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Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles
study with the Green’s function method

Zhiting Tian, Keivan Esfarjani, and Gang Chen*

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 23 August 2012; published 10 December 2012)

Knowledge on phonon transmittance as a function of phonon frequency and incidence angle at interfaces
is vital for multiscale modeling of heat transport in nanostructured materials. Although thermal conductivity
reduction in nanostructured materials can usually be described by phonon scattering due to interface roughness,
we show how a Green’s function method in conjunction with the Landauer formalism suggests that interface
roughness induced by atomic mixing can increase phonon transmission and interfacial thermal conductance. This
is an attempt to incorporate first-principles force constants derived from ab initio density-functional theory (DFT)
into Green’s function calculation for infinitely large three-dimensional crystal structure. We also demonstrate the
importance of accurate force constants by comparing the phonon transmission and thermal conductance using
force constants obtained from semiempirical Stillinger-Weber potential and first-principles DFT calculations.
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I. INTRODUCTION

The reduced lattice thermal conductivity observed in
many nanostructured materials has significant implications
for applications from thermoelectric energy conversion to mi-
croelectronics thermal management. The Boltzmann transport
equation (BTE) can be used to accurately model the phonon
transport in nanostructures if the input parameters, such as
phonon mean free paths and interfacial transmission, can
be properly represented. In recent years, excellent progress
has been made in computing the mode-dependent phonon
mean free paths in bulk materials using first-principles
approaches.1–4 In contrast, research on phonon transmission
across interfaces is still limited, and first-principles studies of
phonon interfacial transport are rather scarce. First-principles-
based approaches have been recently applied to nanotubes;5,6

however, their applications to interfaces between bulk three-
dimensional (3D) materials are significantly more demanding
due to the large number of transverse wave vectors required.

Interface roughness due to atomic disorder and defects
commonly occurs at interfaces during material synthesis. A
thorough understanding of the influence of interface roughness
on phonon transport is crucial for surface engineering and
improved device design. It is generally accepted that interface
roughness is a very important driving mechanism for thermal
conductivity reduction in different nanostructures such as
nanowires and superlattices. However, it is not clear how
interface roughness affects interfacial phonon transmission.
Using a lattice Green’s function formalism, Fagas et al.7 found
that the phonon transmittance is strongly dependent on phonon
frequency and the disorder correlation length by varying the
atomic masses in a two-dimensional disordered atomic layer.
Following the same approach, Zhao and Freund8 studied the
phonon scattering at a rough interface induced by atomic mix-
ing between two fcc lattices and found that the transmittance
is insensitive to the roughness parameters. Using molecular
dynamics (MD) simulations, Sun and Murthy9 focused on
the transmittance change as the roughness thickness was
increased. For long-wavelength phonons, they concluded that
the transmittance is independent of roughness thickness. For

midrange-wavelength phonons, the transmittance is reduced
as roughness thickness increases but eventually saturates to
become independent of the roughness. Nevertheless, the above
studies have not drawn a comparison between the ideal and
rough interface; furthermore, the conclusions were derived
from empirical potentials. Using a simplified lattice dynamics
model, Kechrakos10 found that the interface conductance can
be enhanced by as much as a factor of 3 for highly mismatched
materials. The calculation only included one monolayer
roughness and one branch mode. Stevens et al.11 observed that
interface mixing improved thermal transport by nearly a factor
of 2 through nonequilibrium molecular dynamics (NEMD)
simulations. Most recently, using NEMD, English et al.12

found that by sandwiching an intermediate layer between two
dissimilar materials, the interfacial thermal conductance can
be enhanced compared to that of the two dissimilar materials.
NEMD, however, is unable to unveil any information about
the mode-dependent transmission. Additionally, an empirical
potential was used in their simulations. The behavior of
different phonon modes at a rough interface using reliably
accurate force constants would be preferable, and as we show
in this paper, results can differ by up to 50%, depending on the
choice of the force field.

