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Time-reversal invariant three-dimensional topological insulators can be defined fundamentally by a topological
field theory with a quantized axion angle θ of 0 or π . It was recently shown that fractional quantized values of θ are
consistent with time-reversal invariance if deconfined, gapped, fractionally charged bulk excitations appear in the
low-energy spectrum due to strong correlation effects, leading to the concept of a fractional topological insulator.
These fractionally charged excitations are coupled to emergent gauge fields, which ensure that the microscopic
degrees of freedom, the original electrons, are gauge-invariant objects. A first step towards the construction
of microscopic models of fractional topological insulators is to understand the nature of these emergent gauge
theories and their corresponding phases. In this work, we show that low-energy effective gauge theories of both
Abelian or non-Abelian type are consistent with a fractional quantized axion angle if they admit a Coulomb phase
or a Higgs phase with gauge group broken down to a discrete subgroup. The Coulomb phases support gapless
but electrically neutral bulk excitations while the Higgs phases are fully gapped. The Higgs and non-Abelian
Coulomb phases exhibit multiple ground states on boundaryless spatial three-manifolds with nontrivial first
homology, while the Abelian Coulomb phase has a unique ground state. The ground-state degeneracy receives
an additional contribution on manifolds with boundary due to the induced boundary Chern-Simons term.
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I. INTRODUCTION

Topological insulators1–3 are new states of quantum mat-
ter that cannot be adiabatically connected to conventional
insulators. They are fully gapped in the bulk but support
gapless boundary modes that are protected by discrete
symmetries.4–11 Topological insulators were first discovered
in HgTe quantum wells.12,13 More recently, three-dimensional
(3D) time-reversal invariant topological insulators have at-
tracted a great deal of attention, for the most part due to
the theoretical prediction14,15 and subsequent experimental
detection16–18 of their protected helical surface states. The
existence and stability of these surface states is protected by a
bulk Z2 topological invariant that corresponds physically to a
topological magnetoelectric effect4 (TME). The experimental
observation of the TME, for instance, by way of magnetoop-
tical measurements,4,19,20 is a key goal in the field that is
being actively pursued.21–26 From a theoretical standpoint,4 the
TME is described at energies much smaller than the energy
gap by the addition of a term proportional to E · B (with E
and B the electric and magnetic fields, respectively) to the
usual Lagrangian for Maxwell electrodynamics, i.e., axion
electrodynamics.27 This term is in fact the Abelian version
of the topological θ term in quantum chromodynamics,28,29

and its coefficient θ is periodic (under certain conditions30)
with period 2π . Since E · B is odd under time-reversal
symmetry (T ), the only values of θ allowed by T are 0
or π mod 2π , with θ = 0 for the Z2 trivial insulator and
θ = π for the Z2 nontrivial insulator.4 Topological insulators
can be described microscopically by noninteracting, spin-orbit
coupled electrons hopping on a lattice, and the axion angle θ

can be computed from a knowledge of the single-particle wave
functions in momentum space.4,31

In the presence of electron interactions, the concept of
a topological insulator can no longer be defined in terms

of band theory, but the fundamental definition in terms of
the topological field theory and the axion response function
remains generally valid.4 Weak interactions can either turn the
noninteracting helical surface state into a weakly interacting
helical Fermi liquid with spin-charge coupled collective
modes,32 or drive a transition to a superconducting state.33,34

Strong enough interactions can lead to spontaneous T breaking
on the surface and ferromagnetic4,35–39 or helical spin density
wave order.40 In contrast, the bulk of a topological insulator is
fully gapped and thus expected to be perturbatively stable
to interactions. On the other hand, exotic states known
as topological Mott insulators41–44 have been theoretically
proposed, whereas a topologically nontrivial band structure
is dynamically generated as a consequence of strong electron-
electron interactions. Although these are strongly interacting
states, their mean-field description is still that of a topological
band insulator, and the axion angle θ remains quantized45,46 to
0 or π mod 2π . Another type of topological Mott insulator
has been theoretically proposed47,48 in which spin-charge
separation49 leads to a bulk insulator with a helical liquid of
gapless spinons, but an electromagnetic θ term is not generated
because the spinons are electrically neutral.

In many regards, the 3D T -invariant topological insulator
can be viewed as a generalization of the 2D integer quantum
Hall effect (IQHE) to 3D. The topological Z2 quantization
of the bulk axion angle θ in 3D is the direct analog of the
topological Z quantization of the bulk Hall conductance in
2D. By analogy with the relation between the IQHE and
the fractional quantum Hall effect (FQHE), one is naturally
led to the question whether there can exist a “fractional 3D
topological insulator” that preserves T but is characterized
by a fractional quantized axion angle, i.e., where θ is a
noninteger, rational multiple of π . A T -invariant fractional
topological insulator was first proposed in two dimensions,50
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and more recent works have shown the robustness of such
a state.51–53 In the special case of conserved Sz, the QSH
insulator is equivalent to two decoupled IQHE systems with
equal and opposite effective magnetic fields. Both IQHE
systems can be driven into FQHE states by adding electron-
electron interactions and appropriately tuning the effective
magnetic fields while keeping them equal and opposite, which
yields a fractional QSH insulator without breaking T . On the
other hand, this procedure is not directly applicable to three
dimensions, where one cannot in general reduce a T -invariant
topological insulator to two decoupled topological states which
break T in an equal and opposite way.54

Recently, a theory of T -invariant fractional topological
insulators (fTI) in 3D was introduced55,56 based on a parton
construction.57,58 Postulating that an electron, under the
influence of strong interactions in the underlying lattice
Hamiltonian, fractionalizes into Nc “colors” of partons gives
a realization of a fractional topological insulator, as long as
each color of partons forms a topological band insulator.
To ensure that outside the fTI the partons recombine into
electrons, one needs to introduce additional gauge degrees
of freedom. Outside the topological insulator these emergent
gauge fields are confining. As a consequence, the partons,
which are charged under the emergent gauge fields, can never
be observed in isolation but are instead confined into electrons,
just like quarks are confined into mesons and baryons in quan-
tum chromodynamics. The theory of the partons together with
the emergent gauge fields should be thought of as a low-energy
effective description of the system. The goal of this paper is to
show that consistent low-energy theories with the characteris-
tic properties of a fTI exist and to analyze their properties.59

There are many choices and questions associated with
the additional emergent gauge fields. Are they Abelian or
non-Abelian in nature? By construction they should confine
outside the fTI, but what phase do they realize inside the fTI?
As pointed out in Ref. 56, the gauge fields should be in a
deconfined phase inside in the fTI, to ensure that the partons
are propagating degrees of freedom. The search for deconfined
phases in effective gauge theories of condensed matter systems
and their identification as fractionalized phases of matter with
unconventional types of order is an important question in
modern theoretical condensed matter physics.60 Deconfined
Z2 gauge fields appear in effective theories of gapped spin
liquids,61–66 high-temperature superconductors,67,68 and non-
Fermi liquids.69,70 Deconfined U (1) gauge fields appear in
effective theories of gapped71–73 and gapless74–76 spin liquids,
FQH liquids,77–80 high-temperature superconductors,81–84 and
unconventional quantum phase transitions.85,86 Deconfined
non-Abelian gauge fields such as SU (N ) gauge fields appear in
parton constructions of FQH liquids.58,87 In the Abelian case,
deconfined phases typically arise at small gauge coupling,
with a spectrum consisting of weakly interacting gauge bosons
that are gapped for discrete gauge groups such as the cyclic
group ZN and gapless for continuous gauge groups such as
U (1).60 Deconfined phases of non-Abelian gauge fields are
generally harder to come by, due to the renormalization group
flow towards confinement at low energies (“infrared slavery”)
that occurs even at weak coupling.88 A notable exception is
the deconfining effect of the Chern-Simons term in 2 + 1
dimensions even for non-Abelian gauge groups,89–91 which

ensures the stability of non-Abelian parton constructions of
FQH liquids.58,87 In Ref. 55, we mostly focused on the
case of continuous gauge groups. In this case, it is easy
to write down continuum gauge field theories with Abelian
or non-Abelian groups and to demonstrate the theoretical
consistency of fTIs, in principle. Examples of both types were
presented in our earlier work. One generic feature that all
realizations of fTIs with continuous gauge groups share is
the presence of additional gapless degrees of freedom. One
typically considers topological insulator phases that are fully
gapped in the bulk. In the case of continuous gauge groups, we
have to slightly generalize this understanding by demanding
that all degrees of freedom charged under electromagnetism
are gapped, while allowing for electrically neutral gapless
degrees of freedom. In that case, the system is indeed an
insulator as far as electrical transport is concerned. These
additional neutral gapless degrees of freedom play a role
similar to the low-energy phonons in a band insulator, and
do not spoil the quantization of the electromagnetic response.
We will refer to gapless deconfined phases as Coulomb phases.

Even if the fTI is described by an effective gauge theory
with continuous gauge group at a given energy scale much
less than the original electron bandwidth, it is possible that
the system undergoes a transition to a Higgs phase at an even
lower energy scale. We will present an explicit model of this
kind in this work. The continuous gauge group is broken down
to a discrete gauge group, and the latter is sufficient to ensure
that in physical states, the net electron number is integer. In
this case, the system is truly gapped with no gapless degrees of
freedom, but the partons are deconfined just as in the Coulomb
phases.

As we will elaborate in more detail in this work, the
basic topological feature of the fTI, a fractional θ angle,
is completely robust in that it only depends on the total
number of partons and not on any of the details of the
emergent gauge sector—whether it is Abelian or non-Abelian
and in a Coulomb or Higgs phase. This universal θ angle
characterizes the TME in the material together with its
physically measurable surface properties, such as a surface
FQHE with half the conductivity of a typical Laughlin state
per surface as well as the corresponding magnetooptical Kerr
and Faraday effects.4,19,20,92

There is, however, a second topological feature of the fTI
that does depend on details of the gauge field sector: the
ground-state degeneracy. Some basic features of the ground-
state degeneracy have already been discussed in Ref. 55, but
here we will elaborate on this. It has recently been proven56 that
for a fully gapped system, θ can only be fractional if the ground
state on the three-torus T 3 is degenerate. This observation
makes it clear that a confined phase is not an option for the
fTI, as it would result in a unique ground state in a completely
gapped system. In the case of a Coulomb realization of the
fTI, we will find that the ground state in the Abelian models
is unique, whereas in the non-Abelian models it is typically
degenerate. The reason why this is not in contradiction with
the theorem of Ref. 56 can be traced to the fact that we
have additional gapless degrees of freedom, therefore violating
the assumption of Ref. 56 that the system is gapped. We
will demonstrate explicitly how this allows us to avoid the
arguments of Ref. 56. In the Higgs models, the ground state
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is degenerate as the aforementioned theorem requires, and we
determine the ground-state degeneracy. The presence of either
gapless degrees of freedom (for continuous gauge groups) or
a finite topological degeneracy (for discrete gauge groups) is
familiar from the study of topologically ordered spin systems,
where the Lieb-Schultz-Mattis-Hastings theorem93 requires
the existence of either type of low-energy modes.

The structure of the paper is as follows. In Sec. II, we
introduce three general classes of parton-gauge boson effective
theories: the Abelian U (1)Nc−1 Coulomb, the non-Abelian
SU (Nc) Coulomb, and the Higgs ZNc

models. We illustrate
the general ideas in each case by a specific example of Nc = 3
corresponding to three distinct classes of fTI but all with a
fractional axion angle θ = π/3. In Sec. III, we prove the topo-
logical quantization of the axion angle θ in fractional multiples
of π . We derive the quantization of the axion angle in both
Abelian and non-Abelian models, whether gapless or gapped.
In Sec. IV, we discuss the issue of ground-state degeneracy
on spatial three-manifolds of nontrivial topology. This is the
direct analog of the topological degeneracy in FQH states on
Riemann surfaces94 and can be taken as an indication that fTI
states exhibit topological order in the many-body sense.60 In
Sec. V, we briefly speculate on the nature of the gapless surface
states and summarize the paper in Sec. VI. Appendices A and
B clarify some technical issues concerning the ground-state
degeneracy on a three-manifold with boundary.

II. THREE CLASSES OF PARTON MODELS

In this section, we introduce the three basic classes of
possible emergent gauge sectors for a fTI, and describe in
more detail a specific Nc = 3 model in each class.

