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Density functional theory study of the structural and electronic properties
of amorphous silicon nitrides: Si3N4−x:H
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We present ab initio density functional theory studies for stoichiometric as well as nonstoichiometric amorphous
silicon nitride, varying the stoichiometry between Si3N4.5 and Si3N3. Stoichiometric amorphous Si3N4 possesses
the same local structure as crystalline Si3N4, with Si being fourfold coordinated and N being threefold coordinated.
Only few Si-Si and N-N bonds and other defects are found in stoichiometric silicon nitride, and the electronic
properties are very similar to the crystalline bulk. In over-stoichiometric Si3N4+x , the additional N results in
N-N bonds, whereas in under-stoichiometric Si3N4−x the number of homopolar Si-Si bonds increases with
decreasing N content. Analysis of the structure factor and the local coordination of the Si atoms indicates a slight
tendency towards Si clustering, although at the investigated stoichiometries, phase separation is not observed.
In the electronic properties, the conduction-band minimum is dominated by Si states, whereas the valence-band
maximum is made up by lone pair N states. Towards Si rich samples, the character of the valence-band maximum
becomes dominated by Si states corresponding to Si-Si bonding linear combinations. Adding small amounts of
hydrogen, as typically used in passivating layers of photovoltaic devices, has essentially no impact on the overall
structural and electronic properties.
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I. INTRODUCTION

Amorphous silicon nitride (a-Si3N4−x :H) is commonly
used in the solar cell industry because it has three desirable
properties: It serves as antireflection coating and enhances
light transmission, it is the main source of hydrogen (H)
for passivating the silicon (Si) wafer, and it chemically and
physically passivates the surface.1 By changing deposition
parameters, such as the gas flow of NH3 and SiH4, these
properties of a-Si3N4−x :H can be easily varied and tuned to
enhance solar cell efficiency.2 The material is most commonly
fabricated by plasma enhanced chemical vapor deposition
(PECVD),1,3,4 but other deposition methods like sputtering
are used as well.5,6

Structural properties have been experimentally determined
by Aiyama et al. and Misawa et al. using x-ray and neutron
scattering.7,8 Furthermore, trapping centers have been investi-
gated by electroparamagnetic resonance (EPR) measurements
by Lenahan et al. and Warren et al.9,10 Experiments are mostly
limited to mesoscopic and macroscopic investigations, which
are difficult to link to structural and electronic properties at the
atomic scale. In order to fill this gap, computer simulations are
now commonplace to establish realistic atomic scale models
and relate them to the observed macroscopic properties.

First insight into silicon nitrides at the atomic scale was
provided by the seminal studies of Robertson et al. in the
1990s.11–14 Robertson et al. applied tight-binding methods to
small, essentially crystalline model systems and investigated
defect induced changes in the electronic properties. These
results are still helpful, but, with the advances in ab initio
density functional theory, it is possible to study the properties
of amorphous silicon nitrides in much greater detail and using
better founded approximations.

In more recent computer simulations, typically a small se-
lection of a-Si3N4−x :H configurations were produced in order

to investigate the structural, electronic, and optical as well as
vibrational properties.15–26 Few of these studies examined even
the materials properties for different stoichiometries17,20,25 and
the effect of hydrogenation.18,21,22 Nevertheless, the number
of considered models was generally very small making a
statistically meaningful analysis difficult.

In order to build amorphous model structures, different
strategies are adopted. A common strategy is to assemble
small subunits and clusters with proper short-range order
(SRO) into a continuous random network (CRN)16 or Bethe
lattice.21,27 Furthermore, bond switching methods can be
applied to the crystalline samples until they become reasonably
amorphous.22,28 Although very small defect concentrations are
achievable by these strategies,28 the most common and maybe
most unbiased method to determine amorphous structures is
by cooling the samples from the melt. This can be done
by either Monte Carlo (MC)17–19 or molecular dynamics
(MD)15,20,22–26,29 simulations.

As a matter of fact, all simulations need to rely on a
potential-energy surface to calculate jump probabilities and
forces during the cooling and relaxation. Ab initio methods
are very desirable but incur great computational cost,20,22–24,26

and hence many simulations are performed using different
types of semiempirical potential models (e.g., Tersoff, tight
binding, Keating, Busing, Born-Mayer-Huggins).15–18,21,25,29

Both methods can also be combined in order to save com-
putation time and/or to simulate larger systems. In this case,
the samples are annealed using fast empirical potentials, and,
afterwards, the electronic properties are calculated with more
accurate ab initio methods.19,29

In the present work, we present large-scale periodic
ab initio molecular dynamics studies on stoichiometric and
nonstoichiometric Si3N4−x including up to 10 at.% H. Typi-
cally, we prepare three carefully quenched reference configura-
tions with about 200 atoms for each considered stoichiometry.
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To allow for a statistically meaningful evaluation of defect
related properties, 1000 small structural models with 100
atoms are then prepared for each stoichiometry. The main
focus of the present work is an evaluation of the small models
against the larger models, as well an evaluation of the average
structural properties such as the pair-correlation function,
angular distribution function, structure factor, and general
features of the electronic density of states as well as the average
local coordination of the atoms. A detailed analysis of the
defect related properties is presented in a separate publication.

II. MODELING SETUP

A. Compositions, concentrations, and densities

Nonstoichiometric amorphous silicon nitrides exhibit large
density variations that seemingly depend strongly on the
applied preparation conditions.3,30,31

Here we mainly focus on amorphous silicon nitrides as
used in the solar cell industry and we decided to determine the
densities from the data published by Ippolito and Meloni.25

We found it helpful to plot the average experimental volume
per atom versus the nitrogen concentration, as shown in Fig. 1.
The volumes would lie on a straight line, if Vegard’s law was
observed.33 Indeed, within the experimental uncertainties, this
relation seems to hold very well, but the fit deviates from
the volume of crystalline silicon in the Si rich case by more
than 2%. Increasing the slope improves this behavior for the
Si rich case (full line) without deteriorating the root-mean-
square error for the amorphous samples significantly. The final
densities and volumes, as obtained from the fitted experimental
data, are summarized in Table I.

