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Interplay between potential and spin-flip scattering in systems with depleted density of states
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We study the behavior of a magnetic impurity in systems with a depleted density of states by use of the spin-1/2
single-impurity Anderson model and the equation of motion approach. We calculate the impurity spectral function
and study the role of potential and spin-flip scattering. We show that in these systems, if the hybridization is
larger than a critical value, a narrow virtual bound resonance emerges. The resonance peak appears much below
the Fermi energy and is dominated by the contribution of potential scattering of conduction electrons by the
magnetic impurity while spin-flip scattering only gives a nonsingular temperature-dependent contribution to this
peak. These results are in contrast to behavior of impurities in normal metals where it is spin-flip scattering
that is responsible for the Kondo peak near the Fermi level while potential scattering gives a nonsignificant
renormalization of the exchange coupling. We also show that the virtual bound resonance leads to a strong
renormalization of the effective exchange coupling between conduction and impurity spins. The narrow virtual
bound resonance can be observed in graphene with magnetic impurities where its spectral weight and position is
strongly influenced by the van Hove singularity.
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I. INTRODUCTION

The advent of graphene has renewed the interest in the
Kondo effect in systems with depleted density of states
(DOS).1 It is known that a strong depletion of the density
of states of a conduction band near the Fermi level modifies
the usual behavior of magnetic and nonmagnetic impurities.2,3

Impurities in such systems have been addressed, for instance,
in the context of d-wave superconductors4–6 and more recently
graphene,7 using a variety of methods, from numerical
renormalization group (NRG) approaches8–11 to the large
N analysis12 and T-matrix calculations.13 The most relevant
modification in systems with depleted DOS of the usual Kondo
behavior is that the Kondo resonance emerges if the exchange
coupling is larger than a critical coupling.2,7 Several renor-
malization group studies, as well as other approaches have
addressed this point.2,3,7,14–18 These studies have considered a
power-law DOS or hybridization function.

Usually, when studying the Kondo effect, it is assumed that
potential scattering of conduction electrons on magnetic impu-
rity is not very important and leads only to a renormalization
of the density of states near the Fermi level, or equivalently,
in a corresponding renormalization of the exchange coupling
between localized electron and conduction electrons.19 It is
the assumption that was used in Refs. 2–5 and 7–18. Potential
scattering induces a broad peak under the Fermi surface in the
conduction band density of states. This peak is known as virtual
bound state resonance and can be found by use of the one body
approach (see, for example, in Ref. 20 and references therein).
In this case, potential scattering does not influence qualitatively
the process of the Kondo screening produced by spin-flip
scattering of conduction electrons by the magnetic impurity.
This has been shown for metals with a sufficiently flat density
of states near the Fermi surface.19–22 Peaks in the impurity
spectral function produced by potential scattering of electrons
by impurities were also found in bilayer graphene by Dahal
et al. using Green’s function method.23 The potential scattering

by a magnetic impurity in d-wave superconductors also gives a
noticeable, though weak, contribution to the local density state
in the Kondo resonance phase regime.6 In contrast to potential
scattering, spin-flip scattering results in formation of a narrow
resonance peak near the Fermi surface and requires the use the
many-body perturbation theory. The Kondo resonance peak is
enhanced with decreasing temperature at the expense of the vir-
tual bound state resonance. In the present paper, we study a sin-
gle magnetic impurity in a system with depleted DOS using the
Anderson model and the equation of motion (EOM) approach,
which has been successful in describing the Kondo resonance
in systems with a finite density of states at the Fermi level.24

We show that in contrast to the normal metals, in metals with a
depleted DOS, a narrow virtual bound state resonance appears
under the Fermi surface. This narrow virtual resonance is en-
hanced with decreasing temperature due to spin-flip scattering,
which thus contributes to this peak. Furthermore, this narrow
virtual bound resonance leads to strong renormalization of the
effective Kondo exchange coupling in the energy range of the
Kondo peak. This effect should be taken into account in a renor-
malization group approach to the Kondo model with depleted
density of states. In graphene with a magnetic impurity, we find
a similar virtual bound state resonance that depends on tem-
perature. A peculiarity is that the strong van Hove singularity
(vHs) in the DOS must be taken into account to for calculating
the spectral function of graphene with a magnetic impurity.

