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We study charge transport of quantum critical points described by conformal field theories in 2 + 1 space-time
dimensions. The transport is described by an effective field theory on an asymptotically anti-de Sitter space-time,
expanded to fourth order in spatial and temporal gradients. The presence of a horizon at nonzero temperatures
implies that this theory has quasinormal modes with complex frequencies. The quasinormal modes determine
the poles and zeros of the conductivity in the complex frequency plane, and so fully determine its behavior on
the real frequency axis, at frequencies both smaller and larger than the absolute temperature. We describe the role
of particle-vortex or S duality on the conductivity, specifically how it maps poles to zeros and vice versa. These
analyses motivate two sum rules obeyed by the quantum critical conductivity: the holographic computations are
the first to satisfy both sum rules, while earlier Boltzmann-theory computations satisfy only one of them. Finally,
we compare our results with the analytic structure of the O(N ) model in the large-N limit, and other CFTs.
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I. INTRODUCTION

The dynamics of quantum criticality1 has long been a
central subject in the study of correlated quantum materials.
Two prominent examples of recent experiments are (i) the
observation of criticality in the penetration depth of a high-
temperature superconductor at the quantum critical point of
the onset of spin density wave order2 and (ii) the criticality of
longitudinal “Higgs” excitations near the superfluid-insulator
transition of ultracold bosons in a two-dimensional lattice.3

A complete and intuitive description of the low-temperature
dynamics of noncritical systems is usually provided by their
quasiparticle excitations. The quasiparticles are long-lived ex-
citations that describe all low-lying states, and their collective
dynamics is efficiently captured by a quantum Boltzmann
equation (or its generalizations). The Boltzmann equation then
can be used to describe a variety of equilibrium properties,
such as the electrical conductivity, thermal transport, and
thermoelectric effects. Moreover, such a method can also
address nonequilibrium dynamics, including the approach to
thermal equilibrium of an out-of-equilibrium initial state.

A key property of strongly interacting quantum critical
systems is the absence of well-defined quasiparticle excita-
tions. The long lifetimes of quasiparticles is ultimately the
justification of the Boltzmann equation, so a priori it appears
that we cannot apply this long-established method to such
quantum critical points. However, there is a regime where, in a
sense, the breakdown of quasiparticle excitations is weak: this
is the limit where the anomalous exponent, usually called η,
of a particle-creation operator φ is small (strictly speaking,
φ creates particles away from the quantum critical point).
The spectral weight of the φ Green’s function is a power-law
continuum, but in the limit η → 0, it reduces to a quasiparticle
δ function. By expanding away from the η → 0 limit, one can
extend to the Boltzmann method to quantum critical points,
and such a method has been the focus of numerous studies.4–14

A typical example of such Boltzmann studies is the theory
of transport at the quantum critical point of the N -component
φ4 field theory with O(N ) symmetry in 2 + 1 dimensions;
the N = 2 case describes the superfluid-insulator transition of
Ref. 3. Conformal symmetry emerges at the quantum critical
point and the corresponding conformal field theory (CFT)
admits a finite dc charge conductivity even in the absence
of translation-symmetry breaking perturbations4 (such as
disorder or umklapp scattering). This property follows from
the presence of independent positive and negative charge
excitations related by charge conjugation (particle-hole) sym-
metry, which does not require conformal invariance. We shall,
however, restrict oursevles to CFTs in the current work. The
Boltzmann analysis of transport was applied in the large-N
limit of the O(N ) model,1,5,14 and the structure of the frequency
dependence of the conductivity σ (ω) is illustrated in Fig. 1(b).

The low-frequency behavior is as expected for weakly
interacting quasiparticles: there is a Drude peak whose height
diverges as ∼N , and whose width vanishes as 1/N , while
preserving the total weight as N → ∞. It is not at all clear
whether such a description of the low-frequency transport is
appropriate for the N = 2 of experimental interest: while it is
true that the anomalous exponent η remains small even at N =
2, it is definitely not the case that the thermal excitations of the
quantum critical point interact weakly with each other. At high
frequencies, ω � T (T is the temperature), the predictions of
the large N expansion for σ (ω) seem more reliable: the result
asymptotes to a nonzero universal constant σ∞ whose value
can be systematically computed order-by-order in the 1/N

expansion without using the Boltzmann equation.
In this paper, we argue for a different physical paradigm

as a description of low frequency transport near quantum
critical points, replacing the quasiparticle-based intuition of
the Boltzmann equation. We use the description of quantum-
critical transport based on the AdS/CFT correspondence15 to
emphasize the physical importance of “quasinormal modes” in
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FIG. 1. (Color online) (a) Perspective on approaches to the charge transport properties of strongly interacting CFTs in 2 + 1 dimension. The
quantum Boltzmann approach applies to the 1/N expansion of the O(N ) model: its starting point assumes the existence of weakly interacting
quasiparticles, whose collisions control the transport properties. In the present paper, we start from the “nearly perfect” quantum liquid obtained
in the Nc → ∞ limit of a SU (Nc) super Yang-Mills theory, which has no quasiparticle description. Holographic methods then allow expansion
away from this liquid (λ is the ’t Hooft coupling of the gauge theory). (b) Structure of the charge conductivity in the quantum Boltzmann
approach. The dashed line is the N = ∞ result: it has a δ function at zero frequency and a gap below a threshold frequency. The full line shows
the changes from 1/N corrections. (c) Structure of the charge conductivity in the holographic approach. The Nc = ∞ result is the dashed line,
and this is frequency independent. The full line is the conductivity obtained by including four-derivative terms in the effective holographic
theory for γ > 0.

the charge response function. Formally, the quasinormal mode
frequencies are the locations of poles in the conductivity in the
lower-half complex frequency plane, i.e., the poles obtained
by analytically continuing the retarded response function from
the upper-half plane (UHP) to the second Riemann sheet in the
lower-half plane (LHP). By considering a particle-vortex dual
(or “S-dual”) theory whose conductivity is the inverse of the
conductivity of the direct theory, we also associate quasinormal
modes with the poles of the dual theory, which are the zeros of
the direct theory. Both the pole and zero quasinormal modes
are directly accessible in AdS/CFT methods,16–18 and are
related to the normal modes of excitations in the holographic
space: the normal modes have complex frequencies because
of the presence of the “leaky” horizon of a black brane; see
Fig. 2.We will show that knowledge of these modes allows
a complete reconstruction of the frequency dependence of
the conductivity, σ (ω), extending from the hydrodynamic
regime with ω � T , to the quantum critical regime with
ω � T . Moreover, these quasinormal mode frequencies are
also expected to characterize other dynamic properties of the
quantum critical system: the recent work of Bhaseen et al.19

showed that the important qualitative features of the approach
to thermal equilibrium from an out-of-equilibrium thermal
state could be well understood by knowledge of the structure
of the quasinormal mode frequencies.