Phonon interface transmittance is critical in determining
the interfacial thermal resistance. Phonon interface trans-
mittance models have yet to reliably predict experimental
observations. There are two widely used models for the
phonon transmittance at an interface: the acoustic mismatch
model (AMM)13 and the diffuse mismatch model (DMM).14

As a continuum model, the AMM assumes that phonons
undergo specular reflection or transmission at the interface.
This model is valid in the long-wavelength limit, where
due to their small details compared to the incident phonon
wavelength, interfaces are seen as sharp. The DMM, on
the other hand, assumes not only purely diffuse scattering
at the interface, but also an equivalence between phonon
reflectance from one side to the transmittance from the other.
This model, as opposed to AMM, is valid for very rough or
dirty interfaces and short-wavelength phonons. Neither AMM
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nor DMM consistently predict interface thermal boundary
resistance. Using molecular dynamics,9,15–19 phonon wave
packets can be created and the phonon transmittance can be
obtained by tracking the energy transmitted and reflected after
encountering an interface. Although easy to implement, it is
computationally expensive since one separate MD simulation
is needed for every incoming phonon mode, although using
the multiple phonon wave packets reduces computational
intensity.16 Additionally, MD simulations cannot capture a
wide angle of incidence because they require a large lateral
size that is difficult to achieve. Linear lattice dynamics
(LD) calculations20–23 have been performed to extract the
mode-dependent phonon transmittance by solving the reflected
and transmitted wave functions subject to boundary condi-
tions. However, this method can be difficult to implement
for complex atomic structures. As an alternative and more
straightforward approach, Green’s function methods dedicated
to solve for the response from point-source perturbation are
employed to compute the phonon-transmission function that
can be easily related to transmittance, as described in Sec. II.
The Green’s function approach has been described thoroughly
for transmission function calculation in electron transport by
Datta.24 Mingo and Yang25,26 applied the approach to deal
with phonon transport within an elastic scattering domain
in nanowires and referred to this method as the atomistic
Green’s function (AGF). Later, Zhang et al.27 extended the
method to phonon transport in 3D structures. They calculated
the phonon transmission across the Si-Ge interface using an
empirical interatomic potential and investigated the strain
effect on interfacial transport. A general formulation and
full derivation have been detailed by Mingo and Zhang25,26

and Zhang et al.27,28 Several other studies utilize the same
framework,5,6,30–32 including the only first-principles-based
calculations with the AGF method in one-dimensional (1D)
structures.5,6 Here we incorporate the first-principles force
constants into AGF and demonstrate the importance of using
accurate force constants. Without any fitting to experimental
data, the force constants from first-principles calculations
demonstrated the ability to accurately reproduce the lattice
thermal conductivity of bulk materials.1–4,33 These force
constants can also improve the quantitative prediction for
interfacial phonon transport. In this study, we employ the AGF
method to study the interface roughness stemming from atomic
mixing between Si and Ge interfaces.

II. METHODOLOGY

The detailed methodology of AGF has been presented
elsewhere.25–30 In short, the system is partitioned into three
regions: the left lead, the central region (also known as the
scattering region), and the right lead, as shown in Fig. 1.
The advantage of Green’s function lies in its ability to replace
the infinite leads by finite leads with self-energies.24 The
self-energy �α describes the effect of the lead α on the central
block and is defined as

�α = φCαgαφ+
Cα, (1)

where α stands for left (L) or right (R), C stands for center;
φ’s are the harmonic force constant matrices divided by

corresponding atomic masses: φα means the onsite force
constants of a block in lead α, φαα means the hopping matrices
between two neighboring blocks within lead α; φ+ is the
complex conjugate of φ; and g is the surface Green’s function
defined by

gα = [ω2I − φα − φααgαφ+
αα]−1. (2)

The surface Green’s function corresponds to the uncoupled
semi-infinite system and is solved iteratively using a fast
algorithm.34 The coupled Green’s function for the central
region is expressed as

GR = [ω2I − φC − �L − �R]−1, (3)

where the superscript R stands for retarded, ω is phonon
frequency, and φC represents the onsite force constants of the
central region.

