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Magnetic orders and topological phases from f -d exchange in pyrochlore iridates
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We study theoretically the effects of f -d magnetic exchange interaction in the R2Ir2O7 pyrochlore iridates. The
R3+ f electrons form localized Kramers or non-Kramers doublets, while the Ir4+d electrons are more itinerant
and feel a strong spin-orbit coupling. We construct and analyze a minimal model capturing this physics, treating
the Ir subsystem using a Hubbard-type model. First neglecting the Hubbard interaction, we find Weyl semimetal
and Axion insulator phases induced by the f -d exchange. Next, we find that f -d exchange can cooperate with
the Hubbard interaction to stabilize the Weyl semimetal over a larger region of parameter space than when it is
induced by d-electron correlations alone. Applications to experiments are discussed.
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The discovery of time-reversal invariant topological band
insulators has opened new terrain in the study of topological
states of matter.1–3 As spin-orbit coupling (SOC) is essential
to realize some topological states, and given the propensity of
electron correlations to induce a variety of novel phenomena,
there is now intense interest in 5d transition metal oxides
with simultaneously strong SOC and intermediate electron
correlation. The pyrochlore iridates R2Ir2O7, where R is
a lanthanide (or Y), have been proposed to host various
topological phases. Topological band insulators, topological
Mott insulators4, and Weyl semimetal (WSM) states5 have
been proposed.4–7 In the related spinel compounds A2Os4O6,
an Axion insulator (AI)5,8–11 with bulk magnetic order and
large magnetoelectric effect has been proposed.12

The current theoretical analyses of pyrochlore iridates
have focused either on the Ir subsystem,4–7,13 or (excluding
nonmagnetic R = Y, Eu) on the magnetic moments formed by
localized R3+ f electrons.14–18 However, as we argue below,
coupling between the local moments and the Ir4+ d electrons
may be important in some compounds, but remains largely
unexplored (see Refs. 19–21 for related prior work). More
generally, most work on correlated, strong SOC materials is
focused on correlations among d electrons. An alternate route
to introduce correlation into a strong SOC system is to couple
strong-SOC itinerant carriers to local magnetic moments, and
such systems are certainly deserving of greater attention.

In this paper we consider the effect of f -d exchange in
pyrochlore iridates. The f -d exchange and the Ir electrons
together generate a RKKY exchange between the localized
moments at the R sites, which induces magnetic ordering on
the R subsystem. The magnetic order on the R subsystem
further modifies the electronic structure on the Ir subsystem,
leading to WSM and Axion insulator phases. Notably, when
f -d exchange is combined with correlation of the d electrons,
we find the WSM is stabilized over a much wider region of
parameter space than was found for d-electron correlations
alone.6 Based in part on this observation, we propose that
Nd2Ir2O7 is a candidate to realize the WSM.

In many pyrochlore iridates, a metal-insulator transition
and/or magnetic order occurs at a temperature scale of ∼100 K.
Such a scale is presumably too large to be driven by RKKY
interaction, and instead is probably set by d-electron magnetic
exchange interaction, so the emphasis on the Ir subsystem may

be justified. However, in some compounds, interesting trans-
port and magnetic properties only occur at lower temperatures.
For instance, in Pr2Ir2O7, a chiral spin liquid phase has been
proposed at 0.3 < T < 1.5 K to account for the anomalous
hall effect observed in this temperature window, where no
clear signature of magnetic order is observed.22 In Nd2Ir2O7,
the metal-insulator transition, which seems to be associated
with magnetic order, occurs at 36 K and can be suppressed
by the application of pressure.23–25 It should be noted that
other studies of the Nd compound show different behavior,
apparently due to differences in sample preparation.26,27

