

2h̄2

∑
b

∑
ωSω′

S

[
�̃+

b (ω′
S)

{
â

(ωS)
ib

â
†(ω′

S)
ib

ρ̂χ (t) + ρ̂χ (t)â
(ω′

S)
ib

â
†(ωS)
ib

− eiχq(ω′
S)
(
â
†(ωS)
ib

ρ̂χ (t)â
(ω′

S)
ib

+ â
†(ω′

S)
ib

ρ̂χ (t)â(ωS)
ib

)} + �̃−
b (ω′

S)
{
â
†(ωS)
ib

â
(ω′

S)
ib

ρ̂χ (t) + ρ̂χ (t)â
†(ω′

S)
ib

â
(ωS)
ib

− e−iχq(ω′
S)
(
â

(ωS)
ib

ρ̂χ (t)â
†(ω′

S)
ib

+ â
(ω′

S)
ib

ρ̂χ (t)â†(ωS)
ib

)} + i�̃+
b (ω′

S)
{ − â

(ωS)
ib

â
†(ω′

S)
ib

ρ̂χ (t) + ρ̂χ (t)â
(ω′

S)
ib

â
†(ωS)
ib

}
+ i�̃+

b (ω′
S; χ )

{ − â
(ωS)
ib

ρ̂χ (t)â
†(ω′

S)
ib

+ â
(ω′

S)
ib

ρ̂χ (t)â†(ωS)
ib

} + i�̃−
b (ω′

S)
{ − â

†(ωS)
ib

â
(ω′

S)
ib

ρ̂χ (t) + ρ̂χ (t)â
†(ω′

S)
ib

â
(ωS)
ib

}
+ i�̃−

b (ω′
S; χ )

{ − â
†(ωS)
ib

ρ̂χ (t)â
(ω′

S)
ib

+ â
†(ω′

S)
ib

ρ̂χ (t)â(ωS)
ib

}]
, (A7)

where we used ∫ ∞

0
dt ′eiωt ′ = πδ(ω) + i

P

ω
. (A8)

Here, q(
bk) ≡ qbk , and

�̃±
b (ω) =

∑
k

2πδ(
bk − ω)|Vbk|2f ±
bk, (A9)

�̃±
b (ω) = 2

∑
k

P
|Vbk|2f ±

bk


bk − ω
, (A10)
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�̃±
b (ω; χ ) = 2

∑
k

P
|Vbk|2f ±

bk


bk − ω
e±iχq(
bk ), (A11)

f +
bk = Trb{ρ̂bĉ

†
bkĉbk} = 1

1 + eβb(h̄
bk−μb)
, (A12)

f −
bk = Trb{ρ̂bĉbkĉ

†
bk} = 1 − f +

bk. (A13)

Equation (A7) is the concrete form of the GQME without the
RWA.

When we transform Eq. (A7) in the interaction picture, we
see that rapidly oscillating terms proportional to exp[±i(ωS −
ω′

S)t] appear. In the RWA we neglect these terms.59 Thus we
obtain the GQME with the RWA by leaving only the terms
with ω′

S = ωS in Eq. (A7).
For the noninteracting models in Secs. III A and III B,

because the eigenoperators are the mode operators themselves;
the GQMEs for these models, in particular Eq. (18) for the
RWA case, are derived.

APPENDIX B: DERIVATION OF EQUATION (19)

In the model in Sec. III A within the RWA, the eigenvalues
and the eigenvectors of Kχ can be decomposed into those
of Kχ,j . That is, λ

χ

0 = ∑
j λ

χ

0,j , �̂
χ

0 = ⊗
j �̂

χ

0,j , and ρ̂
χ

0 =⊗
j ρ̂

χ

0,j , where λ
χ

0,j is the eigenvalue of Kχ,j with maximum

real part, and �̂
χ

0,j and ρ̂
χ

0,j are respectively the corresponding
left and right eigenvectors, which are operators on the j th
mode Hilbert space.