A. Coulomb models

As described in Introduction, one way to realize a fTI is to
drive the emergent gauge fields into a Coulomb phase. This can
be realized either in an Abelian or a non-Abelian setting with
rather different properties. What is common to any Coulomb
realization of an fTI is the appearance of extra gapless matter.
This extra gapless matter is neutral from the point of view of
the U (1)em Maxwell gauge field. Therefore the system is still
an insulator, i.e., all degrees of freedom charged under U (1)em

are gapped. These additional gapless degrees of freedom can
be considered as soft “phonons,” since they do not enter the
electrically charged sector.

1. Abelian models

Model A. In the simplest Abelian model of a fTI with Nc =
3, the electron fractionalizes into three fermionic partons ψi ,
i = 1,2,3 with an emergent U (1)2 = U (1)A × U (1)B gauge
group in addition to the U (1)em Maxwell gauge group. The
parton Lagrangian is

L = ψ
†
i

[
iD

ij

0 − Hθ (−iDij )
]
ψj + Lint(ψ

†
i ,ψi) + Lgf(aμ),

(1)

where Hθ (p) is the single-particle Hamiltonian for a noninter-
acting topological insulator with axion angle θ , and

Dij
μ = (Dij

0 ,−Dij
) = δij ∂μ + iAμtijem + iaa

μt ija

is the gauge-covariant derivative with Aμ the electromagnetic
gauge potential and aμ = aa

μta the emergent gauge potential.
Lin describes T -invariant residual interactions between the
partons, which do not destabilize their topological insulator
ground state and can thus be ignored. Lgf is the Lagrangian
for the emergent gauge field aμ and has to describe a Coulomb
phase (e.g., the Maxwell Lagrangian). The U (1)em generator is
tem = diag(e/3,e/3,e/3), and the U (1)A × U (1)B generators
are tA = diag(2g,−g,−g) and tB = diag(−g,2g,−g), where
e is the electromagnetic gauge charge and g is the emergent
gauge charge. Equivalently, the charge assignments are given
in Table I. These gauge groups ensure that the only gauge-
invariant operator that carries Maxwell charge is the product of
the three parton operators, hence the gauge-invariant electron
operator is ψ1ψ2ψ3. Indeed, the generators of the weight
lattice (see Sec. III B2) corresponding to the representation of
Table I are e1 = (2g,−g), e2 = (−g,2g), e3 = (−g,−g), and
the equation

∑
i niei = 0, requiring an operator ψ

n1
1 ψ

n2
2 ψ

n3
3 to

be gauge invariant, has the one-parameter family of solutions
n1 = n2 = n3, i.e., operators of the form (ψ1ψ2ψ3)n of which
only n = 1 corresponds to an operator with electromagnetic
charge e. For a T -invariant system, all three partons have a real
mass. As we will review in the next section, in the topologically
nontrivial phase all three partons have a real but negative mass.

This model is the simplest of the U (1)Nc/U (1)diag Abelian
models described in Ref. 55. The generic model starts out
with an emergent U (1)Nc gauge group and Nc partons. Each
parton carries charge e/Nc under the Maxwell U (1)em gauge
group. The ith parton carries charge g under the ith U (1)
factor of the emergent gauge group, and is neutral under
the remaining U (1) factors. One then takes the quotient of
the emergent gauge group by its diagonal U (1)diag subgroup
whose generator is simply the sum of the generators of the
individual U (1)i factors. For the particular case of Nc = 3,
the gauge group presented above represents the two remaining
gauge group factors U (1)A = 2U (1)1 − U (1)2 − U (1)3 and
U (1)B = −U (1)1 + 2U (1)2 − U (1)3. These are two linear
combinations that are orthogonal to U (1)diag, in the sense
that their generators satisfy tr tAtem = tr tB tem = 0. For this
choice of generators, one obtains the convenient feature
that the emergent parton charges are integer multiples of g.
These generators are, however, neither orthogonal to each
other (tr tAtB �= 0) nor properly normalized (tr tA,BtA,B �= g2).
Therefore, if one really starts out with a U (1)3 gauge theory,
the Maxwell gauge kinetic term tr FμνF

μν would contain
a mixed FA

μνF
μν

B term. The generators can, however, be
easily orthonormalized, and upon doing so, we find precisely
the generators H1 and H2 [see Eq. (15)] of the maximal
diagonal subgroup U (1)2 of SU (3) (see Sec. III B2). The
same construction works for a general number of “colors”

TABLE I. Gauge charge assignments of parton fields under elec-
tromagnetic U (1)em and emergent U (1)2 = U (1)A × U (1)B gauge
groups in the simplest Abelian model for Nc = 3.

field U (1)em U (1)A U (1)B

ψ1 e/3 2g −g

ψ2 e/3 −g 2g

ψ3 e/3 −g −g
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Nc, yielding, once again, parton charges that can be chosen
to only take values 2g and −g under the various Abelian
factors at the price of nondiagonal kinetic terms. As the gauge
kinetic terms do not impact the topological properties, this
is of no importance. This allows one to study a simplified,
topologically equivalent version of the model where one takes
the above charge assignments with standard Maxwell terms
(no mixing) and forgets about the fact that the U (1)Nc−1 gauge
group originated from U (1)Nc in the first place. If desired,
a set of orthonormal generators is provided by the Cartan
generators H1, . . . ,HNc−1 of SU (Nc), i.e., the generators of
its maximal diagonal subgroup U (1)Nc−1. In fact, as far as
the electrically charged degrees of freedom are concerned,
the U (1)Nc/U (1)diag model discussed above is equivalent to a
non-Abelian SU (Nc) model where SU (Nc) is spontaneously
broken to its maximal diagonal subgroup U (1)Nc−1.

Upon integrating out the massive partons and setting the
electromagnetic gauge potential to zero, in the fTI phase, we
are left with a pure U (1)Nc−1 dynamical gauge theory with
θ = π mod 2π . For a continuum theory, there is a single
phase, the deconfined Coulomb phase. This phase corresponds
to a free field infrared fixed point at which the renormalized
coupling g vanishes. In other words, in the infrared we have
free Dirac fermions (the partons) and photons (the emergent
gauge fields). For a theory defined on the lattice, we obtain
two phases, the deconfined Coulomb phase and the confined
phase.95–97 The fTI phase corresponds to the Coulomb phase,
which is equivalent to the continuum theory in the infrared
except for a doubling of the number of fermion species. The
topological properties are the same in both the continuum
and lattice cases. However, the value (0 or π mod 2π ) of the
θ angle for the (free) partons is dependent upon the choice
of regularization procedure in the continuum theory, while
it is fixed by the lattice Hamiltonian in the lattice theory.4

In analogy with the results of Cardy and Rabinovici98 and
Cardy99 for ZN gauge theory in 3 + 1 dimensions, one may,
however, wonder whether the emergent θ term with nonzero
θ = π could affect the phase diagram of the emergent gauge
sector, since the gauge theory is now dynamical. This is not so
because a U (1) gauge theory can be viewed as the N → ∞
limit of a ZN gauge theory, and in this limit, the “electric”
charges of ZN gauge theory disappear from the spectrum100

and the θ term has no effect on the bulk free energy.

2. Non-Abelian models

One may question whether a “Coulomb” phase is actually
realizable for non-Abelian models, given the infrared renor-
malization group flow towards strong coupling in pure SU (Nc)
Yang-Mills theory. Although the latter theory is generally
believed to be confining at zero temperature, adding gapless
matter can result in a deconfined phase. For example, the
flow to strong coupling is reversed if a large enough number
of flavors of gapless fermions couple to the SU (Nc) gauge
field.88 Another example is given by N = 4 supersymmetric
Yang-Mills (SYM) theory with any gauge group, in particular
with gauge group SU (Nc), which is conformally invariant and
hence in a Coulomb phase.101 In fact, this is the generic case
even in nonsupersymmetric Yang-Mills theories with enough
gapless matter: for matter in the fundamental representation

as well as for matter in two-index tensor representations, it is
believed that SU (m), SO(m), and Sp(m) gauge theories all
exhibit a “conformal window,” that is, the gauge theory flows
in the infrared to a conformally invariant stable fixed point
corresponding to a strongly coupled but deconfined phase as
long as the number of flavors Nf is within a certain finite range.
A conjecture for the exact values of Nf that bound the con-
formal window has been put forward for example in Ref. 102.
The upper end of the conformal window is theoretically well
established: for Nf larger than this maximal value, the gauge
theory loses asymptotic freedom, i.e., it flows to the Gaussian
fixed point at low energies. Just below the upper end of the
conformal window it can be established, using perturbation
theory, that at least for large Nc the theory indeed flows at
low energies to a stable conformal fixed point known as the
Banks-Zaks fixed point.103 The lower bound of the conformal
window is mainly conjectural based on partial resummations.
There has been a lot of recent activity on numerical studies of
the conformal window using lattice gauge theory.104 While
the precise lower bound of the conformal window is still
up to debate, the existence of a conformal window has
been firmly established, even for nonsupersymmetric gauge
theories. In gauge theories with N = 1 supersymmetry, the
full conformal window has been mapped out using the power
of holomorphy.105 For example, the N = 1 supersymmetric
SU (Nc) gauge theory flows in the infrared to a stable,
deconfined, conformal fixed point for 3

2Nc < Nf < 3Nc.
As for the Abelian models, those Coulomb non-Abelian

models have additional gapless degrees of freedom. For
example, in the case of N = 4 SYM theory the extra matter
consists of adjoint fermions and scalars, in addition to the
gauge fields. One important difference compared to the
Abelian case is that in the case of a non-Abelian gauge theory at
a nontrivial fixed point the extra matter is not free, but remains
interacting with a fixed renormalized coupling g∗, where g∗
is fixed by the requirement that the renormalization group β

function vanishes. In the special case of N = 4 SYM theory,
g∗ is in fact a free parameter and the β function vanishes
identically for all values of the coupling.101 Not only do the
emergent gauge fields remain strongly coupled to each other,
the partons remain strongly coupled to the emergent gauge
fields. Below, we will argue that the value of the fractional
θ angle only depends on the number of partons the electron
fractionalizes into and is completely robust even against these
strong interactions that remain in the low-energy effective
theory of the partons. In fact, in case of N = 4 SYM theory,
this has been demonstrated explicitly in the extreme limit of
very large coupling, employing a holographic realization of
this particular model.106

Model B. The canonical example in this class, which we will
refer to as an example in various sections, is a model with Nc =
3 partons of electric charge e/3 coupled in the fundamental rep-
resentation to a SU (3) gauge field with some additional mass-
less adjoint matter fields which we denote collectively by 	a ,

L = ψ
†
i

[
iD

ij

0 − Hθ (−iDij )
]
ψj + Lint(ψ

†
i ,ψi)

+Lgf(aμ) + Lmatter
(
	a,∂μ	a − gf abcab

μ	c
)
, (2)

where f abc are the structure constants of SU (3).107 The role
of the matter fields 	a , which couple only to aμ and not to
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Aμ, is to drive aμ into a Coulomb phase. The detailed form of
Lmatter is largely irrelevant from a topological point of view,
except for the question of the ground-state degeneracy on T 3.
N = 4 SYM theory can serve as the canonical example. It
should be clarified that the existence of massless matter fields
is consistent with the partons being gapped. The massive
partons, which carry the fundamental representation of the
SU (3) group, are the only electrically charged particles and
dominate electromagnetic transport. Being gapped, they are
irrelevant for the low-energy dynamics of the emergent gauge
field. The latter is driven by the massless SU (3) charged but
electrically neutral extra matter.

One consequence of the residual interactions at low energies
is that sometimes T is spontaneously broken in the topologi-
cally nontrivial phase, that is, at θ = π . Whether this happens
or not depends on many details of the emergent gauge sector.108

For the purpose of constructing parton models of fTI, the
important lesson to remember is that even though spontaneous
T breaking does sometimes occur, Coulomb phases of non-
Abelian gauge theories with unbroken T do exist. In the large
Nc limit, the situation is slightly better understood:109 while
pure SU (Nc) Yang-Mills theory is believed to spontaneously
break T at θ = π , additional gapless matter can prevent this.
In particular, N = 4 SU (Nc) SYM theory is T invariant at
θ = π in the large Nc limit.

