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Symmetry protected topological (SPT) states are short-range entangled states with symmetry. The boundary
of a SPT phases has either gapless excitations or degenerate ground states, around a gapped bulk. Recently, we
proposed a systematic construction of SPT phases in interacting bosonic systems, however it is not very clear
what is the form of the low-energy excitations on the gapless edge. In this paper, we answer this question for
two-dimensional (2D) bosonic SPT phases withZN and U(1) symmetry. We find that while the low-energy modes
of the gapless edges are nonchiral, symmetry acts on them in a “chiral” way, i.e., acts on the right movers and the
left movers differently. This special realization of symmetry protects the gaplessness of the otherwise unstable
edge states by prohibiting a direct scattering between the left and right movers. Moreover, understanding of the
low-energy effective theory leads to experimental predictions about the SPT phases. In particular, we find that
all the 2D U(1) SPT phases have even integer quantized Hall conductance.
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I. INTRODUCTION

A recent study shows that gapped quantum states belong to
two classes: short-range entangled and long-range entangled.1

The long-range entanglement (i.e., the topological order2) in
the bulk of states is manifested in the existence of gapless
edge modes or degenerate edge sectors. The short-range
entangled states are trivial and all belong to the same phase
if there is no symmetry. However, with symmetry, even
short-range entangled states can belong to different phases.
Those phases are called symmetry protected topological (SPT)
phases. The symmetric short-range entanglement (i.e., the SPT
order) is also manifested in the existence of gapless edge
modes or degenerate edge sectors around a gapped bulk if
the symmetry is not explicitly broken. For example, two-
and three-dimensional topological insulators3–8 have a gapped
insulating bulk but host gapless fermion modes with special
spin configurations7,9,10 on the edge under the protection of
time-reversal symmetry. The experimental detection of such
edge modes11–13 has attracted much attention and a lot of
efforts have been put into the exploration of new SPT phases.

Recently, we presented a systematic construction of SPT
phases in bosonic systems,14,15 hence extending the under-
standing of SPT phases from free fermion systems like
topological insulators to systems with strong interactions. We
showed that there is a one-to-one correspondence between
two-dimensional (2D) bosonic SPT phases with symmetry
G and elements in the third cohomology group H3[G,U(1)].
Moreover, we proved that15 due to the existence of the special
effective non-on-site symmetries on the edge of the constructed
SPT phases which are related to the nontrivial elements in
H3[G,U(1)], the edge states must be gapless as long as
symmetry is not broken. However, it is not clear what is the
form of the gapless edge states, especially the experimentally
more relevant low-energy part.

A low-energy effective edge theory is desired because it
could provide a simple understanding of why the gapless edge
is stable in these SPT phases. For example, understanding of
the low-energy “helical” edge9 in 2D topological insulators en-

ables us to see that some of the relevant gapping terms are pro-
hibited due to time-reversal symmetry. Moreover, low-energy
excitations are directly related to the response of the SPT
phases to various experimental probes, which has led to many
proposals about detecting the exotic properties of topological
insulators.8,16–20 Such an understanding is hence also impor-
tant for the experimental realization of bosonic SPT phases.

In this paper, we study the low-energy effective edge theory
of the 2D bosonic SPT phases with ZN and U(1) symmetry.
We find that the gapless states on the 1D edge is nonchiral
(i.e., the left-moving and right-moving excitations have the
same contribution to the heat capacity if they have the same
velocity). This is expected since the SPT state has no intrinsic
topological order.21 The special feature of the edge states lies
in the way symmetry is realized. In particular, we find that
symmetry is realized chirally at low energy, i.e., in an inequiv-
alent way on the right and left movers. Because of the existence
of this chiral symmetry, the direct scattering between the left
and right moving branches of the low-energy excitations is
prohibited which provides protection to the gapless edge.

We would like to mention that people have used U(1) ×
U(1) Chern-Simons theory22,23 and SU(2) nonlinear σ model24

to construct the edge states of the U(1) SPT phases. However,
it is not clear whether they have obtained the edge states for all
of the U(1) SPT phases using those field theory approaches.
The construction presented in this paper has the advantage of
having a direction connection to the third cohomology group
H3[U(1),U(1)]. So we are sure that we have obtained the edge
states for all of the U(1) SPT phases.

We would also like to point out that the chiral symmetry
leads to a chiral response of the system to externally coupled
gauge field even though the edge state as a whole is nonchiral.
In particular, we find that all of the U(1) SPT phases have
an even-integer quantized electric Hall conductance and a
zero thermal Hall conductance, which could be used as
experimental signatures in the detection of such phases.

References 14 and 15 show that, due to the short-range
entanglement in SPT phases, the edge of the systems exists as
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a purely local 1D system with a special non-on-site symmetry
related to group cohomology. This enables us to study the
edge physics in one dimension without worrying about the
2D bulk. We will start with an exact diagonalization of the
edge Hamiltonian in the Z2 SPT phase constructed in Ref. 15.
Insights from this model are then generalized to construct a
1D rotor model with different symmetries realizing the edge
states of all ZN and U(1) SPT phases. Some useful formulas
of the third group cohomology H3[G,U(1)] are reviewed in
Appendix A.