II. MODEL

In order to study a magnetic impurity in systems with a
depleted DOS, we use the single-impurity Anderson model,

H =
∑
kσ

εkn̂kσ +
∑

σ

E0n̂dσ

+ 1

2
U

∑
σ

n̂dσ n̂dσ̄ + V
∑
kσ

(c+
kσ dσ + d+

σ ckσ ), (1)
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FIG. 1. (Color online) The density of states ρ(ω) of the conduc-
tion band, Eq. (2). The density of states is constant in the energy range
D1 < |ω| < D and has a power-law dependence ρ(ω) = α|ω|γ for
|ω| < D1. The density of states profile for several γ values is dis-
played. Note that γ = ∞ implies the existence of a 2D1 energy gap.

where the standard notations20 are used: E0 is the impurity
energy level, U is the on-site Coulomb repulsion, and V is
the hybridization between conduction and impurity states.
This Hamiltonian assumes the isotropic coupling between the
impurity and conduction states. In order to describe systems
with depleted DOS, we use the following density of states:

ρ(ε) =
{

ρ0, D1 < |ε| < D,

ρ0

∣∣ ε
D1

∣∣γ ≡ α|ε|γ , |ε| < D1,
(2)

where α = ρ0/D
γ

1 and the Fermi energy is at εF = 0.
Therefore, ρ(ε) is zero at the Fermi level. The bandwidth is
2D. In Fig. 1, the density of states for several values of γ is
shown.

Note that this DOS has flat parts outside the interval
D1 < |ε| < D in contrast to the DOS with the power-law
energy dependence in the whole band, −D < ε < D, that was
used in Refs. 2–18. The case γ = 1 corresponds to graphene.
However, the van Hove singularities (vHs) in the graphene
DOS must also be taken into account to obtain a quantitatively
correct spectral function.

III. EQUATION OF MOTION METHOD

The equation of motion approach is basically the suc-
cessive application of the equation ωGAB(ω) = 〈{A,B}〉 +
〈〈[A,H ]; B〉〉ω to the impurity Green’s function and to the
other Green’s function generated in the process.24 Here we
adopt the Zubarev notation for the retarded Green’s function,
GA,B(ω) = 〈〈A; B〉〉ω.25 As usual, it is implicit that ω →
ω + iη where η is a infinitesimal positive constant. In the
case of the Anderson model, one obtains the following EOM
for the impurity Green’s function 〈〈dσ ; d+

σ 〉〉,
(

ω−E0−
∑

k

V 2

ω−εk

)
〈〈dσ ; d+

σ 〉〉ω = 1 + U 〈〈n̂dσ̄ dσ ; d+
σ 〉〉ω.

(3)

In turn, this Green function determines the spectral function

A(ω) = −2 Im 〈〈dσ ; d+
σ 〉〉ω. (4)

If the on-site repulsion between electrons is neglected
(i.e., U = 0) only potential scattering of conduction electrons
contributes to this function. As a result, this equation becomes
a closed EOM and leads to

〈〈dσ ; d+
σ 〉〉ω = 1

ω − E0 − 	0
. (5)

The self-energy 	0 is

	0 =
∑

k

V 2

ω − εk

= 
0(ω) − i�0(ω). (6)

It can be easily calculated for integer γ . We find

�0(ω)

V 2
= τ0(ω) = πρ(ω) + η, (7)


0(ω)

V 2
= λ0(ω) = B(ω) + Pn(ω)

+ ρ0 ln

∣∣∣∣ (D + ω)(D1 − ω)

(D − ω)(D1 + ω)

∣∣∣∣ , (8)

where

B(ω) =

⎧⎪⎨
⎪⎩

αωγ ln
∣∣ ω2

D2
1−ω2

∣∣, γ odd,

αωγ ln
∣∣D1+ω
D1−ω

∣∣, γ even,

(9)

and Pn(ω) is a polynomial of degree n < γ . In particular
cases γ = 1 and γ = ∞ (a gapped conduction band), we
have Pn(ω) = 0. In Fig. 2, the real part of the self-energy
	0 is displayed for γ = 0, γ = 1 and γ = ∞ (the gapped
spectrum).

