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The derivative discontinuity of the exchange-correlation (xc) energy at an integer particle number is a property
of the exact, unknown xc functional of density functional theory (DFT) which is absent in many popular local and
semilocal approximations. In lattice DFT, approximations exist which exhibit a discontinuity in the xc potential
at half-filling. However, due to convergence problems of the Kohn-Sham (KS) self-consistency cycle, the use
of these functionals is mostly restricted to situations where the local density is away from half-filling. Here a
numerical scheme for the self-consistent solution of the lattice KS Hamiltonian with a local xc potential with
rapid (or quasidiscontinuous) density dependence is suggested. The problem is formulated in terms of finite-
temperature DFT where the discontinuity in the xc potential emerges naturally in the limit of zero temperature. A
simple parametrization is suggested for the xc potential of the uniform one-dimensional (1D) Hubbard model at
finite temperature which is obtained from the solution of the thermodynamic Bethe ansatz. The feasibility of
the numerical scheme is demonstrated by application to a model of fermionic atoms in a harmonic trap. The
corresponding density profile exhibits a plateau of integer occupation at low temperatures which melts away for
higher temperatures.
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I. INTRODUCTION

Originally, static (ground-state) density functional theory
(DFT) has been formulated1,2 for many-electron systems in
the continuous space of three spatial dimensions with the
electrons interacting via the Coulomb interaction. On the other
hand, many phenomena in many-particle physics are studied
in terms of model systems on discrete lattices, typically of
tight-binding form. The one-dimensional Hubbard model or
the Anderson impurity model are just the most prominent
examples. Typically these models are studied with techniques
different from DFT. However, DFT can be a useful tool for
the investigation of these models as well, especially when
one wants to take into account the effects of nonuniform
external potentials.3–6 For example, cold atoms in optical
lattices confined in an harmonic trap may very well be modeled
by a lattice model with confining external potential where the
particles interact through a Hubbard-type interaction.7

The idea of formulating DFT for electrons on a lattice of
sites has been pioneered by Schönhammer and co-workers.3,8

As with usual DFT, the applicability and success of lattice DFT
hinges on the availability of approximations to the unknown
exchange-correlation (xc) functional. Capelle and co-workers
proposed a local functional for the xc energy per site based
on the Bethe-ansatz solution of the uniform 1D Hubbard
model at zero temperature.4,9 Thus, for one-dimensional lattice
models, the 1D Hubbard model takes the role of the uniform
electron gas in the continuum formulation of DFT as an exactly
solvable model system which provides the essential input for
the construction of the local approximation. In the same spirit,
xc functionals have been suggested based on other Hubbard
lattice models such as the two-dimensional (2D) hexagonal
lattice10 or the simple cubic lattice in three dimensions (3D).11

An interesting property of the Bethe-ansatz local density
approximation (BALDA) in 1D (and also its counterparts for
2D or 3D lattice models) is its discontinuous form of the xc
potential at half-filling or integer occupation.12 Physically, this
discontinuity is a direct consequence of the Mott-Hubbard gap
of the Hubbard model while in the DFT context it is nothing
but the well-known derivative discontinuity of the xc energy
at integer particle number at zero temperature.13

The BALDA has been successfully applied to spatially
inhomogeneous Hubbard superlattices,9 to cold fermionic
atoms in a harmonic trap, both with repulsive5 and attractive14

electronic interaction, and to the study of the static and dy-
namic linear density response.15,16 Extensions of the BALDA
have been suggested to systems in static magnetic fields17 and,
in the adiabatic form, to the domain of time-dependent DFT18

where it has been used to study the dynamics of finite Hubbard
clusters. Recently the adiabatic BALDA has been applied to
describe the time evolution of trapped 1D lattice fermions
in the Mott insulator regime.19 A modified version of the
BALDA has been used in the study of time-dependent transport
through an Anderson impurity20 where the discontinuity has
been related to Coulomb blockade.

From a physical point of view the discontinuity at an
integer particle number is certainly a desirable property for
an approximation to have, at least at zero temperature. As
we will argue below, the zero-temperature discontinuity may
be viewed as the zero temperature limit of a continuous xc
potential at finite temperature. From a practical point of view, if
a local discontinuous (or rapidly varying) xc potential is used,
one often faces convergence problems of the Kohn-Sham (KS)
self-consistency cycle5 essentially whenever the local density
is close to integer occupation.
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In the present work we propose a practical solution to
this convergence problem by viewing it as an equivalent
problem of finding the solution to a coupled set of nonlinear
equations. In Sec. II we start with a general discussion
of the KS self-consistency cycle and possible convergence
problems when using KS potentials which vary rapidly for
small variations in the density. The problem is illustrated
explicitly on the simple, exactly soluble model system of
a single interacting site in contact with a heat and particle
bath. In Sec. III we then introduce the 1D lattice models
studied throughout this work and briefly summarize the idea
of a local approximation for lattice models which has been
discussed in the literature. We will work in the framework
of finite-temperature DFT,21 and Sec. IV is devoted to the
construction of an approximate xc potential for this framework.
We construct the xc potential of the uniform 1D Hubbard
model for finite temperatures based on the thermodynamic
Bethe ansatz. We provide a simple parametrization of this
potential using insights gained from the simple single-site
model discussed earlier. In Sec. V we introduce our algorithm
for the practical solution of the self-consistency problem which
is based on a multidimensional bisection method. In Sec. VI we
show a numerical application of the method to the problem of
interacting particles in a harmonic trap before we present our
conclusions in Sec. VII. In the Appendix we provide explicit
expressions for the xc free energy per site for the simple
parametrization of the thermodynamic Bethe-ansatz solutions
to the uniform Hubbard model.

II. KOHN-SHAM PROBLEM WITH RAPIDLY VARYING
DENSITY FUNCTIONALS

The implementation of DFT via the KS method gained
enormous popularity because it reduces calculations of the
density n(r) in a complicated strongly interacting system
to computing n(r) for a reference system of noninteracting
KS particles. The KS particles move in the presence of an
effective potential vKS = v + vHxc[n], where v is an external
potential and vHxc[n] is the Hartree-exchange-correlation
(Hxc) potential which depends on the density and is adjusted
self-consistently to reproduce the physical density distribution
of the interacting system. The self-consistent nature of the KS
problem makes it nonlinear and thus not absolutely trivial. In
fact, the whole point of the present paper is to identify one of
the potentially dangerous physical situations and to propose a
recipe for its solution.