II. EDGE STATE OF Z2 SPT PHASE

In Ref. 15 we presented an explicit construction of a
nontrivial bosonic SPT phase with Z2 symmetry. The edge
Hilbert space is identified as a local 1D spin-1/2 chain. The
spin chain satisfies a Z2 symmetry constraint given by

U2 =
∏

i

Xi

∏
i

CZi,i+1, (1)

where X, Y , and Z are the Pauli matrices and CZ

acts on two spins as CZ = |00〉〈00| + |01〉〈01| + |10〉〈10| −
|11〉〈11|. We showed in Ref. 15 that this non-on-site symmetry
operator is related to the nontrivial element in the third
cohomology group of Z2 and hence the edge state must be
gapless if symmetry is not broken. Here we study one possible
form of the edge Hamiltonian which satisfies this symmetry,

H2 =
∑

i

Xi + Zi−1XiZi+1. (2)

This Hamiltonian is gapless because we can map this model
to an XY model. The mapping proceeds as follows: conjugate
the Hamiltonian with CZ operators on spin 2i − 1 and 2i and
then change between X and Z basis on every (2i − 1)th spin.
The Hamiltonian then becomes

H ′
2 =

∑
i

Xi−1Xi + Zi−1Zi. (3)

Therefore, the low-energy effective theory of this model is that
of a compactified boson field ϕ(x) with Lagrangian density

L = 1
2 [(∂tϕ)2 − v2(∂xϕ)2]. (4)

This is a simple gapless state with both left and right movers
and can be easily gapped out with a mass term such as the
magnetic field in the z direction Bz(

∑
i Zi). However, such a

term is no longer allowed when the transformed Z2 symmetry
operation is taken into account:

U ′
2 =

∏
2i

CX2i,2i−1

∏
2i

Z2i−1X2i

∏
2i

CX2i,2i+1, (5)

where CXi,j acts on spin i and j as CX = |00〉〈00| +
|01〉〈01| + |11〉〈10| + |10〉〈11|. This symmetry constraint pre-
vents any term from gapping the Hamiltonian without breaking
the symmetry.

To see more clearly how this symmetry protects the
gaplessness of the system, we study how it acts on the
low-energy modes. We perform an exact diagonalization of the
XY Hamiltonian Eq. (3) for a system of 16 spins and identify
the free boson modes. Then we calculate the Z2 quantum
number on these modes as shown in Fig. 1. Note that U ′

2 is
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FIG. 1. (Color online) Low-energy states of XY model H ′
2

[Eq. (3)]. x axis is lattice momentum k/(π/a), where a is the lattice
spacing. y axis is energy with ground-state energy set to 0 and first
excited-state energy normalized to 1/4. + represents positive Z2

quantum number and × represents negative Z2 quantum number.
The total angular momentum l and winding number m are labeled as
(l,m) for each primary field, represented by the shaded + or ×. States
in the same conformal tower have the same l and m.

not translational invariant and does not commute with the U(1)
symmetry of the XY model

∏
j eiθYj , therefore the free boson

modes are not exact eigenstates of the Z2 symmetry. However,
at low energy, the Z2 quantum number becomes exact as the
system size gets larger and in Fig. 1 we plot the asymptotic Z2

quantum number of the low-energy states.
According to conformal field theory, the eigenstates in the

compactified free boson model fall into conformal towers, as
shown in Fig. 1. Each conformal tower is built upon a primary
field, which are marked by a shaded dot in Fig. 1. In the
primary fields, the compactified boson field does not fluctuate
but can have synchronized angular rotation motion labeled by
total angular momentum l. Moreover, because the boson field
is compactified, it can take a nontrivial configuration along
the spacial dimension by winding around the one-dimensional
ring an integer number of times. Therefore, the primary fields
are further labeled by the winding number m. Other states in
the same conformal tower can be generated from the primary
field by exciting fluctuations in the boson field while the same
l and m quantum numbers are maintained. The total angular
momentum l and winding number m are labeled besides each
primary field in Fig. 1. From Fig. 1, we can see that the Z2

quantum number of each state is the same as the primary field
in the same conformal tower and the Z2 symmetry at low
energy acts as U ′

2 ∼ (−)l+m.
The synchronized angular motion and the nontrivial wind-

ing of the boson field along the chain constitutes the “zero
mode” motion of the boson field without any field fluctuation.
The zero mode motion decomposes into a right moving part
and a left moving part (similar to the fluctuating modes)
which are characterized by quantum numbers l + 2m and
l − 2m, respectively. From Fig. 1, we can see that the primary
fields labeled by (l,m) have left- and right-scaling dimensions
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(hR,hL) = ( (l+2m)2

8 , (l−2m)2

8 ) and hR + hL gives the energy of
the field.