FIG. 2. (Color online) The real part λ0(ω) of the self-energy
	0, Eq. (8), for the resonant level (U = 0) exhibits logarithmic
divergences at the band edges and a nonmonotonous behavior in the
depletion region. The dashed line represents the line (ω − E0)/V 2.
The black points are the roots of an equation λ0(ω) = (ω − E0)/V 2.
For γ = ∞ (the gapped spectrum), additional logarithmic diver-
gences are present at the gap edges. Parameters: E0 = −5,ρ0 = 1,
V = 4.4, D1 = 4 and D = 40.
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(a) (b)

(c) (d)

FIG. 3. (Color online) The spectral function A0(ω), from Eq. (10),
for the resonant level (U = 0) for γ = 1 and several values of the
impurity level energy: (a) E0 = −15; (b) E0 = −10; (c) E0 = −5;
(d) E0 = 0. Inset: The real part of the self-energy λ0(ω) and the
line (ω − E0)/V 2. It is the nonmonotonous behavior of λ0(ω) that
generates additional structure in the spectral function for certain
intervals of the parameters. For small V , this structure disappears.
Other parameters: ρ

1/2
0 V = 1.4, D1 = 4 and D = 40.

IV. SPECTRAL FUNCTION AT U = 0

In the case U = 0, the spectral function A(ω), Eq. (4) is
given by the following function:

A0(ω) = 2�0(ω)

[ω − E0 − 
0(ω)]2 + �2
0(ω)

+ 2π�(D − |ω|)
∑

i

|1 − 
′
0(ω)|−1δ(ω − ωi),

(10)

where ωi are the roots (outside the band continuum) of an
equation,

Re
[〈〈dσ ; d+

σ 〉〉−1
ω

] = 0, (11)

which takes a form ω − E0 − 
0(ω) = 0. According to
Eq. (10), the function A0(ω) exhibits the same behavior at
the Fermi level as the density of states in Eq. (2) [i.e.,
A0(ω) ∝ |ω|γ and A0(0) = 0]. Figure 3 represents the spectral
function A0(ω) for different impurity levels E0.

One can see that, apart from a broad peak that also takes
place in normal metals, an additional narrow virtual bound
resonance appears within the depleted region. The positions
of these peaks are given by Eq. (11). Analysis of Eq. (11)
shows that this additional narrow peak appears due to the
fact that the self-energy 	0 has a peak (see insets in Fig. 3),
which is absent in normal metals. The narrow peak strongly
depends on the hybridization V and the impurity level energy
E0. At a given E0, there is a critical hybridization Vc [see
Fig. 3(c)] above which the maximum of this narrow peak
becomes so large that it actually looks like a Kondo resonance.
The critical hybridization Vc can be found as a value of V

at which the line (ω − E0)/V 2 in Fig. 3 touches the peak
of the self-energy λ0(ω), see Eq. (21) below. Alternatively,
at a given hybridization V , this narrow resonance appears
when the impurity level E0 is larger than a critical energy

at which the line touches the peak of λ0(ω) (the critical
energy is approximately −6 for the parameters in Fig. 3).
When the impurity level E0 moves closer to the Fermi energy,
the additional resonance peak also moves closer to the Fermi
energy and its width decreases. It is necessary to outline that
this narrow peak is due to potential scattering of conduction
electrons by the impurity and does not depend on temperature.

