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Quantum Monte Carlo calculation of entanglement Rényi entropies for generic quantum systems
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2Institut de Ciències Fotòniques i Optiques, Avenida C. F. Gauss, numero 3, 08860 Castelldefels, Spain

(Received 30 March 2012; revised manuscript received 16 November 2012; published 12 December 2012)

We present a general scheme for the calculation of the Rényi entropy of a subsystem in quantum many-body
models that can be efficiently simulated via quantum Monte Carlo. When the simulation is performed at very
low temperature, the above approach delivers the entanglement Rényi entropy of the subsystem, and it allows
us to explore the crossover to the thermal Rényi entropy as the temperature is increased. We implement this
scheme explicitly within the stochastic series expansion as well as within path-integral Monte Carlo, and apply
it to quantum spin and quantum rotor models. In the case of quantum spins, we show that relevant models in two
dimensions with reduced symmetry (XX model or hard-core bosons, transverse-field Ising model at the quantum
critical point) exhibit an area law for the scaling of the entanglement entropy.
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I. INTRODUCTION

Entanglement represents the unique correlation property
of quantum states, and as such it can play a fundamental
role in our understanding of quantum many-body phases from
the point of view of nonlocal correlations. The most striking
manifestation of entanglement in a quantum state |ψ〉 is
represented by the mixed nature of the reduced density matrix
ρA describing a subsystem A of a quantum many-body system,
and defined as the partial trace of the total density matrix
ρ = |ψ〉〈ψ | on the complement B, ρA = TrBρ. The mixedness
of ρA can be captured by any entropy estimator, the most
common being the von Neumann entropy S

(vN)
A = −TrρAlnρA,

but one can equivalently use its generalization, the Rényi
entropy1

S
(α)
A = − ln

[
Tr

(
ρα

A

)]
1 − α

, (1)

which reduces to the von Neumann entropy in the limit
α → 1. The calculation of entanglement entropies in quantum
many-body states appears as a formidable task, as it seems
to imply the necessity to reconstruct the reduced density
matrix of a subsystem A; this generally represents a hard
problem unless A contains very few degrees of freedom. In
fact this task can be performed efficiently only in a few cases,
including noninteracting bosons and fermions on a lattice.2

For these models, considering fully connected A regions (e.g.,
hypercubic ones) the scaling of the entanglement entropy with
the linear size lA of the region can be calculated analytically
in the asymptotic limit lA → ∞. Analytical and numerical
calculations show that most models obey a so-called area
law S

(α)
A ∼ lD−1

A in D dimensions, except for critical models
in D = 1 and free fermions with a (D − 1)-dimensional
Fermi surface, in which case the area law is corrected
by a multiplicative logarithmic term.3 Much less is known
about models of interacting particles. Indeed their reduced
density matrix can be in principle reconstructed efficiently via
density-matrix renormalization-group (DMRG) and tensor-
network algorithms in one-dimensional lattice systems. Yet,
when extended to higher dimensions, these algorithms do not
guarantee in general to reproduce the whole entanglement
content of the wave function. It is also worth mentioning

that the calculation of the Rényi entropy for α = 2 has been
implemented for SU(2)-invariant lattice spin models via a
projector Monte Carlo technique in Ref. 4.

Here we propose a different technique to calculate the Rényi
entropy of a subsystem, valid for arbitrary quantum many-
body models which admit an efficient quantum Monte Carlo
(QMC) solution of their equilibrium statistical properties. This
includes models with a finite as well as an infinite Hilbert
space. The basic idea is to perform the QMC simulation in an
extended ensemble for α replicas of the system, treating the
topology of the (D + 1)-dimensional configurations generated
by QMC as a dynamical variable. We argue that this approach
substantially improves on all existing schemes for the QMC
estimate of the Rényi entropy. We demonstrate it for the
calculation of the α = 2 Rényi entropy both at (physically)
zero and finite temperature, for two-dimensional S = 1/2
quantum spin models with low symmetry, as well as for the
O(2) quantum rotor model in D = 1.

The paper is structured as follows. Section II describes
how the proposed approach applies to generic QMC schemes
at finite temperature; Sec. III describes the implementation
of this approach for one-dimensional lattice models (XX

model and quantum rotor model), while Sec. IV discusses
applications to two-dimensional quantum spin models, includ-
ing the Heisenberg, XX, XY model and the transverse-field
Ising (TFI) model at the quantum critical point. The two
appendixes provide a detailed comparison with previously
proposed methods, and a discussion of our results concerning
the subleading terms in the scaling of the entanglement entropy
for two-dimensional quantum spin systems.