One other important difference between the Abelian and
the non-Abelian models concerns spin. In model A, each
of the three partons belongs to a different one-dimensional
irreducible representation of the emergent gauge group U (1)2.
The requirement that for a fermionic state the many-body wave
function has to be antisymmetric under interchange of both
color and spin indices does not constrain the symmetrization
properties of the spin quantum numbers, and hence the total
spin, because gauge invariance does not require a separate,
complete antisymmetrization of the color indices in this case.
A spin-1/2 electron is always possible. In model B, however,
gauge invariance under the SU (3) group requires that the
many-body wave function be completely antisymmetric in
color indices. Correspondingly, the spin indices have to be
completely symmetrized, and in model B the electron would
have spin 3/2. Because spin rotation invariance is already
broken in a topological band insulator by spin-orbit coupling,
this does not create a problem, but it is certainly an aspect of
our non-Abelian models to keep in mind.

3. General Coulomb model

The general deconfined model will have some Abelian
(free) factors and some non-Abelian (interacting) factors. A
large class of models of this type was introduced in our earlier
work.55 The emergent gauge group in this general model is∏Nf

a=1 U (Na
c )/U (1)diag. The total number of partons is

Nc =
Nf∑
a=1

Na
c . (3)

For every flavor a = 1, . . . ,Nf we have Na
c partons trans-

forming in the fundamental representation of the non-Abelian
SU (Na

c ) factor and carrying U (1)a charge qa = g/Na
c as well

as electromagnetic charge qem
a , while being neutral under

all the other gauge groups. The diagonal subgroup U (1)diag,
whose generator is the sum of all the U (1)a generators, is
modded out. The only gauge-invariant operator that carries
nonvanishing electromagnetic charge is the product of all the
partons. To be gauge invariant under each of the individual
non-Abelian factors, one needs to form baryonic operators
out of the partons in the fundamental representation of that
factor. These individual baryons, however, will carry U (1)a
charge g. Only the product of all the individual baryons is
gauge invariant, as this is the only way to get a gauge-invariant
operator whose only emergent U (1) charge is the charge under
the diagonal subgroup U (1)em, which is removed from the
emergent gauge group. The electromagnetic charge of this
gauge-invariant operator is

Q =
Nf∑
a=1

Na
c qem

a , (4)

hence the qem
a have to be chosen in such a way that Q = e.

An alternative to SU (Nc) gauge groups is to use models
based on orthogonal or symplectic gauge groups. The gauge-
invariant operators in such theories are the mesons qaqbδ

ab and
qaqbω

ab, respectively, where δab is the Kronecker delta and ωab

the corresponding antisymmetric invariant tensor for the sym-
plectic group. Both theories have baryons qa1 . . . qaNc

εa1···aNc .
However, in the Sp(Nc) theory where Nc is even, these baryons
are not independent operators but are equivalent to a product of
mesons, because the symplectic tensor ωab is antisymmetric.
By analogy with the [U (M) × Sp(2k)]1 Chern-Simons theory
of the Zk parafermion FQH states obtained from a parton
construction,87 these theories hold the promise of generating
more exotic surface states. However, if we take the partons
to have electric charge q, not only do we obtain baryons with
electric charge Ncq, which would suggest q = e/Nc as before,
but the mesons are also charged as we can make mesons from
two fundamental quarks. In the SU (Nc) case, mesons are made
from a fundamental quark and an antifundamental antiquark.
Therefore this time we are forced to identify the mesons with
the electrons.87 Furthermore, we have to assign the partons
charge q/2, and at the same time take the number of partons
Nc to be even so that the baryons carry an integer multiple
of the electron charge, which is consistent with the fact that
symplectic groups are only defined for even Nc. To ensure that
this mesonic electron is a fermion, we need the electron to
split into two different partons, a fermion and a boson, both in
the fundamental representation of the gauge group. We would
also get gauge-invariant scalar bosons with the same charge e

as the electron, but presumably these can be made gapped. In
this case, the axion angle θ has to be an integer multiple of
Ncπ/4 from the Nc fermions of charge e/2. This structure is
somewhat reminiscent of the Z2 spin liquid model of an fTI
put forward in Ref. 56.

B. Higgs models

In order to get a completely gapped system that realizes a
topological insulator, it is sufficient to add electrically neutral
Higgs fields to the Coulomb models of Sec. II A, and consider
a specific pattern of spontaneous symmetry breaking G → H

with G the original gauge group, such that the unbroken gauge
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TABLE II. Gauge charge assignments of parton fields under
electromagnetic U (1)em and unbroken emergent Z3 gauge groups in
the simplest Higgs model for Nc = 3. The third column corresponds
to the triality of the representation.

field U (1)em Z3

ψ1 e/3 1
ψ2 e/3 1
ψ3 e/3 1

group H in the Higgs phase is discrete. One can modify model
B above to realize the following possibility.

Model C. A simple Higgs model can be obtained by aug-
menting the simplest non-Abelian three-parton model, model
B above [see Eq. (2)], by inclusion of two complex scalar
Higgs fields φa

1 and φa
2 in the adjoint representation of SU (3),

L = ψ
†
i

[
iD

ij

0 − Hθ (−iDij )
]
ψj + Lint(ψ

†
i ,ψi)

+Lgf(aμ) + Lmatter(	,Dμ	)

+ 1
2 (Dμφ1)†Dμφ1 + 1

2 (Dμφ2)†Dμφ2

−V1(φ†
1φ1) − V2(φ†

2φ2),

where (Dμ	)a = ∂μ	a − gf abcab
μ	c, and similarly for

(Dμφ1)a and (Dμφ2)a , is the gauge-covariant derivative with
respect to the SU (3) gauge field aμ alone in the adjoint
representation. The potentials V1 and V2 are SU (3) invariant.

The center of SU (3) is Z3 and the adjoint Higgs fields φ1

and φ2 are neutral under this center symmetry. On the one
hand, if (say) only V1 is such that 〈φ1〉 �= 0 while 〈φ2〉 = 0,
we can always perform a global SU (3) transformation to
diagonalize 〈φ1〉. The continuous part of the gauge group
is broken to its maximal diagonal subgroup U (1)2 and one
recovers the fermions and gauge fields of model A together
with several charged scalars. On the other hand, if V1 and V2

are such that 〈φ1〉 and 〈φ2〉 acquire generic noncommuting
expectation values, the continuous part of the gauge group
is completely broken and generically only the discrete Z3

center symmetry is unbroken. Under this discrete gauge
group, the parton charges are given in Table II. The third
column corresponds to the nonzero triality k = 1 mod 3 of the
fundamental representation with character e2πi/3. In general,
for a SU (Nc) → ZNc

Higgs mechanism, we want the partons
to be in a representation of SU (Nc) with nonzero Nc-ality
k = 1,2, . . . ,Nc − 1 mod Nc with character e2πik/Nc �= 1. This
discrete subgroup of the original continuous emergent gauge
group is completely sufficient to ensure that all gauge-invariant
operators have charges that are an integer multiple of the
electron charge. Indeed, the centerZ3 of SU (3) is generated by
a single element of the Cartan subalgebra, H2 ∝ diag(1,1,−2)
in Eq. (15). The weight lattice of the emergent gauge field
is generated by the (unnormalized) weight vectors e1 = 1,
e2 = 1, e3 = −2. An operator ψ

n1
1 ψ

n2
2 ψ

n3
3 neutral with respect

to the emergent gauge field must satisfy
∑

i niei = 0, which
leads to n1 + n2 = 2n3, hence the total Maxwell charge is
e(n1 + n2 + n3)/3 = n3e ∈ Ze. ψ1ψ2ψ3 is still the simplest
gauge-invariant operator, but as long as the fermions have
internal spin states that can be antisymmetrized, ψ3

i or ψ2
i ψj

with i,j = 1,2,3 and i �= j would give rise to additional

gauge-invariant operators. Physically, these operators can be
considered as an electron combined with condensed Higgs
bosons. In the relativistic continuum theory, the fermions carry
spin 1/2 and ψ3

i vanishes identically. As the fundamental
degrees of freedom of the theory are the partons, the presence
of these extra bound states carrying integer electron charge e

does not affect the physics. The important requirement is that
Gauss’ law, which enforces overall Z3 neutrality, ensures that
the net charge of the whole sample is an integer multiple of
the electron charge.

For Higgs fields that transform trivially under the centerZNc

of SU (Nc), as is the case here, it is known that the confined and
Higgs phases are distinct.110 In the Higgs phase, the system is
completely gapped even in the charge neutral sector because
the unbroken gauge group Z3 is discrete. However, in the limit
of infinite Higgs stiffness κ → ∞, the system behaves like a
ZNc

gauge theory, which has an additional gapless Coulomb
phase separating the (gapped) Higgs and confined phases for
large enough Nc.100,110 It it possible that this phase persists
for finite but large enough κ .100 In this case, there would be
two distinct fTI phases with the same value of θ , one gapless
and the other fully gapped. We also note that the presence
of a θ = π term in the emergent ZNc

gauge theory gives
rise to the presence of oblique confined phases with dyon
condensation in addition to the usual confined phase,98,99 but
does not remove the Higgs and Coulomb phases corresponding
to the fTI. Finally, one can also construct Abelian Higgs models
in addition to the non-Abelian Higgs model discussed here,
with U (1)Nc−1 broken to a discrete subgroup. In the simplest
case Nc = 3, we can add two charge-3 complex scalars φ1, φ2

to the Lagrangian (1) of Model A,

L = ψ
†
i

[
iD

ij

0 − Hθ (−iDij )
]
ψj + Lint(ψ

†
i ,ψi) + Lgf(aμ)

+ 1
2

∣∣(∂μ + 3iga1
μ

)
φ1

∣∣2 + 1
2

∣∣(∂μ + 3iga2
μ

)
φ2

∣∣2
−V1(|φ1|2) − V2(|φ2|2),

which is invariant under the U (1)2 gauge transformations ψ →
ei�ataψ (sum over a), φa → e3ig�a

φa (no summation), aa
μ →

aa
μ − ∂μ�a . If V1 and V2 are such that 〈φ1〉 �= 0 and 〈φ2〉 �= 0,

the only gauge transformations that leave the vacuum invariant
are �1 = 2πk1

3g
, �2 = 2πk2

3g
, k1,k2 = 0,1,2 mod 3. From the

point of view of the partons, these correspond to ei�ata =
e−2πik/3, k = k1 + k2 = 0,1,2 mod 3, which form the discrete
group Z3. It has been shown recently111 that the topological
limit of ZNc

gauge theory in 3 + 1 dimensions is described by
a level-Nc BF theory. In that sense, the ZNc

fTI discussed here
is similar to the fTI discussed in Sec. 6 of Ref. 112.

We conclude this section with a brief discussion of the
extent to which the low-energy effective theories we have
discussed so far have a chance of being realized in a
microscopic model of electrons. The Abelian U (1)Nc−1 theory
contains only partons and gauge fields that arise naturally from
the parton decomposition of the electron. Therefore there is no
principle that forbids the realization of such a field theory in
an electron model. As discussed, the non-Abelian SU (Nc)
models typically require extra gapless electrically neutral
fermions to achieve a Coulomb phase. It is not at present
clear to us how such low-energy effective theories could arise
from an electron model, since charge e bosons could emerge
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as bound states of an electron and a neutral fermion. We
speculate that the non-Abelian models might be relevant for
cold atom systems where charge e fermions and charge e

bosons can occur. On the other hand, the Higgs phases of the
non-Abelian models are possible in a pure electron model, with
the SU (Nc) gauge group spontaneously broken to a subgroup
such as U (1)Nc−1 or ZNc

due to the condensation of parton
bilinears (i.e., “composite Higgs”) of the form φa = ψ

†
i t

ij
a ψj

with t
ij
a the SU (Nc) generators, i.e., “color” superconductivity

in the parton sector. Note that a ground state with 〈φa〉 �= 0
would carry a “color” supercurrent but no electromagnetic
supercurrent, hence the electromagnetic response would truly
be that of a fractional axion insulator rather than that of a
superconductor.