We now describe our theoretical model for R2Ir2O7. The R
and Ir sites each form a pyrochlore lattice of corner-sharing
tetrahedra. The non-Kramers R3+ ions (R = Pr, Tb, Ho)
have an even number of f electrons, while the Kramers
ions (R = Nd, Sm, Gd, Dy, Yb) have an odd number of
f electrons. The large SOC of f electrons then leads to
a local magnetic moment with integer (non-Kramers) or
half-odd-integer (Kramers) total angular momentum J . The
(2J + 1)-fold degeneracy is then split by the D3d crystal field
at the R site. In the Kramers case, this leads to a doublet ground
state. In the non-Kramers case, the crystal field splits the
angular momentum multiplet into doublets and nonmagnetic
singlets. A non-Kramers doublet is the ground state for the
R = Pr iridate,15,16 as well as for isostructural insulating
compounds like Tb2Ti2O7 and Ho2Ti2O7,28,29 so we assume
a doublet ground state. We ignore effects of higher crystal
field levels, which is valid for sufficiently large energy gap
between the crystal field ground state and first excited state.
This is reasonable for the R = Pr, Nd cases of greatest interest,
where the reported gaps are 168 and 300 K, respectively.30,31

The R-site moment is thus described in all cases by an effective
spin-1/2 pseudospin τ . The d electrons of the Ir subsystem are
more itinerant. Due to the strong SOC, we approximate the Ir
subsystem as a pyrochlore lattice system with one jeff = 1/2
doublet electron per Ir site.6

For the exchange coupling between R pseudospin τ and
Ir effective spin j, we invoke a general symmetry analysis,
beginning with the non-Kramers case. Under time reversal,
τ z → −τ z,τ x,y → τ x,y . [This is so because τ z originates
from J z, the component of angular momentum along the
local threefold axis at the R site, while τ x,y originate from
(J±)2J , where J is the total angular momentum.] On the
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FIG. 1. (Color online) A projective view of R2Ir2O7 in the (111)
plane. Left: The neighboring Ir (in dark red) and R (in light blue)
tetrahedra. “1,2,3,4” label the four sublattices. Ir/R atoms are marked
with big/small (red/blue) circles. Empty/dark/light circles indicate
that the atoms are below/above/in the (111) plane. Right: An IrR6

complex singled out from the left figure.

other hand, under time reversal j → −j. This property leads
to a remarkable simplification of the coupling—only τ z

couples to the Ir spin j. We consider the nearest-neighbor
(NN) R-Ir exchange, which, due to space group symmetry,
is parametrized by two couplings c1,c2. For the single Ir site
labeled Ir1 in Fig. 1, the f -d exchange is

Hfd = [
c1τ

z
4 − c2

(
τ z

2 + τ z
3

)]
jx

1 + [
c1τ

z
3 − c2

(
τ z

2 + τ z
4

)]
j

y

1

+ [
c1τ

z
2 − c2

(
τ z

3 + τ z
4

)]
jz

1 + [2 ↔ 2′,3 ↔ 3′,4 ↔ 4′],
(1)

where the labeling of sites is given in Fig. 1. Further details
are given in Appendix. A.

In the Kramers case, the Ising part of the f -d exchange
(coupling of τ z to j) is identical. Transverse exchange
involving τ x,y is also permitted by time-reversal symmetry.
Even in the non-Kramers case, while τ x,y does not couple to the
Ir effective spin, it can couple to the Ir charge density. In both
cases we ignore these transverse couplings, both for simplicity
and because they may be suppressed by strong easy-axis
anisotropy of the f moments along local [111] axes, which is
known to be present in R = Dy, Ho pyrochlore oxides,14 and
may be present more broadly. However, effects of transverse
exchange may be important, and will be an interesting topic
for future study.

For the Ir subsystem, we follow Ref. 6 and include both the
indirect hopping of 5d electrons through oxygen, and direct
hopping between Ir sites, using the following Hubbard model:

HIr =
∑
〈rr ′〉

(
T d

rr ′,αβ + T id
rr ′,αβ

)
d†

rαdr ′β + U
∑

r

nr,↑nr,↓, (2)

where d
†
r,α is the electron creation operator, with α =↑ , ↓

labeling the effective spin jz = 1/2, − 1/2 states at site r ,
and nr,α = d

†
r,αdr,α . The sum is over NN pairs of Ir sites. The

direct hoppings (T d
rr ′ ) involve two parameters,6 tσ and tπ , that

describe the σ and π bonding, respectively. To be specific, we
follow Ref. 6 and set tπ = − 2