The second issue to address is the influence of hydro-
gen on the volume. The experimental data were almost
always measured in the presence of substantial amounts
of H approaching up to 25 at.%.6 Remarkably, however,

FIG. 1. (Color online) Volume per atom as a function of the N
concentration cN = nN/(nN + nSi). The broken line shows the best
linear fit to the experimental values (circles). The full line was
obtained by readjusting the fit such that the density of crystalline
Si is more accurately reproduced. This has only a slight effect on the
root-mean-square error. The experimental data points for Si3Nx :H
are from Guraya et al. (Ref. 6) the density for crystalline Si is from
Ashcroft and Mermin (Ref. 32).

TABLE I. Densities ρ and volumes per atom of Si3Nx as studied
in the present work. The densities were derived from experimental
values as shown in Fig. 1 (see also Guraya et al.) (Ref. 6). The table
also shows the supercell volumes and the number of silicon nSi and
nitrogen atoms nN in the considered supercells.

Si3N4.5 Si3N4 Si3N3.5 Si3N3

ρ (g/cm3) 3.22 3.14 3.06 2.98

Volume per atom (Å
3
) 10.12 10.57 11.10 11.71

nN/(nSi + nN) 0.60 0.57 0.54 0.50

Large supercell vol. (Å
3
) 1973 1999 2020 2014

nSi 78 81 84 86
nN 117 108 98 86

Small supercell vol. (Å
3
) 1012 1033 1020 1077

nSi 40 42 42 46
nN 60 55 50 46

hydrogen seems to influence the volume only very little.
For instance, although for the data shown in Fig. 1, the H
content varies from 15 to 25 at.%, the deviation from Vegard’s
law is hardly noticeable, and for Si3N4 the volume of the
amorphous structure agrees within a few percent with the
volume of crystalline β-Si3N4. This observation is reinforced
by considering the small covalent radius of hydrogen. Even if
we double the covalent radius, dH = 2rcovalent = 0.62 Å (this
value corresponds to the H-H bond length), and determine
the corresponding volume, VH = 4πd3

H/3 ≈ 1 Å3, we obtain
only small corrections to the volume. If the concentration were
20 at.% H, it would take up at most 3% of the entire volume.
This is certainly a rather crude consideration, since one could
argue that hydrogen disrupts the usual bonding topology of
the network and therefore might yield a significantly larger
volume increase, but neither the experimental data nor any of
our results seem to support this idea. Most likely, hydrogen
simply accommodates in the network at defective or highly
strained sites and hence causes only negligible changes in the
volume.

To determine the hydrogen concentration typically found
in a-Si3N4−x :H layers used in the fabrication of industrial
solar cells, over 80 different Si3N4−x :H samples were prepared
with plasma enhanced chemical vapor deposition (PECVD)
at the Energy Research Center of the Netherlands. A more
detailed description of the PECVD method is given by Soppe.2

The samples were analyzed using Fourier transform infrared
spectroscopy (FTIR) and ellipsometry. From these data,
the atomic concentration was extracted using the approach
described by Bustarret et al. (see Fig. 2).34 We expect that the
hydrogen concentration is rather low for the stoichiometric
case and, although the data show a large scatter towards the
right side of the graph (Si3N4), and the hydrogen concentration
increases again for over-stoichiometric samples (Si3N4+x), we
decided to perform the simulations for the Si3N4 case without
hydrogen. For the other, nitrogen deficient cases, we performed
simulations without hydrogen and with approximately 13 at.%
H. This seems to be well within the experimental range,
which lies between 10 and 15 at.% H for the considered
stoichiometries.
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FIG. 2. (Color online) Atomic concentration and bond den-
sities estimated for plasma-enhanced-chemical-vapor depositioned
(PECVD) silicon nitride. The dependency of the nitrogen concen-
tration cN is shown. The stochiometric case (Si3N4) is to the right.
The values obtained by simulations are marked with red symbols
at cN = 0.50, 0.54, and 0.57 for Si3N3H0.8, Si3N3.5H0.8, and Si3N4,
respectively.

B. PAW potentials and technical parameters

All calculations presented in this work were performed
using the Vienna ab initio simulation package (VASP) and
projector augmented wave (PAW) potentials in the imple-
mentation of Kresse and Joubert.35–38 VASP uses periodic (or
cyclic) boundary conditions, a Brillouin-zone sampling at the
� point, and the PBEsol functional (Perdew-Burke-Ernzerhof
functional revised for solids).39

Since our aim was to perform large scale simulations, we
decided to construct special PAW potentials optimized for the
specific application in mind. To this end, we chose for the
PAW potentials the largest possible core radius that did not
degrade the quality of the results noticeably. We found that
core radii of 2.0 and 1.9 a.u. (2.5 and 2.4 a.u.) for the s-partial
(p-partial) waves for N and Si, respectively, lead to acceptable
results. For Si the d potential was chosen as local potential,
whereas for N the all-electron potential was smoothed inside a
sphere with a radius of 0.8 a.u. These potentials allowed us to
obtain converged total energies at a plane-wave kinetic energy
cutoff of about 150 eV. Results for bulk Si are essentially
indistinguishable from more accurate PAW potentials, whereas
results for Si3N4 are slightly deteriorated compared to accurate
reference calculations, but the errors remain fairly small.
The Si3N4 volumina of the bulk crystalline phases (α, β,
and γ ) are reproduced to within 1.5%, and the relative
energy difference between the α and γ phase, which is
1.05 eV per formula unit using accurate reference potentials,
is reproduced to within 0.03 eV. The largest errors are
observed for the zone centered phonons where discrepancies
of the order of 5.0% for some high-frequency branches
are observed, whereas the predicted DFT Kohn-Sham band

FIG. 3. (Color online) The PC functions gij (r) and angular
distribution functions aijk(�) of a-Si3N3.5 at 3000 K for different
potentials. The soft potential (150 eV) used in our calculations gives
within statistical uncertainties the same results as the harder reference
(300 eV).

gaps agree within 2% with the accurate reference potential.
In summary, the differences between the accurate reference
potentials and the soft potentials are of the same order as
the differences between the local-density approximation and
gradient corrected density functionals, which we believe to
be a reasonable threshold. Furthermore, for liquid Si3N3.5

only small differences were found for the pair-correlation
(PC) function and angular distribution function at 3000 K
(see Fig. 3). For over-stoichiometric samples, however, the
N-N distance is shifted by 0.2 Å to larger bond distances
using the soft potentials, but this will not change the results
for the experimentally relevant under-stoichiometric samples.
This makes us confident that the present PAW potentials give
accurate results and are certainly far superior to conventional
molecular dynamics potentials such as the Tersoff potential.25

Compared to the standard potentials requiring 400 eV cutoff,
the savings are about a factor 5, and they allow us to perform
much longer simulations than otherwise possible.