Apart from the quasinormal modes, the long-time dynamics
also exhibits the well-known20 classical hydrodynamic feature
of “long-time tails” (LTT). The LTT follow from the principles
of classical hydrodynamics: arbitrary long-wavelength
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FIG. 2. (Color online) AdS space-time with a planar black brane.
The current (Jμ) correlators of the CFT are related to those of the
U(1) gauge field (Aμ) in the AdS (bulk) space-time. The temperature
of the horizon of the black brane is equal to the temperature of
the CFT. The horizon acts as a “leaky” boundary to the bulk Aμ

normal modes, which consequently become quasinormal modes with
complex frequencies. These quasinormal modes specify the finite
temperature dynamic properties of the CFT.
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hydrodynamic fluctuations lead to the algebraic temporal
decay of conserved currents. The LTT depend only upon
various transport coefficients, thermodynamic parameters,
and a high-frequency cutoff above which hydrodynamics does
not apply. In the quantum-critical systems of interest here,
this high-frequency cutoff is provided by the quasinormal
modes. Thus the LTT describe the dynamics for frequencies
ω � T , while the quasinormal modes appear at ω ∼ T and
higher. We emphasize that the value of the dc conductivity,
σ (ω/T = 0), is determined by the full CFT. The nonanalytic
small-frequency dependence associated with the LTT can
be obtained from the effective classical hydrodynamic
description which takes the transport coefficients of the CFT
treatment as an input. The focus of the present paper will be
on the quasinormal modes, and we will not have any new
results on the LTT; the description of the LTT by holographic
methods requires loop corrections to the gravity theory,21

which we will not consider here.
From our quasinormal mode perspective, we will find two

exact sum rules that are obeyed by the universal quantum
critical conductivity, σ (ω), of all CFTs in 2 + 1 dimensions
with a conserved U(1) charge. These are∫ ∞

0
dω [� σ (ω) − σ∞] = 0, (1)

∫ ∞

0
dω

[
� 1

σ (ω)
− 1

σ∞

]
= 0. (2)

Here, σ∞ is the limiting value of the conductivity for ω � T (in
applications to the lattice models to condensed matter physics,
we assume that ω always remains smaller than ultraviolet
energy scales set by the lattice). The first of these sum rules
was noted in Ref. 22. From the point of view of the boundary
CFT, Eq. (1) is quite natural in a Boltzmann approach; it
is similar to the standard f -sum rule, which we extend to
CFTs in Appendix A. There we connect it to an equal-time
current correlator, which we argue does not depend on IR
perturbations such as the temperature or chemical potential.
The second sum rule follows from the existence of a S-dual (or
“particle-vortex” dual) theory15,18,23–25 whose conductivity is
the inverse of the conductivity of the direct theory. Although it
can be justified using the direct sum rule, Eq. (1), applied to the
S-dual CFT, whose holographic description in general differs
from the original theory, we emphasize that it imposes a further
constraint on the original conductivity. To our knowledge, the
second sum rule has not been discussed previously. All our
holographic results here satisfy these two sum rules. We show
in Appendix B that the N = ∞ result of the O(N ) model in
Ref. 4 obeys the sum rule in Eq. (1), a feature that was not
noticed previously. However, such quasiparticle-Boltzmann
computations do not obey the sum rule in Eq. (2). The
holographic computations of the conductivity are the first
results which obey not only the sum rule in Eq. (1), but also
the dual sum rule in Eq. (2).

In principle, the quasinormal mode frequencies can also
be determined by the traditional methods of condensed matter
physics. However, they are difficult to access by perturbative
methods, or by numerical methods such as dynamical mean-
field theory.26 One quasinormal mode is, however, very
familiar; the Drude peak of quasiparticle Boltzmann transport,

appearing from the behavior σ (ω) ∼ σ0/(1 − iωτ ), corre-
sponds to a quasinormal mode at ω = −i/τ . In a strongly-
interacting quantum critical system, we can expect from the
arguments of Ref. 4 that this peak would translate to a
quasinormal mode at ω ∼ −iT . As we will see in detail below,
this single Drude-like quasinormal mode does not, by itself,
provide a satisfactory description of transport, and we need to
understand the structure of the complete spectrum of quasinor-
mal modes. And the most convenient method for determining
this complete spectrum is the AdS/CFT correspondence.

As we indicate schematically in Fig. 1(a), the AdS/CFT
description becomes exact for certain supersymmetric gauge
theories in the limit of a large number of colors Nc in the
gauge group.27–29 This theory has no quasiparticles, and in the
strict Nc = ∞ limit the conductivity is frequency independent
even at T > 0, as indicated in Fig. 1(c). Our quasinormal mode
theory expands away from this frequency-independent limit, in
contrast to the free particle limit of the Boltzmann theory [in the
latter limit, the Drude contribution becomes σ (ω) ∼ T δ(ω)].
We describe the basic features of σ (ω) obtained in this manner
in the following subsection. Because strong interactions are
crucial to the structure of σ (ω) at all stages, and there is no
assumption about the existence of quasiparticles, we expect
our results to be general description of a wide class of strongly
interacting quantum critical points.

