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We study the impact of including self-energy feedback and frequency-dependent interactions on functional
renormalization group flows for the two-dimensional Hubbard model on the square lattice at weak to moderate
coupling strength. Previous studies using the functional renormalization group had ignored these two ingredients
to a large extent, and the question is how much the flows to strong coupling analyzed by this method depend
on these approximations. Here we include the imaginary part of the self-energy on the imaginary axis and the
frequency dependence of the running interactions on a frequency mesh of 10 frequencies on the Matsubara axis.
We find that (i) the critical scales for the flows to strong coupling are shifted downward by a factor that is usually
of order 1 but can get larger in specific parameter regions, and (ii) that the leading channel in this flow does not
depend strongly on whether self-energies and frequency dependence is included or not. We also discuss the main
features of the self-energies developing during the flows.
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I. INTRODUCTION

Weakly to moderately correlated itinerant electron systems
such as iron arsenide superconductors or carbon materials
are at the center of today’s condensed matter research.
Nevertheless, a detailed quantitative description of their low-
temperature phases is often not available. Two potential
obstacles are that these materials, despite not being strongly
correlated, can still host various competing trends that inval-
idate simpler theoretical approaches, and that the underlying
lattice causes anisotropic behavior that can lead to significant
quantitative effects such as anisotropic quasiparticle proper-
ties or anisotropic energy gaps in the ordered states. The
functional renormalization group (fRG) method has become
a widely used tool for the investigation of weakly coupled
fermions on low-dimensional lattices (for a recent review, see
Ref. 1) as it helps in both of these aspects. In contrast to
the often employed random-phase approximation (RPA) or
mean-field approaches, it is capable of describing competing
interactions, and it is also capable of resolving stronger
momentum dependencies of the basic observables such as
pairing gaps, etc. While fRG applications in two dimensions
have focused mainly on the Hubbard model on the square
lattice,2–5 more recent studies have also analyzed multiband
models, in particular for iron arsenide superconductors6–8 and
graphene systems.9–11 The bulk of these fRG works uses an
approximation to the full flow equations in one which neglects
the self-energy completely. The main object of interest is the
flowing interaction vertex, whose strongest components give
information on the leading correlations in the effective theory
at lower scales. In only a few works, either the flow of the
self-energy was computed without allowing for a feedback
on the flow of the interaction vertex,12,13 or the self-energy
was parametrized using a quasiparticle weight.14–16 These
studies gave the following information: (a) The fRG flows with
neglected self-energy are good approximations in the sense
that in typical cases the leading low-energy instabilities are not
altered in their existence and character by including (parts of)

the self-energy. (b) A detailed study of the self-energy suggests
the occurrence of interesting and observable effects such as
anisotropic quasiparticle degradation, dispersion renormaliza-
tions, and partial gap openings. Another approximation that
has been used in most applications of the fRG is to neglect
the frequency dependence of the interaction vertex. This
dependence is usually absent in the initial condition of the flow,
i.e., the bare electron-electron interaction is not retarded. But
during the flow, the subsequent inclusion induces a frequency
dependence that can cause at least quantitative effects. Again,
the frequency dependence of the vertex has been taken along
in a handful of studies.17–19 The upshot here is again that the
previous flows without frequency dependence are not so bad,
and no drastic changes of the leading instabilities are expected
when the approximation is improved.

All these rather qualitative results are encouraging, but in
order to develop the fRG into a quantitative method that is
able to describe materials more directly, the approach has to
be improved. We note that for continuum models, the fRG
is quite capable of treating the frequency dependence and
self-energy corrections more extensively.20 With regard to
the Hubbard model, one group of workers have embarked
on this mission using Ansätzes for the frequency dependences
of vertex functions and self-energies.21,22 Here we want to use
a more direct approach. We treat the frequency dependence
of the self-energy and the interaction vertex by discretizing
the Matsubara axis in Nω = 10 patches, in a similar spirit as
the wave-vector dependence is patched into Nk = 32 patches
around the Fermi surface. In this way, the interaction vertex
of the one-band model becomes an object with (Nk × Nω)3

components that can still be dealt with numerically. Also,
the imaginary part of the self-energy is computed with some
resolution, given by Nω values on the Matsubara axis. This
allows us, e.g., to test how adequate it is to use a simple Z factor
in order to describe the flowing self-energy. The self-energy is
then fed back into the flow of the interaction vertex by using
full Green’s functions on the internal lines of the one-loop
diagrams in their flow.
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The main questions we can ask using this refined scheme are
as follows: (a) What is the impact of the self-energy feedback
and/or the frequency dependence on the type and energy scale
of the leading instabilities? Can we use the critical scales in
this approximation as estimates for gap sizes in the ordered
state at lower scales? (b) What can be learned about the flowing
self-energy? How is its frequency and wave-vector dependence
for typical situations in the one-band Hubbard model? Is there
any non-Fermi-liquid physics that can be deduced from these
flows?

II. MODEL AND METHOD

Throughout this paper, we study the two-dimensional
Hubbard model on a square lattice with nearest- and next-
nearest-neighbor hoppings t and t ′, respectively, and a simple
on-site interaction U . The Hamiltonian is given by

H =
∑
k,σ

ε(k)c†σ (k)cσ (k) +
∑

i

Uni,↑ni,↓. (1)

Here c†σ (k) and cσ (k) are creation and annihilation operators
with momentum k and spin σ ∈ {↑ , ↓}, and ni,σ = c

†
i,σ ci,σ is

the density operator at site i. The dispersion relation reads

ε(k) = −2t(cos kx + cos ky) + 4t ′ cos kx cos ky − μ, (2)

where μ is the chemical potential and the lattice constant is
set to unity.