1. Large simulation cells, slow annealing

Our initial strategy was to determine representative samples
by cooling from the melt using fairly large simulation cells with
a total supercell volume of about 2000 Å3. Table I summarizes
the corresponding supercell volumes and the number of atoms
we employed.

All systems were initially molten at 4000 K and then
the temperature was gradually decreased until the atomic
configuration started to freeze in. In all simulations, a time step
of 1.5 fs was adopted, and the mass of hydrogen was increased
to 10 amu. This mass increase will change the dynamics of
the system, but has no influence on the explored configuration
space as the partition function factorizes into a momentum
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FIG. 4. (Color online) Diffusion constants for Si3Nx averaged
over both atom types at different temperatures. Stoichiometric Si3N4

(red squares) always shows the highest freezing temperature.

and configuration dependent part, with the latter one being
independent of the masses.

The “freezing” temperature was strongly dependent on the
stoichiometry, as demonstrated in Fig. 4, where the diffusion
constant averaged over both atom types is plotted versus
the temperature. When the value drops significantly below
0.05–0.1 Å2/ps, it is difficult to determine accurate diffusion
constants. Monitoring the mean-square displacement for these
cases indicates jump diffusion occurring every few ps. It is
likely that this is defect mediated, since the network can
easily re-adjust and re-link at defects, and, consequently, the
defect might migrate through the network. But a detailed
investigation of this issue is beyond the scope of the present
work. Stoichiometric Si3N4 freezes in at about 3000–3100 K
on a time scale of 20–40 ps, which we observed repeatedly for
several simulations at different system sizes, and the freezing
goes along with the geometrical defects being progressively re-
moved during the annealing. Usually the system locks in when
two or zero defects are present in the sample (for topological
reasons the defects always come in pairs for stoichiometric
Si3N4). The observed amorphization temperature seems to be
significantly larger than the experimental estimates of about
2000 K.40,41 But we note that the melting temperature of silicon
nitride cannot be measured, since the solid decomposes into
atomic and molecular Si and N before melting sets in (gas
pressure of Si).

Matter of fact, our simulations are also hampered because
of the short time scales and small system sizes that are
accessible to us: once all defects are cured, the system freezes.
In real experimental samples, the density of mobile defects
will only exponentially approach zero, sustaining diffusion
at much lower temperatures. Furthermore, we believe that
the experimental samples are never perfectly stoichiometric.
Even being slightly off-stoichiometric, diffusion is enhanced
since some defective bonds (e.g., Si-Si bonds) or coordination
defects prevail. For Si3N3.5 and Si3N4.5, amorphization occurs
at roughly 2600 K, whereas, for Si3N3, the freezing occurs
at roughly 2300 K. We also note that jump diffusion is well
possible below these temperatures, but these events are very
rare on the time scales accessible to us. Finally, addition of

FIG. 5. (Color online) Annealing history adopted in the present
work for the large Si3Nx systems. Because Si3N4 freezes at about
3100 K, the system was equilibrated for 30 ps at 3500 K, then the
system was cooled to 3000 K and annealed at this temperature until
most defects were removed. For the other stoichiometries, 20 ps
annealing was performed at 3000 K, and then the temperature was
gradually decreased to 2000 K equilibrating at each temperature
for 10 ps.

10 at.% H generally lowers the amorphization temperature by
another 200 K (not shown).

The adopted temperature profiles are shown in Fig. 5.
In retrospect, we could have fine tuned the cooling history
somewhat for each stoichiometry, for instance by progres-
sively elongating the runs when approaching the freezing
temperature, but we believe that this will change the final
results only little. In order to prepare a set of samples, we
extended the simulation runs at 3500 K (Si3N4) and 3000 K
(Si3N4−x :H) followed by the same annealing history as for the
original samples. In this manner, three samples were generated
for each of a-Si3N4, a-Si3N3, a-Si3N3.5. For the less relevant
a-Si3N4.5 and the hydrogenated samples only a single large
representative structure was generated.

2. Small simulation cells

The drawback of the strategy adopted above is that it
is difficult to generate any statistics for the defect related
properties. Even with three samples, we cannot determine how
likely the formation of a certain defect class is. To complement
the simulations of the large systems, we therefore performed
simulations for smaller systems containing about 100 atoms.
In this case, the simulation was run for up to 1 ns just above the
freezing temperature, and every 500–1000 steps a configura-
tion was quenched into the closest local energy minimum using
a standard minimization procedure. This approach allowed us
to generate about 1000 reasonably independent samples for
each stoichiometry. The corresponding runs typically required
4 weeks on 32 cores each.

In Fig. 6, we show the acquired mean-square displacements
(MSDs) for four different stoichiometries. The diffusion
constants are roughly similar and constant over the simulation
time. Lowering the temperature by 50–100 K usually resulted
in rapid freezing of the structures. The chosen stoichiometries
correspond roughly to the same stoichiometries as those
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FIG. 6. (Color online) Mean-square displacements (MSDs) for
four different Si3N4−x :H ensembles. The averaged temperature is
given after the system label. The temperatures were adjusted to keep
the ensembles just above the freezing temperature. In some cases, the
temperature had to be increased and the simulation restarted before
the freezing, when accidental freezing occurred.

considered for the large systems. Only for the “stoichiometric”
case, we removed one N atom resulting in a stoichiometry of
roughly Si3N3.9 in order to avoid that all defects accidentally
annihilate, which might have resulted in a “lock-in” at
temperatures even above 3100 K.