A. KS self-consistency as a fixed point problem:
The issue of convergence

Assuming that the potential vHxc[n] as a functional of the
density is known, the general KS problem can be formulated
as follows. We have to find a set of KS orbitals ϕ(α) and KS
energies εα by solving a one-particle stationary Schrödinger
equation

(t̂ + v + vHxc[n])ϕ(α) = εαϕ(α), (1)

where t̂ is the one-particle kinetic energy operator. As the
operator in Eq. (1) depends on the density we need an
additional “self-consistency equation” that relates the set

of {ϕ(α),εα} to n(r). Obviously this equation is simply the
standard definition of the density of noninteracting particles

n(r) = 2
∑

α

f (εα)|ϕ(α)(r)|2, (2)

where the factor 2 comes from spin. f (ω) = {1 + exp[β(ω −
μ)]}−1 is the Fermi distribution, β = 1/T is the inverse
temperature, and μ is the chemical potential which is either
given externally or determined by fixing the total number of
particles.

Calculation of the density from Eqs. (1) and (2) is equivalent
to finding a fixed point of a certain density functional.
Indeed, the eigenvalue problem of Eq. (1) defines a map
n �→ {ϕ(α),εα} from the density to the set of KS eigenfunctions
and eigenvalues, that is, it determines the functionals ϕ(α)[n]
and εα[n]. Inserting these functionals into Eq. (2) we obtain
the following form:

n = 2
∑

α

f (εα[n])|ϕ(α)[n]|2 ≡ G[n], (3)

which is a typical fixed point problem for the functional G[n]
on the right-hand side.

In practice, the self-consistent KS problem of Eqs. (1) and
(2), or equivalently the fixed point problem of Eq. (3), is
commonly solved iteratively. In the simplest case one starts
with some initial guess n(0) for the density and constructs a
sequence of iterations n(k) as follows:

n(0), n(1) = G[n(0)], . . . , n(k) = G[n(k−1)], . . . . (4)

The limiting point of this sequence presumably gives a self-
consistent solution of the KS equation

n = lim
k→∞

n(k). (5)

Unfortunately the assumed convergence cannot be guaranteed
in general, in spite of the fact that the original KS problem
definitely has a unique solution. From the Banach fixed point
theorem (the contraction mapping principle) we know that the
sequence of Eq. (4) does necessarily converge to a unique
fixed point if the functional G[n] is contractive, that is, if the
following condition is satisfied:

‖G[n] − G[n′]‖ � λ‖n − n′‖, 0 < λ < 1, (6)

where ‖ · · · ‖ means a properly chosen norm in the space
of densities. Apparently this condition requires G[n] to be
a sufficiently smooth functional of the density, which is
not always the case. Moreover, there are important physical
situations where the inequality of Eq. (6) is always violated. To
understand this more clearly we estimate the left-hand side of
Eq. (6) for a small density variation n′ = n + δn with δn � n,

‖G[n] − G[n′]‖ ≈
∥∥∥∥χ

δvHxc

δn
(n − n′)

∥∥∥∥, (7)

where χ is the density response function. Obviously the
right-hand side of Eq. (7) cannot be smaller than λ‖n − n′‖
with 0 < λ < 1 if vHxc is a rapidly varying functional
of n, that is, if δvHxc

δn
is large at least for some directions

in density space. Physically this should always happen in
systems composed of weakly coupled fragments if the number
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of particles in at least one of the fragments is close to an
integer value. Then a density transfer to/from this fragment
causes a strong variation of the potential. The origin of
this behavior is in the famous discontinuity of the exact
xc potential at an integer number of particles.13 The most
prominent examples of systems demonstrating such a behavior
are molecules close to dissociation or strongly correlated solids
near the Mott-Hubbard transition. In all those systems where
the physics is governed by a nearly discontinuous xc potential
the standard iterative procedure of solving the KS equations
will not converge.

In the next subsection we explicitly illustrate the above gen-
eral argument by considering a very simple model system—a
single lattice site which can host at most two spin-1/2
fermions. The purpose for studying this model is twofold. First,
this is probably the only case where the exact xc potential can
be found analytically for any temperature. The corresponding
KS problem possesses an analytic solution and, because of
its simple structure, clearly shows when and why the existing
unique fixed point cannot be reached iteratively. Second, a
single-site DFT serves as a paradigmatic example for more
general interacting lattice models. In fact, the analytic form of
the single-site Hxc potential will later be used to construct a
simple parametrization for the Hxc potential of the uniform
Hubbard model at finite temperatures.

B. KS-DFT for a single-site model

Let us consider one single-orbital site in contact with a
heat and particle bath at inverse temperature β and chemical
potential μ.22,23

The Hamiltonian for this single-site model (SSM) in the
presence of an on-site interaction is given by

ĤSSM = v0n̂0 + Un̂0,↑n̂0,↓, (8)

where v0 is the on-site energy and U is the charging energy,
n̂0,σ and n̂0 = ∑

σ=↑,↓ n̂0,σ are the operators for the on-site
density with spin σ and for the total density, respectively. Sim-
ilarly, for the noninteracting case the single-site Hamiltonian
reads

Ĥ s
SSM = vsn̂0, (9)

with on-site energy vs . The complete Fock space of both
Hamiltonians is spanned by the states |0〉, |↑〉, |↓〉, and |↑↓〉
with particle occupation of zero, one, and two. These states
are both eigenstates of ĤSSM with eigenvalues 0, v0, v0, and
2v0 + U , as well as eigenstates of Ĥ s

SSM with eigenvalues 0, vs ,
vs , and 2vs , respectively. For the single-site model, the particle
number operator is equal to the density operator N̂ = n̂0 and
the density n0 = Tr{ρ̂n̂0} for the interacting case then reads

n0 = 2 exp[−β(v0 − μ)] + 2 exp{−β[2(v0 − μ) + U ]}
ZSSM

,

(10)

where

ZSSM = 1 + 2 exp[−β(v0 − μ)] + exp{ − β[(2(v0 − μ) + U ]}
(11)

is the grand-canonical partition function. Equation (10) only
depends on the quantity ṽ0 = v0 − μ and the function n0(ṽ0)

can be inverted explicitly leading to

ṽ0(n0) = −U − 1

β
ln

[
δn +

√
δn2 + e−βU (1 − δn2)

1 − δn

]
,

(12)

where δn = n0 − 1.
Following the same lines for the noninteracting case the

density reads

ns
0 = 2 exp[−β(vs − μ)] + 2 exp{−β[2(vs − μ)]}

ZSSM
s

, (13)

with the noninteracting partition function

ZSSM
s = 1 + 2 exp[−β(vs − μ)] + exp{−β[2(vs − μ)]}.

(14)

Again, the density ns
0 only depends on the quantity ṽs = vs − μ

and one can invert ns
0(ṽs) to yield

ṽs(n
s
0) = − 1

β
ln

(
1 + δns

1 − δns

)
, (15)

with δns = ns
0 − 1.