V. SPECTRAL FUNCTION AT U �= 0

Now we consider the case U 	= 0 and take into account the
last term in Eq. (3) that allows us to take into account many-
body interactions due to spin-flip scattering of conduction
electrons off the impurity spin. Using the Appelbaum and
Penn approximation,26 we find the following expression for
the impurity Green’s function for U = ∞,

(ω − E0 − 	) 〈〈dσ ; d+
σ 〉〉ω

= 1 − 〈ndσ̄ 〉 − V
∑

k

〈d+
σ ckσ̄ 〉

ω − εk

, (12)

where 	 = 	0 + 	1 + 	2,

	1 = V 2
∑
k,k′

〈c+
k′σ̄ ckσ̄ 〉

ω − εk

, (13)

	2 = −V 3
∑
k,k′

〈d+
σ̄ ckσ̄ 〉

(ω − εk)(ω − εk′)
, (14)

and 	0 is given by Eq. (6). In contrast to 	0, the contributions
of spin-flip scattering represented by 	1 and 	2 have a strong
temperature dependence. This dependence can be analyzed
analytically at sufficiently small V when the self-energy 	2 can
be neglected [however, in our numerical solution of Eq. (12)
discussed below, the self-energy 	2 is taken into account]. In
this case, the temperature behavior of the spectral function is
determined by 	1 that is approximately given by

	1(ω,T )

V 2
= iτ1(ω,T ) + λ1(ω,T )

≈ −iπρ(ω)f (ω)

+
∫

dω′ρ(ω′)f (ω′)P
(

1

ω − ω′

)
. (15)

where f (x) is the Fermi-Dirac distribution function. The
temperature dependence can be found in an explicit form at
γ = 1 and kBT < D1,

λ1(ω,T ) ≈ ρ0 ln

∣∣∣∣ D + ω

D1 + ω

∣∣∣∣ + α(D1 − kBT )

+αω ln

√
ω2 + (akBT )2

|D1 + ω| , (16)

where α ∼ π . Note that the function Re[	1(ω)] in Eq. (16)
is finite at the Fermi energy ω = εF = 0 even in the limit
T → 0. This energy and temperature behavior of Re[	1(ω)]
is also valid in a general case γ > 1.

As above, Eq. (11) determines peaks in the energy depen-
dence of the spectral function A(ω) at energies given by

ω − E0 − Re(	0 + 	1) = 0. (17)
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R. G. DIAS, LÍDIA DEL RIO, AND A. V. GOLTSEV PHYSICAL REVIEW B 86, 235120 (2012)

(a)

(b)

(c)

FIG. 4. (Color online) The spectral function A(ω), for U = ∞,
γ = 1, and several values of the hybridization V . Curve (a) displays
the typical V < Vc spectral function characterized by the absence
of a Kondo resonance. The Kondo peak appears as V is increased
above a critical value Vc [curve (b)] and disappears above the Kondo
temperature Tc [curve (c)]. Other parameters: E0 = −3.2, ρ0 = 10,
D1 = 1, D = 20 and (a) V = 0.12, kBT = 0.05; (b) V = 0.24,
kBT = 0.05; (c) V = 0.24, kBT = 10.

The self-energy 	 = 	0 + 	1 has two contributions. First,
a temperature-independent term due to potential scattering
and, second, a temperature-dependent term due to spin-flip
scattering. Analyzing Eqs. (8) and (15), we find that the
function Re[	0(ω) + 	1(ω)] has a peak that at all T is placed
in the depleted energy range −D1 < ω < 0. Thus, we meet
situations that are qualitatively similar to one shown in Fig. 3
when only Re[	0(ω)] (i.e., potential scattering alone) is taken
into account. Our results are represented in Figs. 4 and 5. One
sees that apart from a broad peak there is a narrow peak in the
depleted region. In contrast to Fig. 3, the narrow virtual bound
resonance peak depends on temperature due to the spin-flip
scattering contribution 	1(ω). In the case of a strong depletion
of the density of states [i.e., (γ � 1) in Eq. (2)] the narrow

FIG. 5. (Color online) The spectral function A(ω) for U = ∞,
γ = 8, and several values of the impurity energy, E0 = −5, −7, and
−9. One can see that when E0 increases and approaches the edge of
the depletion region (ω = −3, on this figure), the Kondo peak grows
within the depletion region much below the Fermi energy. Other
parameters: ρ0 = 10, D1 = 3, D = 20, V = 0.2, and kBT = 0.05.

virtual bound resonance peak grows and approaches the lower
edge −D1 of the depletion region (see Fig. 5).