We employ the fRG flow equations for the one-particle-
irreducible (1PI) vertex function, which are well explained in
detail in the literature (see, e.g., Refs. 1, 23, and 24). The aim
is to obtain an effective theory for the low-energy degrees of
freedom of the system at hand. To do this, one introduces a
regulator or cutoff function θ�(k) in the quadratic part of the
fermionic action which depends on the RG scale � so that the
free Green’s function becomes

G�
0 = θ�(k)

iω − ε(k)
, (3)

with the Matsubara frequency ω. For the cutoff function θ�(k),
we choose here a momentum-shell cutoff,

θ�(k) = �[|ε(k)| − �], (4)

where � is the step function. In the numerical implementation,
the step function is slightly softened for better feasibility.
The cutoff function suppresses all modes with |ε(k)| below
the scale �. At the beginning of the fRG flow at � =
�0 � max[|ε(k)|], i.e., greater than the bandwidth, the vertex
functions of the theory take their bare values, as all perturbative
corrections are suppressed by the cutoff function. During the
fRG flow, the scale � is lowered step by step, and in principle
we recover the complete action with all vertex corrections at
� = 0.

With the so-introduced dependence of the free Green’s
function on the parameter �, one can derive a differential
equation for the generating functional of the 1PI vertices.23

After an expansion in the Grassmann fields, one arrives at an
integro-differential equation for all 1PI vertex functions. In
practice, we truncate the infinite hierarchy of flow equations
by setting the three-particle (six-point) vertex and all higher

vertices to zero. In the bare action at � = 0, the three-
particle vertex vanishes exactly. In principle, during the flow
it attains a finite value, which is, however, neglected in our
approximation. Various fRG studies on the Hubbard model
have shown that one can still expect reasonable results as long
as one restricts the study to weak or moderate coupling. If
the temperature is low enough, a certain part of the coupling
function will typically develop very large values compared to
the bandwidth before all modes are integrated out, i.e., it will
undergo a flow to strong coupling at a nonzero critical scale �c .
Here we have to stop the flow, as neglecting the higher-order
vertices is no longer justified. The critical scale �c can be
used as estimate for ordering temperatures and concomitant
spectral modifications, e.g., through gap openings.

With this approximation and in the presence of spin
rotational symmetry, the fRG differential equation amounts to
the following equation for the self-energy �� and two-particle
vertex V �,

d

d�
�� (k) =

∫
dk′S�(k′)[V �(k,k′,k′) − 2V �(k,k′,k)],

(5)

d

d�
V �(k1,k2,k3) = τ�

PP + τ�
PH,d + τ�

PH,cr, (6)

with the particle-particle channel

τ�
PP(k1,k2,k3) = −

∫
dk V �(k1,k2,k)L�(k,qPP)V �(k,qPP,k3),

(7)

the direct particle-hole channel

τ�
PH,d (k1,k2,k3)

= −
∫

dk[−2V �(k1,k,k3)L�(k,qPH,d )V �(qPH,d ,k2,k)

+V �(k,k1,k3)L�(k,qPH,d )V �(qPH,d ,k2,k)

+V �(k1,k,k3)L�(k,qPH,d )V �(k2,qPH,d ,k)], (8)

and the crossed particle-hole channel

τ�
PH,cr(k1,k2,k3)

= −
∫

dk V �(k,k2,k3)L�(k,qPH,cr)V
�(k1,qPH,cr,k), (9)

with the combined index k = (k,ω). Here, qPP = (−k +
k1 + k2, − w + w1 + w2), qPH,d = (k + k1 − k3; w + w1 −
w3), and qPH,cr = (k + k2 − k3,w + w2 − w3) are the quan-
tum numbers of the second loop line. We used the shorthand
notation for the momentum integral and Matsubara summation∫

dk = T
(2π)2

∫
dk

∑
ω, with the temperature T . The fourth

frequency and momentum of the interaction vertex as well as
of the second internal line are fixed by conservation. The spin
convention is such that the spin is the same for the first and
third leg. The internal loop is given by

L�(k,k′) = S�(k)G�(k′) + G�(k)S�(k′), (10)
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with the full propagator G�(k) = {[G�
0 (k)]−1 − ��(k)}−1 and

the single-scale propagator

S�(k) = −G�(k)

(
d

d�

[
G�

0 (k)
]−1

)
G�(k)

= [iω − ε(k)]∂�θ�(k)

[iω − ε(k) − θ�(k)��(k)]2
. (11)

Note that we do not employ the Katanin modification,25 i.e.,
the replacement of S�(k) by d

d�
G�(k) in Eq. (10), as this

would increase the numerical effort very strongly in this
two-dimensional problem. The Katanin modification is known
to be important for flows into the symmetry-broken regime,26

or in low-dimensional problems without long-range order, in
order to avoid unphysical divergences or to get quantitatively
correct results.27–29 In our case, for the symmetric flows, we
do not expect any qualitative effects of not employing this
replacement, as there is no reason why the instabilities should
not take place. Comparing our results with the recent study of
Giering and Salmhofer,30 who can take the Katanin replace-
ment into account as they use a simplified parametrization of
the vertex, confirms that this point is not crucial to the question
at hand.