The exact Hxc potential for the SSM can now easily be
calculated by requiring that the interacting density equals the
noninteracting one n0 = ns

0 =: n and taking the difference of
the two expressions (15) and (12), that is,

vSSM
Hxc (n,U,T ) = ṽs(n) − ṽ0(n) = U

2
+ g(n − 1), (16)

where

g(x) = U

2
+ 1

β
ln

[
x +

√
x2 + e−βU (1 − x2)

1 + x

]
, (17)

which is easily shown to be an odd function of its argument
g(−x) = −g(x).

In Fig. 1 we show vSSM
Hxc (n) as a function of the density for

different temperatures. At low temperatures vSSM
Hxc (n) becomes

an extremely rapidly varying function of n in the vicinity of

0 0.5 1 1.5 2
n

0
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0.4
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v H
xc

S
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T = 0.0001
T = 0.01
T = 0.1
T = 1.0

FIG. 1. (Color online) Hartree-exchange-correlation potential of
the single-site model for different temperatures T = 1/β. Energies
given in units of U .
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FIG. 2. (Color online) Left-hand side (dotted black line) and
right-hand side of Eq. (18) for different values of v0 − μ and
temperature T = 0.1. (Energies given in units of U .) For given
v0 − μ, the self-consistent solution is given by the intersection of the
corresponding G(n) with the straight line. For −U < v0 − μ < 0, the
iterative scheme n(k+1) = G(n(k)), indicated by the dash-dotted lines,
does not converge.

n = 1, approaching a step function with a step of height U at
n = 1 in the limit of zero temperature.

Now, having at hand the exact Hxc potential, we can study
the KS problem. In the single-site DFT, the general fixed point
equation (3) reduces to the following algebraic transcendental
equation:

n = 2f
[
v0 + vSSM

Hxc (n)
] ≡ G(n). (18)

This equation can be easily solved analytically. By con-
struction, the solution to Eq. (18) simply returns the function
n(T ,μ) defined by Eqs. (10) and (11). In Fig. 2 we show the
left- (straight line) and right-hand sides of Eq. (18) for two
different values of v0 − μ. Obviously for a given v0 there is
only one intersection between n and G(n), which means that
the function G(n) always has only one fixed point. However, if
the expected solution lies in the region of fast variation of vHxc,
that is, n ∼ 1, the fixed point cannot be reached by iterations.
Independently of the choice of the initial guess, after a few
iterations we enter a limiting cycle with the density endlessly
jumping between n ≈ 0 and n ≈ 2. This behavior is generic for
low enough temperatures T � U and the chemical potential
in the region v0 < μ < v0 + U , which are the conditions
ensuring that vHxc(n) has a steplike form (see Fig. 1) and the
physical on-site occupation is close to unity. Examples of the
iterative cycle are indicated in Fig. 2, showing the convergence
of the cycle of Eq. (4) for v0 − μ = −1.25, and the lack of
convergence for v0 − μ = −0.25.

From the discussion in Sec. II A it is clear that the same
type of nonconvergence of the KS iterative sequence should
occur in any system with a discontinuous/rapidly varying xc
potential. In the rest of this paper we study and solve this
problem for lattice models where the discontinuity of vHxc

reflects Mott-Hubbard correlations and can easily be captured
at the level of a local density approximation.

III. LATTICE DENSITY FUNCTIONAL THEORY

A. Lattice DFT: Formalism and model

As a particular example of a lattice model, we consider one-
dimensional, interacting many-electron systems on a tight-
binding lattice described by the Hamiltonian

Ĥ = −t

Ns−1∑
i=1

∑
σ=↑,↓

(ĉ†i,σ ĉi+1,σ + H.c.)

+U

Ns∑
i=1

n̂i,↑n̂i,↓ +
Ns∑
i=1

vin̂i , (19)

where ĉ
†
i,σ (ĉi,σ ) are the fermionic creation (annihilation)

operators for an electron with spin σ at site i, n̂i,σ = c
†
i,σ ci,σ

and n̂i = ∑
σ=↑,↓ n̂i,σ are the operators for the density of

electrons with spin σ and for the total electron density at
site i, respectively. The nearest neighbor hopping element is t

and U is the Hubbard interaction. vi is the external potential
at site i and Ns is the total number of sites. For simplicity
we consider systems in the absence of magnetic fields. For
the grand-canonical ensemble, when the system is in contact
with a heat bath at inverse temperature β and a particle bath at
chemical potential μ, the statistical operator is

ρ̂ = 1

Z
exp[−β(Ĥ − μN̂ )], (20)

where N̂ = ∑Ns

i=1 n̂i is the operator for the total number of
particles and the grand-canonical partition function is Z =
Tr{exp[−β(Ĥ − μN̂ )]} with the trace over all states of Fock
space. In thermal equilibrium, an observable described by the
operator Â then takes the value A = Tr{ρ̂Â}.

In the spirit of DFT at finite temperatures,21 the Hamiltonian
(19) is mapped onto the following Hamiltonian of noninter-
acting electrons:

Ĥ KS = −t

Ns∑
i=1

∑
σ=↑,↓

(ĉ†i,σ ĉi+1,σ + H.c.) +
Ns∑
i=1

vKS
i n̂i , (21)

where the effective single particle KS potential vKS
i at site i is

chosen such that the equilibrium density ni = Tr{ρ̂n̂i} of the
interacting Hamiltonian (19) and the KS Hamiltonian (21) are
the same for all sites. The KS potential at site i then has the
form

vKS
i = vi + vHxc

i , (22)

where vi is the external potential at site i and, similarly, vHxc
i

is the Hxc potential at site i. In general, vHxc
i depends on the

equilibrium density at all other sites, that is, vHxc
i = vHxc

i ({nj }).
Typically, however, the exact form of the Hxc potential is
unknown and one has to resort to approximations. Once an
approximation to vHxc

i has been specified, the equilibrium
density of the KS Hamiltonian Ĥ KS can be found by self-
consistent solution of the KS equation on the lattice

Ns∑
j=1

(−tij + vKS
i δij

)
ϕ

(α)
j = εαϕ

(α)
i (23)
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(with tij = t for j = i ± 1 and tij = 0 otherwise) together with

ni = 2
∑

α

f (εα)
∣∣ϕ(α)

i

∣∣2
. (24)

B. Local density approximations in the lattice DFT

In the local approximation, the Hxc potential at site i only
depends on the density at the same site i, v

Hxc,loc
i = vmod

Hxc (ni).
The functional dependence of vmod

Hxc (n) on the density is
extracted from some interacting model system for which
the exact solution can be constructed by analytical and/or
numerical techniques. Probably the most prominent example
of such a functional for lattice DFT is the local density
approximation (LDA) based on Bethe-ansatz solution of the
uniform Hubbard model in 1D (Bethe-ansatz LDA, BALDA)
at zero temperature.4,9,24

Strictly speaking, at zero temperature and exactly at half-
filling (n = 1), the BALDA xc potential is not defined since
the xc energy per particle is not differentiable at this point.
One pragmatic way around this mathematical problem is
to smoothen the discontinuity in some ad hoc manner.19,20

Alternatively one can construct xc functionals for finite
temperature which approach a discontinuous function in the
zero temperature limit. We have already followed this route
in Sec. II B to formulate a single-site DFT, and will pursue it
further in Sec. IV for the 1D Hubbard model.