III. STRUCTURAL PROPERTIES

The main focus of the present work is on general structural
properties, whereas a detailed analysis of the electronic
properties of defects and defect statistics is reserved for a
later publication. In the following sections we evaluated the
pair-correlation function, structure factor, angular distribution
function, and the local bonding topology at the Si and
N sites.

A. Pair-correlation function

The pair-correlation (PC) functions for the quenched amor-
phous samples are shown in Fig. 7. For the large systems, the
results were averaged over three samples (except for Si3N4.5,
where only a single structure was generated), whereas for the
small systems the average was done over about 1000 samples.
In addition to the PC function, we analyzed the average number
of nearest neighbors by integration of the partial PC functions
between 0 and the first minimum rmin in the respective function
(see Table II):

Nij = ρhj

∫ rmin

0
dr4πr2gij (r). (1)

Also the mean bonding distance d̄ij and the standard deviation
σij were evaluated by integrating up to the first minimum
(see Table III).

The first important observation is that the PC functions
of the small (black solid lines) and the large systems
(black broken lines) are very similar, in particular, at large
distances beyond the first nearest neighbor. This is a little

FIG. 7. (Color online) Partial pair-correlation functions gij (r) for
the small (full line) and the large Si3Nx :H systems (broken line).
Hydrogen (crosses) leaves the PC function largely unchanged.

bit counterintuitive since we can rather expect differences
at long distances due to finite-size effects, but at large
distances we only recognize slightly more scatter for the
large systems, which points towards insufficient sampling
over different configurations. However, at the distance of
the first nearest neighbor, the PC function for the large
systems shows somewhat more pronounced and narrower
peaks for N-N and Si-Si. We believe that this is related to
the slower and more careful annealing performed for the large
systems. Recall that the small systems were created by directly
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TABLE II. The partial coordination numbers Nij evaluated for
small ensembles. Nij specifies for atom i the number of nearest
neighbors of type j .

Si3N4.5 Si3N4 Si3N3.5 Si3N3

NSiN 4.16 3.95 3.57 2.99
NSiSi 0.38 1.01
NNSi 2.77 3.02 3.00 2.99
NNN 0.30

Si3N3.5H0.4 Si3N3.5H0.8 Si3N3.5H1.7 Si3N3H0.8

NSiN 3.51 3.47 3.40 2.97
NSiSi 0.48 0.35 0.33 0.93
NNSi 2.94 2.91 2.85 2.97
NNN

NHSi 0.51 0.51 0.47 0.70
NHN 0.48 0.44 0.38 0.24
NHH 0.04 0.06 0.13 0.06

quenching from the melt. In all other respects, the small
systems seem to adequately represent the amorphous structure,
and specifically finite-size effects at large distances are largely
absent in the small simulation cell, at least at the level of the
PC function.

The second remarkable observation is that hydrogen, in
the low concentrations considered here, has virtually no
discernible effect on the PC function (compare full line with
red crosses). It rather seems that hydrogen only participates
as a “spectator” decreasing the connectivity and increasing
self-diffusion, with no dramatic effect on the average structural
properties of the amorphous structure, as evaluated by the PC

TABLE III. Mean bonding distances and standard deviations
and position of the minimum in the pair-correlation function of
the Si3Nx evaluated for small ensembles (all values are in Å).
For the nonstoichiometric systems, peaks emerge at short distance
corresponding to direct Si-Si and direct N-N neighbor atoms at 2.4
and 1.6 Å, respectively.

Si-Si Si3N4.5 Si3N4 Si3N3.5 Si3N3

1st d̄SiSi 2.40 2.38
1st σSiSi 0.10 0.10
1st rmin 2.57 2.59

2nd d̄SiSi 3.00 2.99 3.02 3.02
2nd σSiSi 0.22 0.24 0.19 0.19
2nd rmin 3.56 3.56 3.53 3.49

N-N Si3N4.5 Si3N4 Si3N3.5 Si3N3

1st d̄NN 1.62
1st σNN 0.06
1st rmin 1.98

2nd d̄NN 2.86 2.89 2.90 2.89
2nd σNN 0.26 0.26 0.25 0.23
2nd rmin 3.54 3.62 3.63 3.58

Si-N Si3N4.5 Si3N4 Si3N3.5 Si3N3

1st d̄SiN 1.75 1.75 1.75 1.75
1st σSiN 0.09 0.08 0.07 0.07
1st rmin 2.26 2.30 2.30 2.30

function. For Si3N3.5H0.8 and Si3N3H0.8, the mean hydrogen
bonding distances are 0.77 ± 0.01 Å for d̄HH, 1.50 ± 0.07 Å
for d̄HSi, and 1.11 ± 0.04 Å for d̄HN.

The present PC functions agree very well with previous
simulations. The Si-N PC functions shows a pronounced peak
at 1.75 Å, which hardly shifts with varying stoichiometry, and
in fact, the entire Si-N PC function is almost independent of
stoichiometry. Inspection of Table II shows that each N atom
forms three bonds, whereas the number of bonds formed by the
Si atoms is always very close to 4 (the sum of NSiN and NSiSi).
For stoichiometric Si3N4, the Si-Si PC function shows one
strong peak at 3.0 Å, which is related to the distance between Si
atoms in Si-N-Si triangles, and similarly the N-N PC function
shows a peak at 2.90 Å related to N-Si-N triangles. The other
feature worth mentioning is the small shoulder in the Si-Si PC
function around 2.6 Å. As already discussed by Giacomazzi
et al., it is mostly related to planar Si-N-Si-N squares.23 For
substoichiometric Si3N4−x , this peak seems to develop into a
pronounced shoulder around 2.4 Å, but in fact, the origin of
this shoulder is direct Si-Si bonds, as shown in the number
of direct Si-Si neighbors NSiSi in Table II, which increases
from 0.38 in Si3N3.5 to 1 in Si3N3. Likewise, direct N-N bonds
form in over stoichiometric Si3N4+x , as indicated by a value
of NNN = 0.3 in Si3N4.5. The absence of direct N-N neighbors
in stoichiometric and substoichiometric Si3N4−x , and likewise
the absence of direct Si-Si neighbors in stoichiometric and
over-stoichiometric Si3N4+x is a clear indication for the strong
ordering tendency in silicon nitrides, as direct bonds to the
same species are only formed if the material contains too much
Si (Si-Si bonds) or too much N (N-N bonds). In summary,
the amorphous structures are characterized by (i) fourfold
coordinated Si atoms and threefold coordinated N atoms,
with (ii) a strong tendency towards heterocoordination and
formation of Si-N bonds. The partial coordination numbers
also reveal that hydrogen indeed disrupts the normal network
topology of silicon nitride. For Si3N3.5H0.8, it forms bonds
with both Si and N atoms, whereas for Si3N3H0.8 bonds are
predominantly formed to Si atoms. Of course such bonds
reduce the number N-Si bonds, for instance NNSi drops from
3.0 to 2.91 in Si3N3.5H0.8, and the sum NSiSi + NSiN decreases
from 4 to 3.9 when hydrogen is added in Si3N3H0.8.