When we represent the left and right eigenvectors in the
basis of the number states (denoted by |0j 〉 and |1j 〉) of âj

such that âj |0j 〉 = 0 and |1j 〉 = â
†
j |0j 〉, we can show that

〈mj |�̂χ

0,j |(1 − m)j 〉 = 〈mj |ρ̂χ

0,j |(1 − m)j 〉 = 0 (m = 0,1), and(
〈0j |�̂χ

0,j |0j 〉
〈1j |�̂χ

0,j |1j 〉

)
=

(
1

vj (χ )

)
, (B1)

(
〈0j |ρ̂χ

0,j |0j 〉
〈1j |ρ̂χ

0,j |1j 〉

)
= Cj (χ )

(
1

wj (χ )

)
, (B2)

where

vj (χ ) ≡
∑

b(�+
bj (ωj ) − �−

bj (ωj )) + √
Dj

2(�+
Lj (ωj )eiχ + �+

Rj (ωj ))
,

wj (χ ) ≡
∑

b(�+
bj (ωj ) − �−

bj (ωj )) + √
Dj

2(�−
Lj (ωj )e−iχ + �−

Rj (ωj ))
,

Dj ≡ �j
2 − 4(1 − eiχ )�+

Lj (ωj )�−
Rj (ωj )

− 4(1 − e−iχ )�−
Lj (ωj )�+

Rj (ωj ),

�j = ∑
b �bj , and �bj = �+

bj (ωj ) + �−
bj (ωj ). From the nor-

malization condition for χ = 0, TrSρ̂
0
0,j = 1, we have Cj (0) =∑

b �−
bj (ωj )/�j . Thus we obtain the BSN vector potential:

A(α) =
∑

j

∂vj (χ )

∂(iχ )

∣∣∣∣
χ=0

∂(Cj (0)wj (0))
∂α

, (B3)

which becomes the desired result after straightforward calcu-
lation.

APPENDIX C: EQUIVALENCE OF THE UNIT-TIME
CUMULANT GENERATING FUNCTIONS WITHOUT AND

WITHIN THE RWA

1. Matrix representation of GQME generator

To show the equivalence, we introduce the matrix rep-
resentation of Kχ by using the eigenstates |Ex〉 of ĤS:
The (y ′y,x ′x) matrix element is given as (Kχ )y ′y,x ′x ≡
TrS[(|Ey ′ 〉〈Ey |)†(Kχ |Ex ′ 〉〈Ex |)], where x ′x (y ′y) is the index
for the column (row) of the matrix.

In this representation, we can show that within the RWA
(KRWA

χ )y ′y,xx = (KRWA
χ )yy,x ′x = 0 if x ′ �= x and y ′ �= y. This

implies that KRWA
χ is a block diagonal matrix that is composed

of {(KRWA
χ )yy,xx} and {(KRWA

χ )y ′y,x ′x} with x ′ �= x and y ′ �=
y. We also note that a relation holds between the matrices
of the generators without and with the RWA: (KRWA

χ )yy,xx =
(Kχ )yy,xx .

2. Equivalence of λ
χ

0 without and within RWA

As is mentioned in Sec. II B, the unit-time cumulant
generating function in a steady state is given by the eigenvalue
λ

χ

0 of the generator Kχ with maximum real part.
Within the RWA, λ

χ

0 is determined from the eigenvalues of
{(KRWA

χ )yy,xx}, one of the blocks of {(KRWA
χ )yy ′,xx ′ }.

Without the RWA, the eigenvalues of Kχ are deter-
mined by a perturbation theory with respect to ν = u2.
From Eq. (A7), we see that the unperturbed part of Kχ is
−{(Ex − Ex ′ )/ih̄}δEy,Ex

δEy′ ,Ex′ , and is diagonal. Therefore the
unperturbed eigenvalue is −(Ex − Ex ′ )/ih̄. This implies that
the eigenvalue of zero has d-fold degeneracy, where d is
the dimension of the Hilbert space of the system S. Thus
by the perturbation theory for degenerate case, the first-order
eigenvalue is determined by the eigenvalue equation for the
matrix in the degenerate subspace, i.e., {(Kχ )yy,xx}. Further-
more, since the relation (Kχ )yy,xx = (KRWA

χ )yy,xx holds, the
first-order eigenvalues are equivalent to those of {(KRWA

χ )yy,xx}.
Therefore λ

χ

0 without the RWA is equivalent to λ
χ

0 within the
RWA in O(ν). This verification of the equivalence is sufficient
since the master equation is valid up to O(ν).