Although one can avoid the use of truly discontinuous xc
potentials in this way, the resulting KS potentials will still be
very rapidly varying functions of the density. This is exactly
the property leading to a nonconvergence of a simple iterative
procedure, a fact which has been recognized in attempts to use
the BALDA xc potential within the usual KS self-consistency
cycle.5

IV. LOCAL APPROXIMATIONS AT FINITE
TEMPERATURE

In the present section we propose several versions of a local
functional at finite temperature for which the corresponding
Hxc potentials exhibit rapid variations as function of the
density. This functional is based on the thermodynamic Bethe-
ansatz (TBA) solution of the uniform Hubbard model in one
dimension25 and is thus an extension of the corresponding
work at zero temperature.4,8

We have numerically solved the coupled integral equa-
tions of the TBA following Refs. 26–28. For given inverse
temperature β, the density is calculated as a function of the
chemical potential which can be inverted to give the chemical
potential as function of the density. For the interacting and
noninteracting cases these inverse functions are denoted as
μ(n) and μs(n), respectively. From these two functions we
obtain the density-dependent Hxc potential of the TBA as

vTBA
Hxc (n) = μ(n) − μs(n). (25)

In Fig. 3 we show the density dependence of the TBA
Hxc potentials for various values of the interaction U and
various temperatures T = 1/β. At low temperatures and for
sufficiently large values of U , vTBA

Hxc (n) exhibits rapid variations
around half-filling (n = 1) as a function of density. In the

0
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v H
xc
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U=3.0 p0TBA
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U=9.0 p0TBA

0 0.5 1 1.5 2
n
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FIG. 3. (Color online) Comparison of the fully numerical TBA
Hxc potential with p0TBA parametrization of Eq. (27) for different
interactions and two typical temperatures.

zero-temperature limit this feature reduces to a step whose
height is given by the Mott-Hubbard gap. This gap can be
expressed in terms of the parameters of the model as (from
now on all energies are given in units of the hopping matrix
element t unless otherwise noted)

�0(U ) = 16

U

∫ ∞

1
dx

√
x2 − 1

sinh(2πx/U )
, (26)

which is nothing but the derivative discontinuity of the uniform
Hubbard model at half-filling.12,24

Away from n = 1, even at low temperatures the dependence
of vTBA

Hxc (n) on the density is rather slow and smooth. For high
temperatures, the sharp feature around half-filling is washed
out. As a consequence of particle-hole symmetry, vTBA

Hxc takes
the value U/2 at n = 1 for all temperatures and exhibits a point
symmetry around this point as function of density, that is,
vTBA

Hxc (n) = U/2 + gTBA(n − 1) with gTBA(−x) = −gTBA(x).
Furthermore, the values of vTBA

Hxc at the endpoints of the density
interval are vTBA

Hxc (0) = 0 and vTBA
Hxc (2) = U for all temperatures.

We use these observations to design a hierarchy of analytic
parametrizations of the fully numerical TBA Hxc potential
which can easily be used in practical calculations. In the
construction of these parametrizations we make use of the
simple analytic form of the Hxc potential of the single-
site model discussed in Sec. II B. While in the following
we develop our parametrizations for the Hxc potential, the
corresponding parametrizations for the Hxc free energy per
site will be constructed in the Appendix.

A. Lowest level single-site-motivated parametrization
of the numerical TBA: p0TBA

Our simplest functional is aimed at reproducing the main
qualitative features of the full numerical TBA based Hxc
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potential. These are the point symmetry of the function vTBA
Hxc (n)

(reflecting the electron-hole symmetry), and the step structure
at n = 1, which gradually washes out at higher temperatures.

Precisely this pattern is also observed in the Hxc potential
of the single-site model: In the zero-temperature limit vSSM

Hxc (n)
has a step of height U . This almost discontinuous feature
at low temperatures crosses over to a smooth one at high
temperatures. Hence we will use the analytic form of vSSM

Hxc to
mimic the step feature in our “lowest level” parametrization of
the TBA Hxc potential. We adopt the simplest possible way to
reproduce the correct low temperature amplitude of the step.
Namely, in the function vSSM

Hxc (n,U,T ), defined in Eqs. (16) and
(17), the parameter U will be replaced by the zero-temperature
Mott-Hubbard gap �0(U ) of Eq. (26). The reduction of the gap
automatically reduces the value of the potential at n = 2 from
the exact value of U down to �0(U ). This unwanted behavior
is corrected by adding a proper linear function that also ensures
the right point symmetry of the Hxc potential. Putting all these
arguments together we propose the following simple zero-level
parametrization for the TBA Hxc potential (p0TBA):

v
p0TBA
Hxc (n) = U − �0(U )

2
n + vSSM

Hxc [n,�0(U ),T ]. (27)

The Hxc potential defined by this equation is shown in Fig. 3
together with the full numerical vTBA

Hxc (n). We clearly see that
for all T and U the parametrization proposed in Eq. (27)
overall agrees reasonably well with vTBA

Hxc (n). The maximal
deviations never exceed unity (i.e., the value of the hopping
integral t). Obviously the simple linear form of the first term
of Eq. (27) is not flexible enough to reproduce the detailed
features of the full numerical vTBA

Hxc (n) away from the step
(see Fig. 3). However, as long as the difference between the
parametrization and the full TBA Hxc potential are small
compared to t , these inaccuracies are, in most practical cases,
of little consequence for the solution of the KS equations, as
will be confirmed in Sec. VI. It is also worth noting that a
reasonably accurate practical approximation of Eq. (27) does
not actually require the solution of the TBA equation. The only
input we used was the zero-temperature Mott-Hubbard gap and
general symmetry arguments. This observation can be useful
to construct local approximations for more complicated, for
example, multidimensional, lattice models for which no exact
solutions are available.

Apparently there are cases when the fine structure of the
density distribution cannot fully be captured within our sim-
plest zero-level parametrization p0TBA defined by Eq. (27).
Therefore it is desirable to design a refined parametrization
which further reduces the deviation from the numerical TBA
potential. Two successive refinements of the “first-level”
(p1TBA), and of the “second-level” (p2TBA) are described
in the next two subsections.