II. QUANTUM MONTE CARLO ESTIMATOR OF THE
RÉNYI ENTROPY

A. Rényi entropies as partition function ratios

Reference 5 has shown that, thanks to its trace structure,
the Rényi entropy at finite temperature can be cast in the form
of the logarithm of the ratio of partition functions,

Sα = lnR
(α)
A

1 − α
, R

(α)
A = Z (α)

A

Zα
. (2)
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FIG. 1. (Color online) Transition from the Z2 to the Z (2)
A sector

by redefinition of the topology of the simulation box in the additional
dimension. The blue/red regions and lines are associated with the
action of the imaginary-time propagator e−βH. Solid lines link states
which are connected by a propagation step.

Here Zα = [Tr(e−βH)]α is the ordinary partition function for
α replicas of the system, while Z (α)

A is a modified partition
function for replicas which are “glued” together in the region
A. This is best seen in the simplest case α = 2, for which

Z (2)
A =

∑
nA,mA

nB,mB

〈nAnB |e−βH|mAnB〉〈mAmB |e−βH|nAmB〉. (3)

Here |nAnB〉 is an arbitrary basis of states which are fac-
torized between the A and B regions. Regarding e−βH as
the imaginary-time propagator, Eq. (3) describes a cyclic
propagation for a time 2β of the A-region state, and two
independent cyclic propagations for a time β of the B-
region state, as sketched in Fig. 1. On the other hand Z2

describes two independent propagations for a time β. The
statistical mechanics formulation of the Rényi entropy has
been remarkably exploited in Ref. 5 for the calculation of the
entanglement entropies for conformal field theories (CFTs);
more recently Refs. 6–8 have implemented a quantum Monte
Carlo calculation of both Z and Z (α)

A separately via direct
thermodynamic integration of the energy curve E(β ′) over the
interval [0,β] to obtain the finite-temperature Rényi entropy
S

(α)
A (β). This technique, while being very general, appears

to be technically limited to finite temperatures,6,7 given that
as T → 0, the Rényi entropy is extracted as the difference
between two diverging integrals, giving rise to an uncontrolled
error (see Appendix A). Moreover, the integration approach
implies that the system has a finite-dimensional Hilbert space,
and therefore it is limited in practice to lattice models with
discrete local degrees of freedom.

In the following we propose an alternative QMC approach
which cures the above limitations, allowing us to systemati-
cally calculate the Rényi entropy of a subsystem with a single
simulation at the temperature of interest, performed within an
extended ensemble, for any model to which finite-temperature
Monte Carlo methods can be applied, including models with
an infinite-dimensional Hilbert space.

B. Extended-ensemble estimator

The central idea of our approach is that the ratio of two
partition functions can be generally estimated with Monte
Carlo by performing a simulation in an ensemble which is
the union of the two, Z2 ∪ Z (2)

A . Whichever quantum Monte
Carlo approach is used for the estimation of the equilibrium

statistical properties of the Hamiltonian H, it should allow us
to write Z (2)

A in the form

Z (2)
A =

∑
C

wA(C), (4)

where C = (nA,nB ; mA,mB ;P) is a QMC configuration, in
which the state |nA〉 is propagated to |mA〉 and then back to
itself in the region A, while the states |nB〉 and |mB〉 are prop-
agated onto themselves independently, and the propagation
scheme is represented by P: P is generally a path in the
computational basis |ψ(τ )〉 = |ψA(τ )〉|ψB(τ )〉 parametrized
by the (continuous) imaginary time τ ∈ [0,β] as in path-
integral Monte Carlo (PIMC),9 or by the propagation step
index τ = p, associated with a string of bond operators, as in
stochastic series expansion (SSE).10 Within the above notation,
Z2 = Z (2)

A=∅
. wA is the statistical weight of a configuration;

the Hamiltonian H lends itself to an efficient QMC simulation
if wA � 0 for all configurations, and if the weights wA can be
calculated efficiently.

Our method consists in constructing a simulation which
moves dynamically between the Z2 ensemble and the Z (2)

A

while respecting the detailed balance condition. The move
from one ensemble to another can be performed with Metropo-
lis probability

P
(
Z2 → Z (2)

A

) = min[1,wA(C)/wA=∅(C)] (5)

and vice versa for the reverse move. The partition function
ratio R

(2)
A is then simply estimated as

R
(2)
A = 〈NA/NA=∅〉MC, (6)

where NA is the number of MC steps in the ensemble with
a given region A, and 〈· · ·〉MC is the Monte Carlo average.
A straightforward generalization of the above formulas is
possible for α > 2. We would like to point out that an analo-
gous extended-ensemble QMC scheme is the one defining the
QMC estimator for observables which are off-diagonal in the
computational basis.11