To investigate the dependence on the H content, we also
performed calculations for concentrations of 6 and 20 at.% H
for Si3N3.5. As can be recognized from Table II, the probability
that hydrogen attaches to silicon or nitrogen is pretty much
independent of the H content, but changes with stoichiometry.
For Si3N3.5 and Si3N3, about 50% and 70% of the H bonds to
Si, respectively, whereas the number of hydrogen bonded to
nitrogen decreases with decreasing N content. These results
are in good agreement with experiments (compare Fig. 2
bottom panel; also see Refs. 6 and 42). It is also quite clear
and not unexpected that the number of H “dimers” increases
with the H content, but it remains fairly small up to about
10–15 at.% H.

For stoichiometric Si3N4, we can compare the present
bonding distances and the bonding angles with experimental
data obtained by Aiyama et al. and Misawa et al.7,8 and with
results from the simulations performed by Giacomazzi et al.
and Jarolimek et al.23,24 The present mean values have been
calculated by averaging the bond length over the bonds up
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TABLE IV. Reference values for the bond lengths in a-Si3N4

obtained by experiments and simulations (all values are in Å).

Ref. 1st d̄SiSi 2nd d̄SiSi 2nd d̄NN 2nd d̄SiN

Aiyama et al. (Ref. 7) 3.00 3.00 1.75
Misawa et al. (Ref. 8) 3.01 2.83 1.73
Giacomazzi et al. (Ref. 23) 2.42 3.03 2.76 1.73
Jarolimek et al. (Ref. 43) 2.35–2.41 3.10 2.90 1.76

to the first minimum rmin tabulated in Table III. Our mean
distances are 3.0 Å for d̄SiSi, 2.9 Å for d̄NN, and 1.75 Å for
d̄SiN. These values agree very well with previous experiments
and simulations, as shown in Table IV.

For Si rich samples, the direct Si bond distance is located
at 2.4 Å, again in excellent agreement with previous simu-
lations for amorphous Si3Nx :H (and in good agreement with
simulations for amorphous Si).23,24,43

Over-stoichiometric Si3N4.5 was investigated by Ippolito
and Meloni using Tersoff potentials finding a peak in the
N-N PC function around 1.3 Å.25 In view of our present
value of 1.62 Å this seems a little bit too short, but we
have already emphasized that this peak distance is somewhat
overestimated due to the use of a very soft N potential. After
relaxation using harder potentials, the mean distance moves
to 1.45 Å, which is still larger than the value for the Tersoff
potential. Our present simulations also agree with previous
ab initio simulations in predicting no direct N-N neighbors
in stoichiometric and substoichiometric Si3N4−x , whereas the
previous force field simulations showed direct N-N bonds
even in slightly substoichiometric Si3N4−x . This clearly points
towards some deficiency in the Tersoff force fields.

B. Angular distribution function

In Fig. 8, we show the angular distribution functions for
different Si3Nx compositions, with and without hydrogen. As
before for the pair-correlation function, hydrogen influences
the angular distribution function very little, and results for the
large and small system (without hydrogen) are very similar.
Regardless of stoichiometry, the main peaks are located at
mean angles of 110◦ for silicon, and 120◦ for nitrogen. The
value of 120◦ = 360◦/3 is in perfect agreement with the
value expected for a flat triangle formed by three Si atoms
surrounding a central N atom. This again confirms that the local
bonding topology of nitrogen changes very little compared to
crystalline Si3N4, where each N atom is surrounded by three
Si atoms forming a coplanar triangle. This is also consistent
with the electronic configuration of nitrogen, forming three sp2

hybrid orbitals that interact with the three Si neighbors, and
one out-of-plane lone pair p orbital that is doubly occupied
and oriented perpendicular to the NSi3 plane. Furthermore,
a second peak is visible at 90◦ in the angular distribution
function. This peak stems from N-N neighbors in a planar
Si-N-Si-N arrangement, as shown in the inset.

The bond angle distribution for silicon is strongly peaked
at a mean angle of 110◦ agreeing perfectly with the expected
tetrahedral bonding angle of 109.5◦. As for nitrogen, this
suggests that the Si atoms maintain their sp3 hybridization

FIG. 8. (Color online) The angular distribution functions of �SiNSi

and �NSiN for the large and the small Si3Nx :H systems relative to the
same distribution in a hypothetical ideal gas with the same density
and composition. The distribution function is, therefore, normalized
by a factor of 1/ sin(θ ) amplifying contributions at 0◦ and 180◦. Two
Si and two N atoms arranged in a square result in pronounced peaks
at 90◦.

forming bonds with the four neighboring atoms. These are N
atoms in the stoichiometric case, and possibly few Si atoms in
the substoichiometric case Si3N4−x . Again a clear secondary
peak is visible at 90◦ related to the planar Si-N-Si-N arrange-
ment already mentioned above. For both silicon and nitrogen
this peak loses intensity when moving to substoichiometric
compositions. This relates well to the observation that the
number of Si-N-Si-N square configurations decreases when
the amount of nitrogen deviates from the perfect stoichiometry
Si3N4.