With such a left-right decomposition, we can determine
the chirality of the symmetry action. For the trivial Z2 SPT
phase, the on-siteZ2 transformation at low energy acts as U ′

2 ∼
(−)l . Because l = [(l + 2m) + (l − 2m)]/2, U ′

2 is a nonchiral
action in the trivial SPT phase. For the nontrivial Z2 SPT
phase, we see that the non-on-site Z2 transformation at low
energy acts as U ′

2 ∼ (−)l+m. As l + m cannot be written as a
nonchiral combination of l + 2m and l − 2m, we call such an
m-dependent U ′

2 a chiral symmetry operation.
From the chiral symmetry operation, we can have a simple

(although not general) understanding of why some of the gap
opening perturbations cannot appear in this edge theory. For
example, the simplest mass term in the free boson theory∫

dx cos[ϕ(x)] contains a direct scattering term ϕR(x)ϕL(x)
between the left and right movers which carries a nontrivial
quantum number under this Z2 symmetry and is hence not
allowed. This result is consistent with that obtained by Levin
and Gu.25

III. EDGE STATE OF ZN SPT PHASE

Understanding of how symmetry acts chirally on the edge
state of theZ2 SPT phase suggests that similar situations might
appear in other SPT phases as well. In this section we are
going to show that it is indeed the case for ZN bosonic SPT
phases. From the group cohomology construction, we know
that there are N ZN -SPT phases which form a ZN group
among themselves. We are going to construct 1D rotor models
to realize the edge state in each SPT phase which satisfies
certain non-on-site symmetry related to the nontrivial elements
in H3[ZN,U(1)]. From these models we can see explicitly
how the symmetry acts in a chiral way on the low-energy
states. Taking the limit of N → ∞ in ZN will lead to the
understanding of the edge states in U(1) SPT phases which we
discuss in the next section. Note that the choice of the local
Hilbert space on the edge, here a quantum rotor, is arbitrary and
will not affect the universal physics of the SPT phase as long
as the effective symmetry belongs to the same cohomology
class.

Consider a 1D chain of quantum rotors described by {ϕi} ∈
(−π,π ] with conjugate momentum {Li}. The dynamics of the
chain is given by the Hamiltonian

Hr =
∑

i

(Li)
2 + V cos(ϕi − ϕi−1). (6)

When V 	 1, the system is in the gapless superfluid phase.
At low energy, ϕ varies smoothly along the chain. The
gapless low-energy effective theory is again described by a
compactified boson field ϕ(x) with compactification radius
1 and Lagrangian density given in Eq. (4). The low-energy
excitations contain both left and right moving bosons.

The generator of the non-on-site ZN symmetry related
to the Mth element (M = 0, . . . ,N − 1) of the cohomology
group, hence the Mth SPT phase with ZN symmetry, takes the
following form in this rotor chain:

U
(M)
N =

∏
i

CP
(M)
i,i+1

∏
i

ei2πLi/N , (7)

where CP
(M)
i,i+1 acts on two neighboring rotors and depends on

M as

CP
(M)
i,i+1 =

∫
dϕidϕi+1e

iM(ϕi+1−ϕi )r /N |ϕiϕi+1〉〈ϕiϕi+1|.

Here we need to be careful with the phase factor eiM(ϕi+1−ϕi )/N

because it is not a single-valued function. We confine ϕi+1 − ϕi

to be within (−π,π ] and denote it as (ϕi+1 − ϕi)r . Then
eiM(ϕi+1−ϕi )r /N becomes single valued but also discontinuous
when ϕi+1 − ϕi ∼ ±π . The discontinuity will not be a
problem for us in the following discussion. Note that it
is important that eiM(ϕi+1−ϕi )r /N 
= eiMϕi+1/N/eiMϕi/N , because
otherwise the symmetry factors into on-site operations and
becomes trivial. We show in Appendix C that UM

N indeed
generates a ZN symmetry. Moreover from its matrix product
unitary operator representation we find that the transformation
among the representing tensors are indeed related to the Mth
element in the cohomology group H3[ZN,U(1)]. Therefore,
the 1D rotor model represents one possible realization of the
edge states in the corresponding SPT phases. (The matrix
product unitary operator formalism and its relation to group
cohomology was studied in Ref. 15 and we review the main
results in Appendix B.)

The symmetry operator U
(M)
N has a complicated form but its

physical meaning will become clear if we consider its action
on the low-energy states of the rotor model in Eq. (6). First the∏

i e
i2πLi/N part rotates all rotors by the same angle 2π/N ,

which can be equivalently written as ei2πL/N with L = ∑
i Li

being the total angular momentum of the rotors. At low energy,
L is the total angular momentum of the compactified boson
field l. Moreover, at low energy ϕ varies smoothly along the
chain therefore (ϕi+1 − ϕi)r ∼ ∂xϕ(x)dx and CP

(M)
i,i+1 adds a

phase factor to the differential change in ϕ along the chain.
Multiplied along the whole chain

∏
i CP

(M)
i,i+1 is equal to

ei2πM[
∫

dx∂xϕ(x)]/N = ei2πMm/N where m is the winding number
of the boson field ϕ(x) along the chain. Put together we find
that the symmetry acts on the low-energy modes as

U
(M)
N ∼ ei2π(l+Mm)/N . (8)

If M is zero, this symmetry comes from a trivial SPT phase
and U

(0)
N depends only on l which involves the left and right

movers equally, as one can see from right- and left-scaling
dimensions (hR,hL) = ( (l+2m)2

8 , (l−2m)2

8 ). However, when M is
nonzero, this symmetry comes from a nontrivial SPT phase
and U

(M)
N depends on l + Mm which involves the left and

right mover in an unequal way. Put differently, the symmetry
on the edge of nontrivial ZN SPT phases acts chirally. In
particular, when M = 2, the symmetry will act only on the
right movers. Similar to the discussion in the Z2 case, we can
see that the chiral symmetry protects the gaplessness of the
edge by preventing direct scattering between the left and right
branches.