To tackle the infinitely large size of transverse direction,
a Fourier transform is performed parallel to the interface to
decouple the infinite degrees of freedom into independent

transverse wave vectors
⇀

kt , assuming ideal translational invari-
ance. We can then treat them as independent 1D chains with
different transverse wave vectors. The transmission function
�(ω,

⇀

kt ) as a function of the phonon frequency and transverse
wave vector is given as a trace over the Green’s function of the
center and coupling terms between the leads and the center:

�(ω,
⇀

kt ) = T r[�L(ω,
⇀

kt )G
R(ω,

⇀

kt )�R(ω,
⇀

kt )G
A(ω,

⇀

kt )], (4)

where �α = i[�R
α − �A

α ] describes the rate at which phonons
enter and exit the leads. The retarded Green’s function GR

and retarded self-energy �R are the Hermitian conjugate
of advanced Green’s function GA and advanced self-energy
�A, respectively. The total transmission at a given frequency
is simply the sum of the transmission function of different
transverse wave vectors normalized by the total number of

transverse k points: �(ω) = 1/N⇀
k t

∑
⇀
k t

�(ω,
⇀

kt ). While the

phonon frequency and transverse wave vector are conserved,
mode conversion is allowed and the longitudinal wave vector
can change. In other words, the phonons can elastically scatter
into different directions at rough interfaces.

The thermal conductance per unit area σ , based on the total
transmission function �(ω), is calculated using Landauer’s
formula,35

σ (T ) = 1

s
× 1

2π

∫ ∞

0
h̄ω

∂f (ω,T )

∂T
�(ω)dω, (5a)

where f is the Bose-Einstein distribution and s is the cross-
sectional area of the simulation cell perpendicular to the
direction of heat flow. Note that this definition yields a finite
thermal conductance in the limit of an identical material
because the temperature drops �T used to derive Eq. (5a) are
between the reservoir temperatures T1 and T2, instead of the
temperature drop across the interface. In other words, Eq. (5a)
is the formula corresponding to a two-probe setup where
the thermometer probes the bulk phonons incident on the
interface.13 If a thermometer probes the temperature drop right
across the interface (this corresponds to a four-probe setup),
Eq. (5a) needs to be modified.36,37 Despite highly nonequilib-
rium distribution near the interface, we can define equivalent
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FIG. 1. (Color online) The system is divided into three parts: left (L), center (C), and right (R). Left and right leads are semi-infinite crystal
lattices. In the transverse direction, all the three regions have periodic boundary conditions imposed to represent the infinitely large lateral
dimension.

equilibrium temperatures Te1 and Te2 as proposed by Chen.37

The equivalent equilibrium temperature corresponds to the
final equilibrium temperature of these phonons if we assume
they adiabatically approach equilibrium. Then we could use
Bose-Einstein distribution as a function of the equivalent
equilibrium temperature to represent the local energy density.
On the other hand, we can express the local energy density
as a summation of the phonons emitted from both ends
with the reservoir temperatures. By equating the local energy
densities from these two approaches, we obtain the relation
between the equivalent equilibrium temperature and the heat
reservoir temperature as Te1 = T1 + (T2 − T1)σ/(2σ1) and
Te2 = T2 − (T2 − T1)σ/(2σ2). Finally, we reach a modified
expression for the thermal conductance as

σ ′(T ) = σ (T ) × 1

1 − 1
2

[
σ (T )
σ1(T ) + σ (T )

σ2(T )

] , (5b)

where σ1 and σ2 are the “thermal conductance” of pure material
1 and pure material 2, respectively, using Eq. (5a) with �(ω)
equaling the number of phonon bands at the frequency ω. For
a pure material, Eq. (5b) gives infinite thermal conductance
as there is no temperature drop across the virtual interface. In
the limit of low conductance (σ � σ1,σ � σ2), Eqs. (5a) and
(5b) reach the same value as the denominator approaches 1. In
the following discussion (Sec. III), Eq. (5b) is applied.

Transmittance can be related to transmission function as

τ12(ω) = �(ω)

�1(ω)
, τ21(ω) = �(ω)

�2(ω)
, (6)

where τ12(ω) is the transmittance from material 1 to material 2,
while τ21(ω) is the transmittance from material 2 to material 1.
Transmittance describes the fraction of the incident phonons
of frequency ω that is transmitted. Consequently, its value
lies between zero and unity. The transmission function, on
the other hand, can exceed unity because it describes the
number of modes transmitted at a specific frequency. The
maximum value of the transmission function at a certain
frequency would be the total number of phonon modes
available at that frequency. Although the transmission function
from either side is identical, a requirement of detailed balance,
the transmittance has directional dependence.