A. Generic features of the finite-T conductivity of a CFT

The frequency dependent conductivity of a CFT in 2 + 1
dimensions at finite temperature will naturally be a function
of the ratio of the frequency to the temperature, ω/T , which
we will denote as w, with a factor of 4π convenient in the
holographic discussion,

w ≡ ω

4πT
. (3)

In general, we do not expect the conductivity of a generic CFT
to be a meromorphic function of the complex frequency w,
i.e., analytic except possibly at a discrete set of points where
it has finite-order poles, all in the LHP. (The latter condition
follows from the causal nature of the retarded current-current
correlation function.) The absence of meromorphicity for the
conductivity of an interacting CFT, or the presence of branch
cuts, can be attributed to the LTT.20,30 In the present paper, we
will not discuss LTT and focus on the meromorphic structure
of the conductivity. On the one hand, such a description
should be valid for CFTs that have a holographic classical
gravity description.22 For example, there is strong evidence
that certain super Yang-Mills large-Nc gauge theories are
holographically dual to classical (super)gravity and do not have
LTT, which are suppressed by 1/N2

c compared to the leading
meromorphic dependence.30 On the other hand, we believe
that understanding the meromorphic structure is a first step to
understanding the full analytic structure of generic CFTs, and
do not expect branch cuts from the LTT to significantly modify
the poles and zeros of the quasinormal modes at frequencies
of order T or larger.

The meromorphic condition is tantamount to assuming that
in response to a small perturbation, the system will relax
exponentially fast to equilibrium at finite temperature. In
addition to LTT, we expect deviations from such behavior

235115-3



WILLIAM WITCZAK-KREMPA AND SUBIR SACHDEV PHYSICAL REVIEW B 86, 235115 (2012)

2 1 1 2
Ω

4 ΠT

3

2

1

Ω 4ΠT

(a)
0.5 1.0 1.5

Ω 4ΠT
0.2
0.4
0.6
0.8
1.0
1.2 Σ

Σ

(b)

22
Ω

Ω

(c)

1 2 3 4 5 6
Ω T

0.02

0.02

0.04

0.06

0.08

0.10

0.12

Σ

Σ

2 T

(d)

FIG. 3. (Color online) (a) Poles (crosses) and zeros (circles) of the holographic conductivity at γ = 1/12. (b) Real and imaginary parts of
the holographic conductivity on the real frequency axis. (c) Poles and zeros of the O(N ) model at N = ∞; the zeros coincide with branch
points, and the associated branch cuts have been chosen suggestively, indicating that the branch cuts transform into lines of poles and zeros after
collisions have been included. (d) Conductivity of the O(N ) model at N = ∞; note the δ function in the real part at ω = 0, and the co-incident
zero in both the real and imaginary parts at ω = 2�. In these figures �/T = 2 ln[(

√
5 + 1)/2], and the O(N ) computation is reviewed in

Appendix B.

to occur at a thermal phase transition for instance, where
power law relaxation will occur. In that case σ is not expected
to be meromorphic and branch cuts can appear. Another
exception is free CFTs, such as the O(N ) model in the limit
where N → ∞, where we find poles and zeros directly on
the real frequency axis, as well as branch cuts, as shown
in Fig. 3(c). We restrict ourselves to the finite-temperature
regime of an interacting conformal quantum critical point with
a classical gravity description and do not foresee deviations
from meromorphicity.22

Moreover, we expect the universal conductivity to go to a
constant as w → ∞:4,31

σ (w → ∞) = σ∞ < ∞, w ∈ R . (4)

Such a well-defined limit will generally not exist as one
approaches complex infinity along certain directions in the
LHP. This is tied to the fact that σ will not necessarily satisfy
the stronger condition of being additionally meromorphic
at infinity. In other words, s(z) := σ (1/z) is not necessarily
meromorphic in the vicinity of the origin, z = 0. If it were,
σ (w) would be a rational function, the ratio of two finite-order
polynomials, and would have a finite number of poles (and ze-
ros). In our analysis, we shall encounter a class of CFTs whose
conductivity has an infinite set of simple poles, and is thus not
meromorphic on the Riemann sphere C ∪ {∞}. A familiar
example of such a function is the Bose-Einstein distribution,
nB(w) = 1/(ew − 1), which is meromorphic, but not at infinity
because it has a countably infinite set of poles on the imaginary
axis. In fact, nB(1/z) has an essential singularity at z = 0.

A further generic property that σ satisfies in time-reversal
invariant systems is reflection symmetry about the imaginary-
frequency axis: σ (−w∗) = σ (w)∗, which reduces to evenness
or oddness for the real and imaginary parts of the conductivity
at real frequencies, respectively. In particular, this means that
all the poles and zeros of σ either come in pairs or else lie on
the imaginary axis. Following this discussion, we can express
the conductivity as

σ (w) =
∏

zeros∏
poles

=
∏

l

(
w − ζ 0

l

)∏
p

(
w − π0

p

) ∏
n(w − ζn)(w + ζ ∗

n )∏
m(w − πm)(w + π∗

m)
,

(5)

where ζ denotes zeros and π poles; {ζ 0
l ,π0

p} and {ζm,πm} lie
on and off the imaginary axis, respectively. In this sense, the
poles and zeros contain the essential data of the conductivity.
Actually, since σ (w → ∞)/σ∞ = 1 on the real axis, which
also holds for all directions in the UHP, they entirely determine
σ/σ∞. In the current holographic analysis, all the poles and
zeros are simple, excluding double and higher order poles. We
suspect this is a general feature of correlated CFTs. If one
is interested in the behavior on the real frequency axis only,
the expression for the conductivity arising from the AdS/CFT
correspondence can be truncated to a finite number of poles
and zeros: we will show in Sec. II E that this leads to reasonable
approximations to the conductivity on the real frequency axis.
Such a truncated form can be compared with experimentally
or numerically measured conductivities for systems described
by a conformal quantum critical point.
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As we will show in this paper, the holographic methods
allow easy determination of the poles in the conductivity,
which are identified as the frequencies of the quasinormal
modes of the theory on AdS4 in the presence of a horizon at a
temperature T . Moreover, the zeros in the conductivity emerge
as the frequencies of the quasinormal modes of a S-dual
(or “particle-vortex” dual) theory.15,18,23–25 We summarize our
holographic results for a particular parameter value in Fig. 3,
along with the corresponding results for the O(N ) model at
N = ∞.