III. FRACTIONAL TOPOLOGICAL MAGNETOELECTRIC
EFFECT

A. Chiral anomaly

The calculation of the effective axion angle θ via the chiral
or Adler-Bell-Jackiw (ABJ) anomaly113,114 was mentioned
in our original work55 following earlier discussions4 and
has been spelled out in more detail elsewhere.11,53,106,115–117

This argument can be used to obtain topological insulators
in any even space-time dimension,4,11,53,117 but for now, let
us specialize to the case of the 3D T -invariant topological
insulator. The goal is to calculate the contribution to the
effective θ angle of a U (1) gauge group that arises from
integrating out a fermion of charge q. As (at least in model A)
our partons are charged under more than one Abelian group,
we want to calculate all terms of the form

Sθ = i
∑

a,b θabe
2

32π2

∫
M

d4x εμνλρF
a
μνF

b
λρ, (5)

where M is the (here, Euclidean) space-time manifold and
the label a runs over all the Abelian groups in the problem,
i.e., the emergent gauge groups as well as the Maxwell gauge
group. For example, in model A we have a,b ∈ {em,A,B}. The
non-Abelian case works similarly as will be discussed below.
Let us denote by qa

i the charge of the ith parton under the
ath gauge group in units of the corresponding gauge coupling
(e for the electromagnetic sector, g for the emergent sector).
In the Dirac kinetic term for the parton, one can write a
complex mass term with mass M as the complex bilinear
operator ψ(Re M + iγ5 Im M)ψ . The T operator takes M into
its complex conjugate M∗, so the system is only T invariant if
M is real. In other even space-time dimensions, it is a different
discrete symmetry that takes the role of enforcing a real mass
term.11 Once M is real, we see that there is a Z2 choice of
mass terms: M can be real and positive or real and negative.
The two can not be smoothly deformed into each other in a
T -invariant fashion without crossing M = 0, that is, without
closing the gap.

As all that matters in terms of physics of interfaces is the
difference in θ , we can choose the θ term to be zero in the
case that M is real and positive, which one identifies as
the topologically trivial case. At the classical level, we can
always perform a chiral rotation ψ → eiαγ5ψ to absorb the
phase of M . This chiral rotation is a symmetry of the massless

theory. One can think of the mass as a spurion, i.e., as arising
from the expectation value of a nondynamical background
field, to restore the symmetry in the massive case by letting
M transform as M → e2iαM . If the phase of M is originally
θ0, with θ0 = π for the topologically nontrivial T -invariant
insulator, M can be made real and positive by a chiral rotation
with angle α = −θ0/2. However, this chiral rotation is not a
symmetry of the quantum effective action, as the path integral
measure is not invariant. Performing such a rotation generates
a θ term of the form given in Eq. (5), with a coefficient that is
determined by a triangle diagram with one axial current and
two U (1) currents,

θab =
∑

i

qa
i qb

i θ0, (6)

i.e., it is determined entirely by the gauge group representations
to which the integrated fermions belong. For the non-Abelian
case, the mixed θ terms (mixed between two gauge groups)
vanish identically due to the tracelessness of the representation
matrices. The diagonal θ terms are given by a similar formula
with the charges replaced by the trace over the generators of
the group in the representation of the partons. A single Dirac
fermion in the fundamental representation contributes θ = θ0.
This calculation is robust against inclusion of interactions118

as recently discussed in Ref. 117.
From Eq. (6) it follows immediately that Nc partons of

electric charge e/Nc generate a θ term for the Maxwell field
with θ = θ0/Nc, that is, θ = π/Nc if the partons realize a
T -invariant topological insulator. No reference to the emergent
gauge group is necessary. In the Abelian case, it is advanta-
geous to ensure that no mixed θ terms involving the Maxwell
field and an emergent gauge field are generated. Such mixed
terms give rise to extra contributions to the effective θ term
for the Maxwell field (denoted by “em”) once the emergent
gauge fields are integrated out. The latter is a delicate thing to
do in the Coulomb phase where the emergent gauge bosons
are gapless, but these mixed terms would alter the topological
properties of the Maxwell field. Vanishing of the mixed terms
requires that for any a �= em,∑

i

qa
i qem

i = 0. (7)

If all partons have the same electromagnetic charge qem
i =

1/Nc, this reads
∑

i q
a
i = 0, which is simply the requirement

that the electron is gauge-invariant under the emergent gauge
fields. This, by construction, is automatically satisfied in our
Abelian models presented above. Alternatively, Eq. (7) follows
from the orthogonality of the generators tr tatem = 0, a = A,B

(see Sec. II A1). On the other hand, the general non-Abelian
models introduced in Sec. II A3 have, for every gauge group
factor labeled by a, a total of Na

c partons with emergent charge
qa = 1/Na

c and a Maxwell electric charge that is more or less
unconstrained up to the overall condition Eq. (4). In this case,
mixed terms will be generated. The final value quoted for θ

in Ref. 55 is only obtained after integrating out the emergent
gauge fields in this case.

As an explicit example, take the Abelian Nc = 3 parton
model, model A (see Sec. II A1). Assume that all partons have
a topologically nontrivial mass, i.e., θ0 = π . Using the chiral
symmetry to rotate the phase of all three mass terms to a
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real and positive mass, we generate via the ABJ anomaly an
electromagnetic θ term with θ = Cπ , where

C =
∑

i

(
qem

i

)2 = 1

3
. (8)

No off-diagonal Fem ∧ FA or Fem ∧ FB terms are gener-
ated, because the corresponding anomalies

∑
i q

em
i qA

i and∑
i q

em
i qB

i vanish. In the emergent sector, nonzero θ terms
will be generated:

θAA =
∑

i

(
qA

i

)2
π = 6π, θBB =

∑(
qB

i

)2
π = 6π,

(9)
θAB = θBA = qA

i qB
i π = −3π.

These extra terms play an important role in the charge
quantization considerations below. We note that the above
calculations only depend on the fermion content of the theory,
and therefore can not distinguish between the Coulomb (model
A or B) or Higgs (model C) realizations of this particular
fermion content.

B. Topological quantization of the axion angle

In a topological band insulator, the low-energy description
of the electromagnetic response at energy scales below the
gap is in terms of a topological field theory with a Sθ ∼
θE · B term.4 From the point of view of the low-energy theory,
the partition function is T invariant only if eiSθ (or e−Sθ in
Euclidean signature) is T invariant which, together with the
Dirac quantization of fluxes appearing in Sθ , constrains θ to
take discrete values. In the fTI, after integrating out the massive
partons, the low-energy electromagnetic response still takes
the form θE · B, but with possibly fractional values for θ .
The fractional values of θ allowed in this case follow from
modified flux quantization conditions due to the presence of
the emergent gauge fields.

1. Quantization in the Abelian Coulomb phases

Consider the θ term for the Maxwell field,
θeffe

2

32π2 εμνλρFμνFλρ . The quantization condition on θeff

follows directly from the Dirac quantization condition
for magnetic charges, and the argument applies either in
Euclidean119,120 or Minkowski space-time4,30 (with certain
conditions on the electromagnetic fields in the latter case).
We consider the Euclidean case for simplicity. With periodic
boundary conditions, space-time is topologically equivalent
to the four-torus T 4. The minimal value of the space-time
integral Sθ of the θ term iθeffe

2

32π2 εμνλρFμνFλρ is obtained when
the smallest allowed magnetic monopole is inserted inside
both two-tori T 2

12 and T 2
34 where T 4 ∼= T 2

12 × T 2
34, and T 2

μν is
the two-torus generated by directions μ and ν. In Euclidean
space-time, all directions can be taken to be spacelike and
thus all fluxes Fμν are magnetic. We obtain

Sθ ≡ iθeffe
2

32π2

∫
T 4

d4x εμνλρFμνFλρ

= iθeffe
2

4π2

∫
T 2

12

dx1dx2 F12

∫
T 2

34

dx3dx4 F34, (10)

where the factor of 8 comes from the permutations of the ε

tensor.121 If the fundamental charge is e, the smallest allowed
magnetic monopole has magnetic flux

∫
T 2

F = 2π

e
≡ B0, (11)

and Sθ = iθeff , i.e., θeff is periodic with period 2π . In the parton
model, however, the fundamental charge is now e/Nc, and the
above argument would yield

∫
T 2 F = 2πNc

e
and Sθ = iN2

c θeff ,
which means that θeff would have period 2π

N2
c
. Also, the

requirement that the minimal allowed magnetic Maxwell flux
be NcB0 and no longer B0 seems to be in stark contrast to
the real world, where B0 fluxes have certainly been realized.
Both of those puzzles get resolved by taking into account that
in models with fractional charges interacting with emergent
gauge fields, Maxwell magnetic charges can be accompanied
by “color” magnetic charges, i.e., magnetic charges of the
emergent gauge fields.94,122,123 We now explain how this
increases the periodicity of θeff from 2π

N2
c

to 2π
Nc

. In order to
do that, we must first review how the Dirac quantization
condition is modified in the presence of multiple Abelian gauge
fields.

For multiple Abelian gauge fields, the Dirac quantization
condition qeqm ∈ 2πZ with qe, qm the electric and magnetic
fluxes, respectively (in the first example, we had qe = e and
qm = 2π

e
), through a closed two-manifold such as T 2, is

replaced by the more generic condition
∑

a qa
e qa

m ∈ 2πZ,
where again the superscript a labels the various Abelian gauge
group factors, including the Maxwell gauge group. For any
given gauge group a, qa

e qa
m does not have to be an integer

multiple of 2π . Therefore a minimal B0 flux is allowed, even
though the product qa

e qa
m of the Maxwell magnetic charge

producing this flux and the electric charge of a parton would
be 2π/Nc, as long as there are also color magnetic fluxes
present. This is possible because qe for the parton is nonzero for
the emergent gauge groups. Outside the topological insulator,
the emergent fields are confined and their magnetic flux has
no physical consequence. Indeed, confinement of the color
electric fluxes corresponds to condensation of the magnetic
fluxes,124 so the latter fluctuate wildly and there is no energy
cost associated with them. Therefore we recover the fact that
in a topologically trivial insulator a B0 flux is possible. Inside
an fTI, the emergent U (1) gauge field is deconfined and the
color magnetic flux does have an effect.

To determine the periodicity of θ , we need to consider the
contribution of all gauge fields to the action Sθ . We consider
the general topological term Eq. (5) with M = T 4, together
with the result of the anomaly calculation Eq. (6). Recall that
qa

i denotes the charge of the ith parton under the ath gauge
group in units of the gauge coupling, so that qa

e = eqa
i for the

parton. Since
∫
T 2 Fa = qa

m, one finds

Sθ = iθ0

4π2

∑
a,b,i

[(
eqa

i

)(
eqi

b

)][
qa

mqb
m

]

= iθ0

4π2

∑
i

[∑
a

(qe)ai (qm)ai

]2

. (12)

235128-8



MODELS OF THREE-DIMENSIONAL FRACTIONAL . . . PHYSICAL REVIEW B 86, 235128 (2012)

The Dirac quantization condition
∑

a qa
e qa

m ∈ 2πZ ensures
that this is θ0 times a sum of integers squared, so θ0 has
the standard 2π periodicity. The Maxwell θ angle is θ0/Nc,
according to Eq. (6), and so has periodicity 2π/Nc as
announced earlier.

We now demonstrate this explicitly on the example of model
A. The Dirac quantization condition, i.e., the condition that the
parton wave function should be single valued, allows a B0 flux
for the Maxwell field together with a color magnetic flux B0/3
for the (say) U (1)B magnetic field. To see this, we note that the
phase αi by which the wave function of the i parton changes
when taken around a loop enclosing this flux is

αi = 2π

(
eqB

i

B0

3
+ eqem

i B0

)
, (13)

which yields α1 = 0, α2 = 2π , α3 = 0 and the wave function
is indeed single valued. A calculation of the θab angles in model
A, similar to Eq. (9) but with a general θ0, yields θem = θ0/3
and θBB = 6θ0, and we obtain with a,b ∈ {em,A,B} and in
Lorentzian signature,

eiSθ = ei
∑

a,b

θab
2π

e2

2π

∫
d4x Ea ·Bb = e

i(6θ0× 1
32 + θ0

3 ×12) = eiθ0 ,

(14)
as announced earlier. θ0 has periodicity 2π , and hence the
Maxwell θ angle has periodicity 2π/3.