In this study, we first construct an ideal Si/Ge interface
as shown in Fig. 1 with Si on the left of the interface and
Ge on the right of the interface, using the lattice constant of
Si. Lattice constants for the semiempirical Stillinger-Weber
(SW) potential and DFT potential for Si are a = 5.43 Å and
a = 5.3976 Å, respectively. The transverse direction of all
the three regions is set to be 3a × 3a, which has converged

by comparing to the results of the 6a × 6a simulation size.
Periodic boundary conditions are imposed in the transverse
directions. The longitudinal length of the central region is 2a,
which equals the largest thickness of rough region investigated
in this study. For simplicity, we use the force constants obtained
from Si throughout the system as those of Ge are very similar
in magnitude. The major factor affecting the phonons of Si
and Ge are their very different masses. The atomic masses for
Si and Ge are 28.085 5 and 72.63, respectively. To obtain the
force constants from the SW potential and DFT, LAMMPS38

and QUANTUM ESPRESSO39 are used to record the force and
displacement data, respectively. For our DFT calculation, we
use the local density approximation of Perdew and Zunger,40

with a cutoff energy of 40 Ryd and 4 × 4 × 4 k points for
a 2 × 2 × 2 supercell of 64 atoms. By fitting the general
expression of the Taylor expansion of the interatomic potential
to the set of force displacements obtained from different atomic
configurations,41 we extract the harmonic force constants that
are input into our transmission calculation. We take exactly
the same parameters as Esfarjani et al.1 used, where they
obtained excellent agreement with experimental data for the
phonon dispersion and thermal conductivity of Si. This gives
us confidence on the DFT force constants and corresponding
phonon properties. The harmonic force constants that deter-
mine the phonon frequencies and eigenvectors are essential
for the transmission and thermal conductance. To calculate
the total transmission, the number of transverse k points
within the Brillouin zone is chosen to be 10 × 10 to ensure
the convergence. A similar procedure has been followed for
rough interfaces, except for the system setup that obtains the
force constants. For rough interfaces, the atoms in the interface
region are assigned one of the two atomic masses according
to some probability (uniform or Gaussian), constrained by the
thickness of the rough region, and then the effective force
constants φ were obtained by dividing the Si force constants
by the newly assigned masses. Lattice mismatch between Si
and Ge, i.e., strain effects, and anharmonicity are not included
in this study. As observed by the NEMD simulations,42

anharmonic effects were not important for temperatures lower
than 500 K.

To first validate our methodology, we compare our calcu-
lated thermal conductance of an ideal Si/Ge interface using
SW potential and Eq. (5a) with available data in the literature.
Our result yields 2.8 × 108 W/m2 K at 300 K, which is close to
3.1 × 108 W/m2 K from lattice dynamics calculation by Zhao
and Freund,22 and (3.2 ± 0.2) × 108 W/m2 K from NEMD
calculation by Landry and McGaughey.42 We can then focus
on the discussion on rough interfaces using Eq. (5b).
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FIG. 2. (Color online) Total transmission function, transmittance, and thermal conductance as a function of phonon frequency for an ideal
Si/Ge interface (solid black line) and for a random rough Si/Ge interface (colored dashed or dotted lines): (a) total transmission based on SW
force constants; (b) transmittance from Si to Ge based on SW force constants; (c) thermal conductance based on SW force constants; (d) total
transmission based on DFT force constants; (e) transmittance from Si to Ge based on DFT force constants; and (f) thermal conductance based
on DFT force constants.

III. RESULTS AND DISCUSSION

A. Rough interface with random distribution

To create random atomic mixing, we select a certain number
of layers (2, 4, 6, and 8) in the central region and randomly
shuffle the atoms within these layers. Three independent
configurations are constructed for each roughness thickness,
and calculations are conducted for each configuration. The
average value is plotted for each thickness of the rough region.
The total transmission function, transmittance, and thermal
conductance are plotted in Fig. 2. The total transmission
function, transmittance, and thermal conductance of ideal
interface are plotted in Fig. 2 as a reference.