VI. CRITICAL HYBRIDIZATION FOR THE VIRTUAL
BOUND RESONANCE

For better understanding of the origin of the narrow
virtual bound resonance peak, we compare it with the Kondo
resonance in normal metals. In the case of a flat DOS, the
Lacroix approach24 leads to the function

λ1(ω,T ) ≈ −ρ0 ln[
√

ω2 + (πkBT )2/D]. (18)

This function diverges when ω → 0 at T = 0 in contrast
to Re[	0(ω)], which goes to zero at ω → 0. Thus at low tem-
peratures, the self-energy Re[	0(ω) + 	1(ω)] has a narrow
peak only due to Re[	1(ω)]. As a result, there is a critical
temperature TK at which Eq. (17) has an additional solution
at energy ω near the Fermi level εF = 0 apart from a solution
corresponding to a broad virtual bound resonance at an energy
far below the Fermi surface. This additional solution appears
when the line ω − E0 touches the maximum of Re(	0 + 	1).
Therefore, we arrive at the condition E0 = ρ0V

2 ln(kBTK/D),
which determines the Kondo temperature and has a solution for
any value of V , however small it may be, due to the logarithmic
dependence on temperature.

Now we find the critical hybridization Vc at which a narrow
virtual resonance appears. According to Eq. (17), we should
find a hybridization at which the line ω − E0 touches the
maximum of Re [	1(ω,0) + 	0(ω)]. At large γ , the function
λ1(ω,0) can be found analytically from Eq. (15) at ω near the
boundary of the depleted region, ω = −D1,

λ1(ω,0) ≈ ρ0 ln

∣∣∣∣ D + ω

D1 + ω

∣∣∣∣ + αD
γ

1

+αD
γ

1

[
1 − γ

(
1 + ω

D1

)]
ln

∣∣∣∣∣1 − 1/γ

1 + ω
D1

∣∣∣∣∣ .
(19)

In the case D = D1, this function has a maximum at ωmax ≈
−D1 + 3D1/4γ and, therefore, λ1(ωmax,0) ≈ ρ0. In the case
D � D1, the maximum of λ1 is at ωmax ≈ −D1 + D1/aγ

(where a is a constant of the order of 1) and λ1(ωmax,0) ≈
ρ0 ln (aγD/D1).

If E0 � −D1 and γ � 1, then, using Eqs. (8) and (9) for
	0(ω) and Eq. (20) for 	1(ω), we find that the maximum of
Re [	0(ω) + 	1(ω,0)] occurs at ωmax found above. As a result,
Vc is given by an equation,

ωmax − E0

V 2
c

≈ max(λ1 + λ0)

∼
{

αD
γ

1 ln(aγ 2D/D1), D � D1,

2αD
γ

1 , D = D1.
(20)

In the case U = 0, one obtains a similar result,

ωmax − E0

V 2
c0

≈ λmax
0 ∼

{
αD

γ

1 ln (γ ) , D � D1,

αD
γ

1 , D = D1.
(21)

Equations (20) and (21) for D � D1 shows that with
increasing γ (i.e., with increasing the depletion of the DOS)
the energy of the narrow virtual bound resonance is gradually
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shifted from the Fermi level to the lower boundary of the
depleted region (see Fig. 5) and in the strong depletion limit
γ � 1, the peak in the impurity spectral function exists at any
value of the hybridization since λmax