Finally, comparison of the large and small systems shows
that the Si3N3 angular distribution function is slightly over-
structured for the small simulation cells. We believe that this
is related to finite-size effects and the artificial periodicity.
The introduced errors are, however, small and seem to have
negligible effects on other properties such as the electronic
density of states.

C. Structure factor

Information about long-range order and density fluctuations
are most easily investigated by an ensemble average of the
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Faber-Ziman structure factor S(k),44–47

S(k) = 1

N

〈∑
i

∑
j

exp[−ik(ri − rj )]

〉
, (2)

where k are wave vectors and N is the total number of
atoms and ri are the atomic positions. Consistent with the
finite supercell, we evaluated the structure factor on a grid
of reciprocal-lattice vectors k that are compatible with the
applied supercell (and not by a Fourier transformation of
the pair-correlation function). From the structure factors S(k)
on the grid, the isotropic structure factor is calculated by
averaging over different k orientations and properly weighing
each contribution:

S(q) =
∫

S(k) δ(|k| − q) d3k

4πq2
. (3)

The partial structure factors for each atom type Sαα(q) were
obtained by summation over one atom type in Eq. (2), and the
partial structure factor Sαβ (q) with α �= β was determined by

Sα+β(q) =
∑
αβ

(cαcβ)1/2Sαβ (q), (4)

where cα is the concentration of atom type α and Sα+β (q) is
the total structure factor of both atom types.46

In Fig. 9 the structure factors are shown for the large super-
cells, since the small simulation cells result in a fairly coarse
reciprocal-space grid, causing a jagged behavior (qualitatively
the results are, however, similar as one would expect from the
close agreement for the pair-correlation function).

In general, the structure factors change little with com-
position, and in all cases, the main peak is observed at
2.2 Å−1 which agrees with the results of Jarolimek et al.24

The corresponding wavelength is roughly 2.8 Å agreeing
well with the typical Si-Si and N-N distances in the pair-
correlation function. This indicates that the peak is mostly a
residual of the Fourier transform of the first peak in the pair
correlation, rather than a true long-range order. Remarkably,
the SiN structure factor shows a strong anticorrelation at this
wavelength, indicating a moderate medium-range order with
alternating Si-N-Si-N planes where the distance between the
Si-Si and N-N planes is roughly 2.8 Å. This medium-range
order clearly decreases when moving off stoichiometry, most
likely because Si-Si bonds are introduced into the network
necessarily causing a disruption of the alternating planes.

The other important observation is the increase of the NN
structure factor SNN at small wave vectors q with decreasing
Si content. A similar increase is also observed for the small
samples (not shown). Such an increase usually indicates the
onset of long-range density fluctuations, i.e., there are regions
in the simulation cell where N accumulates and regions where
N becomes depleted. For sufficiently large simulation cells and
sufficiently long simulation times, one might observe phase
separation into a Si rich part with few N impurities, and a
close-to-stoichiometric Si3N4. However, for the simulation
cells and stoichiometries considered here, this effect was
hardly noticeable in real space. As shown in the next section,

FIG. 9. (Color online) Partial Faber-Ziman structure factors
Sαβ (q) for the large Si3Nx :H systems.

some residual of the phase separation is observable even in the
local coordination upon careful investigation.
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FIG. 10. (Color online) Detailed analysis of the bonding topology
for fourfold coordinated Si atoms. The actual probability of finding a
Si atom coordinated to n N and (4 − n) Si atoms is shown. Also shown
is the distribution that one would expect if the formation of a Si-Si
bond were entirely random. Excess probabilities are found towards
the two end points, in particular for Si3N3, which is consistent with a
tendency towards Si clustering and “phase separation.”

D. Clustering or simple percolation

We now briefly return to the analysis of the local bonding
properties of Si. As we have already shown in Table II, most
Si atoms have four nearest neighbors, whereas the N atoms are
all threefold coordinated. Furthermore Table II shows that N
atoms form bonds exclusively to Si in the stoichiometric and
substoichiometric case Si3N4−x (NNSi). In the absence of H,
this allows us to estimate the partial Si coordination number
to be NSiSi = x, which is indeed roughly observed in Table II.

If the formation of Si-Si bonds were random, we would
expect that the distribution of fourfold coordinated Si atoms
with n nitrogen and (4 − n) silicon neighbors would be roughly
binomial,

p(n) = 4!

n!(4 − n)!

(
x

4

)(4−n) (4 − x

4

)n

. (5)

In Fig. 10 we show the actual distribution of the bonding
topology of fourfold coordinated Si atoms and compare it
with the binomial distribution. The most notable observation
is that, while we would not expect any Si atoms with three Si
neighbors in Si3N3.5 and any Si atoms with four Si neighbors
in Si3N3, the actual analysis shows that such atoms exist. This
is a sign that Si prefers either exclusively N neighbors or
exclusively Si neighbors, which is consistent with our previous
analysis of the structure factor and supports the claim that
a tendency towards phase separation exists, although in the
present case, it manifests itself only in the form of a slight
tendency towards Si clustering, which goes beyond what one
would expect for a random percolating network.

IV. ELECTRONIC PROPERTIES

A. Density of states

The silicon and nitrogen projected electronic density of
states (DOS) is provided in Fig. 11, together with the DOS of

FIG. 11. (Color online) Site projected electronic DOS for Si and
N atoms in the small Si3Nx :H systems. The broken line corresponds
to the DOS of crystalline β-Si3N4. The density of states are aligned
in a such a way that the N core levels have always the same energy.
The Fermi levels are located exactly at the minimum of the individual
DOS.

crystalline β-Si3N4, which was already discussed by Kresse
et al.48 Averaging was done over all small samples (approxi-
mately 1000 for each stoichiometry). To align the individual
DOS for different configurations and stoichiometries, we
have chosen the average nitrogen 1s core-level energies as
reference.

Since the local short-range order of a-Si3N4 is very similar
to β-Si3N4, we expect similar electronic properties as in the
crystalline phases, which is indeed confirmed (compare with
the broken line in Fig. 11). As for structural properties, we
again find that hydrogen has virtually no discernible influence
on the average electronic properties, although a detailed
discussion of the properties of the defect states close to the
Fermi level is postponed to a later study.