In practice, for a simulation of discrete degrees of freedom
on a lattice—e.g., quantum spins, lattice gases—with con-
served quantities (total magnetization, particle number, etc.)
the weights wA(C) and wA=∅(C) cannot in general be simul-
taneously nonvanishing unless the condition |nA〉 = |mA〉 is
satisfied, in which case the transition in the propagation topol-
ogy (Fig. 1) is microcanonical, namely wA(C) = wA=∅(C).
In the case of quantum spin systems or lattice gases without
conserved quantities, or of continuous lattice variables—e.g.,
quantum rotors—or of particles in continuous space, the
“rewiring” of world lines demanded by the transition between
the ensembles can be in principle always performed, although
it will have an acceptance rate which is low if the configurations
|nA〉 and |mA〉 are very different.12 Assuming to use a PIMC
scheme in which the imaginary time is discretized in steps �τ ,
and indicating with HOD the part of the Hamiltonian which is
off-diagonal in the computational basis, one has that the ratio
wA(C)/wA=∅(C) takes the expression

〈n′
An′

B |e−�τHOD |mAnB〉〈m′
Am′

B |e−�τHOD |nAmB〉
〈n′

An′
B |e−�τHOD |nAnB〉〈m′

Am′
B |e−�τHOD |mAmB〉 . (7)
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As indicated in Fig. 1, the primed configurations are connected
to the unprimed ones by a single propagation step.

The above scheme provides an efficient estimate of R
(α)
A ,

and therefore of S
(α)
A , by performing a single simulation at the

temperature of interest. When the temperature is chosen to be
so low as to remove thermal effects on a finite-size simulation
box, one can gain access to the entanglement Rényi entropy.

III. RESULTS FOR ONE-DIMENSIONAL MODELS

Unless otherwise specified, in the following we will show
simulation results for the general case of an XYZ Hamiltonian
in a field

H = J
∑
〈ij〉

(
Sx

i Sx
j + �yS

y

i S
y

j + �zS
z
i S

z
j

) − H
∑

i

Sz
i , (8)

where Sα
i are S = 1/2 spin operators, J > 0, and 〈ij 〉 indicates

a pair of nearest neighbors on a D-dimensional hypercubic
lattice. A validation of our approach comes from the compar-
ison with exact results in D = 1, which are available, e.g., for
the case of the XX model (�y = 1, �z = 0); such a model
admits a mapping onto a system of free fermions,13 whose
entanglement properties can be calculated from the knowledge
of two-point correlations.2 Figure 2(a) shows the data for a
L = 64 chain with periodic boundary conditions, simulated
with the SSE algorithm; very good agreement is found between
the exact results and QMC results at an inverse temperature
βJ = 200.

In principle the whole S
(2)
A curve as a function of lA can

be obtained by performing simulations in the joint Z2 ∪ Z (2)
A

ensemble; in practice, the transition rate between the two
ensembles is strongly suppressed when the size of A grows,
given that the condition |nA〉 = |mA〉 is increasingly hard
to satisfy. This aspect reflects the fact that the ratio R

(2)
A

estimated in the simulation decreases exponentially with S
(2)
A ,

R
(2)
A = exp(−S

(2)
A ). In the D = 1 case in question, in which5

S
(α)
A ≈ (c̄/6)(1 + 1/α)lnlA, (9)

we obtain that R(2)
A ≈ l

−c̄/4
A , where c̄ is the central charge of the

related CFT. If an area law holds, one has an even more serious
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FIG. 2. (Color online) (a) Entanglement entropy of the one-
dimensional (1D) XX chain; the solid line corresponds to exact
diagonalization. (b) Entanglement entropy of the 1D O(2) quantum
rotor model. Here L = 64, t = kBT /J , and ε = �τU ; increments
�l = 1 are used; the dashed lines correspond to fits to the CFT
prediction (1/4)ln[C(lA|L)] + s1.

decrease R
(2)
A ≈ exp(−b̃lD−1

A ). The events that the simulation
has to count become increasingly rare, so that the simulation
length should naı̈vely scale as (R(2)

A )−1.
To cure this problem we use the increment trick from Ref. 4,

by formally rewriting R
(2)
A as

R
(2)
A =

N−1∏
i=0

R
(2)
Ai,Ai+1

, R
(2)
Ai,Ai+1

= Z (2)
Ai+1

Z (2)
Ai

, (10)

where Ai is a sequence of N blocks of increasing size such
that A0 = ∅ and AN = A. Each of the ratios R