At the beginning of the flow, the coupling function assumes
the value of the on-site interaction V �(k1,k2,k3) = U and the
self-energy vanishes ��(k) = 0. Here we want to study the
fRG flow with frequency-dependent self-energy and a two-
particle vertex. To do this, we divide the Brillouin zone into
Nk patches to cover the momentum dependence of the vertices
at the Fermi surface according to Ref. 2 (see Fig. 1). This
amounts to a projection of the momentum dependence onto the
Fermi surface, and the vertex has then three momentum indices
ki = 1, . . . ,Nk . Additionally, we divide the Matsubara axis
in Nω patches and calculate the Matsubara sum numerically.
In this work, we use two different patching schemes. In the
first scheme (D1), the vertices and self-energy are calculated
at the 10 Matsubara frequencies with the smallest absolute
values. The Matsubara frequencies of the respective patches
are thus given by ωp = {±1,±3,±5,±7,±9}πT . We keep
the smallest frequencies as these are expected to give the
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FIG. 1. (Color online) N -patch discretization scheme with Nk =
32. The Fermi surface with t ′ = 0.2t , μ = −4t ′ is plotted in red. The
patches are divided by black dotted lines. The red dots denote the
momenta at which the coupling function and self-energy is computed.
The umklapp surface is shown as the blue dashed line.

leading contributions to the flow. Additionally, we consider
a patching where the frequencies of the patches are at ωp =
{±1,±3,±5,±11,±21}πT to cover the dependence at higher
frequencies more accurately. This discretization is referred
to as D2. In both schemes, the vertices and self-energy at
all other frequencies occurring in the loops are assumed to
have the same value as the closest frequency patch. This
amounts to keeping the frequency dependence in self-energy
and interactions constant above the largest positive or smallest
negative discretization frequency.

In the loop diagrams with self-energy inclusion, the Mat-
subara sums have to be perfumed numerically. To do this, we
truncate the Matsubara sums at some ω∞ and check whether
further increasing this frequency cutoff changes our results.
In practice, we chose ω∞ = 1500πT , as further increasing
the maximum frequency did not lead to major changes in
self-energy or critical scales.

In this way, we calculate the vertex and self-energy only
for a given set of Matsubara frequencies and momentum
vectors on the Fermi surface. The flowing self-energy then
appears on the internal lines of the loop diagrams, as visible in
Eqs. (10) and (11). Importantly, we neglect the real part of
the self-energy. This is because a feedback of the real part
of the self-energy would lead to a Fermi surface shift which
is hard to handle within the N -patch scheme, as the Fermi
surface could be shifted into a momentum region which has
already been integrated out in previous fRG steps, causing
severe singularities in the flow. From previous studies2,31 and
a recent similar work by Giering and Salmhofer,30 we know,
however, that the effects due to the real part are less important.

III. RESULTS

A. Case without instability

First, as a check in order to get familiar with the data that
we obtain from the fRG, let us look at a case in which the
flow indicates normal metallic behavior. For that we choose
t ′ = 0.25t and μ = −2t such that the Fermi surface is away
from the van Hove situation and from the antiferromagnetic
(AF) spin-density-wave (SDW) instability. Then, if we stay
away from the lowest temperatures, the fRG flow does not
lead to strong coupling, i.e., we can integrate out all modes
without encountering a strong growth of any components of
the coupling function. In Fig. 2, we show the imaginary parts
of the self-energy as a function of the Matsubara index for
different temperatures. In addition to a decrease of the self-
energy toward lower T , we observe a monotonic frequency
dependence that features some kind of downward step around
zero frequency. The slope of the overall curve can easily be
interpreted as quasiparticle weight or Z factor, while the step
can be understood as a finite lifetime τ .

Note that for higher frequencies of the scale of the
bandwidth, the imaginary part of the self-energy should
approach zero again, but our frequency window is not large
enough to capture this behavior. In our treatment, the self-
energy at frequencies outside the discretization window (i.e.,
for Matsubara indices higher than ±10) is approximated by
the value at the closest discretization frequency. This may
underestimate the true self-energy in the frequency range
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FIG. 2. (Color online) Left: Imaginary part of the self-energy in
units of t for different T > Tc. t ′ = 0.25t , μ = −2t . Shown are the
values at momentum k = 1 (see Fig. 1). The largest couplings at
� = 0 are of the order of 4t . Right: Estimation for the exponent in
Eq. (12) for t ′ = 0.25 at van Hove filling (red triangles) and away
from van Hove filling (blue squares, green diamonds), obtained via
Eqs. (13) and (14) for k = 1 (see Fig. 1). All data for U = 3t with
self-energy feedback in the discretization D1.

where the linear slope around zero frequency still continues,
but it may overestimate it at higher frequencies where the
imaginary part of the self-energy is a decreasing function of
the absolute value of the frequency. To some extent these
two effects will cancel each other, and in any case the
large-frequency self-energy is less relevant for the Fermi
surface instabilities considered here. Therefore, we think that
our simple scheme of treating the self-energy behavior at
higher frequencies is qualitatively adequate.