One may notice that Hr [Eq. (6)] does not exactly
commute with the symmetry U

(M)
N , but this will not be a

problem for our discussions. We note that the potential term
cos(ϕi − ϕi−1) does commute with U

(M)
N . The kinetic term

(Li)2 commutes with the part that rotates ϕ but not the phase
factor eiM(ϕi+1−ϕi )r /N . However, at low energy, (ϕi+1 − ϕi) →
0, therefore this term becomes irrelevant locally and commu-
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tation between the Hamiltonian and the symmetry operator
is restored. At high energy, in order for the Hamiltonian
to satisfy the symmetry, we can change the kinetic term to∑N−1

k=0 (U (M)
N )k(Li)2(U (M)

N )−k . The high-energy dynamics will
be changed. However, because V 	 1 and we know that the
modified Hamiltonian does not break the U(1) symmetry of
the rotor model and the system cannot be gapped (due to
the nontrivial cohomology class related to the symmetry), the
system remains in the superfluid phase. The change in the
kinetic term does not affect our discussion about low-energy
effective physics.

IV. EDGE STATE OF U(1) SPT PHASE

Taking the limit of N → ∞, we can generalize our
understanding of ZN SPT phases to U(1) SPT phases. As
we show in this section, the chiral symmetry action on the
low-energy effective modes on the edge of the U(1) SPT
phases leads to a chiral response of the system to externally
coupled U(1) gauge field, even though the low-energy edge
state is nonchiral. We calculate explicitly the quantized Hall
conductance in these SPT phases from the commutator of local
density operators on the edge and find that they are quantized
to even integer multiples of σH = e2/h. In these SPT phases,
a nonzero U(1) Hall conductance exists despite a zero thermal
Hall conductance.

From group cohomology, we know that there are infinite
2D bosonic SPT phases with U(1) symmetry which form
the integer group Z among themselves. Generalizing the
discussion in the previous section we find that the low-energy
effective theory can be a c = 1 free boson theory and the U(1)
symmetry acts on the low-energy modes as eiα(l+Mm), where
α ∈ [0,2π ), l is the total angular momentum, m is the winding
number, and M ∈ Z labels the U(1) SPT phase. The local
density operator of this U(1) charge is given by

ρ(x) = 	(x) + M

2π
∂xϕ(x), (9)

with 	(x) being the conjugate momentum of the boson field
ϕ(x), because the spatial integration of this density operator
gives rise to the generator of the U(1) symmetry

∫
dxρ(x) =

l + Mm. The commutator between local density operators is
given by

[ρ(x),ρ(x ′)] = −i
2M

2π
δ′(x − x ′). (10)

This term will give rise to a quantized Hall conductance along
the edge when the system is coupled to an external U(1) gauge
field. Compared to the commutator between local density
operators of a single chiral fermion

[ρcf (x),ρcf (x ′)] = −i
1

2π
δ′(x − x ′), (11)

we see that the Hall conductance is quantized to even integer
2M multiples of σH = e2/h.

As a consistency check we see that the quantized Hall
conductance is a universal feature of the edge states in
the bosonic U(1) SPT phases and does not depend on the
particular form the U(1) symmetry is realized on the edge.
Indeed, the U(1) symmetry can be realized as eiα(Kl+K ′m), with
arbitrary K,K ′ ∈ Z. From the group cohomology calculation

(reviewed in Appendix B) we find that it belongs to the
cohomology class labeled by M = KK ′. From the calculation
of the commutator between local density operators, we see
that the magnitude of the commutator is proportional also to
M = KK ′. Therefore, the Hall conductance depends only on
the cohomology class—hence the SPT phase—the system is
in and not on the details of the dynamics in the system.

V. DISCUSSION

In this paper, we have constructed the gapless edge states
for each of the bosonic ZN or U(1) SPT phases in two
dimensions. We show that those edge states are described by
a c = 1 nonchiral free boson theory where the symmetry acts
chirally on the low-energy modes. The chiral realization of
the symmetry not only prevents some simple mass terms from
gapping out the system but also leads to a chiral response
of the system to external gauge fields. We demonstrate this
by constructing explicit 1D lattice models constrained by a
non-on-site symmetry related to each nontrivial cohomology
class. Our result indicates that the field theory approach
based on the U(1) × U(1) Chern-Simons theory22,23 and SU(2)
nonlinear σ model24 indeed produces all of the U(1) SPT
phases.