(2)
Ai,Ai+1

can
be estimated efficiently, as it represents the ratio between
the partition functions of systems which are 2β-periodic on
regions Ai and Ai+1 chosen so as to differ only by a few sites (or
by a few interparticle spacings in continuum space). The Rényi
entropy is then the sum of contributions from the successive
increments �Ai that lead from ∅ to A, S

(2)
A = ∑

S
(2)
Ai,Ai+1

where S
(2)
Ai,Ai+1

= −lnR
(2)
Ai,Ai+1

. While too large increments �Ai

give rise to inefficient estimates of the corresponding ratios
R

(2)
Ai,Ai+1

, too small ones lead to a sizable accumulated error on
the sum; yet an optimal size of the increment can be found
minimizing the final error on S

(2)
A . In Fig. 2(a) we have used

linear increments of size �Ai = �l = 5.
Nonetheless it can still be seen that the precision of

the results is not optimal for lA � 20. This is a result of
the slow increase of entanglement entropy in 1D systems
(especially for lA ≈ L/2): if the ratios R(2) are known with
a given relative error εR = �R(2)/R(2), the corresponding
entanglement increment S(2) has a relative error εS = εR/S(2),
which can be much bigger than εR when the increment is
small. This means that the QMC technique enjoys a faster
scaling of the entropy, as found, e.g., in 2D systems or at
finite temperature; as we will see, the quality of the 2D data is
significantly better.

Having validated the approach against exact results, we
can apply it to yet unexplored models. To demonstrate the
versatility of the QMC Rényi entropy estimator, we apply it
to the study of a model with continuous quantum variables,
namely the 1D O(2) quantum rotor model,

H = −2J
∑
〈ij〉

cos(φi − φj ) − U

2

∑
i

∂2

∂φ2
i

, (11)

in which φi ∈ [0,2π ]. This model represents an approximation
to the Bose-Hubbard model with hopping J and repulsion U

for large integer filling, and it exhibits a superfluid-insulator
quantum phase transition for increasing U/J . Such a model
can be studied via PIMC14 with discretized imaginary time (in
steps �τ ). Figure 2(b) shows the Rényi entropy for a chain of
L = 64 sites at variable U/J ; we observe that for sufficiently
small U/J the Rényi entropy obeys the CFT prediction

S
(2)
A = (c̄/4)ln[C(lA|L)] + s1, (12)

where c̄ = 1, C(x|L) = L/π sin(πx/L), and s1 = s1(U/J ) is
a constant dependent on the Hamiltonian parameters. On the
other hand for large U/J the CFT prediction is no longer
verified, as the system enters an insulating gapped phase.
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FIG. 3. (Color online) Entanglement entropy of 2D spin models
with various symmetries; the error bars are smaller than the symbol
sizes. The dashed lines represent fits to the form b + c(lnl)/l + d/l.

IV. RESULTS FOR TWO-DIMENSIONAL MODELS

A. Effect of Hamiltonian symmetry

We then move to 2D systems, and consider three representa-
tives of the three symmetry sectors of the XYZ model, Eq. (8)
in zero field, namely the case of a SU(2) invariant Heisenberg
(or XXX) model (�y = �z = 1), the case of a U(1) symmetric
XX model (�y = 1, �z = 0), and the case of the Z2 symmetric
anisotropic XY model (�y = 0.8, �z = 0). In all three cases
we consider A regions with a square geometry lA × lA, grown
in linear increments of (typically) five sites, and we plot the
data as a function of the region boundary l = 4(lA − 1). The
simulations have been performed with the SSE algorithm on
lattices with L × L size up to L = 36, and at a temperature
βJ ≈ L guaranteeing the removal of thermal contributions.

The case of the XXX model has been previously investi-
gated in Refs. 4 and 15 via projector QMC, and we confirm
their finding of an area law scaling of entanglement entropy.
As clearly shown in Fig. 3, an area law is also observed for the
other two models with reduced symmetry: in all three cases
the scaling of the Rényi entropy is very well fitted by an area
law plus subleading corrections,

f (l) = bl + clnl + d; (13)

the fit coefficients (obtained by discarding data with l < lmin)
are reported in Table I (see Appendix B for a discussion of the
fits). In particular, the coefficient b of the dominant area-law
term decreases systematically as the symmetry of the model
is decreased; this is consistent with the picture that a lower
symmetry confines quantum fluctuations to a restricted region
of spin space, thereby lowering entanglement properties.

TABLE I. Fit coefficients for the three models investigated in
Fig. 3.