3 tσ throughout the paper. The
indirect hopping (T id

rr ′) only has one hopping parameter which
we denote as t .4

The R local moments can couple to each other either via su-
perexchange through intermediate atoms, by dipole-dipole in-
teraction, or by the RKKY (Ruderman-Kittel-Kasuya-Yosida)

exchange mediated by Ir electrons. Dipole-dipole interactions
may play an important role for R (= Gd, Tb, Dy, Ho) where a
large local magnetic moment is observed.26 RKKY exchange
is likely to be the dominant exchange for the other compounds,
as the Curie-Weiss temperatures in many of the isostructural
insulating materials R2Sn2O7

32 are of much lower magnitude
than the corresponding iridates. For example, The Curie-Weiss
temperatures �CW are −0.35 K in Pr2Sn2O7 and −1026 or
−20 K33 in Pr2Ir2O7. For the R = Nd compounds, �CW ≈
−0.31 K in the stannate32 and �CW ≈ −19 K in the iridate.26

From the above analysis, we obtain our minimal model
for R2Ir2O7, which includes the R-Ir exchange coupling in
Eq. (1) and the Ir-Ir hopping and interaction Eq. (2), Hmin =
Hfd + HIr.

To analyze the phase diagram we start with the tight-binding
model of the Ir subsystem. Following Ref. 6, a semimetal
phase is obtained for −1.67t � tσ � −0.67t . Otherwise, a
strong topological band insulator (STI) with topological class
(1;000) is obtained.34–36 In the semimetal phase, at the
� point there is a quadratic band touching (protected by
cubic symmetry) at the Fermi energy (EF ). There are also
nondispersing bands at EF along the �-L lines; this feature
is a consequence of fine tuning; it can be removed by adding
a weak next-nearest-neighbor hopping (t ′).6 The low-energy
features of the band structure agree rather well with the
first-principles calculation for Y2Ir2O7,5,37 with the differences
that the quadratic �-point touching is below EF and the �-L
lines have a small dispersion.

Due to the Ising form of the coupling, the model with the
f -d exchange does not contain quantum fluctuations of the
f moments, and reduces to a free fermion problem for any
fixed configuration of localized moments. Finding the ground
state amounts to finding the minimum-energy configuration
of local moments. Moreover, certainly c1,c2 � t , so the f -d
exchange can be treated perturbatively, and the leading effect
is to generate a RKKY exchange between the f moments. As
shown in Appendix A, we find that beyond fourth neighbors
the RKKY exchange becomes significantly smaller, so we
keep only up through fourth-neighbor exchange. Using the
Luttinger-Tizsa method,38 we find that the ground state of the
truncated RKKY exchange has a q = 0 magnetic order except
in the light shaded regions of Figs. 2(a) and 2(b). In the light
shaded regions, the hard-spin constraint cannot be satisfied,
and the nature of the ground state is not presently clear.
However, it is likely that the q = 0 magnetic order extends
at least somewhat into to the light shaded regions.

Without losing any generality, we can simply focus on
the case with c1 > 0 and define 	 ≡ tan−1(c2/c1) and c ≡√

c2
1 + c2

2. As shown in Figs. 2(a) and 2(b), for most of
parameter space, “all-in all-out” magnetic order is favored,
where every tetrahedron of neighboring R sites has either
all τ z pointing in (i.e., toward the tetrahedron center), or all
pointing out. In the dark shaded region, q = 0 “two-in two-out”
magnetic order is obtained, where on every tetrahedron, two τ z

point in and two point out. (The q = 0 two-in two-out state also
has lowest energy, at least among q = 0 states, in the vertically
hatched regions.) Since no ferromagnetic state is observed
in any R2Ir2O7, we restrict our discussion to all-in all-out
state. Such order of the R subsystem also induces all-in all-out
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FIG. 2. (Color online) (a) Phase diagrams of the STI with tσ =
−2t and (b) the semimetal phase with tσ = −t after including f -d
exchange. See text for further discussion of the phase diagrams. (c)
and (d) Curie-Weiss temperature �CW (solid line) and the mean-field
ordering temperature Tc (dashed/dotted line) of the truncated ex-
change model (up to fourth neighbor for R system) are plotted against
	. Tc is obtained by restricting to the q = 0 magnetic ordering (see
Appendix B). Tc for the all-in all-out (two-in two-out) state is the
dashed (dotted) curve. (e) The c2-tσ phase diagram for Ir subsystem
where the magnetic order is all-in all-out. In the figure, NI = normal
insulator.

magnetic order in the Ir subsystem via the f -d exchange,
which acts as a local magnetic field modifying the Ir band
structure.