2. Quantization in the non-Abelian Coulomb phases

In the non-Abelian case, the discussion of charge quanti-
zation closely follows the Abelian case discussed above. The
proper quantization condition for magnetic fluxes in that case
is ea · mb ∈ 2πZδab, where ea is a “electric flux vector,” mb

is a “magnetic flux vector,” and the indices a,b run over the
generators of the gauge group.94,125,126 Mathematically, ea is
a vector in the weight lattice of the Lie algebra of the gauge
group, and the quantization condition defines mb as a vector in
the dual weight lattice, i.e., the “reciprocal” weight lattice.107

Let us consider the example of a non-Abelian Coulomb
phase with Nc = 3 partons and SU (3) gauge group (model
B). Including electromagnetism, the total gauge group is
SU (3) × U (1)em, which has the following Cartan generators:

H1 = g√
2
λ3 = g√

2

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠ ,

(15)

H2 = g√
2
λ8 = g√

6

⎛
⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎠ , H3 =

⎛
⎜⎝

e
3 0 0

0 e
3 0

0 0 e
3

⎞
⎟⎠ ,

where λ3,λ8 are Gell-Mann matrices, and we have explicitly
written the SU (3) and U (1)em gauge couplings g and e,
respectively. H1 and H2 are the two Cartan generators of
SU (3),107 normalized to tr(HaHb) = g2δab, a,b = 1,2, and
H3 is the generator of U (1)em with all three quarks having the
same electric charge e/3. The weight lattice is generated by

the fundamental weights, which are

e1 =
(

g√
2
,

g√
6
,
e

3

)
, e2 =

(
− g√

2
,

g√
6
,
e

3

)
,

(16)

e3 =
(

0,− 2g√
6
,
e

3

)
.

We recall that ei
a is the eigenvalue of the Cartan generator Hi

associated with the ath common eigenvector |ea〉 of all three
Cartan generators, i.e., Hi |ea〉 = ei

a|ea〉.107 The first two entries
of ea correspond to non-Abelian SU (3) “color” charges, and
the last entry corresponds to the usual U (1)em electric charge.
The dual weight lattice is generated by its own fundamental
weights, which are defined as the “reciprocal lattice basis
vectors” mb,

ea · mb = 2πδab, a,b = 1,2,3. (17)

The linear system, Eqs. (16) and (17), is easily solved to
yield127

m1 = 2π

(
1√
2g

,
1√
6g

,
1

e

)
, m2 = 2π

(
− 1√

2g
,

1√
6g

,
1

e

)
,

(18)

m3 = 2π

(
0,− 2√

6g
,
1

e

)
.

The allowed magnetic monopoles, i.e., the allowed magnetic
flux configurations, are given by linear combinations of the
fundamental dual weights mb with integer coefficients,

m = n1m1 + n2m2 + n3m3, n1,n2,n3 ∈ Z. (19)

We are now in a position to discuss the periodicity of θeff .
The “colorless” magnetic monopole configuration discussed
earlier, which led to a periodicity of 2π

N2
c

= 2π
9 , corresponds to

the dual weight vector

m = m1 + m2 + m3 =
(

0,0,
6π

e

)
,

i.e., n1 = n2 = n3 = 1 in Eq. (19). However, we now see that
this is not the “smallest” magnetic monopole: we can choose
a smaller monopole for which some of the ni , i = 1,2,3 are
zero. In particular, the smallest monopoles have only one ni

equal to 1. But as seen in Eq. (18), these monopoles will
necessarily be “colored,” i.e., they will carry some amount
of non-Abelian magnetic charge. Let us now evaluate Sθ for
a colored magnetic monopole, say m = m1, and see how it
affects the periodicity of θeff . Since the monopole is colored,
we cannot simply discard the SU (3) θ term in the effective
action [see Eq. (6) in Ref. 55]. Denoting by F and f the
U (1)em and SU (3) field strengths, respectively, we have

Sθ = iθeffe
2

32π2

∫
T 4

d4x εμνλρFμνFλρ + iθg2

32π2

∫
T 4

d4x εμνλρf
a
μνf

a
λρ

= iθ

3

e2

4π2

(
2π

e

)2

+ iθg2

4π2

[(
2π√
2g

)2

+
(

2π√
6g

)2 ]

= iθ

3
+ iθ

2
+ iθ

6
= iθ,

i.e., θ has periodicity 2π , which means that θeff = θ/3 has
periodicity 2π/3, as claimed in Ref. 55. It is readily checked
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that the other “minimal” monopoles, m = m2 and m = m3,
give the same quantization condition.

3. Quantization in the Higgs phases

The analysis of charge quantization in the Higgs models
is very similar to the Abelian case. The basic statement is as
before. A Maxwell B0 flux is possible only if it is accompanied
by color magnetic flux of the unbroken gauge group H ,
otherwise, only NcB0 is possible. While color magnetic flux
before was quantized in integer multiples of a basic unit, it only
now takes a finite number of discrete values. For example,
in our model C, magnetic flux for H = Z3 can only take
three different values: three units of color magnetic flux are
equivalent to no color magnetic flux.

IV. GROUND-STATE DEGENERACY

A. Ground-state degeneracy on T 3

Recently, it has been shown56 that a fractional θ angle in
a T invariant, gapped system necessarily implies multiple
ground states on T 3. However, a deconfined gauge theory
may or may not be gapped, and a unique ground state on
T 3 is possible if the system is gapless. In particular, we
will show that the Abelian Coulomb phases contain gapless
but electromagnetically neutral gauge bosons, and have a
unique ground state on T 3. On the other hand, the non-
Abelian Coulomb phases do exhibit a nontrivial ground-state
degeneracy on T 3, even though they avoid the theorem of
Ref. 56 due to the extra massless degrees of freedom. In the
Higgs models, the theory obeys all the assumptions of the
theorem and there has to be multiple ground states on T 3.
We will see that this is indeed the case. Therefore, various
realizations of a fTI with the same value of the Maxwell θ

angle can be distinguished by their topological ground-state
degeneracy on T 3. This is similar to the fact that the Hall
conductance, although a topological invariant, is not sufficient
to fully characterize the topological order in a FQH system.94

Before we discuss our three different models in detail,
we must first define precisely what we mean by ground-state
degeneracy. As discussed in detail in the previous sections, in
at least two of our three models (the Coulomb models A and
B), the theory contains gapless degrees of freedom. In order
to arrive at a meaningful definition of topological ground-state
degeneracy in a gapless system, we need to study the theory
for a finite-size system. Denoting by L the linear system size,
the massless degrees of freedom will develop a finite-size
gap of order 1/L. In order to focus on the ground-state
manifold, we want to study the theory at energies below
that finite-size gap. For a finite-size system, the ground-state
degeneracy will be generally lifted by nonperturbative effects94

corresponding to the tunneling of fractionally charged partons
around noncontractible loops in T 3, which leads to an energy
splitting of order ∼e−mgapL/L, where mgap is the dynamically
generated parton mass gap already present at infinite volume.
For finite L, these states are truly degenerate only in the strict
mgap → ∞ limit (i.e., for infinitely massive partons), but even
at finite mgap, we can identify the ground states by a finite-size
scaling analysis of the many-body spectrum.

1. Abelian models

We first investigate the question of ground-state degeneracy
on T 3 in the simplest Abelian Coulomb phase, model A. When
studying the model on T 3, the ground state is unique. As the
emergent U (1) fields are noninteracting at low energies, this is
simply a question of quantizing Maxwell electrodynamics. As
is well known, U (1)Nc−1 gauge theory on T 3 in the Coulomb
phase is simply equivalent to a set of 2(Nc − 1) decoupled
three-dimensional (in the x,y,z directions on T 3) harmonic
oscillators, i.e., a harmonic oscillator for each of the U (1)
gauge fields with two polarizations. For a finite size system,
the ground state is unique and corresponds to each of these
harmonic oscillators being in their ground state. The gap to
the first excited state is of order ∼ 1/L where L is the linear
system size, but vanishes in the L → ∞ limit. According to
Ref. 56, a gapped system can not have a fractional θ angle
if it has a unique ground state on T 3. As mentioned, the way
our simple Abelian model avoids this constraint is because
it is not gapped (for infinite size). To see how the extra free
photons can circumvent the no-go theorem of Ref. 56, we
observe that the argument of Ref. 56 is essentially a Lorentzian
version of the usual Dirac quantization argument. Consider
a gapped scenario where a two-torus T 2 of the spatial T 3

is pierced by a magnetic flux Bz. In the presence of a unit
flux Bz = B0 = 2π

e
, the ground-state to ground-state (G2G)

amplitude when inserting the same minimal flux through
the noncontractible loop in the z direction picks up a phase
given by

eiSθ = ei θ
2π

e2

2π

∫
d4x Eem·Bem = eiθ . (20)

The time-reversed process picks up a phase e−iθ , therefore for
a T -invariant theory we require eiθ = e−iθ and θ has to be an
integer multiple of π .

This argument relies on the fact that the minimal magnetic
flux is B0. In a theory of a Maxwell gauge field alone with
partons of charge e/3 a magnetic flux B0 is not consistent
with single valuedness of the parton wave function; rather,
the minimal flux allowed is 3B0. In this case, the above G2G
amplitude picks up a phase factor of ei9θ , hence apparently
any multiple of π/9 would be an allowed T -invariant value for
θ . Clearly, this situation can not correspond to nature as we
know it since a B0 flux can exist. At this stage, the discussion is
completely parallel to that of Dirac quantization in Sec. III B1.
As we have seen in Eq. (14), a basic B0 flux is allowed as
long as it is accompanied by a magnetic flux of the emergent
gauge fields. The Dirac quantization condition implies that the
allowed combinations of fluxes are exactly the ones for which
eiS evaluates to einπ for integer n. The G2G amplitude is T

invariant despite the fact that the Maxwell θ angle takes the
fractional value π/3. In fact, Dirac quantization will ensure that
the same happens in all the Abelian Coulomb models proposed
in Ref. 55. The no-go theorem is avoided even without ground-
state degeneracy on T 3 due to the presence of extra massless
gauge fields.

2. Non-Abelian models

The Coulomb phase of SU (Nc) gauge theory on T 3 has N3
c

degenerate ground states.128 There are two complementary
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ways of establishing this result, one by keeping the funda-
mental partons in the spectrum, and the other by sending
the parton mass to infinity, mgap → ∞, and considering the
pure SU (Nc) gauge theory. For concreteness, we will discuss
the case Nc = 3. In the presence of fundamental quarks,
one can construct a topological symmetry algebra consisting
of operators Ua , a = 1,2,3 which insert a 2π flux of the
U (1)em gauge field through the ath noncontractible loop
of T 3, and operators Ta , which move a parton around the
ath noncontractible loop. In the T -invariant case, we have
[Ta,Tb] = [Ua,Ub] = 0, a,b = 1,2,3, but128

TaUb = e−2πi/3δabUbTa, (21)

which simply means that partons can pick up a nontrivial
U (1)em Aharonov-Bohm phase because they are fractionally
charged. The operator Ta moves a parton around a closed
loop and is clearly a symmetry of the partition function.
The operator Ua is also a symmetry of the partition function
because the U (1)em phase e2πi/3 acquired by the partons is
also an element of Z3 = {1,e2πi/3,e4πi/3}, the center of SU (3),
and can thus be gauged away. The existence of an algebra of
operators that commute with the Hamiltonian but not among
themselves implies the degeneracy of the energy eigenstates.
The symmetry algebra Eq. (21) is somewhat reminiscent of
the topological symmetry algebra in the FQH states.94 A
representation of the algebra Eq. (21) can be constructed by
first constructing a representation of the Abelian subalgebra
generated by the Ta , i.e., by taking a set of states which
diagonalizes the Ta simultaneously, Ta|η〉 = eiηa |η〉 with
η = (η1,η2,η3). We first pick a particular noncontractible loop
a. By applying Ua to |η〉 repeatedly and using the commutation
relations (21), one can show that {|η〉 = U 3

a |η〉,Ua|η〉,U 2
a |η〉}

is a three-dimensional representation of the subalgebra gen-
erated by T1,T2,T3 and the Ua corresponding to this specific
loop. For general Nc, we would obtain the Nc-dimensional rep-
resentation {|η〉 = UNc

a |η〉,Ua|η〉,U 2
a |η〉, . . . ,UNc−1

a |η〉}. The
analysis can then be repeated by starting from this enlarged
set of states and applying the Ua corresponding to the
remaining noncontractible loops. At the end of this process,
one finds that the dimension of the representation of the full
symmetry algebra (21), which is the same as the ground-state
degeneracy, is Nb1(M)

c where b1(M) = dim H1(M,R), the first
Betti number129 of the spatial manifold M , corresponds to the
number of noncontractible loops in M . It is the dimension of
the first homology group H1(M,R) of M with real coefficients.
For T 3, we have b1(M) = 3.