The O(N ) model has a pole at ω = 0, corresponding to
the absence of collisions in this model at N = ∞. This turns
into a Drude-like pole on the imaginary axis, closest to the
real axis in the holographic result. We show in Appendix B
that the O(N ) model also has a pair of zeros on the real axis,
and this is seen to correspond to zeros just below the real
axis in the holographic result. Finally, the O(N ) model has
a pair of branch points on the real axis; the location of the
branch cuts emerging from these branch points depends on
the path of analytic continuation from the upper half plane.
We have chosen these branch cuts in a suggestive manner in
Fig. 3(c), so that they correspond to the lines of poles and zeros
in the lower-half plane of the holographic result. So we see a
natural and satisfactory evolution from the analytic structure
of the collisionless quasiparticles of the O(N ) model, to the
quasinormal modes of the strongly interacting holographic
model.

The outline of our paper is as follows. The holographic
theory on AdS4 will be presented in Sec. II. We will use
the effective field theory for charge transport introduced in
Ref. 24, expanded to include terms with up to four space-time
derivatives. The quasinormal modes will be computed using
methods in the literature.17,18,33,34 Section III will turn to the
traditional quantum Boltzmann methods where new results
regarding the analytic structure are given; in particular, we
find that the low-frequency Boltzmann conductivity can be
accurately represented by a single Drude pole.

II. HOLOGRAPHIC ANALYSIS

The AdS/CFT holographic correspondence we use arose
from the study of nonabelian supersymmetric gauge theories
in the limit of a large number of colors, for example with
gauge group SU(Nc), Nc → ∞. By taking an appropriate limit
for the gauge coupling, such theories are strongly interacting
yet they can be described by weakly coupled gravity in an
Anti-de-Sitter (AdS) space-time with one extended additional
spatial dimension, and six or seven compactified ones. The
fixed-point CFT describing the strongly correlated gauge
theory can be seen as existing on the boundary of AdS.
Different correlation functions on the boundary quantum CFT,
such as the charge-current ones of interest to this work, can
be computed by using the bulk (semi-)classical gravitational
theory. For instance, the current operator corresponding to a
global U(1) charge in the CFT can be identified with a U(1)
gauge field in the higher dimensional gravitational bulk (see
Fig. 2). We refer the reader to a number of reviews1,35,36

with condensed matter applications in mind and proceed to
the holographic description of transport in 2 + 1 dimensional
CFTs.

These CFTs are effectively described by a gravitational bulk
theory in 3 + 1 dimensions. In the case of the supersymmetric
ABJM model37 in a certain limit with an infinite number
of colors, the holographic dual is simply Einstein’s general
relativity in the presence of a negative cosmological constant
resulting in an AdS4 space-time. Charge-transport correlations
functions in the CFT can be obtained from those a U(1) probe
gauge field with Maxwellian action in the AdS background.
It was shown15 that the conductivity of the large-Nc ABJM
model is frequency independent due to an emergent S duality.
Reference 24 discovered that deviations from self-duality
are obtained by considering four-derivative corrections to the
Einstein-Maxwell theory, which can potentially arise at order
1/λ in the inverse ’t Hooft coupling. The effective action for
the bulk gravitational theory discussed in Ref. 24 reads

Sbulk =
∫

d4x
√−g

[
1

2κ2

(
R + 6

L2

)

− 1

4g2
4

FabF
ab + γ

L2

g2
4

CabcdF
abF cd

]
, (6)

where g is the determinant of the metric gab with Ricci
scalar R; Fab is the field strength tensor of the probe U(1)
gauge field Aa holographically dual to the current operator
of a global charge of the CFT. (We use roman indices for
the 3 + 1 space-time, and greek ones for the boundary 2 + 1
space-time.) Such an action was also considered in Ref. 38.
The four-derivative contribution to charge-transport can be
encoded in the last term, proportional to γ . Cabcd is the
(conformal) Weyl curvature tensor; it is the traceless part of
the full Riemann curvature tensor, Rabcd : Cabcd = Rabcd −
(ga[c Rd]b − gb[c Rd]a) + 1

3Rga[c g d]b. We observe that the γ

term directly couples the probe U(1) gauge field to the
metric. L is the radius of curvature of the AdS4 space while
the gravitational constant κ2 is related to the coefficient of
the two-point correlator of the stress-energy tensor Tμν of the
boundary CFT (for a review, see Ref. 39), an analog of the
central charge of CFTs in 1 + 1D. The gauge coupling constant
g2

4 = 1/σ∞ dictates the infinite-w conductivity, which we shall
set to 1 throughout, effectively dealing with σ/σ∞. The crucial
coupling in this theory is the dimensionless parameter control-
ling the four-derivative term, γ ; it determines the structure of a
three-point correlator between the stress-energy tensor and the
conserved current. Stability constraints in the theory imply24

that |γ | � 1/12, and we explore the full range of allowed
γ values here. Positive values of γ yield a low-frequency
peak in the conductivity as shown in Fig. 1(c) or 7(a), while
negative values of γ give rise to a low-frequency dip illustrated
in Fig. 7(b), as may be expected from a theory of weakly
interacting vortices. Explicit computations of γ directly from
the CFT yield values39 in line with these expectations.

In the spirit of the effective field theory approach of
Ref. 24, we should also consider adding other terms to Eq. (6)
involving fields other than Fab and the metric tensor.40 The
most important of these are possible “mass” terms, which
tune the CFT away from the critical point at T = 0. Such
terms are not present in the CFT at T = 0, but their values
at nonzero T are precisely such that the expectation value
of the mass operator does not change, e.g., in the quantum
critical O(N ) model of Appendix A, 〈φ̂2

α〉 is T independent.41
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The mass terms can be included in the holographic theory
by allowing for a scalar dilaton field � and this can modify
charge transport via a term ∼�FμνF

μν . In the holographic
theory, in the absence of external sources, such a dilaton
does not acquire an expectation value at T > 0 when it is
not present at T = 0. And external sources coupling to the
gauge field only modify � at quadratic order, and so � can
be neglected in the tree-level linear response. Thus even after
allowing for additional fields, γ remains the only important
coupling determining the structure of the charge transport at
nonzero temperatures.