Model b c d lmin

2D XXX (�y = �z = 1) 0.099(1) 0.48(4) 0.05(10) 16
2D XX (�y = 1, �z = 0) 0.045(1) 0.31(3) 0.52(5) 8
2D XY (�y = 0.8, �z = 0) 0.013(1) − 0.02(2) 0.76(2) 8
2D TFI (�y = �z = 0) - QCP 0.0332(4) − 0.03(1) 0.15(2) 8
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1.5
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      = 0.5
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FIG. 4. (Color online) Rényi entropy for the 2D XX model at
increasing temperature. Error bars are smaller than the symbol size.

B. 2D X X model and finite temperatures

The 2D XX model maps onto hard-core bosons, and it is
directly relevant, e.g., to current cold-atom experiments. To
make contact with a more realistic experimental situation, we
have studied the effect of an increasing temperature on the
scaling of the Rényi entropy, an aspect which can be quite
naturally investigated with finite-T QMC. Given that thermal
entropies are extensive, on general grounds one expects finite
temperatures to introduce a volume law in the scaling, namely
a a(T )lDA term fatally masking the area-law term. Nonetheless
the growth of the volume-law coefficient with temperature,
a(T ), appears fairly slow: as shown in Fig. 4 an area law
persists at a moderate, finite temperature, T/J = 0.1, for
the block sizes considered here (the biggest being lA = 16),
implying that a(T )lDA � 4b(lA − 1). On the other hand, at
a temperature T/J = 0.5 and higher, the volume law term
dominates already for small block sizes. These results point to
the fact that area laws of Rényi entropy are observable even
at finite temperature and for moderate block sizes, which are
indeed relevant for experiments.

C. Transverse-field Ising model at the quantum critical point

We conclude our discussion of D = 2 models with
the case of the 2D transverse-field Ising (TFI) model,
�y = �z = 0, which displays a quantum critical point (QCP)
at Hc ≈ 1.52J .16,17 Our approach enables us to investigate this
two-dimensional quantum critical system in search of special
entanglement signatures. As shown in Fig. 3 and in Table I, we
observe that the entanglement Rényi entropy obeys an area law
with a negative logarithmic correction and a positive additive
constant. These findings are in quantitative agreement with
recent field-theory results for a QCP with dynamical critical
exponent z = 1, predicting universal negative logarithmic
corrections coming from corners of the A region18,19 (see
Appendix B), and a universal (α-dependent) additive constant
in D = 2.20 This shows that QMC simulations can quanti-
tatively extract the subleading corrections; their universality
can be directly tested by investigating different microscopic
models exhibiting QCPs in the same universality class.
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V. CONCLUSIONS

In this paper we have demonstrated a simple approach to
incorporate an estimator of subsystem Rényi entropies into
any finite-temperature quantum Monte Carlo scheme. This
approach complements the estimator developed within the
projector-QMC scheme,4 and it paves the way for a systematic
investigation of entanglement entropies in a large variety of
interacting quantum systems in arbitrary dimensions, such
as quantum fluids, quantum spin systems, O(N ) quantum
rotor models, quantum field theories, etc., as long as they
are accessible to a QMC study. Contrary to DMRG or to
variational methods based on tensor-network states, QMC
simulations are completely unbiased with respect to the
scaling of entanglement, and the QMC entanglement estimator
actually performs better the faster the entanglement grows
with the subsystem size. Moreover, QMC represents a natural
platform to investigate the statistics of local quantum fluctua-
tions in realistic systems, in the attempt to relate measurable
fluctuation properties with entanglement properties.21
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APPENDIX A: COMPARISON TO PREVIOUS METHODS

A few alternative methods have been recently proposed to
extract the Rényi entropy of a subsystem via finite-temperature
quantum Monte Carlo simulations. Here we discuss them
critically, showing that they all present significant limitations
compared to our approach.

1. Temperature-integration method

The most developed method is the one reported in Ref. 6,
where the finite-temperature Rényi entropy of a region A is
extracted via the following formula:

S
(2)
A (T ) =

∫ ∞

T

dT ′

T ′2 〈E〉A,T ′ −
∫ ∞

T

dT ′

T ′2 〈E〉∅,T ′

+ 2S(T = ∞) + NA ln(DH ). (A1)