APPENDIX D: COMPARISON WITH RESULT IN
ANOTHER SCHEME

Here we check the consistency of the results in our
scheme with those in Ref. 16. We again consider the model
of interacting double quantum dot in Sec. III C. Under the
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FIG. 4. Electron transfer 〈�q〉ex
τc

normalized by A�−2 per cycle of
modulation of the dot levels, where A is the cycle area in the parameter
space (A�−2 = π × 10−2 is used in the main plot). The horizontal
axis is the cycle center Ē multiplied by the inverse temperature β of
the reservoirs. The results for various values of the interdot interaction
U are plotted. The inset shows 〈�q〉ex

τc
/A�−2 at the negative peak

for βU = 10 (indicated by the arrow in the main) as a function of
A�−2. The values of the parameters are as follows: βL = βR = β =
50 meV−1, βμL = βμR = 0, βv = 1/2, and β� = 1/2.

condition of the symmetric reservoirs (βL = βR = β, μL =
μR = 0, and �L = �R = �), we perform a cycle operation
where the levels of the dot 1 and 2 are modulated as

ε1(t) = Ē + εrad cos(2πt/τc), (D1)

ε2(t) = Ē + εrad sin(2πt/τc). (D2)

For a slow modulation of this cycle, we calculate the pumped
electron transfer 〈�q〉ex

τc
from the left reservoir to the double

dot system by using the formula (13).
In Fig. 4, we show the numerical results of 〈�q〉ex

τc
for

various values of U as a function of the cycle center Ē. The
vertical axis is normalized by A�−2, where A = πεrad

2 is the
cycle area in the parameter space. In Ref. 16, it was shown
that the positive resonant peaks appear around Ē = v and the
negative resonant peaks appear around Ē = −v − U in our
notation. We can see that our numerical results are consistent
with these at this point.64

In Ref. 16, it was also shown that the normalized electron
transfer approaches A-independent values for small A. We
observe this behavior in the inset of Fig. 4, where we plot
the normalized electron transfer 〈�q〉ex

τc
/A�−2 at the negative

peak for βU = 10 (indicated by the arrow) as a function of A.
From these observations, we conclude that our scheme

works well and provides consistent results with those in
Ref. 16.
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of Ē whereas their result in Fig. 3 of Ref. 16 is not. From their
discussion, the positive and negative peaks for U = 0 should be
located at symmetric positions from the origin of the horizontal
axis. We guess that the horizontal axis in their plot was accidentally
shifted.

235308-10

http://dx.doi.org/10.1103/PhysRevB.72.075316
http://dx.doi.org/10.1103/PhysRevB.72.075316
http://dx.doi.org/10.1103/PhysRevLett.95.246803
http://dx.doi.org/10.1103/PhysRevLett.95.246803
http://dx.doi.org/10.1103/PhysRevLett.96.166802
http://dx.doi.org/10.1103/PhysRevB.77.045330
http://dx.doi.org/10.1103/PhysRevB.78.085130
http://dx.doi.org/10.1103/PhysRevB.78.085130
http://dx.doi.org/10.1103/PhysRevLett.100.236803
http://dx.doi.org/10.1103/PhysRevB.80.115311
http://dx.doi.org/10.1209/0295-5075/98/57003
http://dx.doi.org/10.1209/0295-5075/98/57003
http://dx.doi.org/10.1103/PhysRevB.64.245301
http://dx.doi.org/10.1103/PhysRevB.74.085305
http://dx.doi.org/10.1103/PhysRevB.74.085305
http://dx.doi.org/10.1103/PhysRevLett.104.226803
http://dx.doi.org/10.1103/PhysRevLett.104.226803
http://dx.doi.org/10.1103/PhysRevB.81.085302
http://dx.doi.org/10.1103/PhysRevB.81.085302
http://dx.doi.org/10.1103/PhysRevE.57.7297
http://dx.doi.org/10.1103/PhysRevE.66.021111
http://dx.doi.org/10.1103/PhysRevE.66.021111
http://dx.doi.org/10.1103/PhysRevLett.91.118102
http://dx.doi.org/10.1209/0295-5075/77/58001
http://dx.doi.org/10.1103/PhysRevLett.99.220408
http://dx.doi.org/10.1103/PhysRevLett.99.220408
http://dx.doi.org/10.1073/pnas.0708040104
http://dx.doi.org/10.1103/PhysRevLett.101.140602
http://dx.doi.org/10.1103/PhysRevLett.101.140602
http://dx.doi.org/10.1063/1.3026510
http://dx.doi.org/10.1103/PhysRevLett.104.170601
http://dx.doi.org/10.1063/1.3703328
http://dx.doi.org/10.1063/1.3703328
http://dx.doi.org/10.1063/1.3703329
http://dx.doi.org/10.1063/1.3703329
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/PhysRevE.84.051110
http://dx.doi.org/10.1103/PhysRevE.76.031115