In the absence of the gauge field, which is here only a probe
field used to calculate the linear response, the metric that solves
the equation of motion associated with Sbulk is

ds2 = r2

L2
[−f (r)dt2 + dx2 + dy2] + L2dr2

r2f (r)
, (7)

where f (r) = 1 − r3
0 /r3 and r is the coordinate associated

with the extra dimension. The CFT exists on the boundary
of AdS, r → ∞, on the Minkowski space-time parameterized
by (t,x,y). We emphasize here that the holographic theory is
naturally written in real time allowing direct extraction of the
retarded current-current correlation function characterizing the
conductivity. Equation (7) corresponds to a 3 + 1D space-time
with a planar black hole (BH) whose event horizon is located at
r = r0, and that asymptotically tends to AdS4 as r → ∞. We
thus refer to it as Schwarzchild-AdS, or S-AdS. The position
of the event horizon is directly proportional to the temperature
of the boundary CFT,

T = 3r0

4πL2
. (8)

As T → 0, the black hole disappears and we are left with
a pure AdS space-time, which is holographically dual to the
vacuum of the CFT. The statement that the thermal states of
the CFT can be accessed by considering a BH in AdS can
be heuristically understood from the fact that the BH will
Hawking radiate energy that will propagate to the boundary
and heat it up.

It will be more convenient to use the dimensionless
coordinate u = r0/r , such that Eq. (7) becomes

ds2 = r2
0

L2u2
[−f (u)dt2 + dx2 + dy2] + L2du2

u2f (u)
,

(9)
f (u) = 1 − u3.

The boundary, r = ∞, is now at u = 0, while the BH horizon
is at u = 1.

The equation of motion (EoM) for the probe gauge field is
the modified Maxwell equation

∇a(Fab − 4γL2CabcdFcd ) = 0, (10)

where ∇a denotes a covariant derivative with respect to
the background metric, gab. As we are interested in the
current correlator in frequency-momentum space, we Fourier
transform the gauge field:

Aa(t,x,y,u) =
∫

d3k

(2π )3
e−iωt+ik·xAa(ω,kx,ky,u), (11)

where the coordinate u was left untransformed since there is
no translational invariance in that direction. We shall actually

solve for the full u dependence of Aa . We work in the radial
gauge Au = 0. Without loss of generality, we also set the
spatial momentum to be along the x direction, (kx,ky) = (k,0).
In the limit where k → 0, appropriate to a uniform “electric”
field coupling to the global charge, the equation of motion for
the transverse component Ay reads

A′′
y + h′

h
A′

y + 9w2

f 2
Ay = 0, (12)

where we have defined the dimensionless frequency w in
Eq. (3), and primes denote derivatives with respect to u.
The function h(u) is simply fg, where g = 1 + 4γ u3 takes
the same form as f = 1 − u3. As g(u) fully encodes the γ

dependence, we wish to make its role more transparent by
rewriting the above equation:

A′′
y +

(
f ′

f
+ g′

g

)
A′

y + 9w2

f 2
Ay = 0 . (13)

The term g′/g = 12γ u2/(1 + 4γ u3) is seen to be proportional
to γ , and as such, goes to zero as u → 0 consistent with the
fact that the Weyl tensor vanishes in the pure AdS space-time,
which is said to be conformally flat.

The AdS/CFT correspondence provides an expression for
the conductivity of the CFT in terms of the transverse gauge
field autocorrelator evaluated at the boundary, u = 0,

σ (ω) = iGyy

ω

∣∣∣∣
u=0

, (14)

where σ (ω) is the complex valued conductivity, and Gyy(ω,u)
is the retarded Ay autocorrelation function. More specifically,
one gets15,24

σ (w) = − i

3w

∂uAy

Ay

∣∣∣∣
u=0

, (15)

where Ay solves the equation of motion Eq. (13) with suitable
boundary conditions, as discussed below. The above equation,
central to our analysis, has the following heuristic explanation:
Ay(0) acts as a source for the current, while ∂uAy(0) is the
corresponding response. We will see in Sec. II C that the
quasinormal modes, i.e. the poles of conductivity in the LHP,
correspond to driving frequencies at which a “response” exists
in the limit of vanishing source strength.

A. Direct solution of conductivity

The real part of the conductivity on the real frequency axis
(retarded correlator) was numerically obtained in Ref. 24.
We extend their analysis from real to complex frequencies,
w ∈ C. The boundary conditions necessary to solve Eq. (13)
are imposed at the BH event horizon24 at u = 1. To obtain
them we examine the EoM near the horizon, which admits the
following two solutions: Ay ∼ (1 − u)±iw. These correspond
to outgoing and ingoing waves from the point of view of
the BH, respectively. The retarded correlator is obtained by
choosing the ingoing condition. To implement this in the
numerical solution, we factor out the singular behavior: Ay =
(1 − u)−iwF (u), where F (u) is the sought-after function; it is
regular at the horizon. From Eq. (15), we see that we are free
to fix one of the two boundary conditions, either for Ay(1)
or A′

y(1), to an arbitrary finite constant without altering the
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(a) σ(w; γ = 1/12)} (b) σ̂(w; γ = 1/12)}

(c) σ(w; γ = −1/12)} (d) σ̂(w; γ = −1/12)}

FIG. 4. (Color online) Con-
ductivity σ and its S-dual σ̂ =
1/σ in the LHP, w′′ = �w � 0, for
|γ | = 1/12. The zeros of σ (w; γ )
are the poles of σ̂ (w; γ ). We fur-
ther note the qualitative correspon-
dence between the poles of σ (w; γ )
and the zeros of σ̂ (w; −γ ).

conductivity. We impose Ay(1) = F (1) = 1. The appropriate
boundary condition for F ′ can be obtained by examining the
differential equation near u = 1 as is discussed in Ref. 24 and
in Appendix C.

All the poles of the conductivity are in the LHP, as
it is obtained from the retarded current-current correlation
function. The numerical result is shown in Figs. 4(a) and
4(c) for the two values of γ saturating the stability bound,
γ = ±1/12, respectively. Figure 4(a) shows the conductivity
for γ = 1/12, which corresponds to particle-like transport
with a Drude peak at small real frequencies as can be seen
on the real w-axis, or more clearly in Fig. 3(b) or 7(a). Such
low-frequency behavior is dictated by a Drude pole, located
closest to the origin. The numerical solution also shows the
presence of satellite poles, the two dominant ones being shown.
These are symmetrically distributed about the �w axis as
required by time-reversal, and are essential to capture the
behavior of σ beyond the small frequency limit. In contrast,
the conductivity at γ = −1/12 in Fig. 4(c) shows a minimum
at w = 0 on the real axis, see also Fig. 7(b) for a plot restricted
to real frequencies. The corresponding pole structure shows no
poles on the imaginary axis, in particular no Drude pole. The
conductivity at γ = −1/12 is said to be vortex like because it
can be put in correspondence with the conductivity of the CFT
S dual to the one with γ = 1/12, as we now explain.