We want to emphasize that although we have focused
exclusively on the 1D edge, a 2D bulk having the 1D chain as
its edge always exists and can be constructed by treating a 1D
ring as a single site and then putting the sites together. Note
that while the stability and chiral response of the edge in SPT
phases are very similar to that of the edge in quantum Hall
systems, the underlying reason is very different. The quantum
Hall edge states are chiral on their own, which remain gapless
without the protection of any symmetry and lead to a nonzero
thermal Hall conductance.

Finally, we want to point out that the edge theory con-
structed in this paper is only one possible form of realization.
It is possible that other gapless theories can be realized on the
edge of SPT phases, for example with central charge not equal
to 1. It would be interesting to understand in general what
kind of gapless theories are possible and what their universal
features are.
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APPENDIX A: THE THIRD GROUP COHOMOLOGY
H3[G,U(1)] FOR SYMMETRY G

In this section, we will briefly describe the group cohomol-
ogy theory. As we are focusing on 2D SPT phases, we will be
interested in the third cohomology group.

For a group G, let M be a G module, which is an
Abelian group (with multiplication operation) on which G acts
compatibly with the multiplication operation (i.e., the Abelian
group structure) on M:

g · (ab) = (g · a)(g · b), g ∈ G, a,b ∈ M. (A1)
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For the cases studied in this paper, M is simply the U(1) group
and a is a U(1) phase. The multiplication operation ab is the
usual multiplication of the U(1) phases. The group action is
trivial: g · a = a, g ∈ G, a ∈ U(1).

Let ωn(g1, . . . ,gn) be a function of n group elements whose
value is in the G module M . In other words, ωn : Gn → M . Let
Cn[G,M] = {ωn} be the space of all such functions. Note that
Cn[G,M] is an Abelian group under the function multiplication
ω′′

n(g1, . . . ,gn) = ωn(g1, . . . ,gn)ω′
n(g1, . . . ,gn). We define a

map dn from Cn[G,U(1)] to Cn+1[G,U(1)]:

(dnωn)(g1, . . . ,gn+1)

= g1 · ωn(g2, . . . ,gn+1)ω(−1)n+1

n (g1, . . . ,gn)

×
n∏

i=1

ω(−1)i
n (g1, . . . ,gi−1,gigi+1,gi+2, . . . ,gn+1). (A2)

Let

Bn[G,M] = {ωn|ωn = dn−1ωn−1|ωn−1 ∈ Cn−1[G,M]}
(A3)

and

Zn[G,M] = {ωn|dnωn = 1, ωn ∈ Cn[G,M]}. (A4)

Bn[G,M] andZn[G,M] are also Abelian groups which satisfy
Bn[G,M] ⊂ Zn[G,M] where B1[G,M] ≡ {1}. Zn[G,M] is
the group of n-cocycles and Bn[G,M] is the group of n-
coboundaries. The nth cohomology group of G is defined as

Hn[G,M] = Zn[G,M]/Bn[G,M]. (A5)

In particular, when n = 3, from

(d3ω3)(g1,g2,g3,g4)

= ω3(g2,g3,g4)ω3(g1,g2g3,g4)ω3(g1,g2,g3)

ω3(g1g2,g3,g4)ω3(g1,g2,g3g4)
(A6)

we see that

Z3[G,U(1)]

=
{
ω3|ω3(g2,g3,g4)ω3(g1,g2g3,g4)ω3(g1,g2,g3)

ω3(g1g2,g3,g4)ω3(g1,g2,g3g4)
= 1

}

(A7)

and

B3[G,U(1)] =
{
ω3|ω3(g1,g2,g3) = ω2(g2,g3)ω2(g1,g2g3)

ω2(g1g2,g3)ω2(g1,g2)

}
,

(A8)

which gives us the third cohomology group H3[G,U(1)] =
Z3[G,U(1)]/B3[G,U(1)].

APPENDIX B: MATRIX PRODUCT OPERATOR
REPRESENTATION OF SYMMETRY

In Ref. 15 the symmetry operators on the edge of bosonic
SPT phases were represented in the matrix product operator
formalism from which their connection to group cohomology
is revealed and the nonexistence of gapped symmetric states
was proved. In this section, we review the matrix product

FIG. 2. (Color online) Reduce combination of T (g2) and T (g1)
into T (g1g2).

representation of the unitary symmetry operators and how the
corresponding cocycle can be calculated from the tensors in
the representation.

A matrix product operator acting on a 1D system is
given by26

O =
∑

{ik},{i ′k}
Tr(T i1,i

′
1T i2,i

′
2 . . . T iN ,i ′N )|i ′1i ′2 . . . i ′N 〉〈i1i2 . . . iN |,

(B1)

where for fixed i and i ′, T i,i ′ is a matrix with index α and β.
Here we are interested in symmetry transformations, therefore
we restrict O to be a unitary operator U . Using matrix product
representation, U does not have to be an on-site symmetry. U

is represented by a rank-4 tensor T
i,i ′
α,β on each site, where i

and i ′ are input and output physical indices and α, β are inner
indices.