We can analyze the behavior of the quasiparticle lifetime
obtained from the step around zero frequency a bit more
closely. In a Fermi liquid, the lifetime is related to the
temperature as τ−1 ∼ T 2, with a logarithmic correction in two
dimensions that we might not be able to resolve. Let us test if
the law

τ−1 ∼ T α (12)

is verified by our data, where we should find α = 2 for a Fermi
liquid with a round Fermi surface. At van Hove filling, due to
the divergence of the density of states the exponent is expected
to be altered to α = 1.32 Note, however, that all these literature
values are obtained by finite-order perturbation theory, while
the fRG sums up infinite orders in the bare coupling. The fRG
estimate for the lifetime is obtained by linearly extrapolating
the self-energy for the two lowest frequencies to ω = 0,

τ−1 = �� = 1
2 Im[��(kF ,3πT )] − 3

2 Im[��(kF ,πT )].

(13)

The expression

αTi
= [log(τ−1)]

[log(T )]
= log

(
τ−1
Ti+1

) − log
(
τ−1
Ti

)
log(Ti+1) − log(Ti)

(14)

gives an estimate for the exponent, extracted from data at two
temperatures Ti and Ti+1. The right plot of Fig. 2 shows the
temperature dependence of α. Although we do not observe a
constant α, presumably due to the error of the extrapolation,
at least α for the rounded Fermi surface is near the expected
value of 2 for low enough temperatures, and similarly for van
Hove filling α is close to 1 for low temperatures.

B. Critical scales and leading instabilities

Now let us address cases with flows to strong coupling.
The first question we want to ask is whether the inclusion
of a frequency dependence and feedback from the imaginary
part of the self-energy leads to a different leading instability
or a change in the critical scale. Here we study this question
along the parameter line of van Hove fillings where the Fermi
surface contains the points (π,0) and (0,π ). These are saddle
points of the dispersion and cause a divergence of the density
of states. From previous works it is known that this van Hove
situation leads to competing ordering tendencies. Hence this
situation is a good arena to study the impact of the inclusion
of frequency-dependence and self-energy feedback.

First let us look at the van Hove situation at half-filling,
where, in addition, the Fermi surface is perfectly nested. Pre-
vious fRG works have clearly established an AFM instability,
signaling an AF SDW ground state for this case. This in in
accordance with the expectations from simple RPA arguments,
but also with quantum Monte Carlo results.33

For t ′ = 0, μ = 0, the character of the instability in the fRG
does not change when we include a frequency dependence
of the effective interactions, or when we include the self-
energy feedback. This means that the couplings that drive
the antiferromagnetic susceptibility with wave-vector transfer
(π,π ) diverge most strongly, as described in earlier works.1

In Fig. 3, we show the critical scales obtained in the fRG in
the various approximations (without frequency dependence of
the effective interactions and without self-energy feedback,
with frequency dependence of the effective interactions but
without self-energy feedback, and with frequency dependence
of the effective interactions and with self-energy feedback)
as a function of the interaction strength U . These scales do
not differ much quantitatively. One way to understand the
agreement is that the instability in this case is very close
to a standard RPA instability, where only the most singular
frequency transfer matters, and different frequency transfers do
not couple, hence the frequency resolution does not come into
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FIG. 3. (Color online) Critical scale, at which the couplings
exceed 20t , vs U for the fully nested case, with T = 0.01t , t ′ =
0, and μ = 0 for the flows with frequency-independent vertices
and without self-energy feedback (blue squares), with frequency-
dependent vertices and without self-energy feedback (red triangles),
and with frequency-dependent vertices and with self-energy feedback
(green diamonds), all in the discretization D1.
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play. Furthermore, the flow goes off to strong coupling at scales
before the self-energy becomes noticeable. Nevertheless, with
respect to the plain RPA, the critical scales are reduced by
the channel coupling in the fRG. Hence, in this case, the
simplest fRG approximation without frequency dependence
and without self-energy feedback is already quite good and
cannot be improved much within the range of numerical
possibilities. Besides the discretizations of wave vector and
frequency dependences, the remaining approximations are the
neglect of the real part of the self-energy and the truncation of
the flow hierarchy after the four-point function. We expect that
any remaining differences are due to these two approximations.
In particular for larger U ≈ 4t , there should be precursors of
the spectral weight transfer that ultimately leads to the opening
of a Mott gap at U ≈ 8t . As it is believed that the truncated
fRG does not allow the description of the Mott transition, it is
plausible that the spectral weight transfer is still not described
correctly in our improved approximation. Furthermore, the
physics of collective fluctuations might not be captured to some
extent due to the truncation after the four-point vertex. Hence,
if we compare roughly to gap scales found in nonperturbative
cluster calculations for large clusters,34 the �c curve seems
to rise too steeply as function of U . However, regarding the
critical scale as an estimate of the gap scale, up to a factor of
order 1, the fRG is in the right range.

Let us now look at the situation in which the particle-hole
nesting is destroyed by larger t ′. In Fig. 4, we plot the critical
scale versus the next-nearest-neighbor hopping t ′ at van Hove
filling (i.e., chemical potential μ = −4t ′), at which the van
Hove energy with a logarithmic diverging density of states is at
the Fermi level. The fRG flows in Fig. 4(a) have been computed
at T = 0.01t . Lowering the temperature further increases the
numerical effort, as the maximum cutoff frequency ω∞ then
has to be taken larger as well.