One counterintuitive finding, arguably the most important
highlight, from Fig. 2 is that the phonon transmission across
a rough Si/Ge interface can be higher than the ideal Si/Ge
interface for certain frequencies, contributing to a larger
thermal conductance at certain roughness thicknesses. In the
low-frequency limit, the long-wavelength phonons do not
sense the interface roughness and propagate through as if they
are traveling across the ideal sharp interface. Due to its short
length scale, atomic roughness has negligible influence on
the long-wavelength phonons. In the high-frequency limit,
the transmission is zero because there are no available
states on the Ge side. The most interesting phenomena are
observed for the phonons with midrange frequencies, where

the atomic roughness could play a role in enhancing the
transmission. The roughness softens the abrupt change of
acoustic impedance at the interface and facilitates phonon
propagation. It can also allow phonons with large incidence
angles, which would otherwise be internally reflected at the
interface, to be transmitted. More specifically, this can be
understood by investigating the phonon density of states (DoS)
of the two materials, where incident and outgoing phonons
are contained, and the interfacial region where reflection and
transmission happens. As shown in Fig. 3, the phonon DoS of
pure Si and Ge are quite different, while the Si/Ge mixture has
intermediate DoS, which serve to bridge the gap between Si
and Ge. Therefore, phonons that originally cannot propagate
across the Si/Ge interface can now transmit via new elastic
scattering channels created in the Si/Ge mixture. Accordingly,
the phonon transmission and transmittance are boosted in the
200–300 cm−1 frequency range where the overlap of the two
DoS is enhanced. This frequency range corresponds to the
top of the transverse acoustic branches close to the zone
boundary, where the typical phonon wavelength is a few
lattice constants at the most. Although one configuration of
a Si/Ge mixture is used in Fig. 3, it can represent the trend
of general Si/Ge mixtures at the interface, since the atomic
ratio of all the configurations involved in our calculation
is 1:1, with the only difference being atomic positions. In
fact, it has been well known that interface roughness can
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FIG. 3. (Color online) Phonon density of states (DoS) of pure Si
(black solid line), pure Ge (red dashed line), and Si/Ge 1:1 mixture
(green dotted line) using DFT force constants.

increase transmittance of photons43–46 and electrons.47–50 For
phonons, interface roughness leads to reduction in thermal
conductivity in nanowires51–53 because of backscattering and
in superlattices54–56 due to loss of coherence, but for an
individual interface, interface roughness is able to increase
transmittance. This has not received much attention before.

For the two-layer rough configuration, SW predicts an
∼20% increase in the thermal conductance at 300 K, while
DFT predicts a ∼30% increase, compared to perfect interfaces.
Empirical potentials can qualitatively capture the trend but are
unable to quantitatively predict the difference. As the thickness
of the rough region increases, the transmission does not keep
increasing, which is consistent with earlier observations.9,12

There are two competing factors: (1) overlapping DoS which
increases transmission and (2) diffuse scattering at the rough
interface, which reduces transmission. As observed in the SW
case [Fig. 2(a)], the two-layer rough configuration gives the
highest transmission. Above a thickness of two layers, diffuse
scattering becomes the more significant mechanism that affects
thermal conductance. In the DFT case [Fig. 2(d)], however, the
four-layer rough configuration gives the highest transmission
around 120 cm−1, and the two-layer roughness gives the
highest transmission between 230 and 300 cm−1, which leads
to fairly close thermal conductance between the two-layer
rough configuration and the four-layer rough configuration,
as shown in Fig. 2(f). This finding cannot be represented
by the calculation using SW prediction, partly because their
phonon bandwidths are different from DFT. Compared to
the ideal interface, the thermal conductance is larger when
the rough region is thinner than six layers using SW force
constants and up to eight layers using DFT force constants.
This discrepancy reiterates the necessity of adopting DFT force
constants to provide precise guidance in practical applications.
In the following discussion, only DFT force constant results
are presented. As thickness increases even further, the thermal
conductance decreases below that of the ideal interface. This
can be easily understood by considering the limiting case. As
the thickness of the rough region increases to infinity, diffuse
scattering becomes dominant and the thermal conductance
should approach the alloy limit.

0 100 200 300 400 500
0

2

4

6

8

10

12

Frequency [cm−1]

T
ra

ns
m

is
si

on
 F

un
ct

io
n

Ideal
6−layer Gaussian Rough

(a)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Frequency [cm−1]

T
ra

ns
m

itt
an

ce
 τ S

i−
>

G
e

Ideal
6−layer Gaussian Rough

(b)

(c)

FIG. 4. (Color online) (a) Total transmission function, (b) trans-
mittance, and (c) thermal conductance as a function of phonon
frequency for an ideal Si/Ge interface (solid black line) and for a
rough Si/Ge interface with a Gaussian distribution (dashed blue lines)
based on DFT force constants. (c, Inset) The number of Si atoms in
each layer for an ideal interface (solid black) and for a Gaussian rough
interface (dashed blue).