If U (g)’s form a representation of group G, then they
satisfy U (g1)U (g2) = U (g1g2). Correspondingly, the tensors
T (g1) and T (g2) should have a combined action equivalent to
T (g1g2). However, the tensor T (g1,g2) obtained by contracting
the output physical index of T (g2) with the input physical index
of T (g1), see Fig. 2, is usually more redundant than T (g1g2)
and can only be reduced to T (g1g2) if certain projection Pg1,g2

is applied to the inner indices (see Fig. 2).
Pg1,g2 is only defined up to an arbitrary phase factor

eiμ(g1,g2). If the projection operator on the right side Pg1,g2 is
changed by the phase factor eiμ(g1,g2), the projection operator
P

†
g1,g2 on the left side is changed by phase factor e−iμ(g1,g2).

Therefore the total action of Pg1,g2 and P
†
g1,g2 on T (g1,g2)

does not change and the reduction procedure illustrated in
Fig. 2 still works. In the following discussion, we will assume
that a particular choice of phase factors has been made for
each Pg1,g2 . Nontrivial phase factors appear when we consider
the combination of three symmetry tensors T (g1), T (g2), and
T (g3); see Fig. 3.

There are two different ways to reduce the tensors. We can
either first reduce the combination of T (g1), T (g2) and then
combine T (g3) or first reduce the combination of T (g2),T (g3)
and then combine T (g1). The two different ways should be
equivalent. More specifically, they should be the same up to
phase on the unique block of T (g1,g2,g3) which contributes
to matrix contraction along the chain. Denote the projection
onto the unique block of T (g1,g2,g3) as Qg1,g2,g3 . We find
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FIG. 3. (Color online) Different ways to reduce combination of
T (g3), T (g2) and T (g1) into T (g1g2g3). Only the right projection
operators are shown. Their combined actions differ by a phase factor
φ(g1,g2,g3).

that

lQg1,g2,g3 (I3 ⊗ Pg1,g2 )Pg1g2,g3

= φ(g1,g2,g3)Qg1,g2,g3 (Pg2,g3 ⊗ I1)Pg1,g2g3 . (B2)

From this we see that the reduction procedure is associative
up to a phase factor φ(g1,g2,g3). If we then consider the
combination of four symmetry tensors in different orders, we
can see that φ(g1,g2,g3) forms a 3-cocycle of group G. That
is, φ(g1,g2,g3) satisfies

φ(g2,g3,g4)φ(g1,g2g3,g4)φ(g1,g2,g3)

φ(g1g2,g3,g4)φ(g1,g2,g3g4)
= 1. (B3)

The arbitrary phase factor of Pg1,g2 contributes a coboundary
term to φ(g1,g2,g3). That is, if we change the phase factor of
Pg1,g2 by μ(g1,g2), then φ(g1,g2,g3) is changed to

φ̃(g1,g2,g3) = φ(g1,g2,g3)
μ(g2,g3)μ(g1,g2g3)

μ(g1,g2)μ(g1g2,g3)
. (B4)

φ̃(g1,g2,g3) still satisfies the cocycle condition and belongs to
the same cohomology class as φ(g1,g2,g3).

APPENDIX C: COHOMOLOGY CLASS OF SYMMETRY
OPERATOR U (M)

N IN EQ. (7)

In this section, we discuss the property of the symmetry
operator U

(M)
N given in Eq. (7). First we show that U

(M)
N

indeed generates aZN symmetry. Next from its matrix product
unitary operator representation we find that the transformation
among the tensors are indeed related to the Mth element
in the cohomology group H3[ZN,U(1)]. The calculation of
cohomology class goes as described in the previous section.
We repeat the definition of U

(M)
N here:

U
(M)
N =

∏
i

CP
(M)
i,i+1

∏
i

ei2πLi/N , (C1)

where CP
(M)
i,i+1 acts on two neighboring rotors and depends on

M as

CP
(M)
i,i+1 =

∫
dϕidϕi+1e

iM(ϕi+1−ϕi )r /N |ϕiϕi+1〉〈ϕiϕi+1|.

Note that (ϕi+1 − ϕi)r represents ϕi+1 − ϕi to be confined
within (−π,π ].

As
∏

i e
i2πLi/N rotates all the ϕi’s by the same angle

and
∏

i CP
(M)
i,i+1 only depends on the difference between

neighboring ϕ’s, the two parts in the symmetry operator
commutes. Therefore(

U
(M)
N

)N =
∏

i

(
CP

(M)
i,i+1

)N
∏

i

(ei2πLi/N )N . (C2)

As
∏

i(CP
(M)
i,i+1)N = I and

∏
i(e

i2πLi/N )N = ei2πL = I , U
(M)
N

indeed generates a ZN symmetry on the 1D rotor system.
The matrix product representation of U

(M)
N is given by

(T ϕ0,ϕ1 )(M)
N (1) = δ

[
ϕ1 −

(
ϕ0 + 2π

N

)]∫
dϕαdϕβ |ϕβ〉

×〈ϕα|δ(ϕβ − ϕ0)eiM(ϕα−ϕ0)r /N , (C3)

and the tensors representing (U (M)
N )k , k ∈ ZN are given by

(T ϕ0,ϕ1 )(M)
N (k) = δ

[
ϕ1 −

(
ϕ0 + 2kπ

N

)] ∫
dϕαdϕβ |ϕβ〉

×〈ϕα|δ(ϕβ − ϕ0)eikM(ϕα−ϕ0)r /N . (C4)