0 diverges logarithmically
as γ → ∞. In the particular case of a hard-gap density
of states (i.e., γ � 1) this peak looks like a subgap Dirac
δ function, which is placed near the lower gap edge. In
superconducting systems, similar subgap peaks near the upper
and lower gap edges were found by use of different methods.
For example, subgap resonances in the impurity spectral
function in s-wave superconducting systems with a single
Anderson impurity were found by use of the NRG method.27,28

These subgap peaks are associated with Andreev bound states.
The NCA and EOM approaches in Refs. 29 and 30 give
similar results. Though an explicit analytical expression for the
critical temperature TK is unknown for an arbitrary exponent
γ , this critical parameter can be found numerically, using
the following method. Decrease temperature starting from a
high-temperature region. TK can be found as a temperature at
which the peak of the real part of the self-energy 	 ≈ 	0 + 	1

touches the line ω − E0.

VII. MAGNETIC IMPURITY IN GRAPHENE

Graphene is particular within the gapless systems universe
since the depleted region in the DOS is wide and framed by
the van Hove singularity (vHs) (see the inset in Fig. 6). It has
been shown that, in metals, if the van Hove singularity (vHs)
(with a logarithmic divergence of the DOS) is pinned at the
Fermi level, then the Kondo resonance is enhanced due to a
zero-frequency log-squared divergence of the real part of the
self-energy.31 However, if the vHS is shifted from the Fermi
level (without depletion of the DOS), the usual log divergence
due to Kondo effect is recovered and the vHs singularity is only
signaled by a steplike feature in the real part of the self-energy.

1.0 0.8 0.6 0.4 0.2 0.0 0.2
0.0

0.2

0.4

0.6

0.8

1.0

Ω D

A
Ω

(c)

(b)

(a)

1 0 1
0

2

4

Ω D

Ρ
Ω

FIG. 6. (Color online) The spectral function A(ω) of graphene
in the case U = ∞ at several values of the impurity energy E0:
(a) E0/D = −0.125 above the van Hove singularity (vHs) (red
solid line); (b) E0/D = −0.375 at the vHs (blue short dashed line);
(c) E0/D = −0.625 below the vHs (green dashed line). Note that
the spectral weight of the narrow virtual bound resonance peak in the
vicinity of the vHs is strongly reduced if the impurity level is below
but near the vHs. Inset: the DOS of graphene. Other parameters:
V/D = 0.0125, and kBT /D = 2.5 × 10−4.

Using Eqs. (12)–(14) and the DOS of graphene from Ref. 32
(see inset in Fig. 6), we calculated numerically the spectral
function of graphene with a magnetic impurity. This approach
enabled us to take into account both potential and spin-flip
scattering, and the van Hove singularity. However, note that
this approach uses the Hamiltonian Eq. (1) with the isotropic
coupling between conduction and impurity states and neglects
umklapp scattering processes. We found that the vHs leads to
a similar steplike feature in self-energy Re[	0(ω) + 	1(ω)]
at the vHs energy and a broadening of the virtual bound
resonance peak discussed in the previous sections. More
importantly, the vHs leads to a large imaginary part of the
self-energy near the vHs energy. This effect strongly reduces
the spectral weight of the narrow virtual peak in the vicinity
of the vHs and leads to a spectral profile with two broad peaks
if the impurity level is below but near the vHs (see Fig. 6).
This reduction can be explained by the fact that potential
scattering is screened stronger in the energy region with large
density of states (i.e., at the van Hove singularity). Despite
these effects produced by the vHs, the spectral function of
graphene with a magnetic impurity demonstrates a narrow
virtual bound resonance similar to one we found in Secs.
IV–VI for other systems with depleted DOS. A virtual bound
resonance produced by potential scattering of electrons by
impurities was also found in bilayer graphene by Dahal et al.23

Unfortunately, spin-flip scattering of electrons by magnetic
impurities was not yet considered for this material.