The lowest valence band is made up by N 2s states (not
shown). The second lowest subband (−11 to −4 eV) is
predominantly made up by bonding N 2p states. As already
discussed, N atoms are located in an almost planar triangular
configuration with 3 Si neighbors (NSi3). The N 2p band is
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made up by two p orbitals per N atom, and shows significant
hybridization with Si p states in particular at energies
around −10 eV. The final subband below the Fermi level at
−2.5 eV is dominated by the nonbonding N 2p states
(one orbital per N atom) that is oriented out of the plane
formed by the NSi3 triangle. This band shows only very little
hybridization with Si. As the Si concentration increases, a
marked change is observed in the DOS below the Fermi level
with a significant increase in the Si DOS and little to no
changes in the N DOS. In stoichiometric Si3N4, the dominant
contribution to the electronic states below the Fermi level
is originally from the N 2p lone pair orbitals, however, for
Si3N4−x the Si DOS just below the Fermi level increases
rapidly with decreasing N content. This property is easily
understood to result from the increase in the number of Si-Si
bonds. The bonding antiboding splitting for a Si-Si bond is
far smaller than for the shorter Si-N bond: for a Si-N bond,
the bonding Si-3p N-2p linear combination is pushed at least
−3 eV below the Fermi level, whereas for a Si-Si bond, the
bonding linear combinations is located just below the Fermi
level. As a matter of fact, this also relates to the smaller band
gap in crystalline Si or amorphous Si (compared to Si3N4).
We thus expect that valence-band defect states have important
contributions from Si-3p states in substoichiometric Si3N4−x ,
whereas N related lone pair states dominate in stoichiometric
Si3N4. The other notable observation is that the Fermi level is
pushed upwards by 0.5 eV, as the stoichiometry changes from
Si3N4 to Si3N3, in agreement with the less electronegative
character of Si. Again we stress that we have aligned the
electronic DOS at the N 1s core level, but this seems to
be a rather sensible approach, since the local coordination
of the N atoms remains virtually unchanged from Si3N4 to
Si3N3.

FIG. 12. (Color online) Density of states projected onto Si and N
atoms and the inverse participation ration (IPR) for a-Si3N3 (red) and
a-Si3N4 (black).

B. Inverse participation ratio

It is commonly expected that the inverse participation ratio
(IPR) increases for states in the gap (see, e.g., Justo et al.).19 In
the present case, we show the results only for the large systems,
because the values for the small systems remain more bounded.
The IPR is calculated as

p−1
n = N

∑
j,l |ψn,l(rj )|4

(
∑

j,l |ψn,l(rj )|2)2
, (6)

where ψn,l(rj ) is the projection of the orbital n onto the atomic
site j and angular quantum number l. The sum is performed
over all atoms j and the angular momentums l, whereas N

is the total number of atoms. If all atoms participate in an
electronic state n, p−1

n becomes equal to 1, and, if the state is
completely localized on one atom, p−1

n approaches N .
Figure 12 shows the partial (N and Si) resolved DOS and

the IPR for a-Si3N4 and a-Si3N3. For stoichiometric a-Si3N4,
we found very localized states at the valance-band edge and a
DFT band gap of about 2 eV. Furthermore, for the considered
snapshot no defect states are visible in the gap, in agreement
with results of Giacomazzi and Umari.23 As discussed above,
the band gap becomes smaller and the DOS increases close to

FIG. 13. (Color online) Optical band gap of Si3NxHy from
density functional theory estimated by applying a threshold of
104 cm−1 to the absorption coefficient α and by using the Tauc
linear regression (Ref. 52). The bisections give the corresponding
results E04 and ET . To compare with experiment the DFT data
need to be blueshifted to account for quasiparticle corrections
(compare Table V).
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FIG. 14. (Color online) The eigenvalues of the highest occupied
and lowest unoccupied orbitals for DFT and GW0 calculations. The
latter opens a gap of 1.17 and 0.79 eV between lowest occupied and
highest unoccupied orbital, and increases the slope.

the Fermi level when moving off stoichiometry, in particular,
the Si DOS increases around the Fermi level, in accordance
with the observations made already in the previous section.
It is also clearly visible that this results in much weaker
localization and smaller IPR values for the states at the valence-
and conduction-band edges as well as in the band gap.

C. Optical band gap

A three-step procedure following roughly the experimental
methods is used to determine the optical band gap: In the
first step, we calculated the absorption coefficient α(E)
from the independent particle dielectric function calculated
using density functional theory orbitals and one-electron
energies.49–51

Second, we determine the DFT optical band gap either
as E04, the energy value where the absorption coefficient α

reaches the threshold of 104 cm−1, or as the Tauc band gap
ET where the linear regression of the linear regime of

√
αE

crosses the energy axis. In our case the linear regime is between
6 and 9 eV. The corresponding data are shown in Fig. 13
and are explained in more detail by Robertson, Zanatta, and
Chambouleyron, and by Tauc.12,52,53

Finally, we applied the GW0 approximation54–57 to a
set of 40 representative slowly cooled samples for each
stoichiometry in order to correct the DFT band gaps which
are well known to underestimate experimental quasiparticle
band gaps. The GW0 calculations were performed by iterating
the eigenvalues in the Green’s function until self-consistency
was reached,58,59 whereas the orbitals were kept fixed to the
Kohn-Sham orbitals. We included typically 3500 unoccupied
states, and one calculation required about 2 h on 64 cores.

TABLE V. Parameter obtained by fitting the linear function y =
kx +  to the GW0 quasiparticle energies as a function of the DFT
one-electron energies for a-Si3NxHy (compare Fig. 14). The scissor
correction  is added to the optical DFT band-gap values determined
in Fig. 13.

Si3N3H0\0.8 Si3N3.5H0\0.8 Si3N4

k 1.18 1.13 1.12
 0.79 eV 1.17 eV 1.19 eV

FIG. 15. (Color online) Comparison of calculated optical band-
gap values (see Fig. 13) with experimental reference values (Refs. 6,
60, and 61). As described in the text, the calculated values are shifted
by a corresponding GW0 correction (compare Fig. 14 and Table V).