Following the calculation described in the previous section, we
find that the projection operation when combining T

(M)
N (m1)

and T
(M)
N (m2) into T

(M)
N [(m1 + m2)N ] is

P
(M)
N (m1,m2) =

∫
dϕ0

∣∣∣∣m2
2π

N
+ ϕ0

〉
|ϕ0〉〈ϕ0|

×e−iMϕ0[m1+m2−(m1+m2)N ]/N , (C5)

where (m1 + m2)N means addition modulo N . When com-
bining T

(M)
N (m1), T

(M)
N (m2), and T

(M)
N (m3), the phase angle in

combining m1 with m2 first and then combining (m1 + m2)N
with m3 is

Mϕ0{−m1 − m2 + (m1 + m2)N − (m1 + m2)N
−m3 + [(m1 + m2)N + m3]N }/N

= Mϕ0[−(m1 + m2 + m3) + (m1 + m2 + m3)N ]/N

(C6)

the phase angle in combining m2 with m3 first and then
combining m1 with (m2 + m3)N is

Mϕ0{−m2 − m3 + (m2 + m3)N − m1

− (m2 + m3)N + [m1 + (m1 + m2)N ]N }/N
+Mm1

2π

N
[−m2 − m3 + (m2 + m3)N ]/N

= Mϕ0[−(m1 + m2 + m3) + (m1 + m2 + m3)N ]/N

+Mm1
2π

N
[−m2 − m3 + (m2 + m3)N ]/N. (C7)

Therefore, the phase difference is

φ
(M)
N (m1,m2,m3) = eiMm1(2π/N)[−m2−m3+(m2+m3)N ]/N . (C8)

We can check explicitly that φ
(M)
N (m1,m2,m3) satisfies the

cocycle condition

φ
(M)
N (m2,m3,m4)φ(M)

N [m1,(m2 + m3)N,m4]φ(M)
N (m1,m2,m3)

φ
(M)
N [(m1 + m2)N,m3,m4]φ(M)

N [m1,m2,(m3 + m4)N ]

= 1. (C9)

Also we see that {φ(M)
N }, M = 0, . . . ,N − 1, form a ZN group

generated by φ
(1)
N . Therefore, the tensor T

(M)
N corresponds to

the Mth element in the cohomology group H3[ZN,U(1)].
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A similar calculation holds for the U(1) symmetry gen-
erated by eiα(Kl+K ′m), K,K ′ ∈ Z. The cohomology class is
labeled M = KK ′.

APPENDIX D: INTERPRETATION IN TERMS OF
FERMIONIZATION

The free boson theory given in Eq. (4) can be fermionized
and the low-energy effective action of the symmetry discussed
here can be reinterpreted in terms of a free Dirac fermion. In
particular, the fermionized theory has Lagrangian density

Lf =
∑
i=1,2

ψL
i (∂t + ∂x)ψL

i + ψR
i (∂t − ∂x)ψR

i , (D1)

where ψ1 and ψ2 are two real fermions, out of which a complex
fermion can be defined � = ψ1 + iψ2. Note that in order to
have a state to state correspondence between the boson and
fermion theory, the fermion theory contains both the periodic
and antiperiodic sectors.

Since the Z2 symmetry in the nontrivial Z2 SPT phase
only acts on, say, the right moving sector, one may naively
guess that only ψR

1 change sign, while ψR
2 , ψL

1 , and ψL
2 do

not change under the Z2 transformation: (ψR
1 ,ψR

2 ,ψL
1 ,ψL

2 ) →
(−ψR

1 ,ψR
2 ,ψL

1 ,ψL
2 ). In this case, the fermion mass term, such

as (ψR
2 )†ψL

2 , will be allowed by the Z2 symmetry. Such a mass
term will reduce the c = 1 edge state to a c = 1

2 edge state
without breaking the Z2 symmetry. In the following, we will
show that the Z2 symmetry is actually realized in a different
way. The c = 1 edge state is stable if the Z2 symmetry is not
broken. So the c = 1 edge state represents the minimal edge
state for the Z2 [as well as the ZN and U(1)] SPT phases.

The situation is best illustrated with explicit Jordan-Wigner
transformation of the XY model in Eq. (3). Consider a
system of size N = 4n, n ∈ Z+. After the Jordan-Wigner
transformation

�i = eiπ
∑i−1

j=1 Zj (Xi + iYi), �
†
i = eiπ

∑i−1
j=1 Zj (Xi − iYi).