B. First-level refined parametrization correcting the
temperature dependence: p1TBA

Figure 3 clearly shows that the temperature dependence of
our simple p0TBA potential Eq. (27) is not perfect. At higher
temperatures the step in the function v

p0TBA
Hxc (n) washes out too

fast as compared to the numerical vTBA
Hxc (n). There is an obvious

physical reason for this deficiency. When the temperature T

increases and becomes larger than unity (in units of the hopping
integral t), the kinetic energy contribution to the partition
function becomes less and less important. Therefore at T > 1,
and independently of U , the system should behave more or less
like a collection of independent sites with the Hxc potential
given by the pure SSM expression of Eqs. (16) and (17).

In our first-level refinement (p1TBA) we take into ac-
count this physics by replacing �0(U ) in Eq. (27) with a
“temperature-dependent gap” �1(U,T ),

v
p1TBA
Hxc (n) = U − �1(U,T )

2
n + vSSM

Hxc [n,�1(U,T ),T ]. (28)

The function �1(U,T ) reduces to �0(U ) at T � 1 and
approaches U in the opposite limit of T � 1. The two limits
are connected by a smooth function which is determined by
comparison with the numerical TBA data. We have found that
the following Padé-like form does the required job

�1(U,T ) = �0(U ) + a(1)(T )T + UT 2

1 + T 2
, (29)

with

a(1)(T ) = a
(1)
1 T + a

(1)
2

T 2 + a
(1)
3

.

Here a
(1)
1 = 0.95, a

(1)
2 = −0.08, a

(1)
3 = 0.13.

From Fig. 4 we see that the first-level parametrization
p1TBA [Eqs. (28) and (29)] produces an Hxc potential which is
practically indistinguishable from the full numerical vTBA

Hxc (n),
provided that T is not too small. However, there are still
some deviations in the low-temperature regime. This point
is addressed at the last step in our three-level hierarchy of
parametrizations.
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xc

U=3.0 TBA
U=3.0 p1TBA
U=6.0 TBA
U=6.0 p1TBA
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U=9.0 p1TBA
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n
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FIG. 4. (Color online) Comparison of the fully numerical vTBA
Hxc

with the first-level refined p1TBA parametrization of Eq. (28) for two
typical temperatures.
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C. Second-level refinement—The best analytic
fit to numerical TBA: p2TBA

The only feature missing in the first-level p1TBA
parametrization is a low-temperature nonlinearity of vTBA

Hxc (n)
away from the half-filling (see upper panel of Fig. 4).
Physically the nonlinearity should be attributed to a nontrivial
density of states in the Hubbard bands. According to our
experience the remaining inaccuracy in the Hxc potential
has practically no effect on the density distribution. On the
other hand, we cannot exclude that in some situations (steep
external potentials and/or small number of particles) the
low-temperature inaccuracy of v

p1TBA
Hxc (n) will produce visible

(thought definitely not large) errors in the density. To avoid
such problems we go to the last step in our hierarchy and
introduce a nonlinear correction term. A very satisfactory fit
to the numerical vTBA

Hxc (n) can be achieved with the following
(p2TBA) form:

v
p2TBA
Hxc (n) = U − �2(U,T )

2
n + vSSM

Hxc [n,�2(U,T ),T ]

−A(U,T ) sin[2π (n − 1)]

−B(U,T ) sin[π (n − 1)]. (30)

We note that the analytic form of the correction term in Eq. (30)
automatically preserves the point symmetry of the potential
and the exact values at the end points n = 0 and n = 2. Note
also that we use a new function �2(U,T ) defined by

�2(U,T ) = �0(U ) + a(2)(T )T + UT 2

1 + T 2
, (31)

with

a(2)(T ) = a
(2)
1 T + a

(2)
2

T + a
(2)
3

and the coefficients are a
(2)
1 = −0.28, a

(2)
2 = 2.2, and a

(2)
3 =

0.50. As before, in the zero-temperature limit �2(U,T )
reduces to the correct zero-temperature gap �0(U ) while in
the high-temperature limit it becomes U . The interaction and
temperature dependent coefficients A(U,T ) and B(U,T ) in
Eq. (30) are parametrized as follows:

A(U,T ) = A1(T )U 2

U 2 + A2(T )
, B(U,T ) = B1(T )U 2

U 2 + B2(T )
, (32)

with

A1(T ) = A11

T 2 + A12
, A2(T ) = A21

T 2 + A22
, (33)

B1(T ) = B11

T 2 + B12
, B2(T ) = B21

T 2 + B22
. (34)

Here A11 = 0.09, A12 = 0.25, A21 = 705.5, A22 = 24.95
and B11 = 0.05, B12 = 0.13, B21 = 0.65, B22 = 0.01. The
accuracy of this parametrization can be appreciated in Fig. 5:
At the scale of the plot, the parametrization p2TBA and the
full numerical vTBA

Hxc (n) are essentially indistinguishable.
Our parametrization of the finite-temperature TBA results

generalizes earlier parametrizations4,29 valid for zero tem-
perature. Close comparison of v

p2TBA
Hxc (n) [Eq. (30)] in the

zero-temperature limit with the parametrization of Ref. 29
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U=6.0 p2TBA
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FIG. 5. (Color online) Comparison of the fully numerical vTBA
Hxc (n)

with the second-level refined p2TBA parametrization of Eq. (30) for
two typical temperatures.

(which in the following is denoted as FVC) and exact zero-
temperature results reveals that the p2TBA parametrization
in some density ranges can be marginally less accurate than
FVC. As pointed out before, however, in contrast to FVC
our parametrization by construction incorporates the exact
zero-temperature gap. Since the most prominent feature of
the Hxc potential as function of density is precisely the
discontinuity at half-filling, that is, the zero-temperature gap,
in some situations the incorrect gap of FVC might lead to
spurious features as will be shown below.

V. SELF-CONSISTENCY WITH RAPIDLY VARYING
FUNCTIONALS USING BISECTION

In the previous section we presented a hierarchy of explicit
local approximations for the Hxc potential of lattice DFT,
which at low temperatures are rapidly varying functions of
the density close to half-filling. In Sec. II we have pointed
out the difficulties in converging the usual self-consistency
cycle for solving the KS equation (1) with such functionals.
In the present section we show how to avoid the convergence
problem and present a numerically feasible algorithm to obtain
the self-consistent solution based on bisection techniques.