Doubling the number of unoccupied orbitals increased the
quasiparticle band gap by less than 100 meV. The calculational
details are otherwise similar to Ref. 48.

Figure 14 shows that the unoccupied states of Si3N3.5,
with and without hydrogen, are rigidly shifted upwards by
1.17 eV compared to the occupied states. Furthermore, in the
vicinity of the gap the GW0 quasiparticle energies exhibit a
slightly increased slope compared to the DFT one-electron
energies. This slope is almost constant for the valence-band
and conduction-band states and amounts 1.13. Disregarding
the corrections for the slope, we can simply add an optical
band-gap correction of  = 1.17 eV to the DFT values E04 and
ET . The scissor gap corrections  for the other stoichiometries
are summarized in Table V.

In Fig. 15, we compare the corrected data of E04 and ET

with the experimental results obtained by Guraya et al.6 As
one can see, the values of E04 are generally greater than ET ,
but both lie only slightly below the experimental reference and
follow the experimental data quite well. We note in particular
the sharp decrease of the band gap, when one approaches the
stoichiometry of Si3N3, which is a result of the increasing
number of Si-Si bonds and the resultant percolation network
accompanied by a change of the valence-band states from
N lone pair to Si-Si bonding linear combinations (compare
Fig. 11). In passing, we note that a scissor correction will not
modify the density of states presented in Fig. 11, but for a
trivial upshift of the conduction-band states and an opening of
the gap between the valence-band and conduction-band states.

V. CONCLUSIONS

This work presents a detailed study of a-Si3N4−x :H using
periodic ab initio density functional theory calculations. Prepa-
ration of the samples proceeded via cooling from the melt using
ab initio molecular dynamics. We have chosen this approach
in order to avoid a mismatch between the creation of the model
structures and evaluation of the electronic properties, since we
expect the structural and electronic properties to be strongly
intermingled, in particular, at defect sites. Conventional pair
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or many-body potentials often have difficulties to describe this
relation, as they necessarily cannot account for the introduced
electronic defect states or the charge state of a defect.

As already emphasized from the outset, the present study
concentrates on the “average” structural properties, paying
little attention to details such as the defect concentration and
electronic defect states in and close to the band gap. This is left
for future studies, although the structural models determined
in this work are expected to form a reliable basis for the
subsequent studies.

We have shown that the average structural properties
and electronic properties are faithfully reproduced using
fairly small ensembles containing only 100 atoms. Using
soft potentials with a plane-wave cutoff energy of 150 eV
(resulting in typically 40–50 plane waves per atom), we were
able to perform calculations for up to 1 ns with reasonably
modest computational resources. For each considered sto-
ichiometry, amorphous model structures were prepared by
rapidly quenching about 1000 structures from the molecular
dynamics simulation into the closest local minimum. We
compared these structural models with larger calculations
performed for systems with 200 atoms, and the results were
found to be essentially identical for the small and large
systems.

Analysis of the structural properties reveals that amorphous
Si3Nx is characterized by fourfold coordinated Si atoms and
threefold coordinated N atoms, with a very strong tendency
towards heterocoordination and formation of Si-N bonds.
Si-Si and N-N bonds are only encountered if a Si or N
surplus, respectively, exists, but even then almost all Si and
N atoms maintain their fourfold and threefold coordination,
respectively.

For Si3N3, the structure factor shows the onset of density
fluctuations in the N concentration, indicating N rich and
N poor areas in the simulation cells. This observation in
reciprocal space was also confirmed by the analysis of the
local bonding properties of Si atoms. A clear fingerprint for
clustering is the increased number of Si atoms with three
Si neighbors in Si3N3.5 and the existence of Si atoms with
four Si neighbors in Si3N3, which would not be expected
if the formation of Si-Si bonds were entirely random. We,
however, note that the tendency towards clustering is not
overwhelmingly strong in agreement with experiments where
no sign of phase separation is found.

The evolution of the electronic properties of Si3N4−x

is quite remarkable. In the stoichiometric compound, the

valence-band maximum is dominated by N lone pair states,
whereas the valence-band minimum is dominated by an-
tibonding Si p states. However, this changes as the N
content decreases. For substoichiometric samples, some Si
atoms need to bond to other Si atoms and at a critical
stoichiometry of Si3N3 about 20% of the Si atoms have two
or more Si neighbors. Concomitantly, Si-Si-Si chains and
larger percolation networks start to form, and about 60%
of the Si atoms are found in such percolation networks at
the stoichiometry Si3N3. Within a Si pair, but even more
so within a Si chain, the bonding-antibonding splitting is
reduced compared to a Si-N bond, and hence the valence-band
edge becomes progressively dominated by Si-Si bonding
contributions. Likewise the conduction-band edge becomes
dominated by states originating from Si pairs in Si3N3.5 and
chains in Si3N3. We finally note that with decreasing N content
the localization of the band edge states at the valence- and
conduction-band edges decreases. This is in accordance with
the picture developed above: as the Si chain size increases,
the states will start to spread over the Si chain with a
resultant reduced inverse participation ratio. In agreement with
experiment, we also find that the band gap reduces slightly
from Si3N4 to Si3N3.5, but it shows a sharp decrease for Si3N3

as the chain size grows. We note that in stoichiometric Si3N4

the valence band is entirely dominated by N lone pair states,
and hence stoichiometric Si3N4 is not suitable to model the
electronic properties of passivation layers in solar cells used
by industry.

Finally, we have analyzed the impact of hydrogen on silicon
nitrides in detail. Remarkably, it has no visible impact on the
averaged properties such as the pair-correlation function, the
structure factor, or the electronic density of states. In agreement
with common chemical intuition, we have, however, noticed
that hydrogen can attach to a N or Si atom terminating a
dangling bond. This is in accordance with the commonly
accepted picture that H helps to reduce the number of
electronic defect states in the gap, although a more careful
analysis of the electronic properties of defects is required to
fully resolve this issue.
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