Alternatively, this result can be obtained by studying the
pure SU (Nc) gauge theory which is the low-energy effective
description at energies much less than the parton mass gap
mgap. In this language, the deconfined phase on T 3 corresponds
to the condensation of spatial Wilson loops, i.e., a spatial
version of the condensation of the Polyakov loop130 (temporal
Wilson loop). If all fields are in the adjoint (such as is the
case once the partons have been integrated out), SU (Nc)
gauge theory formulated on a space-time four-manifold M
with nontrivial first homology group H1(M) �= 0 develops
a global ZNc

symmetry131,132 originating from the center of
SU (Nc). This global symmetry is generated by large gauge
transformations, where the gauge parameter is not periodic
on T 3 but only periodic up to an element of the center.

FIG. 1. SU (Nc) gauge transformation � on a noncontractible
loop Cx in the spatial manifold [see Eq. (23)], periodic up to an
element e2πik/Nc of the center ZNc

of SU (Nc), and under which
the global Wilson loop W (Cx) transforms nontrivially as W (Cx) →
e−2πik/NcW (Cx).

An order parameter for spontaneous breaking of this center
symmetry is a spatial Wilson loop along a noncontractible
loop Ca ,

W (Ca) = tr P exp

(
ig

∮
Ca

a

)
, (22)

where g is the Yang-Mills gauge coupling, a is the emergent
SU (Nc) gauge potential, P indicates path-ordering along the
loop, and the trace is in the fundamental representation. The
fact that W (Ca) transforms nontrivially under the center of
SU (Nc) is easily seen by regularizing the theory on a lattice.
Denote lattice sites by a triplet of integers n = (nx,ny,nz), with
na = 1, . . . ,Na , a = x,y,z, and periodic boundary conditions
on the link variables Un,μ = Un+Naâ,μ, μ = t,x,y,z, in all
spatial directions a. Consider the following family of ZNc

⊂
SU (Nc) local gauge transformations �

(mx )
n parameterized by

an integer mx (Fig. 1),

�(mx )
n =

{
1, nx = 1, . . . ,mx, . . . ,Nx,

e2πik/Nc , nx = mx + Nx,
(23)

with k = 1, . . . ,Nc. Although the gauge transformation (23)
is not periodic �

(mx )
n �= �

(mx )
n+Nxx̂

, it still is a valid gauge
transformation because the usual gauge-invariant operators∑

� tr U� are invariant under any local gauge transformation,
including multivalued ones (recall that the plaquette variable
U� ≡ Un,μUn+μ̂,νU

†
n+ν̂,μU

†
n,ν transforms in the adjoint as

U�
�−→ �nU��

†
n for an arbitrary local gauge transformation

�n). Another way to say this is that although �
(mx )
n is not

periodic as a SU (Nc) gauge transformation, it is periodic as
a SU (Nc)/ZNc

gauge transformation. Since the gauge fields
transform trivially under ZNc

because they are in the adjoint,
such a gauge transformation preserves the periodic boundary
conditions on the gauge fields.

We can now show that Eq. (22) transforms nontrivially
under �

(mx )
n . The global Wilson loop Eq. (22) has a natural

lattice regularization,

W (Ca) = tr
∏

n∈Ca

Un,a. (24)
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Denoting n⊥ ≡ (ny,nz), we see that W (Cx) transforms under
�

(mx )
n as

W (Cx) = tr U(1,n⊥),xU(2,n⊥),x · · · U(Nx,n⊥),x

= tr U(mx,n⊥),xU(mx+1,n⊥),x · · · U(mx+Nx−1,n⊥)

�−→ tr(1 · U(mx,n⊥),x · 1)(1 · U(mx+1,n⊥),x · 1) · · ·
× (1 · U(mx+Nx−1,n⊥) · e−2πik/Nc )

= e−2πik/NcW (Cx), (25)

using the periodicity of the trace to shift the base point of
the loop from (1,n⊥) to (mx,n⊥) and the fact that the link

variables Un,μ transform as Un,μ
�−→ �nUn,μ�

†
n+μ̂. When the

theory is quantized, expectation values of operators such as
W (Ca) are computed by averaging over all SU (Nc) gauge
transformations that are periodic �n = �n+Naâ . Note that the
transformation law (25) is independent of the local data mx

specifying where the discontinuity of the gauge function �
(mx )
n

occurs. Therefore, although such local data can be lost by
performing the SU (Nc) gauge averaging, the global data (i.e.,
the parameter k) are not averaged out and W (Ca) can develop
a nonzero expectation value. This is why the transformation
law (25) is in fact a global symmetry. As a result, spontaneous
breaking of this symmetry 〈W (Ca)〉 �= 0 does not violate
Elitzur’s theorem.133

The Wilson loop Eq. (22) can be interpreted as the
semiclassical process of creating a heavy parton-antiparton
pair at x = 0 and annihilating them again at x = L/2 along
the noncontractible loop Ca , or in other words, the worldline
of a virtual parton taken around the loop once. Therefore we
recover essentially the same physics as when we explicitly
considered the fundamental partons in the previous approach
of establishing the ground-state degeneracy. The Polyakov
loop is the finite-temperature version of Eq. (22), where the
spatial manifold need not have a nontrivial first homology but
the relevant noncontractible loop in that case is the periodic
imaginary time direction τ ∈ [0,β], with β = 1/T the inverse
temperature. In this case, the logarithm of the Polyakov loop
is the negative of the free energy associated with a single
parton. In a confined phase, this free energy is infinite as it
takes an infinite amount of energy to separate a single color
charge from its color charge conjugate, and the Polyakov loop
has zero expectation value. Center symmetry is unbroken.
On the other hand, in a deconfined phase the Polyakov loop
typically has a nonzero expectation value and center symmetry
is spontaneously broken. In our case, we are considering a
zero-temperature theory and the spatial Wilson loop Eq. (22)
characterizes G2G amplitudes at zero temperature. As each
W (Ca) carries charge under ZNc

, there are Nc different
values that W (Ca) can take for each noncontractible loop Ca .
Therefore there will be N3

c degenerate ground states on T 3 and
Nb1(M)

c ground states for a general spatial manifold M without
boundary.

We remark that this ground-state degeneracy was not
required by the theorem of Ref. 56. Whether this Nb1(M)

c

degeneracy actually occurs depends on details of the system
beyond the number of partons and the gauge group. In
particular, if the extra gapless neutral matter added in order
to drive the non-Abelian emergent gauge field into a Coulomb

phase is in the fundamental representation of the gauge
group, there is no global center symmetry and we expect that
the ground state would be unique. Another example where
spontaneous breaking of the global ZNc

symmetry (and hence
presumably the corresponding ground-state degeneracy) does
not necessarily occur is N = 4 SYM theory. As long as
one imposes periodic boundary conditions for the adjoint
fermions along all noncontractible loops, the potential for
the corresponding Wilson loop is flat due to supersymmetry.
The ground-state expectation value of the Wilson loop is one
more modulus in the theory. One can tune its expectation value
arbitrarily, hence we can obtain a deconfined phase with ZNc

either broken or unbroken.

3. Higgs models

Because the Higgs models of Sec. II B are completely
gapped, they must have multiple ground states on T 3 to be
consistent with the theorem of Ref. 56. As we necessarily
have unbroken discrete gauge groups, this is indeed ensured.
Discrete gauge groups give rise to degenerate ground states that
differ by the value of the Wilson loop of the discrete gauge field
around noncontractible loops, i.e., discrete global fluxes. For
example, in our model C with its Z3 unbroken gauge group,
there are three different discrete fluxes per noncontractible
loop of the spatial manifold T 3, which label the various
ground states for a total ground-state degeneracy of 33 = 27.
A generic SU (Nc) Higgs model on a boundaryless spatial
manifold M with all fields in the adjoint, and where SU (Nc) is
spontaneously broken to its centerZNc

will have a ground-state
degeneracy of Nb1(M)

c . This is the three-dimensional version
of the N2 ground-state degeneracy on T 2 in the deconfined
phase of ZN gauge theory in 2 + 1 dimensions.134 A similar
mechanism is also responsible for the ground-state degeneracy
in theZ2 spin liquid model put forward in Ref. 56 as an explicit
realization of a fully gapped fTI.

B. Ground-state degeneracy on three-manifolds
with boundaries

On a three-manifold with boundaries, such as the cartesian
product M = � × I of a Riemann surface � and an interval
I discussed in our previous work,55 we need to also consider
the effect of the Chern-Simons (CS) terms induced on the
boundary. To be specific, let us focus on the M = � × I

case with boundary ∂M = � ∪ �. The nontrivial θ term of
the emergent gauge fields in the bulk induces a CS term
on the boundary due to the axion domain wall4 between
θ �= 0 inside the fTI and θ = 0 outside the fTI. For the
case of θ = π , the corresponding CS term has level 1/2.
The fact that this term is not gauge-invariant as a purely
(2 + 1)-dimensional theory does not matter, because the gauge
noninvariance of the boundary theory is compensated by
the bulk. This is made clear by writing the θ term as a
manifestly gauge-invariant tr εμνλρfμνfλρ term,135,136 where
f is the emergent field strength. The emergent gauge field
also has a kinetic (Yang-Mills) term ∼ − 1

g2 tr fμνf
μν . (In this

section we work with rescaled fields aμ → 1
g
aμ.) The details

of the ground-state degeneracy will depend on the low-energy
dynamics of the gauge fields. We have already shown that the
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gauge fields need to be in a deconfined phase to have a fTI. In
the following, we will further assume that the deconfined phase
occurs at weak coupling g � 1, so that we can consider the
gauge fields as being essentially free. The situation is less clear
in the case of a deconfined but strongly coupled theory such as
N = 4 SYM theory. Just as in the Abelian case, the Yang-Mills
Hamiltonian is minimized by setting the emergent electric and
magnetic fields to zero, which corresponds to a zero emergent
field strength fμν = 0. Therefore the ground-state eigenspace
is obtained by quantizing the space of flat connections aμ =
U∂μU−1 with U : M × R → SU (Nc) a gauge function, which
is not necessarily periodic on M to allow for global fluxes
through noncontractible cycles, and R denotes time. Denoting
by ωCS = tr(a ∧ da + i 2

3a ∧ a ∧ a), the CS form and using
the fact129 that tr f ∧ f = dωCS with f = da + ia ∧ a the
emergent field strength, we have

1

8π2

∫
M×R

θ (z) tr f ∧ f

= − 1

8π2

(
�θz=− L

2

∫
�×R

ω+
CS + �θz= L

2

∫
�×R

ω−
CS

)
,

(26)

with �θz=± L
2

≡ θ (z = ±L/2 + ε) − θ (z = ±L/2 − ε), for ε

a positive infinitesimal, and ω±
CS denotes the CS form evaluated

at a±
μ ≡ aμ(z = ±L/2). Since z = ±L/2 correspond to the

boundary between an fTI and the vacuum, which is a trivial
insulator, we generically have �θz=± L

2
= (2k± + 1)π where

k+,k− ∈ Z. It appears that we have two distinct CS terms,
one for each boundary gauge field a±

μ . However, those two
CS terms are not independent because the two (2 + 1)-
dimensional boundary gauge fields originate from the same
(3 + 1)-dimensional gauge function U . As a result, a+

μ and
a−

μ are equal up to a gauge transformation of even winding
number, which leaves the partition function invariant [see
Eq. (A7) of Appendix A]. The resulting theory is that of a single
CS gauge field on � × R with integer level k ≡ k+ + k− + 1.
This CS theory gives an additional contribution to the ground-
state degeneracy.