As can be seen in Fig. 4(a), for T = 0.01t the inclusion of
frequency dependence and the different discretizations affect
the critical scale only slightly. The self-energy feedback,
however, reduces the critical scale significantly, especially
for larger t ′. The data we show are for U = 3t , but the
agreement is similar for other interaction strengths for which
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FIG. 4. (Color online) Critical scale �c, at which the couplings
exceed 20t , vs next-nearest-neighbor hopping t ′/t at van Hove filling
for U = 3t with Nω = 1 and without self-energy feedback (blue
squares), with frequency-dependent vertices and without self-energy
feedback (red), with frequency-dependent vertices and with self-
energy feedback (green). Two different frequency discretization D1
(triangles, solid lines) and D2 (diamonds, dashed line) are used. Left:
T = 0.01t . Right: T = �0.01

c is the the critical scale for T = 0.01t

without self-energy feedback with discretization D1 (red solid line in
the left plot).

reasonable (i.e., � 10−3t for our numerics) critical scales are
detected. We also compared how different patchings on the
Matsubara axis affect the critical scales. In Fig. 4, we show
data for two different discretizations of the Matsubara axis.
At low temperatures, the two different discretization lead to
very similar results, while at higher temperatures the two
discretizations show some quantitative differences, depending
on t ′.

One might suspect that the critical scale for higher t ′ is more
strongly suppressed because the critical scale comes closer to
the chosen temperature, so that the difference in the critical
scale is merely a finite-temperature effect. To check this, we
make a second run, where we adjust the temperature for each
value of t ′ to the value T = �0.01

c , which is the critical scale we
obtain for the respective t ′ at T = 0.01T without self-energy
feedback. In other words, the temperature is varied according
to the red solid curve in the left plot of Fig. 4. Now the ratio of
temperature and critical scale is comparable for all t ′. We see
that inclusion of self-energy feedback suppresses the critical
scale now already for small t ′, but definitely more strongly at
larger values of t ′.

Interestingly, we find that increasing the temperature
reduces the critical scale more strongly when frequency
dependence is neglected at small t ′, so that we discover a
parameter space in which now the critical scale increases
when one includes frequency dependence in contrast to
Fig. 4(a). At larger temperatures the difference between the
two discretization schemes also becomes more pronounced.
The flows with the discretization D2 now exhibit a larger
critical scale than the flows with D1. Hence the precision of
the description is better at low T .

We want to have a closer look at the origin of the behavior
observed in Fig. 4. A natural question to ask is whether
the AFM SDW and the superconducting (SC) tendencies
respond differently to the inclusion of frequency dependence
and self-energy, and whether the tentative phase diagrams
drawn by determining the leading instability are changed by
these improvements of the scheme. We therefore consider the
effective coupling strengths of the AFM and SC channel, which
we define as

χAFM = 1

Nk

∑
p

V �((p,ω0),(k = 1,ω0),(k = 24,ω0)), (15)

χSC = 1

N2
k

∑
k,p

V �((k,ω0),(−k, − ω0),(p,ω0))f (k)f (p).

(16)

Here, k = 1 and 24 denote the patches with momentum vectors
closest to the van Hove singularities roughly connected by
momentum transfer (π,π ) (see Fig. 1) and ω0 = πT . f (k)
and f (p) are d-wave form factors and are given by f (k) =
cos(kx) − cos(ky). We consider the vertices of the smallest
Matsubara frequencies, as these grow most strongly during
the fRG flow. If these averages diverge, the corresponding
susceptibilities diverge as well, so that these quantities can be
used as a measure of the coupling strengths of the respective
channel. Typical flows of these quantities are shown in the
left plot of Fig. 5. As a criterium for the leading instability,
we choose the derivatives of the coupling strength of the
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FIG. 5. (Color online) Left: Flow of the effective strength of the
antiferromagnetic (solid lines) and superconducting (dashed lines)
channel given in Eqs. (15) and (16) in units of t for t ′ = 0.2t

(blue) and t ′ = 0.26t (green) in the discretization scheme D1 and
with self-energy feedback. Right: Slope of the effective strength
of the antiferromagnetic (solid lines) and superconducting (dashed
lines) channel at the scale �c, at which the couplings exceed 20t .
Shown are the data with frequency-independent vertices and without
self-energy feedback (blue squares), without self-energy feedback
(red triangles), and with self-energy feedback (green triangles), both
in the discretization scheme D1. The intersection point of the two
curves is used as an estimate for the boundary between the AFM and
SC dominated regime. All data with U = 3t at van Hove filling and
T = 0.01t .

effective channels with respect to � at �c. �c is again
defined as the scale at which the couplings exceed a value
of 20t . The results are shown in the right plot of Fig. 5. The
intersection of the respective curves for the AFM and SC
coupling strength is taken as an estimate for the boundary
between the regimes. Of course the precise values from
this procedure depend somewhat on the chosen definition of
�c. On the other hand, this procedure suffices for the more
qualitative discussion in which we are interested, namely the
impact of frequency-dependence and self-energy effects on
the competition between the different orders. The comparison
for the different cases, i.e., with and without frequency
dependence and self-energy feedback, is summarized in
Table I.

At T = 0.01t and without self-energy, the boundary
between the regimes lies at t ′ ≈ 0.19t and without frequency-
dependent vertices. If we include the feedback of self-energy,
this boundary is shifted toward higher t ′. We conclude that,
not unexpectedly, lifetime effects harm the superconducting
instability more than the AFM instability.

For the second run at higher temperatures, T = �0.01
c , the

phase boundary is generally shifted toward higher t ′ as well.

TABLE I. Approximate values for t ′/t for the transition from the
AFM to the SC regime at van Hove filling and U = 3t . The values
are obtained by a comparison of the slope of the effective strength of
the respective channels at the scale �c, at which the couplings exceed
20t (see also Fig. 5).