As shown in Figs. 2(a) and 2(b), with an f -d exchange, the
STI phase is converted into an AI for small c/t and then into a
WSM. The semimetal phase immediately becomes a WSM. In
this case, it is necessary to add a very small t ′ to stabilize the
WSM6; otherwise, the flat �-L lines of the semimetal remain
at EF .

Returning to the STI case, when time-reversal symmetry is
broken but inversion symmetry is preserved, as for the all-in
all-out state, the magnetoelectric response parameter θ is still
quantized. We can express θ in terms of the number no(k) of
filled odd parity states at the time-reversal invariant momenta
(TRIMs),10,11 θ

π
≡ 1

2

∑
k∈TRIMs no(k) (mod 2).

As shown in Fig. 2(a), a region of AI phase with θ = π is
obtained in the vicinity of the STI phase and the band structure
of an AI induced by f -d exchange is shown in Fig. 3(a).

The Fermi surface of WSM is composed of the Weyl points,
around which the spectrum is linear and gapless. We locate the
Weyl points explicitly by examining the spectrum and density
of states, which shows the characteristic (E − EF )2 scaling.
As c increases, the eight Weyl points of the WSM in Fig. 2(b)
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FIG. 3. (Color online) The Ir electron band structure with the
all-in all-out magnetic order. The energy unit is set to t and c1 =
0,c2 = 0.05t . The dashed (red) line is EF . (a) AI phase with tσ = −2t .
(b) WSM phase with tσ = −t .39

are created at � and annihilated at the L points, and lie along
the �-L lines [Fig. 3(b)].

We now include the correlation on the Ir subsystem. Without
the f -d exchange, the Hartree mean-field analysis of the
extended Hubbard model on Ir subsystem gives a rather
narrow region of WSM phase.6 With f -d exchange, the RKKY
exchange induces magnetic order even with weak correlations
and thus gives a WSM phase. We start from the metallic
phase and include both the Hubbard interaction (via the same
mean-field approach used in Ref. 6) and f -d exchange. Since
both correlation and RKKY interaction alone give an all-in
all-out magnetic order on the Ir system, we restrict attention to
the all-in all-out state. We decouple the Hubbard interaction,

Uni↑ni↓ → −2U

3
j2
i → −4U

3
〈ji〉 · ji + 2U

3
〈ji〉2, (3)

and find a broad region of WSM phase (see Fig. 4).
A much-studied compound in the R2Ir2O7 series is R =

Pr, which exhibits a metallic ground state and anomalous
Hall effect without any observable magnetic order for 0.3 <

T < 1.5 K.22,33,40 The Pr moments freeze at T < 0.3 K. Our
theoretical analysis focuses on the all-in all-out region of the
phase diagrams in Fig. 2. Pr2Ir2O7 may be located in or near
the light shaded region of Fig. 2(b), where the RKKY exchange
may be more frustrated. Moreover, quantum fluctuations
may be important for Pr2Ir2O7, perhaps originating from the
transverse part of the f -d exchange, from superexchange
between the f moments,15 or both. Such quantum fluctuations
may suppress the magnetic order, perhaps cooperating with
classical frustration.
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FIG. 4. (Color online) The mean-field phase diagram at tσ = −t