B. S duality and conductivity zeros

Great insight into the behavior of the conductivity can be
gained by means of S duality, a generalization of the familiar

particle-vortex duality of the O(2) model. S duality on the
boundary CFT is mirrored by electric-magnetic (EM) duality
for the bulk U(1) gauge field, which we now briefly review.
Given the Abelian gauge theory for the U(1) bulk field Aa ,
we can always perform a change of functional variables in
the partition function to a new gauge field Âa by adding the
following term to Sbulk, Eq. (6):

S ′ =
∫

d4x
√−g

1

2
εabcdÂa∂bFcd, (16)

with the corresponding functional integral for Âa . Performing
the integral over Âa would simply enforce the Bianchi identity,
εabcd∂bFcd = 0, implying Fab = ∂aAb − ∂bAa , where εabcd is
the fully-antisymmetric tensor in 3 + 1D with εtxyu = √−g.

If instead one integrates out Aa first, a new action in terms
of Âa results:

Ŝbulk = −
∫

d4x
√−g

1

8ĝ2
4

F̂abX̂
abcd F̂cd , (17)

where we have defined the field strength of the dual gauge
field, F̂ab = ∂aÂb − ∂bÂa , and dual coupling ĝ4 = 1/g4. An
exactly analogous action holds for Aa without the hats. The
rank-4 tensors X,X̂ are shorthands to simplify the actions:

Xab
cd = Iab

cd − 8γL2Cab
cd, (18)

X̂ab
cd = 1

4εab
ef (X−1)ef ghεgh

cd , (19)

with the rank-4 tensor Iab
cd ≡ δa

cδb
d − δa

dδb
c, the identity on

the space of two forms, e.g., Fab = 1
2Iab

cdFcd . The inverse
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tensor of X is then defined via 1
2 (X−1)ab

cdXcd
ef = Iab

ef . In
terms of the X tensors, the EoM for Aa and Âa simply read

∇b(XabcdFcd ) = 0, (20)

∇b(X̂abcd F̂cd ) = 0 . (21)

It can be shown24 that for small γ , the dual X tensor has the
following Taylor expansion:

X̂ab
cd = Iab

cd + 8γL2Cab
cd + O(γ 2), (22)

= Xab
cd

∣∣
γ→−γ

+ O(γ 2) . (23)

We thus see that if γ = 0, X = X̂ and the actions, and
associated EoM, for A and Â have the same form. In that case,
the two theories are related by an exchange between electric
and magnetic fields: the standard EM (hodge) self-duality
of electromagnetism. In contrast, in the presence of the
four-derivative term parameterized by γ , the EM self-duality is
lost. However, at small γ the EM duality is particularly simple
and will serve as a guide for any finite γ : the holographic theory
for γ maps to the one for −γ , neglecting O(γ 2) contributions.

Let us now examine the impact of this bulk EM duality,
A → Â, on the boundary CFT. The holographic correspon-
dence relates the bulk gauge field A to the current of a
global U(1) charge of the CFT, J . In the same way, the
dual gauge field Â will couple to the current Ĵ of the S-dual
CFT, which generically differs from the original CFT. Just as
the conductivity of the original CFT, σ , is related to the J

autocorrelator, the conductivity of the S-dual CFT, σ̂ , will be
obtained from the Ĵ autocorrelator. The conductivities of the
S-dual CFT pair are in fact the inverse of each other:

σ̂ (w; γ ) = 1

σ (w; γ )
, (24)

where we emphasize that this relation holds for the complex
conductivities, σ = �σ + i�σ . We present the short proof
here using results of Ref. 24. (We note that such a result was de-
rived for a specific class of CFTs in Ref. 15.) We begin with the
general form of the retarded current-current correlation func-
tion: Gμν(ω,q) =

√
qλqλ[P T

μνK
T (ω,q) + P T

μνK
L(ω,q)], with

the orthogonal transverse and longitudinal projectors P T,L:
P T

tt = P T
ti = P T

it = 0, P T
ij = δij − qiqj /q

2, and by orthog-
onality: P L

μν = [ημν − qμqν/(qλq
λ)] − P T

μν . The Minkowski
metric was introduced, ημν = diag(−1,1,1), such that qλq

λ =
ηλλ′qλqλ′ = −ω2 + q2. Of interest to us is the holographic re-
lation between the transverse correlator giving the conductivity
and the bulk gauge field correlator, Gμν :√

q2 − ω2KT (ω,q) = Gyy(ω,q)|u=0 = ωσ (ω,q)/i, (25)

where σ (ω,q) is the frequency and momentum dependent
conductivity. The same expression (with hats) holds in the
S-dual theory. Using the action of EM duality on the bulk,
Ref. 24 showed the relation:

KT (ω,q)K̂L(ω,q) = 1, (26)

that relates the transverse current-current correlator of the
original CFT to the longitudinal one of the dual CFT. When
combined with the fact that in the limit of vanishing spatial mo-
mentum, q → 0, rotational invariance enforces KT (ω,q) =

KL(ω,q), which is also naturally true with hats, we obtain

K̂T (ω,q = 0) = 1

KT (ω,q = 0)
. (27)

By virtue of Eq. (25) and its dual version, this concludes the
proof of Eq. (24).

The poles of the dual conductivity, σ̂ = 1/σ , then must
correspond to the zeros of the conductivity, σ , and vice
versa. As a consequence, we see that S duality interchanges
the locations of the conductivity zeros and poles. This is is
consistent with the direct solution shown in Fig. 4. Take for
example the theory at γ = 1/12, Fig. 4(a): it will have a Drude
pole on the imaginary axis, which gives rise to a Drude peak at
small frequencies. Under S duality this pole becomes a Drude
zero of σ̂ , Fig. 4(b), and the conductivity of the new theory
will have a minimum at small frequencies.