We begin by writing again the self-consistency equation for
the density at site i [Eq. (24)] in a form of a fixed point problem,
that is, making explicit its dependence on the densities at all
other sites:

ni =
∑

α

f [εα(n)]
∣∣ϕ(α)

i (n)
∣∣2 ≡ Gi[n], (35)

where

n = (n1,n2, . . . ,nNs
) (36)
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and the orbitals are calculated from the KS equation (23) using
the KS potential

vKS
i (ni) = vi + vmod

Hxc (ni). (37)

The set of equations (35) for i ∈ 1, . . . ,Ns constitute a coupled
set of Ns nonlinear equations for the Ns ground-state densities
ni , i = 1, . . . ,Ns . As we have argued in Sec. II, the numerical
solution of these equations by plain iterations produces a
nonconverging sequence. Obviously more elaborate iterative
schemes, such as the Newton-Rhapson method, which in-
corporates information on derivatives of the equations with
respect to the unknown variables, are also not appropriate
because those derivatives may become very large (in the
low-temperature regime). This again leads to convergence
problems in the iterative solution of the coupled nonlinear
equations.

Here we propose a solution scheme based on bisection.
The main idea of our algorithm is inspired by the exactly solv-
able single-site KS problem described in Sec. II B. Therefore
we first explain it for this simple, but very illuminating case.
Instead of iteratively searching for the fixed point of function
G(n) in Eq. (18) we rewrite this equation as

n − G(n) = 0, (38)

and search for zeros on the left-hand side (lhs). From the
uniqueness of the solution we know that there is only one
zero, and, by construction, the lhs of Eq. (38) has different
signs at the end points n = 0 and n = 2 of the density interval.
Therefore the standard bisection method30 is applicable.
Starting from the end points and using bisections we can
bracket the solution to any desired accuracy.

For the general lattice KS problem we need to solve a
system of Eqs. (35). In this case the following straightforward
multidimensional generalization of the standard bisection
method can be used. We start with an initial guess n

(0)
i for the

densities at sites i ∈ {2, . . . ,Ns}. We then define the density
vector

n(1) = (
n1,n

(0)
2 , . . . ,n

(0)
Ns

)
, (39)

insert this density vector on the right-hand side (rhs) of Eq. (35)
for i = 1 and solve the resulting nonlinear equation for the
density n1 = n

(1)
1 with the usual 1D bisection method. Then

we choose the density vector

n(2) = (
n

(1)
1 ,n2,n

(0)
3 , . . . ,n

(0)
Ns

)
, (40)

insert it into Eq. (35) for i = 2 and solve for n2 = n
(1)
2 again

by bisection. In the next step we take

n(3) = (
n

(1)
1 ,n

(1)
2 ,n3,n

(0)
4 , . . . ,n

(0)
Ns

)
(41)

and solve Eq. (35) for i = 3 for n3 = n
(0)
3 . We continue the

procedure until we have exhausted the Ns equations (35). Then
we start the cycle all over but now with the initial guess for the
density n(Ns+1) as Eq. (39) but with the n

(0)
i replaced by n

(1)
i .

The whole process is continued until convergence is achieved.
In Fig. 6 we illustrate the iterative procedure for the

symmetric three-site problem, that is, for v1 = v3 and by
symmetry also vKS

1 = vKS
3 . We then need to solve two coupled
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FIG. 6. (Color online) Solution lines of ni − Gi(n1,n2) = 0, i =
1,2, for the symmetric three-site problem. The intersection of these
two lines is the solution to the system of Eqs. (42) and (43). The
parameters are U = 8, μ = 0.5, v1 = 2, v2 = 0, and T = 0.5.

nonlinear equations of the form

n1 − G1(n1,n2) = 0, (42)

n2 − G2(n1,n2) = 0. (43)

In Fig. 6 we show the (n1,n2) plane and zero lines for the lhs of
Eqs. (42) and (43). The overall solution of the problem is given
by the intersection of these two lines. Furthermore, the dashed
line in Fig. 6 shows how our iterative scheme converges to this
solution.

From this example we can also understand that in some
cases the proposed scheme, as is, may not converge. If the zero
lines close to the intersection become just straight lines then,
depending on the slopes of these lines, the iterative scheme
may follow a rectangular path encircling the solution point
but never reaching it. However, in this case one additional
Newton-Rhapson step (using information on the derivatives)
will directly lead to the solution point.

As is common in DFT, we have used the densities as
fundamental variables in Eq. (35). It is also possible to
implement the bisection scheme in terms of the KS potentials.
To this end we write the vector of Hxc potentials at sites i as

vHxc = (vHxc,1, . . . ,vHxc,Ns
) (44)

and consider both the KS orbitals and eigenvalues as functions
of this vector, that is, ϕ(α) = ϕ(α)(vHxc) and ε(α) = ε(α)(vHxc).
Therefore, also the density at site i can be considered a function
of vHxc through

ni(vHxc) =
∑

α

f [εα(vHxc)]
∣∣ϕ(α)

i (vHxc)
∣∣2

. (45)

For our local approximations to the Hxc potentials the set of
nonlinear equations to be solved by bisection then becomes

vHxc,i = vmod
Hxc [ni(vHxc)], (46)

with the local density ni(vHxc) given by Eq. (45). In order to
solve this set of equations we proceed in an analogous way
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to the one described above for the density-based procedure
but now treating the local Hxc potentials vHxc,i at site i as the
unknowns to be determined.

VI. NUMERICAL APPLICATIONS

In this section we present some numerical examples
demonstrating successful applications of our self-consistency
algorithm as well as the accuracy of the local approximation
using our different parametrizations.

We illustrate our theoretical developments by calculating
the density distribution of particles confined by an external
harmonic potential of the form

vi = Vext (i − i0)2, (47)

where Vext is the strength of the trapping potential and
i0 = (Ns + 1)/2 (we take Vext in units of the hopping parameter
t). The Hubbard chain with a superimposed harmonic potential
is commonly used to model the behavior of cold fermionic
gases in 1D optical lattices.31–36 Therefore our results below
have a clear relevance for the physics of cold trapped atoms.
However, for our present illustrative purposes, the choice of
this particular system is related to one of its specific features,
namely the possible coexistence of the Mott insulator phase
around the center of the trap and the metallic phase at the
trap’s edges.5,31,32 In the Mott phase the density is pinned at
n = 1 which shows up as an extended plateau in the density
distribution. Therefore in trapped systems the appearance
of the Mott insulator phase becomes detectable within the
“density-only” DFT concept. On the other hand, at the level
of DFT functionals the Mott physics is solely related to the
discontinuity of the xc potential. Thus the Hubbard model with
a harmonic confinement is perfectly suited for demonstrating
the working power of our algorithm as well as the performance
of different parametrizations for the Hxc potentials.