and c1 = 0. The (red) thick line is the narrow WSM phase induced
by Ir correlation. The dashed line is the nonmagnetic Ir semimetal
phase. The green region is the broad WSM phase after including
f -d exchange. All-in all-out magnetic order is present throughout
the phase diagram.
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Nd2Ir2O7 has been observed to order magnetically below
the metal-insulator transition at Tc = 36 K.23–25,31 Recent
neutron scattering experiments25 on Nd2Ir2O7 suggest an
all-in all-out spin configuration for both Nd and Ir systems.
The data were interpreted in terms of a static local field
setting in for the Nd moments immediately upon cooling
through Tc, while Nd magnetic order is not detected until
15 K. Another experiment24 finds that applying pressure to
Nd2Ir2O7 suppresses the metal-insulator transition and leads
to a metallic state that exhibits a negative magnetoresistance.
Since �CW = −19 K in Nd2Ir2O7, according to Figs. 2(c) and
2(d) we expect Nd2Ir2O7 to be in the region with 	 < 0 in order
to have an antiferromagnetic �CW. Moreover, Tc > |�CW| and
the all-in all-out ordering are also consistent with Figs. 2(c)
and 2(d). The metal-insulator transition and magnetic order
are likely driven by a combination of RKKY exchange and Ir
magnetic exchange. Indeed, Ref. 25 interpreted their results
in terms of Ir magnetic order setting in at Tc, with Nd order
setting in only at 15 K (driven by f -d exchange) due to the
presumably small Ir ordered moment. It would be interesting
to see whether our model can indeed produce such behavior at
finite temperature. Assuming all-in all-out ordering is indeed
present, the Ir electrons may realize a WSM phase within the
magnetically ordered state. Indeed, the transport properties
of the WSM are close to those of an insulator,41 and appear
consistent with the resistivity of the Nd compound below Tc.
Applying pressure to Nd2Ir2O7

24 may modify the Ir electron
hopping, generating a metallic state.

To summarize, we have constructed and analyzed a mini-
mal model accounting for f -d exchange in rare-earth-based
pyrochlore iridates R2Ir2O7. With this model we find broad
regions of Axion insulator and Weyl semimetal phases.
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APPENDIX A: f -d EXCHANGE BETWEEN THE R
MOMENT AND IR MOMENT

Both Ir and R sublattices are pyrochlore lattices, and can be
viewed as fcc lattices with a four-site basis. We use the BCC
primitive vectors

b1 = (
0, 1

2 , 1
2

)
, (A1)

b2 = (
1
2 ,0, 1

2

)
, (A2)

b3 = (
1
2 , 1

2 ,0
)
. (A3)

For the Ir pyrochlore lattice we choose the following reference
points for four sublattices:

Ir1 = 1
4 (0,0,0), (A4)

Ir2 = 1
4 (0,1,1), (A5)

Ir3 = 1
4 (1,0,1), (A6)

Ir4 = 1
4 (1,1,0). (A7)

For the R pyrochlore lattice, we choose

R1 = (
0, 1

2 ,0
)
, (A8)

R2 = (
0, 3

4 , 1
4

)
, (A9)

R3 = (
1
4 , 1

2 , 1
4

)
, (A10)

R4 = (
1
4 , 3

4 ,0
)
. (A11)

The symmetry-allowed f -d exchange between the R
moment and the Ir moment can be written as

Hfd =
∑

r

τ z
1 (r)

{
c1

[
jx

2 (r) + jx
2 (r − b2 + b3) + j

y

3 (r − b2 + b3) + j
y

3 (r + b1 − b2) + jz
4 (r) + jz

4 (r + b1 − b2)
]

+ c2
[
j

y

2 (r) + j
y

2 (r − b2 + b3) + jz
2 (r) + jz

2 (r − b2 + b3) + jx
3 (r − b2 + b3) + jx

3 (r + b1 − b2) + jz
3 (r − b2 + b3)

+ jz
3 (r + b1 − b2) + jx

4 (r) + jx
4 (r + b1 − b2) + j

y

4 (r) + j
y

4 (r + b1 − b2)
]}

+ τ z
2 (r)

{
c1

[
jx

1 (r + b1) + jx
1 (r + b1 − b2 + b3) − j

y

4 (r + b1) − j
y

4 (r + b1 − b2) − jz
3 (r + b1 − b2)

− jz
3 (r + b1 − b2 + b3)

] + c2
[ − j

y

1 (r + b1) − j
y

1 (r + b1 − b2 + b3) − jz
1 (r + b1) − jz

1 (r + b1 − b2 + b3)