As we saw above, changing the sign of γ corresponds to an
approximate S duality valid for |γ | � 1. More generally, in
terms of the “pole/zero-topology” or ordering, both operations
are equivalent. Indeed, if we consider the pole/zero structure
of the positive frequency branch of the conductivity �w �
0 (which is sufficient by time reversal) and order the poles
and zeros according to their norm, we get the following two
equivalence classes:

pole − zero − pole − zero − · · · → particle-like

(e.g., γ > 0), (28)

zero − pole − zero − pole − · · · → vortex-like

(e.g., γ < 0), (29)

where the first label (in bold) designates the Drude pole or zero.
Both S duality and γ → −γ interchange these two analytic
structures. This underlies the qualitative correspondence be-
tween the pole structure of σ (w; γ ) and that of σ̂ (w; −γ ); for
example, compare Figs. 4(a) and 4(d), or Figs. 4(c) and 4(b).
The correspondence quantitatively improves in the limit of
small γ . Explicitly,

σ (w; γ ) ≈ 1

σ (w; −γ )
, |γ | � 1, (30)

holds because performing σ → 1/σ together with γ → −γ

is approximately tantamount to two S-duality transformations
and is equivalent to the identity, modulo O(γ 2) terms.

Finally, we mention that for a given γ it is not possible
to find a γ ′ such that σ̂ (w; γ ) = σ (w; γ ′). In other words,
the dual of the boundary CFT with parameter γ cannot
correspond to the original CFT with a different parameter
γ ′. This can be seen as follows. We first require that the
relation hold true at zero frequency: σ̂ (0; γ ) = σ (0; γ ′), which
implies 1/(1 + 4γ ) = 1 + 4γ ′ or γ ′ = ( 1

1+4γ
− 1)/4, where

we have used σ (0; γ ) = 1 + 4γ (see Refs. 24 and 38).
Although for this value of γ ′, σ̂ (w; γ ) and σ (w; γ ′) agree
for both w,1/w = 0, we have numerically verified that they
always disagree at intermediate frequencies, the disagreement
decreasing as γ → 0, in which limit γ ′ ≈ −γ . The absence of
a γ ′ satisfying σ̂ (w; γ ) = σ (w; γ ′) is in accordance with the
fact that holgraphic action of the S-dual CFT contains terms
beyond CabcdF

abF cd . The latter is only the first term in the
Taylor expansion in γ .
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We now turn to a better method of determining the poles
and zeros, as the direct solution of Eq. (12) can only reliably
capture the poles nearest to the origin. The main problem with
the direct solution of the differential equation for Ay , Eq. (12),
is that the Fourier modes Ay(u; w) at the UV boundary, u = 0,
generically grow exponentially as the imaginary part of the
frequency �w becomes more and more negative making the
numerical results unstable. Although an exception occurs at
the poles, where Ay(u = 0; ωpole) vanishes (see below), it is
hard to untangle the true analytical structure from the numer-
ical noise, hence the need for a more sophisticated approach.

C. Quasinormal modes and poles

We present an alternative and more powerful method of
capturing the poles by considering the so-called quasinormal
modes (QNMs) of the gauge field in the curved S-AdS4

space-time. These modes are eigenfunctions of the EoM for
Ay , Eq. (12):

A′′
n + h′

h
A′

n + 9w2
n

f 2
An = 0, (31)

where An is a QNM with frequency wn. The QNM have the
special property that they vanish at the boundary: An → 0 as
u → 0. From the expression for the conductivity, Eq. (15), we
can see that this will lead to wn being a singular point of the
conductivity:

σ (wn) ∼ ∂uAn

An

∣∣∣∣
u=0

∼ ∂uAn(0)

0
→ ±∞, (32)

where ∂uAn(0) is generically finite at the QNM frequencies
where An(0) = 0. [In contrast, the conductivity zeros or QNM
of the EM-dual Maxwell equation correspond to frequencies at
which ∂uA(0) = 0 but A(0) is finite.] The name quasinormal
instead of normal is used because the eigenfunctions An

diverge approaching the BH horizon, u = 1. This follows
from the above-mentioned asymptotic form near the horizon,
An ∼ (1 − u)−iwn = (1 − u)w

′′
n−iw′

n , implying a divergence for
frequencies in the LHP. As predicted by the AdS/CFT
correspondence and verified by our numerical analysis, shown
in Fig. 5, the QNMs indeed agree with the poles of the
conductivity shown in Fig. 4 and more precisely in Fig. 11.
The QNMs are found by using a Frobenius expansion

Ay = uf (u)−iw

M∑
m=0

am(u − ū)m, (33)

where we have factored out the behavior near the event
horizon, f (u)−iw ∼ (1 − u)−iw, and near the boundary, u. We
have chosen to Taylor expand around ū = 1/2; M + 1 is the
number of terms in the truncated series. Substituting Eq. (33)
in Eq. (12) yields a matrix equation for the coefficients, am:

M∑
m=0

Blmam = 0, (34)

where the left-hand side is the coefficient of (u − ū)l , 0 � l �
M . Note that Blm = Blm(w) and am = am(w) both depend on
the frequency, and although not explicitly shown, on γ as well.
For fixed γ , this homogeneous system of linear equations has
a solution at a set of frequencies {wn} at which det B(wn) = 0.

Or equivalently, when the smallest-normed eigenvalue of B,
λmin, vanishes, which we find more convenient to implement
numerically. Plots of 1/|λmin| (multiplied by an exponential
function to improve the visibility) as a function of w are given
in Fig. 5 for |γ | = 1/12. The QNMs are the bright spots. In
obtaining the QNMs of the dual conductivity, σ̂ = 1/σ , we
have used the EoM for the dual gauge field Â, Eq. (21):

Â′′
y +

(
f ′

f
− g′

g

)
Â′

y + 9w2

f 2
Ây = 0 . (35)

It differs from the one for Ay , Eq. (13), by the negative sign.24

Note that this shows that γ → −γ does not exactly correspond
to S duality, because the former would give −g′/(1 − 4γ u3) �=
−g′/g, where g = 1 + 4γ u3.

Whereas the direct solution only gives reliable answers
up to �w ∼ −1, the QNM approach has a wider range of
applicability and is numerically more stable giving us more
insight into the analytic structure. We have performed a WKB
analysis in Appendix D to determine the asymptotic QNMs
for |w| � 1. We next examine the transition that occurs when
going from positive to negative values of γ .