B. Rough interface with Gaussian distribution

To mimic atomic diffusion at an interface, we also create the
atomic profile of one type to obey half-Gaussian distribution,
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FIG. 5. Thermal conductance ratio of a Gaussian rough interface
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using DFT force constants

as shown in the Fig. 4(c) inset. The phonon transmission,
phonon transmittance, and thermal conductance are plotted
in Fig. 4. A significant increase in phonon transmission is
observed using DFT force constants. At 300 K, there is a 32.6%
increase. For the same roughness thickness, the Gaussian
distribution shows more enhanced transmission compared to
the uniform roughness distribution.

Comparison with experimental data is difficult since there
is no experimental data on a single Si/Ge interface. On the
other hand, several experiments had reported reduced thermal
conductivity on Si/Ge superlattices.54,55 If we assume that the
measured thermal conductivity is due to interfacial resistances
only, as one would expect in the very thin limit when phonon
transport is completely incoherent57 and yet ballistic through
individual layers of the superlattice, the extrapolated thermal
conductance is 2 × 109 W/m2 K54 (period = 3 nm) and
1.8 × 109 W/m2 K 55 (period = 4.4 nm) at 300 K. Both the
extrapolated values are close but about 1 order of magnitude
larger than our calculated value of 2.8 × 108 W/m2 K for an
ideal interface and 2.8 × 108 W/m2 K for a Gaussian rough
interface based on DFT force constants. The higher-than-
predicted value is actually consistent with recent experimental
observation58 that long-wavelength phonons maintain their
coherence in thermal transport in superlattices, and hence lead
to a higher conductance value than that of a single interface as
we calculated.

To explore the generality of the transmission enhancement
between different materials, we keep the Gaussian rough
configuration and vary the mass of the atoms on the Ge sites
from 1.25 times that of Si to ten times that of Si, corresponding
to acoustic mismatch from 1 to 3.16. The thermal conductance

ratio of a Gaussian interface over an ideal interface is plotted
in Fig. 5 as a function of the mass/acoustic impedance ratio
of the two materials on both sides of the interface. Since the
roughness is caused by the mass difference, when the mass
ratio is 1, there is no atomic mixing and no roughness. As
the mass ratio increases, the phonon dispersions of the two
materials begin to differ from each other and the roughness
favors phonon propagation via graded acoustic impedances
at the interface. The thermal conductance ratio reaches its
maximum at 2.586, which happens to be the mass ratio
of Si to Ge. As the mass ratio increases even further, the
phonon dispersions of two materials fall further apart from
each other and it becomes less effective to bridge the large
gap through the effects of roughness. Therefore, the thermal
conductance ratio drops and flattens out with increasing mass
ratio. Nevertheless, the thermal conductance ratio is kept over
unity up to a mass ratio of 10 and will stay above unity in the
infinite mass mismatch limit, as it provides a smooth transition
for intermediate-frequency phonons to transmit across the
interface. Although there are variations in the extent to which
roughness increases thermal conductance, the enhancement
generally holds.

IV. CONCLUSION

In summary, we apply the atomistic Green’s function
method to calculate the phonon transmission across an ideal
and rough Si/Ge interface. The atomistic roughness can
increase phonon transmission across two dissimilar materials
if the roughness thickness and profile are properly controlled,
contrary to the commonly held notion that rougheness reduces
transmission. This effect is more pronounced if the acoustic
mismatch between the two materials is moderately large.
This finding elucidates new design considerations for surface
engineering. As our contribution to the AGF framework, we
incorporate the first-principles force constants determined
from DFT into the AGF method for phonon transport in
infinitely large 3D structure. The comparison between the
results from SW force constants and those from DFT force con-
stants demonstrates that DFT force constants are necessary in
reliable predictions. Since interface transmission is crucial for
bridging the calculation of pure materials to nanocomposites,
we can now integrate the interfacial transmission and the bulk
mean free paths, both calculated from first-principles DFT,
to accurately model heat transport in complex nanostructured
materials.
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