Without � With �

Nω = 1 D1 D2 D1 D2

T = 0.01t 0.19 0.2 0.21 0.21 0.22
T = �0.01

c 0.22 0.27 �0.28 >0.28 >0.28

This basically reflects the fact that the relevant energy scale
of the superconducting instability is lower than that of the
AFM instability. Hence the pairing channel is more strongly
affected by the finite temperature. The difference between
the different levels of approximations is much larger than
at T = 0.01t in correspondence with the larger discrepancy
in the critical scales in Fig. 4. Furthermore, we note that
the different discretization schemes yield qualitatively similar
results, which confirms that the picture drawn here for the
leading instabilities is fortunately rather independent of the
details of the numerical implementation.

The overall conclusion we can draw from this analysis
is that the frequency dependence of the couplings and the
self-energy effects are certainly important for quantitative
questions. However, in general they do not qualitatively change
the physical picture obtained from the simpler flow schemes
with frequency-independent couplings and with neglected
self-energy.

C. Flow of the self-energy

Next we consider the flow of the self-energy for finite
temperatures above Tc. The main goal now is to analyze the
frequency and wave-vector dependence.

We run the fRG flow for different T > Tc such that all
modes can be integrated out. Practically, the flow is stopped
at a scale � = 2 × 10−4t , which is much lower than the
temperature. Below these scales, the vertices and self-energies
do not get renormalized substantially by lowering � even
further. We stay in the weakly to moderately coupled regime
at all scales.

In Fig. 6, the imaginary part of the self-energy is plotted
over the Matsubara frequency for the fully nested case with
t ′ = 0 at half-filling and for van Hove filling with t ′ = 0.25t .
The curves for different patches are nearly on top of each
other (not shown in Fig. 6 for better readability). Thus, there is
only a weak angular dependence at these elevated temperatures
above the instability, independent of the Fermi surface shape.
We checked that the weak angular dependence is reproduced
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FIG. 6. (Color online) Imaginary part of the self-energy in units
of t for T > Tc at � = 0 for three parameter choices at van Hove
filling, U = 3t . T = 0.5t , t ′ = 0 (blue); T = 0.5t , t ′ = 0.25t (red);
T = 0.1t , t ′ = 0.25t (green). Shown are the data for the patch k = 1;
the curves for different momenta at the Fermi surface (not shown) are
nearly the same, which implies a very weak angular dependence. The
left and right plot shows the same data with different scaling of the
frequency axis. All data with discretization scheme D1 and feedback
of self-energy. The largest couplings at � = 0 are of the order of
10t for T = 0.5t , t ′ = 0.25t (red). The parameter choices shown in
blue and green are close to the critical temperature; here the largest
couplings are close to 20t .
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in the other frequency discretization schemes as well. On the
left-hand side of the plot, we show the data as a function of the
Matsubara frequency, i.e., with a different frequency window
∼T for the two temperatures. On the right-hand side, we show
the same data versus iω/(πT ) as a function of the Matsubara
frequency index.

At higher temperatures, T = 0.5t , we observe again a step-
like discontinuity in the self-energy at zero frequency on the
Matsubara axis. This can be interpreted as an inverse lifetime
of the quasiparticle peak. If we go to lower temperatures but
remain above the instability (now only for the curved Fermi
surface, as otherwise the critical scale is too high), this step gets
much smaller (also because the Matsubara frequencies move
close together) and we are left with a rather linear frequency
dependence, which can again be captured by a quasiparticle
weight Z. This again turns out to be rather independent of
the location on the Fermi surface. So all these data at fixed
temperature look quite consistent with a rather normal and
isotropic metallic system, at least at these temperatures above
the instability.

There have been a number of more detailed studies (see,
e.g., Refs. 35 and 36) of the self-energy in the case of van Hove
filling, pointing out special, non-Fermi-liquid-like properties
due to the diverging density of states. At a given T , it is
difficult to read out any particular self-energy property from
our data at t ′ = 0.25t . However, if we measure the temperature
dependence of the steplike feature that we interpreted as
inverse lifetime and fit it to the law T α , we obtain a different
exponent with α approaching 1 toward lower T . This marginal
Fermi-liquid behavior37 is shown in Fig. 2 and is consistent
with second-order predictions for the van Hove situation.32,38

In Fig. 7, we show data at lower temperatures for the
frequency dependence of the self-energy, now comparing
different frequency discretizations. We compare data at a scale
at which the couplings exceed a value 10t . Note that this
is at slightly different scales in both cases. We see that for
low frequencies the discretizations compare quite well. At
larger frequencies the quantitative agreement becomes worse.
However, the qualitative features, such as, for instance, a larger
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FIG. 7. (Color online) Imaginary part of the self-energy in units of
t for different discretization schemes D1, D2 at the scale �10t at which
the couplings exceed a value of 10t . �10t = 0.084t (�10t = 0.093t)
for D1 (D2). Shown are different momenta at the Fermi surface k = 1
and 4 (see Fig. 1). All data for T = 0.01t , t ′ = 0.2t , and U = 3, at
van Hove filling and with feedback of self-energy.
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FIG. 8. (Color online) Imaginary part of the self-energy in units
of t for t ′ = 0 (blue) and t ′ = 0.2 (red) at van Hove filling for
U = 3t at the scale �80t , where the couplings exceed a value of
80t . �80t = 0.26t (�80t = 0.019t) for t ′ = 0 (t ′ = 0.2t). Shown are
different momenta at the Fermi surface: k = 1 (solid line), k = 2
(dashed line), k = 3 (dashed dotted line), and k = 4 (dotted line) (see
Fig. 1). All data with discretization scheme D1 and with feedback of
self-energy.

slope of the self-energy near the saddle points compared to the
Brillouin zone diagonal, is found consistently in both schemes.
Quite generally, our data show that the self-energies in the two
schemes are more consistent at lower temperatures.