VIII. RENORMALIZATION OF EXCHANGE COUPLING

Above we applied perturbation theory to the Anderson
model and found contributions of potential and spin-flip
scattering to the impurity spectral function. Alternatively, at
first one can find an exchange interaction between spins of
conduction electrons and the impurity. Then, one can calculate
a contribution of this interaction to the spectral function. In this
case, the standard way is to apply a canonical transformation
to the Anderson model.20,21 However, this transformation
generates not only the s-d exchange interaction but also a
potential term that describes scattering of conduction electrons
off the impurity. In the case of U = ∞, the amplitude Kk,k′

of scattering from a state with momentum k to a state with
momentum k′ is Kk,k′ = 1/2V 2/(εk − E0).20,21 This potential
term can be eliminated from the effective Hamiltonian by
use of an unitary transformation, which in turn modifies
the exchange coupling.19,21,22 As a result, the renormalized
exchange coupling is given by an equation,19

J̃ (ω) ≈ J

|1 − K(ω)	0(ω)/V 2|2 (22)

≈ J · |ω − E0|2
2�0(ω)

A0(ω), (23)

where K(ω) is the scattering amplitude at εk = ω. Here we
dropped a factor 2, which does not affect qualitatively our
conclusions. In the case of normal metals with a flat band,
the renormalization factor in Eq. (23) has a weak energy
dependence. The real part of the self-energy 	0 is small in
the frequency range of the Kondo resonance (i.e., near the
Fermi level) and only the imaginary part 	0(εF ) ≈ −iπρ0V

2
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R. G. DIAS, LÍDIA DEL RIO, AND A. V. GOLTSEV PHYSICAL REVIEW B 86, 235120 (2012)

is important. This leads to the well-known result,19,21

J̃ (εF ) ≈ J/[1 + (πρ0V
2/E0)2]. (24)

However, in the case of the depleted density of states,
Eq. (23), such approximation is not valid in the frequency
range of the narrow virtual bound resonance because A0(ω)
has a sharp maximum [see Fig. 3(c)]. Thus, in the range
of the virtual resonance in systems with a depleted DOS, a
strong enhancement of the effective exchange coupling J̃ (ω),
Eq. (24), occurs in contrast to the small reduction of the
exchange coupling, Eq. (24), in normal metals.

IX. CONCLUSION

In conclusion, we calculated the spectral function of
magnetic impurities in a gapless system with a depleted density
of states (DOS) about the Fermi level. For this purpose,
we used the equation of motion approach that allowed us
to take into account both potential scattering of conduction
electrons by magnetic impurities and many-body interactions
between conduction electrons and magnetic impurities due
to multiple spin-flip scattering processes. We found that a
depletion of the DOS results in the enhancement of the role
of potential scattering of conduction electrons by magnetic
impurities. We revealed that the potential scattering produces
a narrow virtual bound resonance peak below the Fermi level
in the spectral function. The peak is strongly enhanced if the

hybridization (or the impurity energy) between the conduction
and impurity electron states is larger than a critical value.
Furthermore, potential scattering strongly renormalizes the
exchange interaction between spins of conduction electrons
and magnetic impurities. Spin-flip scattering only gives a
temperature-dependent contribution that has no singularity
even at zero temperature. Our results are in contrast to behavior
of magnetic impurities in normal metals with a finite DOS at
the Fermi level where it is spin-flip scattering that leads to
the narrow Kondo peak near the Fermi level while potential
scattering produces only a small renormalization of the DOS
at Fermi level and a small reduction of the exchange coupling
between spins of conduction and impurity electrons. We also
calculated the spectral function of graphene with a magnetic
impurity. We found that besides the phenomena described
above, the van Hove singularities in this material are also
important and influence on the position and the spectral weight
of the virtual bound resonance peak. The peculiarities of the
impurity spectral function found in the present paper could
be observed by use of the usual experimental probes of the
Kondo effect such as the scanning tunneling microscopy33

or conductance measurements in quantum dot devices with
semimetallic leads.34 Our results on the interplay between
potential and spin-flip scattering by magnetic ions may also
be useful for understanding heavy-fermion compounds such
as iron arsenides, which have a partially depleted density of
electron states at the Fermi level.35
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