In the Abelian case, we obtain a sum of U (1)k CS
terms on the boundary (see Appendix B). However, the
ground-state degeneracy is not simply the product of
the ground-state degeneracy for each U (1)k CS term, because
large gauge transformations that mix several U (1) factors give
additional constraints on the ground-state Hilbert space.94

For the Abelian U (1)2 theory (Sec. II A1) corresponding to
Nc = 3, the ground-state degeneracy is 1

2 (k + 1)(k + 2) for
� = T 2,94 which reproduces the familiar threefold degeneracy
of the ν = 1/3 FQH state on the torus for k = 1. For the ZNc

Higgs models, the Maxwell term of the ZNc
gauge theory

itself defines a topological field theory and the ground-state
degeneracy is N

2g
c where g is the genus of �.58

In the non-Abelian case, we obtain a non-Abelian CS term
on �.55 The ground-state degeneracy for a SU (Nc)k CS theory
on � is equal to the number of conformal blocks of the
level-k SU (Nc) Wess-Zumino-Witten (WZW) conformal field
theory.137 This number has been determined for any gauge
group G, level k, and genus g of �,138,139 but the answer
is particularly easy for the special case of the torus, g = 1.

In this case, the ground-state degeneracy at level k is given
by 1/(Nc − 1)!

∏Nc−1
j=1 (k + j ). For the special case of k = 1

we are mostly interested in, this simply evaluates to Nc. For
Nc = 3, the ground-state degeneracy is 1

2 (k + 1)(k + 2), in
complete agreement with the answer found in Ref. 94. This is
the same as the Abelian U (1)2 theory.

This discussion can be generalized to more generic man-
ifolds M that are not of the form � × I . Due to similar
arguments as above, the ground-state degeneracy should only
depend on the “zero modes” with vanishing spatial gauge
curvature. For each topologically nontrivial loop Ci on the
surface ∂M , we define a holonomy140 or Wilson loop operator
�(Ci) ≡ P exp(i

∮
Ci

a). It is important to note that Ci’s are
considered equivalent if they can be deformed to each other
through some deformations in M (rather than being restricted
to ∂M). For example, in the case of T 2 × I , the four cycles
on the two boundary tori are identified pairwise, leading to
two independent nontrivial loops. After taking this condition
into account, the operators �(Ci) on distinct topologically
nontrivial loops have commutation relations determined by
the boundary CS theory in the same way as the T 2 × I case
discussed above. In practice, this is a difficult problem to solve,
and we have not been able to obtain a general formula which
accounts for both bulk and boundary degeneracies. However,
some simple examples can be studied explicitly. The simplest
example of manifold not of the form M = � × I is the solid
torus S1 × D2 with D2 the two-dimensional disk. The unique
boundary is the torus T 2. Because the vacuum has θ = 0 and
the bulk of the solid torus has θ = π mod 2π , the CS term on
the boundary has a level which is an odd multiple of 1/2. Let
us first consider the Abelian case for simplicity, where we have
a sum of U (1) CS terms with half-odd-integer level, and focus
on a single CS term. The ground-state degeneracy in this case
can be obtained by adding to the Lagrangian a small Maxwell
term with a coefficient that is sent to zero at the end of the
calculation.141 The quantum dynamics of the global Wilson
loops is equivalent to a unit charged particle moving on T 2

in the presence of a uniform magnetic field, where the total
number of flux quanta passing through T 2 is given by the CS
level. In the usual FQHE on T 2, the CS level k is integer and
the number of degenerate states in the lowest Landau level of
this effective single-particle quantum mechanics problem142

is also k. In our situation, the level is a half-odd-integer.
This means that the magnetic translation operators t(Lx) and
t(Ly), where Lx and Ly are the two generators of T 2, do not
commute. Because the effective quantum-mechanical particle
lives on T 2, we should apply periodic boundary conditions on
the single-particle wave function ψ(x,y),

t(Lx)ψ = eiφx ψ, t(Ly)ψ = eiφy ψ,

where φx and φy are real phases, which implies
[t(Lx),t(Ly)]ψ = 0. However, since [t(Lx),t(Ly)] �= 0 for a
noninteger total number of flux quanta through T 2, the only
solution is ψ = 0. This argument holds for each CS term. We
expect the same to be true for the non-Abelian fTI. Indeed,
for SU (Nc) CS theory on T 2 the global Wilson loops should
form a representation of the fundamental group π1(T 2) which
is Abelian. Therefore these Wilson loops should belong to
the maximal Abelian subgroup U (1)Nc−1 of SU (Nc),94,137
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and their dynamics is given by Nc − 1 quantum-mechanical
particles on T 2. If the CS level is half-odd-integer as in the
present situation, there is again a single ground state ψ = 0.
Although SU (Nc) and U (1)Nc−1 CS theories are not equivalent
due to the Weyl group of SU (Nc), in both cases, this trivial
ground state is the only ground state that is consistent with
periodic boundary conditions in both directions. Therefore the
boundary CS theory does not contribute to the ground-state
degeneracy for the solid torus. The only contribution to
the ground-state degeneracy comes from the bulk. For an
Abelian fTI, the bulk U (1)Nc−1 deconfined gauge theory is
noninteracting and thus has a unique ground state. For a
non-Abelian fTI, the bulk SU (Nc) deconfined gauge theory has
a ground-state degeneracy128 of Nc because b1(S1 × D2) = 1,
i.e., the solid torus has a single noncontractible loop. The ZNc

fTI also has Nc degenerate ground states on the solid torus
coming from the bulk.

V. GAPLESS SURFACE STATES

So far, we have considered effective gauge theories for
systems with periodic boundary conditions in all spatial direc-
tions, i.e., the three-torus T 3, or for systems with boundaries
but where the boundary is gapped since it is described by a
CS term. In these two cases, the fermionic partons are gapped
everywhere including on the boundary, which allows us to
integrate them out. The CS terms break T on the boundary
and are absent if T is preserved everywhere. In the latter case,
we expect that the fTI should support gapless surface states
since each color of partons condenses (at the mean-field level)
into a topological band insulator state, which does support
gapless surface states. The question therefore arises: what is
the nature of the gapless surface state of an fTI?

Since we do not at present have a microscopic model of fTI,
i.e., a model of interacting electrons, it is at present difficult to
answer this question. Since as we have seen, several different
effective gauge theories can give rise to the same quantized
fractional θ angle, we expect a variety of gapless surface
states with properties highly dependent on the details of the
microscopic model.

From the point of view of the effective gauge theories
discussed in this work, the gapless surface states consist of
a helical liquid of partons interacting with a three-dimensional
gauge field. An effective theory for the (2 + 1)-dimensional
surface could be obtained by integrating out the bulk gauge
fluctuations. A similar calculation was performed recently48

for the surface helical spinon liquid in spin-charge separated
topological Mott insulators,47 using a perturbative approach.
In this case, the bulk consists of a deconfined U (1) gauge field.
Therefore the results of Ref. 48 should apply qualitatively for
the models of Sec. II A1, i.e., the deconfined U (1)Nc−1 models.
Indeed, since the U (1)Nc−1 gauge theories are deconfined at
weak coupling g � 1 (g is the parton-gauge boson coupling),
we expect that perturbation theory in g should be reliable.
Furthermore, Ref. 48 shows that due to the three-dimensional
nature of the gauge fluctuations, perturbation theory is better
controlled than in the two-dimension case. However, since
the microscopic degrees of freedom in an fTI are electrons,
which correspond to gauge-invariant “baryon” operators in
the parton gauge theory, one should only calculate correlation

functions of gauge-invariant operators. Reference 48 finds
that perturbation theory at one-loop gives only a logarithmic
modification of the tree-level result for the 2kF surface
spin-spin correlation function, i.e., 〈S+(r)S−(0)〉 ∼ 1/r2 →
1/(r2 ln kF r). We therefore expect that the 2kF surface current-
current correlation function of the Abelian Coulomb fTI, i.e.,
its surface electromagnetic response, should also only exhibit
logarithmic modification compared to the noninteracting
helical Fermi liquid. In the fully gapped Higgs models, the
parton-gauge boson coupling should be irrelevant because
the bulk gauge fluctuations are massive. Therefore we expect
that the electromagnetic response of the gapless surface state
should be the same as that of the noninteracting helical Fermi
liquid, up to corrections that are irrelevant at low energies.
Finally, for the Coulomb non-Abelian models, since most
known examples of these (such as N = 4 SYM theory) occur
at nonzero coupling g = g∗, we expect that the gapless surface
state will be a strongly correlated version of the helical Fermi
liquid and it is difficult to guess what its properties will be.
We conjecture that the resulting state is a “helical non-Fermi
liquid,” and holographic realizations of fTI106 may be a useful
tool to compute its properties.

VI. SUMMARY

In this work, we considered a variety of gauge theories
in 3 + 1 dimensions and discussed the conditions they must
fulfill to be consistent low-energy descriptions of an fTI. An fTI
was defined phenomenologically in previous work55,56 as a T -
invariant state of interacting electrons that exhibits a quantized
fractional axion angle θ in its low-energy electromagnetic re-
sponse. We considered Abelian U (1) models and non-Abelian
models. In both cases, the confined phase is not an option for an
fTI because there would be no fractionally charged excitations
in the spectrum, and the existence of fractionally charged
states is necessary for a fractional θ angle to be consistent
with T . This leaves us with two options: a deconfined (or
Coulomb) phase and a Higgs phase. The Coulomb phase of
Abelian U (1) models is a theory of noninteracting, gapless
gauge bosons. The gaplessness of the gauge bosons does
not affect the quantization of θ because they are electrically
neutral. We showed the fractional quantization of θ explicitly
using the Adler-Bell-Jackiw chiral anomaly, which did not
require the assumption that the gauge bosons should be gapped.
Achieving a deconfined phase in non-Abelian models is more
difficult, but non-Abelian models with sufficient electrically
neutral gapless matter, such as N = 4 SYM theory, are known
to realize deconfined phases. These are, however, usually
strongly coupled phases. However, the chiral anomaly still
holds in the case of non-Abelian gauge groups, and we could
again show explicitly the fractional quantization of θ . Higgs
models in which the Abelian U (1) or non-Abelian SU (N )
groups were broken down to a discrete ZN group were shown
to lead to fTI as well, with a fully gapped spectrum in this case.

We investigated the ground-state degeneracy of these
effective gauge theories on spatial three-manifolds of non-
trivial topology. On the three-torus T 3, the Abelian Coulomb
models have a unique ground state. Indeed, this corresponds
simply to quantizing several independent flavors of Maxwell
electrodynamics in a box with periodic boundary conditions
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in all three directions. The non-Abelian Coulomb models can
have a nontrivial ground-state degeneracy on T 3 due to the
fact that the first homology group H1(T 3,Z) = Z × Z × Z is
nontrivial, corresponding to the existence of three inequivalent
noncontractible loops in T 3. Whether there are multiple ground
states or not in the deconfined phase of a SU (N ) non-Abelian
model depends on whether the center ZN of SU (N ) is
spontaneously broken in the ground state or not. This is a
question of dynamics that depends on the details of the model.
Higgs models with residualZN gauge group can be viewed as a
subset of the previous case. Indeed, SU (N ) gauge theories with
all fields in the adjoint representation develop the center ZN

as a global symmetry which can be spontaneously broken in
the ground state. Our Higgs models consist of adding adjoint
Higgs fields to pure SU (N ) gauge theory such that SU (N )
is spontaneously broken to its center. Wilson loops around
noncontractible loops will still transform nontrivially under
ZN , and their acquiring nonzero expectation values means
spontaneous breaking of this globalZN symmetry and multiple
degenerate ground states. We restricted our consideration of
three-manifolds M with boundary ∂M to the case M = � × I

with � a Riemann surface (say, in the x,y directions) and I

an interval (say, in the z direction). In this case, a CS term was
induced on the boundary ∂M = � ∪ �, and in the ground
state the CS gauge fields on both copies of � were identified.
The resulting CS theory had integer level and its contribution
to the total ground-state degeneracy (bulk and surface) could
be computed using standard methods.