Here 〈· · ·〉A,T denotes an average in the modifiedZ (2)
A ensemble

at temperature T , while 〈· · ·〉∅,T denotes an average in
the Z2 ensemble of two disconnected replicas, and E is
the energy estimator; NA is the number of sites in the A

region, and DH is the dimension of the local Hilbert space
on every lattice site. It is immediately evident that the last
term in the above formula requires to work with a lattice
system with DH < ∞, excluding therefore continuous-space
quantum field theories or lattice quantum field theories with an
infinite-dimensional local Hilbert space (such as the quantum
rotor model investigated in the main text). Moreover, the
method of Ref. 6 consists in calculating separately the two
integrals by numerical reconstruction of the energy estimators
over a fine grid of temperatures. In general 〈E〉A,T and
〈E〉∅,T tend to negative constants as T → 0. Therefore each

of the integrals in Eq. (A1) diverge as T −1 when T → 0; to
extract the information on the entanglement (T = 0) Rényi
entropy one needs a priori to reconstruct numerically the
difference between two diverging quantities, which is subject
to uncontrolled error, and which is in our opinion the limiting
factor that prevented Refs. 6 and 7 from accessing the
calculation of entanglement entropies on sizable systems.

In practice, to calculate the entanglement entropy in a
system with a gapped spectrum it suffices to reach temperature
kBT ≈ k�, where � is the gap and k � 1. Hence the integrals
in Eq. (A1) scale as (k�)−1. Moreover, the integrals scale
as the system size LD , given that the integrand is extensive.
Therefore the error on the integrals scale as (k�)−1LD or as
(k�)−1LD/2 if self-averaging applies to the energy estimator
(this is not the case, e.g., at quantum critical points and for
systems with an extended critical phase at finite temperature,
such as two-dimensional bosons or quantum spins with an
easy-plane anisotropy). On the other hand, assuming that the
linear size of the A region is proportional to the system size
lA ∼ L, the entanglement entropy S

(2)
A is expected to satisfy

an area law (up to logarithmic corrections), and hence to scale
as S

(2)
A ∼ LD−1. Therefore the relative error on S

(2)
A scales

as (k�)−1L [(k�)−1L1−D/2 if self-averaging applies to the
energy]. If the system is gapless in the thermodynamic limit,
the finite-size gap � vanishes as L−z, and therefore the scaling
of the relative error is L1+z (L1+z−D/2 with self-averaging of
the energy). Therefore, the relative error becomes exceedingly
big as L grows, even in the presence of self-averaging of the
energy (e.g., if z = 1, one needs an unphysical D > 4 for
self-averaging to apply to S

(2)
A ).

This unfavorable scaling of the relative error on the
entanglement Rényi entropy is in stark contrast with the
scaling exhibited by our method. Our method reconstructs
the entanglement Rényi entropy of a region of size ∼LD by
the addition of ∼LD increments. The error on the sum of
increments hence scales as LD/2 (making use of a generalized
central limit theorem which applies when L is sufficiently
large, and which is verified by the consistency between our
error bars and the scatter of our results). Hence the relative
error for an entanglement Rényi entropy satisfying the area
law scales as L1−D/2, which means that we have no scaling
for D = 2 and self-averaging for D = 3. Therefore, we find
that our method offers a crucial inversion in the scaling
of the relative error with the system size with respect to
Ref. 6, allowing us to access efficiently the calculation of
entanglement Rényi entropies in large systems.

2. Weight-ratio method and mixed-ensemble method

As mentioned in the main text, if the support of the Z2

ensemble and of the Z (2)
A ensemble coincide, the partition

function ratio R
(2)
A giving the Rényi entropy can in principle

be estimated directly by calculating the weight-ratio average
〈wA(C)/wA=∅(C)〉Z2 within the Z2 ensemble. Here wA(C)
is the weight of a configuration C in the Z (2)

A ensemble and
wA=∅(C) is the weight of the same configuration in the Z2

ensemble; both weights are nonvanishing if the support of the
two ensembles is the same. This property is verified in quantum
spin systems and lattice gases without conserved quantities, in
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lattice systems with continuous local variables, and for models
in continuous space. The above approach is applied, e.g., in
Refs. 22–24 to Ising models and Ashkin-Teller models in
D + 1 dimensions. We have implemented this approach for
the case of the 1D quantum rotor model, and we find that this
method is very inefficient for sufficiently large A regions. In
what follows we outline the limitations of the approach.

If the A region is sufficiently big the two ensembles differ
significantly, and hence the above weight-ratio estimator for
R

(2)
A corresponds to sampling the Z (2)

A ensemble using the
“wrong” weights of the Z2 ensemble. The R

(2)
A estimator takes

significant contributions only from rare C configurations in
the Z2 ensemble which have on the contrary a large weight in
the Z (2)

A ensemble, producing a large wA(C)/wA=∅(C) ratio.
Hence the Monte Carlo time series of the R

(2)
A estimator is

composed of rare spikes, separated by long intervals in which
the estimator is extremely small; this is a rather undesirable
behavior for an estimator, implying very long autocorrelation
times and slow convergence.