For T < Tc the flows go to strong coupling. If we stop
the flow when the vertices exceed a value of the bandwidth,
the momentum dependence of the self-energy is rather weak.
However, if we continue to flow toward the instability, stronger
anisotropies are found. Strictly speaking, for these large values
of the vertices, the truncation of the fRG flow equation with
neglect of the higher-order vertices is no longer justified.
We expect, however, that we can still get some qualitative
insight into the breakdown of the Fermi liquid behavior for
low temperatures, similar to the argumentation in previous
works.12,13 The corresponding data are shown in Fig. 8, both
with and without self-energy feedback.

In general, the frequency dependence of the imaginary
part of the self-energy at these low temperatures near the
instability is dominated by a linear decrease that gets steeper
the closer we get to the critical scale. We can measure this
angle-dependent slope �′� on the frequency window and
encode it in a quasiparticle weight,

Z�(kF ) = [1 − �′�(kF )]−1, (17)

where we define �′� as

�′�(kF ) = ��(kF ,ωm) − ��(kF , − ωm)

2ωm

. (18)

Here ��(kF , ± ωm) are the self-energies at the Matsubara
frequencies with the largest absolute value ωm = 9πT avail-
able in discretization D1. The flow of these weights is shown
in Fig. 9. We see that the Z factor diminishes toward the
instability, but in a rather weak, almost logarithmic way, such
that this is possibly not the most severe effect in the self-energy.
In addition to this slope, we also notice again a step ��

around zero frequency [Eq. (13)] that grows rapidly toward
the instability, as shown in the right plot of Fig. 9. We also
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FIG. 9. (Color online) Flow of the Z factor as given by Eqs. (17)
and (18) and the step �� of the self-energy in units of t at ω = 0
defined as in Eq. (13) for different momenta at the Fermi surface
(see Fig. 1). U = 3t , t ′ = 0.2t , van Hove filling, T = 0.01t , with
discretization scheme D1 and with feedback of self-energy.

show curves for different locations on the Fermi surface. These
different lines indicate the growth of the anisotropy toward the
instability for the van Hove situation away from half-filling,
with stronger self-energy effects for Fermi surface points near
the van Hove points. In the perfectly nested case, the anisotropy
is less pronounced.

Previous works on the flow of the self-energy using
different approximations have arrived at some similar but also
some different conclusions regarding the self-energy flow. In
Refs. 12 and 13, the anisotropy appears to be somewhat more
pronounced in the sense that the Fermi surface point closest
to the van Hove points showed indications for a breakup
of the quasiparticle peak into two peaks, with a spectral
gap opening between them. For this to occur, one needs
an additional low-energy feature in the self-energy. On the
imaginary axis, this shows up as an increase of the absolute
value of the self-energy imaginary part toward low frequencies,
which turns around the linear slope and eventually leads to a
1/(iω) pole. In Ref. 12, this could only be seen clearly by
interpolating between the lowest Matsubara frequencies, an
option we cannot choose in our flow with frequency-dependent
coupling. However, the growing step �� can be interpreted
as a precursor of this effect, as it leads to a breaking up of
the simple linear decrease. It is quite possible that these subtle
effects very close to the instability come out in a different
extent in the different approximations. Also in Ref. 13, where
the self-energy is evaluated directly on the real frequency axis,
a low-energy feature in the self-energy emerges very close to
the instability and eventually splits the quasiparticle peak in
two. Another aspect of this feature is a rise in the scattering
rate, which is consistent with our increasing step ��. On
the real axis, the linear slope of the self-energy real part goes
into the Z factor. In Ref. 13, this slope, after subtracting the
additional low-energy feature, is not strongly scale-dependent,
very much like our data, where the Z factor does not really
dive to zero toward the instability. Since the precision of the
truncated flows is not very high in this regime, we refrain
from a more elaborate discussion of these differences. One
message one may learn from these studies is, however, that
the self-energy in this regime should not only be parametrized
with a Z factor. At least close to the instability, it develops
additional low-energy structures besides this linear envelope
captured by the Z factor.

IV. CONCLUSIONS

We have analyzed the low-energy properties of effective
interactions and self-energies in the two-dimensional Hubbard
model using a fRG approach. In contrast with previous
approaches to the same model (see, e.g. Refs. 2–5, and many
more works cited in Ref. 1), we take into account the frequency
dependence of the interactions and the feedback of important
parts of the self-energy on the flow of the latter. For this, we
discretized the Matsubara frequency axis in different schemes
with Nω = 10 patches. For the self-energy, we took into
account the imaginary part (on the Matsubara axis) only, while
we ignored the real part. The argument for ignoring the latter
is mainly feasibility, i.e., a flowing dispersion is technically
difficult to deal with and would require additional devices to
keep the particle number fixed. Our experience from previous
studies31 is that the impact of the dispersion renormalization
on the instability is mainly quantitative and does not alter the
regime found from the flows to strong coupling.