+ jx
4 (r + b1 − b2) + jx

4 (r + b1) − jz
4 (r + b1 − b2) − jz

4 (r + b1) + jx
3 (r + b1 − b2) + jx

3 (r + b1 − b2 + b3)

− j
y

3 (r + b1 − b2) − j
y

3 (r + b1 − b2 + b3)
]} + τ z

3 (r)
{
c1

[
j

y

1 (r + b3) + j
y

1 (r + b1) − jz
2 (r) − jz

2 (r + b3)

− jx
4 (r) − jx

4 (r + b1)
] + c2

[ − jx
1 (r + b3) − jx

1 (r + b1) − jz
1 (r + b3) − jz

1 (r + b1) − jx
2 (r) − jx

2 (r + b3)

+ j
y

2 (r) + j
y

2 (b3) + j
y

4 (r) + j
y

4 (r + b1) − jz
4 (r) − jz

4 (r + b1)
]} + τ z

4 (r)
{
c1

[
jz

1 (r + b3) + jz
1 (r + b1 − b2 + b3)

− j
y

2 (r − b2 + b3) − j
y

2 (r − b2 + b3) − jx
3 (r − b2 + b3) − jx

3 (r + b1 − b2 + b3)
] + c2

[ − jx
1 (r + b3)

− jx
1 (r + b1 − b2 + b3) − j

y

1 (r + b3) − j
y

1 (r + b1 − b2 + b3) − jx
2 (r − b2 + b3) − jx

2 (r + b3) + jz
2 (r − b2 + b3)

+ jz
2 (r + b3) − j

y

3 (r − b2 + b3) − j
y

3 (r + b1 − b2 + b3) + jz
3 (r − b2 + b3) + jz

3 (r + b1 − b2 + b3)
]}

. (A12)

Here τ z
i (r) is the pseudospin for the R site in unit cell labeled by r with sublattice index i = 1, . . . ,4. (Recall that τ z is the

component of pseudospin along the local threefold axis at the R site.) Similarly, j
μ

i (r) is the μ = x,y,z component of the Ir
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FIG. 5. (Color online) The dependence of RKKY exchanges on the angle 	. The results are obtained for a finite system with 10 × 10 × 10
unit cells. Ji is the ith neighbor exchange. J3 is the exchange on third neighbor bonds that have one lattice site at the midpoint of the bonds.
J ′

3 is the exchange on third neighbor bonds that have no lattice site at the midpoint of the bonds. J7 is the exchange on seventh neighbor bonds
that have two additional lattice sites along the bonds. J ′

7 is the exchange on seventh neighbor bonds that have no lattice sites along the bonds.
Upper: STI phase with tσ = −2t . Lower: Semimetal phase with tσ = −t .

effective spin (in global cubic coordinates), for the Ir site in
unit cell r at sublattice i. c1 and c2 are the two parameters
allowed by space group symmetries.

It is convenient below to work in a local coordinate system
for the Ir effective moment. So, we transform the Ir effective
spin from glocal to local IrO6 octahedral coordinate system by

j
μ

i (r) = Rμν

i j ν
i,L(r), (A13)

where ji,L(r) is the Ir effective spin in the local IrO6 octahedral
coordinate system. The transformation matrices for four
sublattices are

R1 =

⎡
⎢⎣

2/3 −1/3 −2/3

−1/3 2/3 −2/3

2/3 2/3 1/3

⎤
⎥⎦ , (A14)

R2 =

⎡
⎢⎣

2/3 2/3 1/3

−2/3 1/3 2/3

1/3 −2/3 2/3

⎤
⎥⎦ , (A15)

R3 =

⎡
⎢⎣

1/3 −2/3 2/3

2/3 2/3 1/3

−2/3 1/3 2/3

⎤
⎥⎦ , (A16)

R4 =

⎡
⎢⎣

1/3 −2/3 2/3

−2/3 −2/3 −1/3

2/3 −1/3 −2/3

⎤
⎥⎦ . (A17)