At a more quantitative level, we can set wA(C) ∼
exp[−βSA(C)], where SA(C) is the effective Euclidean action
for the configuration C and β is the inverse temperature.
Given that the two ensembles Z (2)

A and Z2 differ in the
form of the effective action in the A region, we have that
SA(C) − SA=∅(C) ≈ aC l

D
A , and therefore wA(C)/wA=∅(C) ∼

exp(−βaC l
D
A ), namely either exponentially small (aC > 0) or

exponentially big (aC < 0) in the size of region A and in the
inverse temperature. If the entanglement entropy satisfies the
area law, the R

(2)
A estimator must have an average of order

exp(−b̃lD−1
A ), namely exponentially small in the A region

boundary and not in its volume. This mismatch has a strong
consequence: the only way that the weight-ratio estimator
can produce such an average is by exponentially (in βlDA )
rare contributions with aC < 0, separated by exponentially
long waiting times giving exponentially small contributions
(configurations with aC > 0). To beat this autocorrelation
effect, the simulation time should scale as exp(βlDA ). This
is to be compared with the estimated scaling as (R(2)

A )−1 ∼
exp(b̃lD−1

A ) of our method (see main text), involving the
boundary of region A and not its volume, and independent
of the inverse temperature. Therefore our approach offers an
exponential speedup with respect to the weight-ratio method
of Refs. 22–24. In principle, in the latter method one can use
the same configuration C for calculating the weight ratio for all
possible translations of the A region in real space (if the system
is translationally invariant) or in imaginary time; moreover,
provided that one saves all the configurations of a simulation
in the Z ensemble in memory (which is impractical for a very
long simulation), one can use any pair of such configurations
to obtain one configuration in the Z2 ensemble.22 These two
tricks provide a speedup which is only polynomial in β and
in lDA ∼ LD , and therefore they cannot cure the exponential
slowdown discussed above. The exponential scaling in the
volume of region A can be alleviated by using the increment
trick described in the main text.

Under the condition of same support for the Z2 ensemble
and the Z (2)

A ensemble, a further alternative method for the
calculation of the Rényi entropy is proposed in Ref. 25. There

the Rényi entropy is calculated directly as

S
(2)
A = β

∫ 1

0
dα〈SA=∅ − SA〉α, (A2)

where the α ensemble, over which the average 〈· · ·〉α
is taken, assigns to a configuration C an action
(1 − α)SA(C) − αSA=∅(C). Therefore in practice the
simulation is run in a “mixed” ensemble with effective
long-range interactions in the imaginary-time direction.
Similarly to the temperature-integration approach, this
scheme has the inconvenient aspect that the entanglement
entropy, which scales typically as the boundary of the A

region, is expressed as the difference of two quantities scaling
with the volume of the same region (assuming lA ∼ L the
scaling is with the volume of the whole system). Moreover,
each term in the difference diverges as T −1 for T → 0. A
similar discussion as the one in the previous section applies.

APPENDIX B: ADDITIVE CORRECTIONS TO THE AREA
LAW IN 2D QUANTUM SPIN SYSTEMS

Here we provide a more detailed discussion of the
coefficients of the Rényi entropy scaling of a square subsystem
embedded in a 2D quantum spin system. We fit our QMC data
for 2D quantum spin models to the form f (l) = bl + clnl + d.
On a L × L lattice, the fits are performed over a region of
boundary sizes [lmin,4(L/2 − 1)] whose lower bound lmin is
gradually increased to check convergence. Figure 5 shows the
fit coefficients as a function of lmin. As a general criterion,
if convergence of the fitting parameters within the error bar
is achieved for a given l∗min, we choose as best-fit parameters
(shown in Table I of the main text) the ones corresponding
to l∗min − 4 (given that they are consistent with the l∗min values
and have smaller error bars). In general we observe that the
coefficient of the area law b is very stable to variations of lmin,
while shrinking too much the fitting region leads to a transition
in the coefficients of the subleading terms c and d. Nonetheless
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FIG. 5. (Color online) Evolution of the fit coefficients of S
(2)
A

when increasing the lower bound of the fit region [lmin,4(L/2 − 1)].
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we observe that convergence in the fitting coefficients is
achieved before the transition; we observe that the transitions
are systematically accompanied by a degradation in the
precision of the resulting fit coefficients, and we argue that
they can be attributed to the limited data sets that are left to fit
if lmin becomes too big. Such limited data sets mainly provide
a reliable estimate for the coefficient of the leading term,
but much less accurate estimates for the subleading ones. In
particular, due to the degradation of the precision in the esti-
mate of the subleading terms with the shrinking of the fitting
region, it is not obvious a priori that one can capture correctly
the asymptotic value of such terms—see below for further
discussion.