(D2)

The Hamiltonian becomes

H = Ha + Hb, Ha =
N∑

i=1

(�†
i+1�i + �

†
i �i+1),

(D3)
Hb = −(P + 1)(�†

1�N + �
†
N�1),

where P = eiπ
∑N

i=1 �
†
j �j is the total fermion parity in the

chain and Hb is the boundary term which depends on P .
Therefore, the fermion theory contains two sectors, one with an
even number of fermions and therefore antiperiodic boundary
condition and one with an odd number of fermions and periodic
boundary condition. Without terms mixing the two sectors,
we can solve the free fermion Hamiltonian in each sector
separately. After Fourier transform, the Hamiltonian becomes

H =
∑

k

cos

(
2πk

N

)
�

†
k�k, (D4)

where k takes value 0, 1,..., N − 1 in the periodic sector and 1
2 ,

3
2 ,... 2N−1

2 in the antiperiodic sector. The ground state in each
sector has all the modes with energy � 0 filled. Note that with

this filling the parity constraint in each sector is automatically
satisfied. The ground-state energy in the periodic sector is
higher than in the antiperiodic sector and the difference is
inverse proportional to system size N .

Now let us consider the effect of various perturbations on
the system. The (l,m) = (1,0) operator or the (−1,0) operator
in the boson theory (as shown in Fig. 1) corresponds to
changing the boundary condition of the Dirac fermion from
periodic to antiperiodic. Such operators would totally gap out
the edge states. However, from Eqs. (7) and (8), we see that
both operators carry nontrivial quantum number in all ZN [and
U(1)] SPT phases, therefore it is forbidden by the symmetry.

The (l,m) = (2,0) operator in the boson theory corresponds
to the pair creation operator �

†
L�

†
R in the fermion theory. Its

combination with the (−2,0) operator (�R�L in the fermion
theory) would gap out the system, but due to the existence of
the two sectors the ground state would be twofold degenerate.
To see this more explicitly, consider the XY model again where
the combination of (l,m) = (2,0) and (−2,0) operators can be
realized with an anisotropy term

HXY
(2,0) = γ

∑
i

Xi−1Xi − Zi−1Zi. (D5)

Under Jordan-Wigner transformation, it is mapped to the p-
wave pairing term,

H(2,0) = Ha,(2,0) + Hb,(2,0),

Ha,(2,0) = γ

N∑
i=1

(�†
i+1�

†
i + �i�i+1), (D6)

Hb,(2,0) = −γ (P + 1)(�†
1�N + �

†
N�1).

Again, we have periodic boundary condition for P = −1
and antiperiodic boundary condition for P = 1. After Fourier
transform, the Hamiltonian at each pair of k and N − k is

Hk,N−k = cos

(
2πk

N

)
(�†

k�k + �
†
N−k�N−k)

+ iγ sin

(
2πk

N

)
(−�

†
k�

†
N−k + �N−k�k). (D7)

The Bogoliubov mode changes smoothly with γ and the
ground-state parity remains invariant. The ground-state energy
is 1

2

∑
k[1 − (1 − γ 2) sin2( 2πk

N
)]1/2 and explicit calculation

shows that the energy difference of the two sectors (with
k = int. and k = int. + 1

2 ) becomes exponentially small with
nonzero γ . Therefore, upon adding the (l,m) = (2,0) and
(−2,0) terms, the ground state becomes twofold degenerate.
Such an operator does carry a trivial quantum number in the
nontrivialZ2 SPT phase and renders the gapless edge unstable.
However, a twofold degeneracy would always be left over
in the ground states, indicating a spontaneous Z2 symmetry
breaking at the edge.

The (0,1) operator in the boson theory corresponds to a
scattering term between the left and right moving fermions
�

†
L�R . Its combination with the (0, − 1) operator (�†

R�L in
the fermion theory) would gap out the system. Unlike the (2,0)
operator, there is no degeneracy left in the ground state. In the
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XY model, this corresponds to a staggered coupling constant

HXY
(0,1) = γ

∑
i

(−1)i (Xi−1Xi + Zi−1Zi) . (D8)

Mapped to fermions, the Hamiltonian at k and k + N
2 becomes

Hk,k+ N
2

= cos

(
2πk

N

)
(�†

k�k − �
†
k+N/2�k+N/2)

+ iγ sin

(
2πk

N

)
(−�

†
k�k+N/2 + �

†
k+N/2�k).

(D9)

For each pair of k and k + N
2 , there is one positive energy

mode and one negative energy mode and we want to fill the
negative energy mode with a fermion to obtain to ground state.
For the antiperiodic sector, such a construction works since

there is a N/2 = even number of negative energy modes, and
the antiperiodic sector contains an even number of fermions.
However, for the periodic sector, such a construction fails since
there is a N/2 = even number of negative energy modes, and
the periodic sector must contain an odd number of fermions.
So we have to add a fermion to a positive energy mode (or have
a hole in a negative energy mode) to have an odd number of
fermions. Therefore, the ground state in the periodic sector has
a finite energy gap above the antiperiodic one and the ground
state of the whole system is nondegenerate. However, because
this term carries a nontrivial quantum number in any nontrivial
ZN [and U(1)] SPT phases, it is forbidden by the symmetry.
For the trivial Z2 SPT phase, the (0, ± 1) operators are Z2

symmetric operators, and can be added to the edge effective
Hamiltonian. The presence of the (0, ± 1) operators will gap
the edge state and remove the ground-state degeneracy.
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