APPENDIX B: RKKY INTERACTION BETWEEN
THE R MOMENTS

We consider the Hamiltonian

H = HIr + Hfd, (B1)

where HIr is the tight-binding Hamiltonian without the
Hubbard interaction,

HIr =
∑
〈rr ′〉

(
T d

rr ′,αβ + T id
rr ′,αβ

)
d†

rαdr ′β. (B2)

The f -d exchange Hfd can be written compactly as

Hfd =
∑
r,r′

∑
ij

τ z
i (r)f μ

ij (r − r′)jμ

j (r′). (B3)

Here, and below, sums on repeated indices are implied. The
exchange is characterized by the function f

μ

ij (r), which can be
read off from Eq. (A12).

Diagonalizing the tight-binding Hamiltonian HIr gives

HIr =
∑
k,λ

εkλc
†
kλckλ, (B4)

where λ labels the eight eigenstates for each k, and

d
†
kiα =

∑
λ

c
†
kλUλ,iα(k). (B5)

We now treat Hfd as a perturbation to the Ir tight-binding
Hamiltonian HIr. By standard second-order perturbation
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theory, we obtain the effective RKKY exchange between the
local moments of the R subsystem,

HRKKY =
∑

i

〈	0|Hfd|	i〉〈	i |Hfd|	0〉
E0 − Ei

, (B6)

in which |	0〉 and E0 are the ground state and the correspond-
ing energy, and |	i〉 and Ei are the ith excited state and the
corresponding energy. This result can be written

HRKKY = 1

2

∑
r1i1,r2i2

Ji1i2 (r1 − r2)τ z
i1

(r1)τ z
i2

(r2), (B7)

with Ji1i2 (r1 − r2) ≡ J̃i1i2 (r1 − r2) + J̃i2i1 (r2 − r1), where

J̃i1i2 (r1 − r2) = 1

4

∑
r′

1,r
′
2

f
μ1
i1j1

(r1 − r′
1)f μ2

i2j2
(r2 − r′

2)Rμ1ν1
j1

Rμ2ν2
j2

× σ
ν1
α1β1

σ
ν2
α2β2

1

N2
c

∑
k1,k2

ei(k2−k1)·(r′
1−r′

2)Uλ1,j1α1

× (k1)U∗
λ1,j2β2

(k1)Uλ2,j2α2 (k2)U∗
λ2,j1β1

(k2)

× �
[
εF − ελ1 (k1)

]
�

[
ελ2 (k2) − εF

]
ελ1 (k1) − ελ2 (k2)

. (B8)

Here σ ν is the Pauli matrix, Nc is the number of unit cell, and
�(x) is the Heaviside step function.

Since the RKKY exchanges are quadratic in c1 and c2, we
can simply focus on the regime with c1 � 0 and define an angle

	 ≡ tan−1(c2/c1) and c ≡
√

c2
1 + c2

2. As shown in Fig. 5, we
compute the RKKY exchanges of a finite system with 10 ×
10 × 10 unit cells for both the STI phase with tσ = −2t and the
semimetal phase with tσ = −t . Clearly the RKKY exchanges
beyond fourth neighbor become significantly smaller. We now
focus on the truncated RKKY exchanges up to fourth neighbor.
The Curie-Weiss temperature is found to be

�CW = 1
2 (J1 + 2J2 − 3J3 − 3J ′

3 + 2J4). (B9)

The transition from the high-temperature paramagnetic phase
to low-temperature ordered phase is continuous at mean-field
level. The transition from paramagnetic phase to all-in all-out
state is of three-dimensional Ising type. We can then determine
the critical temperatures for this transition by the usual
condition of marginal stability (vanishing of the quadratic term
in the Landau theory) of the free energy. Restricting to q = 0
magnetic order, we find that the critical temperatures for all-in
all-out and two-in two-out states are given by

Tc(all-in all-out) = 1
2 (−J1 − 2J2 − J3 − J ′

3 − 2J4),

(B10)

Tc(two-in two-out) = 1
6 (J1 + 2J2 − 3J3 − 3J ′

3 + 2J4),

(B11)

respectively. The actual transition temperature is determined
by the higher one of the above transition temperatures.
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