Recent field-theoretical studies18,20,26,27 have pointed out
that several two-dimensional quantum systems should exhibit
a dominant area-law scaling of the entanglement entropy with a
nonuniversal coefficient b—given that such coefficient would
depend on the short-distance cutoff related to the details of
the microscopic model of origin. On the other hand, the
subleading logarithmic and constant terms can indeed be cutoff
independent and universal. In the case of z = 1 quantum
critical points (QCPs),20 if the A region has a smooth boundary
one expects that c = 0 and an additive universal constant d,
dependent on the index α of the considered Rényi entropy.
Our finding for the QCP of the 2D transverse field Ising (TFI)
model is that d is indeed finite and positive for α = 2; in
the case α = 1 (von Neumann entropy) Ref. 17 estimates as
well a positive additive constant. On the other hand, we also
find a finite logarithmic correction with a negative coefficient,
c = −0.03(1). One can relate this correction to contributions
coming from corners of the boundary. Such a contribution
to the c coefficient has been estimated in Ref. 18 for a free
relativistic theory to be ≈−0.0062 for each corner. Assuming
that the linearly dispersing modes at the QCP in the 2D TFI
model are described by such a theory, we obtain a value of
c for four corners in quantitative agreement with our results.
Nonetheless the appropriate field theory for the QCP is rather
the interacting O(1) model, and corner corrections might differ
for that system, as pointed out in Ref. 19.

If the ground state has a finite correlation length (as is
the case for the 2D anisotropic XY model), one expects
a correlation-length-dependent additive constant d;20 the
existing predictions of logarithmic corrections do not apply
to this case. Indeed we find a sizable additive constant, and a

logarithmic correction which is consistent with zero. Finally,
in the case of the 2D XX and XXX model, the ground state has
an infinite correlation length and it develops long-range order
in the thermodynamic limit. For the case of the 2D XXX

model, fits to projector QMC data have been performed in
Ref. 15 using the function f ′(lA) = 4b′lA + c′ln(4lA) + d ′ of
the boundary size estimated as 4lA (this estimate double-counts
the corner spins). When fitted to the f ′ function our data
deliver coefficients which are indeed in agreement with the
ones quoted in Ref. 15.

Both the XX and the XXX model have linearly dispersing
gapless Goldstone modes (two for the XXX model, and one for
the XX model), each described in the long-wavelength limit by
a free relativistic theory. Following Ref. 18 one could expect
negative logarithmic corrections coming from corners, but in
fact our results point towards a positive c coefficient for both
models. This result is consistent with what was initially found
numerically in Ref. 15, where positive logarithmic corrections
have been shown to exist for the XXX model even in the
absence of corners. Prompted by the results of Ref. 15, Ref. 27
has recently predicted that in systems exhibiting spontaneous
symmetry breaking in the thermodynamic limit, one should
expect a positive logarithmic correction with a coefficient c

which takes the simple form NG(D − 1)/2 where NG is the
number of Goldstone modes. This would imply that c = 1
for the 2D XXX model and c = 1/2 for the 2D XX model.
Our observation is not consistent with this prediction, even
when taking into account possible further negative logarithmic
contributions coming from corners. Nonetheless we observe
that the coefficient of the XXX model is significantly
larger than that for the XX model. One might argue that
a possible source of discrepancy between our results and
those of Ref. 27 stems from the finite-temperature nature
of our data. Indeed a temperature T ∼ L−1 (at which our
simulations are conducted) is sufficiently low to eliminate
Goldstone-mode excitations, but not to eliminate the thermal
occupation of the low-lying tower-of-states excitations28 (to
eliminate those states one would need a prohibitively low
temperature, T ∼ L−2); yet Ref. 27 suggests that in the case
L−2 � T � L−1 their prediction should still hold. A further
source of discrepancy could be the fact that our finite-size
results fail to correctly capture the behavior of the subleading
terms in the limit l → ∞. Future larger-scale simulations
should be able to clarify this issue.
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4M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko, Phys.
Rev. Lett. 104, 157201 (2010).

5P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.

6R. G. Melko, A. B. Kallin, and M. B. Hastings, Phys. Rev. B 82,
100409 (2010).

7S. V. Isakov, M. B. Hastings, and R. G. Melko, Nat. Phys. 7, 772
(2011).

8R. R. P. Singh, M. B. Hastings, A. B. Kallin, and R. G. Melko, Phys.
Rev. Lett. 106, 135701 (2011).

9D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
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