As a first example we study a system with N = 70
particles on Ns = 100 sites in the presence of the poten-
tial given by Eq. (47) with Vext = 2.5 × 10−3. In Fig. 7
we show self-consistent densities for two different values
of the Hubbard interaction U = 2 and U = 8 evaluated
at zero temperature. Except for the DMRG results which
denote numerically exact reference results from density
matrix renormalization group calculations,37–39 all other cal-
culations result from self-consistent DFT calculations with
local approximations to the Hxc potential. FVC denotes
the zero-temperature BALDA using the parametrization of
Ref. 29, p0TBA denotes results obtained with our low-level
parametrization of Eq. (27), the results obtained from our
second-level parametrization of Eq. (30) are indistinguishable
from those using the exact numerical TBA as input in the local
approximation.

We see that the density profiles are quite similar in the
different approaches. For U = 2 the FVC parametrization
exhibits two spurious density plateaus around i ≈ 30 and
i ≈ 70 which are due to the fact that this parametrization does
not incorporate the zero-temperature derivative discontinuity
exactly but only approximately. We also see some small
differences between the p0TBA and the TBA results in the
flanks of the density profile. For stronger interaction (U = 8)
the density exhibits an extended plateau of value unity over a
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FIG. 7. (Color online) Density distribution of N = 70 particles
in the harmonic potential at T = 0 (upper panel: U = 2, lower panel:
U = 8). The strength of the external potential is Vext = 2.5 × 10−3.
We compare the exact DMRG results against DFT results based
on different choices for vHxc. They are the parametrization of
Ref. 29 (labeled as FVC), our lowest-level parametrization p0TBA
of Eq. (27) (labeled as p0TBA), and the full numerical TBA
potential (labeled as TBA), respectively. The results obtained with the
p2TBA potential of Eq. (30) are indistinguishable from the full TBA
results.

wide range of sites in the center of the well which physically
corresponds to the local, incompressible Mott phase. On the
other hand, in the density functional picture this plateau is a
direct consequence of the extremely rapid variation of the Hxc
potentials as function of the density. The small difference in
the p0TBA and TBA densities is related to the nonlinearity of
Hxc potential away from the half-filling (see Sec. IV C). This
deficiency is corrected in our second-level parametrization
p2TBA of Eq. (30). As a result, the density calculated with the
p2TBA Hxc potential is completely indistinguishable from
that obtained using the full numerical TBA potential. This
also holds true for all interactions, temperatures, and trapping
potentials we have tried. Hence in practice in all figures the
results denoted as TBA have been actually produced using
the p2TBA potential defined after Eq. (30). At strictly zero
temperature, the KS potential has a real discontinuity at integer
filling n = 1 and, therefore, it is undefined in this point. For
practically solving Eqs. (35)–(37) in this case we replace the
discontinuity by a linear function when n ∈ [1 − �n,1 + �n]
with �n = 10−3. Further decreasing �n will not hamper the
convergency and the final results. In general, the densities from
the DFT calculations are remarkably close to the numerically
exact quantum Monte Carlo/DMRG result.5,31,40

Unlike earlier work,4,29 our parametrization is valid for
arbitrary temperature and thus allows us to study finite
temperature effects. As a first application of this feature, in
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FIG. 8. (Color online) Melting of the Mott phase at finite tem-
perature. The calculations are based on the p2TBA parametrization
which produces the results identical to those of the full numerical
TBA. The parameters are U = 8, Vext = 2.5 × 10−3, N = 70.

Fig. 8 we show how the density plateau due to the local
Mott phase “melts away” when increasing the temperature.
The smoothening of the plateau with increasing temperature
reflects the smoothening of the step structure in vTBA

Hxc (see
Fig. 5).

We have also calculated (Fig. 9) the density profiles at
zero temperature in the Hartree-Fock (HFA) and Thomas-
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FIG. 9. (Color online) Comparison of the density distributions
at T = 0 obtained using Hartree-Fock approximation (HFA) and
Thomas-Fermi approximation (TFA) against DFT results based on
the TBA potential (TBA). The parameters are the same as in Fig. 7.

0

0.2

0.4

0.6

0.8

n i
5 10 15 20 25 30 35

i

0

0.2

0.4

0.6

n i

HFA
TFA
p0TBA
TBA
DMRG

U=8

U=2

FIG. 10. (Color online) Density distribution of N = 10 particles
in a harmonic trap at temperature T = 0 in Hartree-Fock (HFA)
and Thomas-Fermi approximations (TFA), compared to DFT results
based on TBA and DMRG. Upper panel: U = 2, lower panel: U = 8.
The external potential is Vext = 2.5 × 10−2.

Fermi approximation (TFA). Here, by TFA we mean that the
noninteracting kinetic energy is not treated exactly as in the
Kohn-Sham scheme but at the level of a local approximation.
It is important to note, however, that exchange-correlation
effects are also included at the level of the local density
approximation [in Ref. 5 this approximation has been denoted
as “total-energy LDA (TLDA)”]. The top panel of Fig. 9
shows that for small values of U both the HFA and the TFA
give a reasonably accurate density profile when compared
to TBA (which is on top of numerically exact DMRG, see
Fig. 7). For larger values of U (U = 8, lower panel of Fig. 9),
however, the situation is different: HFA completely misses
the development of the density plateau while TFA (due to the
local Hxc potential) does exhibit this plateau. Moreover, in
HFA the density is more spread out as compared to the exact
result.

The differences between TFA and both the DMRG as well
as the full KS results with the TBA functional are more
pronounced for smaller number of particles. In Fig. 10 we
show the density profile for N = 10 electrons on Ns = 40
sites in the harmonic external potential of Eq. (47) with
Vext = 2.5 × 10−2. Not surprisingly, the TFA approximation
completely misses the quantum oscillations in the density
profile both for small and large values of U . In contrast,
HFA captures these oscillations well for small U since the
kinetic energy is treated at a quantum level. In contrast, for
U = 8 the correlation effects are too strong to be captured by
HFA which, again, shows a density distribution which is too
spread out. On the other hand, the KS calculation using the
TBA again is in extremely good agreement with the DMRG
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FIG. 11. (Color online) Effects of finite temperatures on the
density profile of N = 10 particles in a harmonic trap. The calculation
is based on the full numerical TBA. The parameters are U = 8,
Vext = 2.5 × 10−2.

results. The lower panel of Fig. 10 also shows that for this
case our simplest p0TBA parametrization of the TBA results
can sometimes lead to inaccuracies. Finally, in Fig. 11, solving
the KS equations with the TBA functional, we show the effect
of temperature on the density profile: One can see that the
quantum oscillations due to the relatively small number of
particles seen for zero temperature are quickly suppressed
when increasing the temperature.