The main goal of this study was to see how the fRG
flows of the simpler studies are altered by the straightforward
inclusion of frequency dependence and (the imaginary part of
the) self-energy feedback. Here, after a first sanity check on
a case without flow to strong coupling, we analyzed how the
critical scales for the flow to strong coupling change, and how
the character of the instability in terms of the leading ordering
tendency changes depending on the different approximations.
The overall result is that the frequency dependence and the
imaginary part of the self-energy usually decrease the critical
scales by a factor at most of order 1. Only near quantum
critical points, where the critical scales vary strongly and
become small, can the change be more drastic. Furthermore,
the competition for the leading instability is also affected
only quantitatively. We find the same structure of the phase
diagrams, and we have not seen that any of the regimes found
previously are wiped out by these alterations of the scheme. In
particular, there is a sizable regime with dominating d-wave
pairing in the ground state.

Above the instability temperatures, the self-energy did
not show strong signatures in its frequency- or wave-vector
dependence. The basic structure could be captured by an
inverse lifetime or scattering rate and a Z factor for the
quasiparticle weight. These parameters turned out to be weakly
wave-vector-dependent around the Fermi surface unless one
gets close to the instability at lower temperatures. At van
Hove filling and away from perfect nesting, the scattering rate
above the instability turns out to be consistent with marginal
Fermi liquid behavior, as found in previous studies.32,38

However, this does not prevent the low-T instabilities from
occurring, i.e., even if the self-energy behaves differently from
a Fermi liquid, the instabilities found without inclusion of the
self-energy are still present.

These findings on the behavior of the self-energy above
the instability make a lot of sense, but they do not re-
veal any unexpected physics. Certainly, the self-energy
flows corroborate second-order-perturbation theory results on
the non-Fermi-liquid behavior at the van Hove filling, and the
low-T instabilities are not changed qualitatively. Hence the
present work represents an important check for the body of
knowledge that has been obtained using simple fRG flows
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without self-energy feedback (for a review, see Ref. 1).
Basically, the message we infer from the data is that frequency-
dependence and self-energy effects are necessary to deal with
if one is trying to obtain truly quantitative results, but on a
qualitative level, regarding the leading instabilities and orders
of magnitude, these improvements do not lead to significant
changes. So the simple flows without self-energy are expected
to be good guides through the basic phase diagrams. Similar
statements also hold for parameter trends, e.g., as a function
of the chemical potential of the band-structure parameters.
Here, we have found that these trends occur irrespective of the
approximation level.

In this paper, we do not discuss explicitly the frequency
structure of the effective interactions. This is quite rich and
contains some interesting aspects, some of which have been
discussed without self-energy feedback in Ref. 19. Here,
however, it is difficult to describe the data with a few simple
parameters, and less literature is available for comparison.
Hence we did not elaborate on this here. It would be interesting,
however, to compare the frequency-resolved vertex functions
from this weak-coupling approach with data obtained with
QMC or dynamical mean-field-like cluster methods in order
to assess the effects of strong correlations (possibly difficult
for the fRG) and larger distances (possibly less well captured
by the strong-coupling approaches) on these objects.

Regarding the theoretical approach chosen here, we were
able to show that it leads to useful results. On the other hand,
in order to look for subtle effects near the instability such as
pseudogaps or more detailed non-Fermi-liquid behavior, the
chosen approach appears to be somewhat heavy and inflexible.
The numerical effort due to a vertex that depends on three
wave vectors and frequencies makes it rather cumbersome to
compare different discretizations or implementations. Here,
some clever reduction of the information carried along might
be useful. Our current code might serve as a guide to assess
the value of these alternatives.

At the time of writing of this paper, another work treating
the self-energy feedback in fRG flows in the two-dimensional
Hubbard model has appeared,30 which may point in the right
direction. This study employs the channel decomposition of
the interaction vertex proposed by Husemann and Salmhofer.21

The restriction to a few form factors of the interaction channels
then allows the authors to reach a higher momentum space and
frequency precision than is achieved in our straightforward

patching scheme, and to safely go to the lowest temperatures
and frequencies. Furthermore, they also consider the flow of
the real part of the self-energy, which was ignored in our
scheme for simplicity. The choice of a soft frequency cutoff
instead of a momentum-shell cutoff picks up ferromagnetic
tendencies, which are ignored in our approach and which
would be important for t ′ > 0.3t near van Hove filling. So
the results of both schemes should only be compared at
small t ′. There seems to be good agreement at least in
two aspects, namely the suppression of the critical scales
due to self-energy effects and the stability of the d-wave
pairing regime with respect to inclusion of these aspects.
Reference 30 also describes a non-Fermi-liquid behavior of
the self-energy at the van Hove filling with exponent 3/4 at
t ′ = 0.355t , which is slightly less than our second-order-like
exponent near 1 determined for t ′ = 0.25t . In comparing the
pros and cons of these two related schemes, it is important
to notice that our direct patching implementation without
channel decomposition does allow the vertex to depend on
three different wave vectors and Matsubara frequencies, while
the approach in Ref. 30 only allows for certain form factors
in momentum space and treats the frequency dependence as
the sum of three functions, each depending on one particular
frequency combinations. However, it is hoped that these
constraints do not influence the results too strongly. Indeed, our
study shows that taking along more frequency and momentum
structure does not change the main results and does not
reveal any additional physics. Hence, it is quite likely that
the channel-resolved formalism of Ref. 30 turns out to be a
better compromise as it reduces the amount of information
carried along in the flow in a physically meaningful way. In
this way, one might obtain more precise data and be able to
go on to more invalid systems without reducing the precision
again. In a way, the approach chosen in this paper can be
viewed as complementary, as it is less versatile but puts less
of a bias in the momentum and frequency dependencies of the
vertex functions.
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