Finally, we briefly commented on what one would expect
for the electromagnetic response properties of the gapless
surface states based on the general characteristics of the
effective gauge theories discussed here. We expect that Abelian
Coulomb models should give at most a logarithmically mod-
ified version of the noninteracting helical Fermi liquid, while
the fully gapped Higgs models should only give corrections
that are irrelevant at low energies. The deconfined, strongly
coupled non-Abelian models should give rise to the most
interesting case. We conjecture that the gapless surface states
of non-Abelian fTI are “helical non-Fermi liquid” states and
suggest that holographic methods106 should be a promising
way to study their properties.
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APPENDIX A: FLAT CONNECTIONS AND
WINDING NUMBERS

In the ground state, the allowed gauge field configura-
tions in the (3 + 1)-dimensional space-time M × R are flat
connections aμ = U∂μU−1. Denote by a±

μ = U±∂μU−1
± the

boundary values of the gauge field, i.e., a±
μ ≡ aμ(z = ±L/2)

and U± ≡ U (z = ±L/2). We first observe that the (2 + 1)-
dimensional boundary gauge fields a+

μ and a−
μ are related

by a gauge transformation, a+
μ = ωa−

μ ω−1 + ω∂μω−1 where

ω = U+U−1
− . Therefore we have

1

4π

∫
�×R

ω+
CS = 1

4π

∫
�×R

ω−
CS + 2πm, (A1)

where

m[ω] = − 1

24π2

∫
�×R

tr (ωdω−1)3 (A2)

is the winding number of ω. In Eq. (26), the CS level
�θz=± L

2
/2π , which appears in front of the CS terms in

Eq. (A1), is half-integer. As a result, eiS in the path integral
acquires a factor of eiπm[ω]. If gauge transformations ω with
odd winding number m[ω] were allowed, the path integral
would be highly oscillatory and would cancel. In fact, we can
show that m[ω] is necessarily an even integer. Consider the
integral of the second Chern form,∫

M×R
tr f ∧ f =

∫
�×R

ω+
CS +

∫
�×R

ω−
CS, (A3)

since ∂M = � ∪ �. We now substitute a = UdU−1 into
Eq. (A3). Since this is a flat connection f = 0, the left-hand
side of Eq. (A3) vanishes. Since a± = U±dU−1

± , we also have
f± = da± + ia± ∧ a± = 0 and the CS forms are given by

a± ∧ da± + i
2

3
a3

± = a± ∧ (f± − ia2
±) + i

2

3
a3

± = − i

3
a3

±,

hence we obtain

0 = − i

3

∫
�×R

tr (U+dU−1
+ )3 − i

3

∫
�×R

tr (U−dU−1
− )3. (A4)

Furthermore, one can show that the winding numbers for a
product of gauge transformations add,

m[ω1ω2] = m[ω1] + m[ω2], (A5)

as one would expect based on physical intuition. Using
Eq. (A2) and the cyclic property of the trace, we have

m[ω1ω2] = m[ω1] + m[ω2] + 3
∫

�×R
tr
[(

ω2dω−1
2

)2 ∧ dω−1
1 ω1

+ω2dω−1
2 ∧ (dω−1

1 ω1
)2]

. (A6)

Using the identity dη = −ηdη−1η for any invertible matrix-
valued function η, we can show that

d
(
ω2dω−1

2 ∧ dω−1
1 ω1

) = −(ω2dω−1
2

)2 ∧ dω−1
1 ω1

−ω2dω−1
2 ∧ (dω−1

1 ω1
)2

,

hence the last term of Eq. (A6) is a total derivative and Eq. (A5)
is obtained. Also, using the same identity one can easily show
that m[η−1] = −m[η]. For ω = U+U−1

− , we therefore obtain

m[ω] = m[U+] + m[U−1
− ] = m[U+] − m[U−],

and from Eq. (A4) we have m[U+] + m[U−] = 0, hence

m[ω] = 2m[U+] = −2m[U−] ∈ 2Z. (A7)
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APPENDIX B: GROUND-STATE DEGENERACY
FOR AN ABELIAN 3D FTI ON A THREE-MANIFOLD

WITH BOUNDARY

We consider the Abelian U (1) × U (1) fTI on the spatial
three-manifold M = T 2 × I with I = [−L/2,L/2] in the z

direction. Because the bulk 3D emergent gauge fields are free,
we can integrate them out explicitly to obtain an effective
action for the gauge fields on the 2D boundary ∂M = T 2 ∪
T 2. It is a Maxwell-CS theory with two coupled gauge fields
a+

μ and a−
μ corresponding to the two copies of T 2. In the

long-wavelength limit q � 1/L, the two gauge fields become
identified a+

μ = a−
μ ≡ αμ and the level of the CS term for αμ

is the sum of that for the two surfaces, i.e., it is integer.
The spatial manifold is M = T 2 × I with I =

[−L/2,L/2]. We can always choose the generators of
U (1) × U (1) to satisfy tr tatb = δab, a,b = 1,2. The action in
imaginary time is

S3D[aμ] =
∫

d4x

[
1

4g2
f a

μνf
a
μν − iθ (z)

32π2
εμνλρf

a
μνf

a
λρ

]
,

with f a
μν = ∂μaa

ν − ∂νa
a
μ, a = 1,2 the U (1) × U (1) emergent

field strength and

∂zθ =
∑
η=±1

(2kη + 1)πδ(z − ηL/2),

with kη ∈ Z. To derive an effective 2D action on ∂M = T 2 ∪
T 2, we introduce a Lagrange multiplier which constrains the
gauge field to live on ∂M . Then we integrate out the bulk gauge
field aa

μ. In other words, we introduce a resolution of unity:

1 =
∫

Dã+
μDã−

μ δ
[
aa

μ(x̃,L/2) − ã+,a
μ (x̃)

]
× δ
[
aa

μ(x̃, − L/2) − ã−,a
μ (x̃)

]
,

in the partition function, where ãη,a
μ , η = ± are two auxiliary

gauge fields which are defined only on the 2D surface x̃ =
(x0 = t,x1,x2), with ã+,a

μ living on the 2-torus at z = L/2 and
ã−,a

μ living on the two-torus at z = −L/2. We represent the
functional δ function as∏
η

δ
[
aa

μ(x̃,ηL/2) − ãη,a
μ (x̃)

]

=
∫
Dj̃+

μ Dj̃−
μ exp

{
i

∫
d3x̃ j̃ η,a

μ (x̃)
[
aa

μ(x̃,ηL/2) − ãη,a
μ (x̃)

]}
,

where j̃ η,a
μ is a Lagrange multiplier which implements the

constraint that ãη,a
μ (x̃) = aa

μ(x̃,ηL/2). The idea is to integrate
out first aμ, and then the Lagrange multiplier j̃ η

μ, to get an
effective action Seff

2D in terms of the 2D gauge fields ãη
μ alone.

In other words, the partition function is

Z =
∫

Dã+
μDã−

μDj̃+
μ Dj̃−

μ Daμ exp
{−S3D[aμ]

+ i

∫
d3x̃ j̃ η,a

μ (x̃)
[
aa

μ(x̃,ηL/2) − ãη,a
μ (x̃)

]}
≡
∫

Dã+
μDã−

μ e−Seff
2D[ã+

μ ,ã−
μ ].

We want to see whether these gauge fields will be identified or
not, i.e., whether we obtain two CS theories or only one.

First of all, since the θ term is a total derivative it
contributes only to the boundary piece. Therefore, if we write
Seff

2D = SMax
2D + Sθ

2D, we immediately know that

Sθ
2D = −i

∑
η

kη + 1
2

4π

∫
d3x̃ εμνλã

η,a
μ ∂νã

η,a

λ ,

i.e., we obtain two decoupled CS terms of half-odd-integer
level kη + 1

2 . To compute SMax we need to integrate out the
3D bulk gauge fluctuations, which we can do exactly in the
Abelian case because the gauge bosons are noninteracting. We
can gauge fix the Maxwell term in the usual way143 by adding
a 1

2g2ξ
(∂μaa

μ)2 term to the Lagrangian. In the Feynman gauge
ξ = 1, the 3D gauge boson propagator is

Dab
μν(k̃,kz) = g2δabδμν

k̃2 + k2
z

, (B1)

with k̃ = (k0 = ω,k1,k2). Because the Lagrange multipliers
j̃ η,a
μ (k̃) = ∫ d3x̃ e−ik̃ν x̃ν j̃ η,a

μ (x̃) are independent of kz, we have
to sum over all kz to obtain an effective 2D propagator. The
effective 2D Maxwell propagator for the 2D gauge fields ãη,a

μ

is therefore

Dab,ηη′
μν (k̃) = g2δabδμν

1

L

∑
kz

e−ikz(η−η′)L/2

k̃2 + k2
z

,

with |k̃| =
√

ω2 + k̃2. Because the fields aη,a
μ must satisfy

some sort of boundary condition at z = ±L/2 (either Dirichlet
or Neumann), kz is a discrete variable, kz = nπ/L, n ∈ Z.
Performing the discrete sum over kz, we obtain

Dab
μν(q) = g2δabδμν

|q| sinh |q|L
(

cosh |q|L 1

1 cosh |q|L
)

,

where we denote q ≡ k̃ for simplicity. The inverse propagator
is

[D−1]ab
μν(q) = 1

g2L
δabδμν

|q|L
|q| sinh |q|L

×
(

cosh |q|L −1

−1 cosh |q|L
)

.

To obtain the final form of Seff
2D, we need to integrate out the

Lagrange multipliers j̃ η,a
μ which simply amounts to inverting

the 2 × 2 matrix propagator (B1). Since now all quantities are
2D, we can drop all the tildes for simplicity, and obtain

Seff
2D[a+

μ ,a−
μ ] = 1

2g2Lz

∫
d3q

(2π )3

|q|Lz

sinh |q|Lz

δμν

(
a+,a

μ a−,a
μ

)
−q

×
(

cosh |q|Lz −1

−1 cosh |q|Lz

)(
a+,a

ν

a−,a
ν

)
q

−i
∑

η

kη + 1
2

4π

∫
d3x εμνλa

η,a
μ ∂νa

η,a

λ , (B2)

with q ≡ (ω,q) and |q| =
√

ω2 + q2. We denoted Lz ≡ L for
clarity.

Consider fixing the scaling dimension of the gauge fields by
the CS term. The latter is therefore marginal and contains one
power of q. The effective Maxwell term in Eq. (B2) contains
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higher powers of |q|. Let us expand it to quadratic order in
|q|Lz,

Seff
2D[a+

μ ,a−
μ ] = 1

2g2Lz

∫
d3q

(2π )3
δμν

(
a+,a

μ a−,a
μ

)
−q

×
(

1 + 1
3q2L2

z −1 + 1
6q2L2

z

−1 + 1
6q2L2

z 1 + 1
3q2L2

z

)(
a+,a

ν

a−,a
ν

)
q

−i
∑

η

kη + 1
2

4π

∫
d3x εμνλa

η,a
μ ∂νa

η,a

λ .

We now consider the long-wavelength, low-energy limit
|q| � 1/Lz. In this limit, the quadratic Maxwell terms q2L2

z

are irrelevant and the leading term is

Seff
2D[a+

μ ,a−
μ ] = 1

2g2Lz

∫
d3q

(2π )3
δμν

(
a+,a

μ a−,a
μ

)
−q

×
(

1 −1

−1 1

)(
a+,a

ν

a−,a
ν

)
q

= 1

2g2Lz

∫
d3x
(
a+,a

μ − a−,a
μ

)2
.

This term contains no derivatives of aη,a
μ but simply

implements a constraint. The equations of motion read

0 = δSeff
2D

δa
a,+
μ

= ∂L

∂a
a,+
μ

= 2
(
aa,+

μ − aa,−
μ

)
,

0 = δSeff
2D

δa
a,−
μ

= ∂L

∂a
a,−
μ

= −2
(
aa,+

μ − aa,−
μ

)
,

which imply that aa,+
μ = aa,−

μ and the gauge fields on the two
2-tori are identified. Therefore, in the limit |q| � 1/Lz the CS
term in Eq. (B2) becomes

Sθ
2D = −i

∑
η

kη + 1
2

4π

∫
d3x εμνλa

η,a
μ ∂νa

η,a

λ

= −i
k

4π

∫
d3x εμνλα

a
μ∂να

a
λ, (B3)

with αa
μ ≡ aa,+

μ = aa,−
μ and k =∑η(kη + 1

2 ) = k+ + k− + 1
is the effective CS level, which is integer. Therefore the ground-
state degeneracy of the U (1) × U (1) Abelian fTI on T 2 × I is
the same as that of the level-k U (1) × U (1) CS theory (B3) on
T 2, which is known94 to be 1

2 (k + 1)(k + 2).
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