VII. CONCLUSIONS

In this work we have suggested a way to deal with
convergence problems in self-consistent KS calculations when
dealing with (local) approximations for the xc potential which
exhibit rapid variations as function of the density. Working
in the framework of lattice DFT, we have formulated the KS
self-consistency cycle as a fixed point problem and shown that
for rapidly varying functionals the fixed point in the usual
procedure is not attractive. Instead, we rephrased the search
for the self-consistent KS potential in terms of finding the roots
of a set of coupled nonlinear equations. To find these solutions
we then suggested an iterative algorithm based on successive
application of the well-known bisection method for finding
roots of nonlinear equations in one dimension. The scheme
has been successfully tested for model systems of electrons
in a harmonic trap interacting via a Hubbard interaction. We
have used a newly designed local approximation for the xc
functional based on the thermodynamic Bethe-ansatz solution
of the uniform Hubbard model. Based on these results we
constructed simple, yet accurate parametrizations for arbitrary
temperatures, thus generalizing earlier parametrizations sug-
gested for zero temperature. This paves the way for further
investigations on the performance of finite-temperature DFT
for one-dimensional lattice models.
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APPENDIX: HARTREE-EXCHANGE-CORRELATION
FREE ENERGY PER SITE FOR THE TBA

PARAMETRIZATIONS

In Sec. IV we have suggested a local density approximation
for one-dimensional lattice systems based on the numerical
solution of the TBA for the uniform Hubbard model. The
parametrizations we proposed were constructed from insights
gained on the numerical results for the Hxc potential. However,
typically the construction of local DFT approximations starts
by modeling the xc energy per site and the corresponding xc
potential is then obtained by differentiation. In this Appendix
we derive the expressions for the Hxc free energies per site for
the different parametrizations suggested in Sec. IV.

We start with the derivation of the exact LDA Hxc free
energy per site at finite temperature, expressed in terms
of general thermodynamic quantities. As usual, a crucial
ingredient of the general construction of LDA is a reference
system of interacting particles with uniform density for which
the grand-canonical potential per site �(μ) is written as
function of the chemical potential μ. The partition function
for the reference system is

Z(μ) = exp[−β�(μ)] (A1)

from which we can derive the density as function of μ,

n(μ) = −∂�(μ)

∂μ
= 1

β

∂ ln Z(μ)

∂μ
. (A2)

This function can be inverted to give the chemical potential as
a function of density μ = μ(n). By Legendre transformation
we can then obtain the free energy per site of the reference
system as function of density as

F (n) = �[μ(n)] + μ(n)n. (A3)

We can repeat the same steps for the corresponding noninter-
acting reference with the same uniform density n with grand-
canonical potential per site �s(μs) and the corresponding
expression for the free energy per site

Fs(n) = �s[μs(n)] + μs(n)n. (A4)

The Hxc free energy per site is then simply given by

FHxc(n) = F (n) − Fs(n)

= − 1

β
ln

{
Z[μs(n) + vHxc(n)]

Zs[μs(n)]

}
+ nvHxc(n), (A5)
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where we have defined the Hxc potential as

vHxc(n) = μ(n) − μs(n) (A6)

[see also Eq. (25)].
Applying Eq. (A5) to the single-site model of Sec. II B, we

obtain for the Hxc free energy per site of that model

F SSM
Hxc (n,U,T )

= nvSSM
Hxc (n,U,T )

− 1

β
ln

{
ZSSM

[
μSSM

s (n,T ) + vSSM
Hxc (n,U,T )

]
ZSSM

s

[
μSSM

s (n,T )
]

}
, (A7)

where the Hxc potential of the SSM model vSSM
Hxc [n,U,T )] is

given by Eq. (16) and we have made explicit the dependence
on the temperature T and the on-site interaction U . It remains
to find the dependence of ZSSM and ZSSM

s on the density. This
can be done by performing the program described above with
the interacting and noninteracting partition functions of the
SSM model given in Eqs. (11) and (14). Actually, we have
already calculated the dependence of the chemical potential
on the density [see Eq. (15)]

μSSM
s (n,T ) = −ṽs(n) = 1

β
ln

(
n

2 − n

)
(A8)

which, when inserted back into Eq. (14), yields the noninter-
acting partition function of the SSM model in terms of the
density

ZSSM
s (n) =

(
2

2 − n

)2

. (A9)

Finally, the interacting partition function of the SSM model
[see Eq. (11)] may be written in terms of the density as

ZSSM(n,U,T ) = 1 + 2n

2 − n
exp

[
βvSSM

Hxc (n,U,T )
]

+ n2

(2 − n)2
exp

{
β
[
2vSSM

Hxc (n,U,T ) − U
]}

,

(A10)

which leads to the final result for the Hxc free energy per site
of the SSM model

F SSM
Hxc (n,U,T )

= nvSSM
Hxc (n,U,T ) − 1

β
ln

((
1 − n

2

)2

+ n

(
1 − n

2

)

× exp
[
βvSSM

Hxc (n,U,T )
]

+ n2

4
exp

{
β
[
2vSSM

Hxc (n,U,T ) − U
]})

. (A11)

By construction, the derivative of this expression with respect
to the density yields vSSM

Hxc (n,U,T ) of Eq. (16).
Using this result it is now easy to express the Hxc free

energies per site for our different parametrizations of the TBA
results. For the lowest-level parametrization (p0TBA) of the
TBA the resulting expression reads

F
p0TBA
Hxc (n,U,T ) = U − �0(U )

4
n2 + F SSM

Hxc [n,�0(U ),T ],

(A12)

where �0(u) is the exact zero-temperature gap of the uniform
Hubbard model given by Eq. (26). For the first-level refinement
(p1TBA), it has the same form except that �0(U ) is replaced
by �1(U,T ) of Eq. (29), that is,

F
p1TBA
Hxc (n,U,T ) = U − �1(U,T )

4
n2 + F SSM

Hxc [n,�1(U,T ),T ].

(A13)

Finally, for the second refined parametrization (p2TBA) we
have

F
p2TBA
Hxc (n,U,T ) = U − �2(U,T )

4
n2 + F SSM

Hxc [n,�2(U,T ),T ]

+ A(U,T )

2π
{cos[2π (n − 1)] − 1}

+ B(U,T )

π
{cos[π (n − 1)] + 1}, (A14)

with �2(U,T ) given by Eq. (31) and the functions A(U,T )
and B(U,T ) given by Eq. (32).

It is worth mentioning that for zero temperature, since
�2(U,0) = �1(U,0) = �0(U ), the contributions to the Hxc
free energy per site coming from the single-site model in all
our parametrizations (A12)–(A14) reduce to the same limit

F SSM
Hxc [n,�0(U ),0] = �0(U )(n − 1) � (n − 1), (A15)

where �(x) is the Heaviside step function.
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