D. Pole motion and S duality

The motion of the poles and zeros as γ changes sign
is illustrated in Fig. 6 for γ > 0. For γ < 0, one simply
interchanges the zeros and poles, i.e., the crosses and circles.
The pole/zero motion can be loosely compared with a “zipper
mechanism.” The arrows in Fig. 6 show the nontrivial motion
of a pair of poles or zeros as they become “zipped” to the
imaginary axis. (A caveat regarding the arrows: by time-
reversal symmetry, w → −w∗, so we cannot say which pole
goes to which once they become pinned to the imaginary axis.
The arrows are just a guide.) For sufficiently small γ , each
point on the imaginary axis located at w

zip
n = −in/2, where n

is a positive integer, will have a pole and zero arbitrarily close
to it. When γ = 0, they will “annihilate” as it should because
the complex conductivity for γ = 0 has no poles or zeros as it
takes the constant self-dual value for all complex frequencies.
It should be noted that since w = ω/4πT , the annihilation
frequencies are

ωzip
n = −i2πnT , n = 1,2,3, . . . , (36)

i.e., the bosonic Matsubara frequencies in the LHP. Although
this results seems natural, we do not have a clear explanation
for it and leave the question for future investigation. Finally,
from the direct numerical solution of the EoM, we have looked
at the residue of the pole near w = −i/2 (closest to the origin),
and have found that it decreases linearly with γ , consistent with
the γ = 0 limit.

The motion of a pair of poles becoming attached to the
imaginary axis bears some similarity to that found in a
recent paper,19 where as the (dynamic) spontaneous symmetry
breaking happens, a pair of QNM poles becomes glued to
the imaginary axis. In their case, one of the poles stays at the
origin, signaling a gapless Goldstone boson. We will see below
one peculiar limit where a conductivity pole hits the origin.
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(a) σ(γ = 1/12) (b) σ̂(γ = 1/12)

(c) σ(γ = −1/12) (d) σ̂(γ = −1/12)

FIG. 5. (Color online) Quasinormal
modes (bright spots) of the transverse
gauge mode for γ = |1/12| in the com-
plex frequency plane, w = w′ + iw′′. The
QNMs correspond to the poles of the
conductivity (a) and (c). EM duality yields
the QNMs of the dual gauge mode, and
these correspond to the poles of the dual
conductivity, σ̂ (w) = 1/σ (w), i.e., the
zeros of σ (w), see (b) and (d).

E. Truncations

If one is interested in the behavior on the real frequency
axis only, the expression for the conductivity arising from the
AdS/CFT correspondence can be truncated to a finite number
of poles and zeros. For instance, in a parameter regime believed
to be of interest to the a wide class of CFTs, the conductivity
has a single purely imaginary pole, accompanied by satellite
poles off the imaginary axis. By truncating the number of poles
we obtain an excellent approximation to the exact dependence
as we show in Fig. 7(a): np counts the number of poles/zeros,
not counting the time-reversal partners.

The truncated conductivity reads

σnp
(w) = (w − ζ 0)

(w − π0)

np−1∏
n=1

(w − ζn)(w + ζ ∗
n )

(w − πn)(w + π∗
n )

, (37)

where 2np − 1 is the odd number of poles or zeros (the −1
follows because the Drude pole/zero is its own time-reversal
partner). The value of the zero ζ 0 is obtained by fixing σ (0) =
σ0. Just like π0, it lies on the imaginary axis:

ζ0

π0
= σ0

np−1∏
n=1

∣∣∣∣πn

ζn

∣∣∣∣2

. (38)

It is included so that the truncated conductivity goes to a
finite constant as limw→∞ σ = σ∞ > 0. Figure 7(b) shows

the corresponding dual conductivity, σ̂ (w) = 1/σ (w), whose
poles/zeros correspond to the zeros/poles of σ . Note that
the real part of the dual Drude conductivity, σ̂ = 1/σ =
(1 − w/π0)/σ0, is trivially constant (for real frequencies).

III. EMERGENCE OF DRUDE FORM IN LARGE-N
CFT’S AND BEYOND

In this section, we examine the conductivity of CFTs such
as the critical point of the O(N ) model in a perturbative 1/N

expansion away from the free theory obtained for N = ∞,
with a focus on the emergent pole structure. We are thus
approaching a general correlated CFT from the free quantum
gas limit, as illustrated in the left-hand side of Fig. 1, in
contrast to the holographic approach. Our main example,
though not the only one, is the O(N ) NLσM. We show that the
small-frequency quantum critical conductivity in the large-N
limit accurately satisfies the Drude form:

σ (ω) = σ0

1 − iωτ
. (39)

The quantum Boltzmann equation (QBE) approach in the
hydrodynamic regime thus captures the leading QNM at
small frequencies, but is limited in that it misses the other
poles and all the zeros. Although it would be desirable to
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(a) γ = 10−2 → 10−3
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(b) γ = 10−3 → 10−4
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(c) γ ∼ 0+

FIG. 6. (Color online) Illustration of the motion of the poles and zeros as γ goes to zero in three steps: γ = 10−2 → 10−3 → 10−4 → 0+.
In each panel, the motion is from bold to thin as γ decreases; with crosses representing poles while circles, zeros. (a) Blue thick markers are
for γ = 10−2, while the red thin ones for γ = 10−3. (b) The red thick markers are for γ = 10−3, while the green thin ones for γ = 10−4.
(c) “Zipped” pole-zero structure for γ ∼ 0+, where only poles and zeros far from the origin will lie off the imaginary axis.

have a method that captures the full analytic structure of the
conductivity of CFTs such as the O(N ) model, the Drude
pole nonetheless contains essential information regarding the
dc limit. In addition, we can use the Drude form to verify
small-frequency conductivity sum rules.

The fact that a single pole can capture the small-frequency
complex conductivity at large but finite N can seem a priori
surprising given that the QBE that is solved to obtain σ is fairly
complicated, including both elastic and inelastic scattering of
the critical quasiparticles. Below, we shed light on previous
analyzes1,4,14 by providing a transparent form for the solution
to the QBE, which leads to the emergent Drude behavior of
the low-frequency conductivity. Although we focus mainly on
the O(N ) model, we provide similar results for a particular
gauged O(N ) model as well as for a fermionic CFT.

Let us first consider the case of the pure O(N ) model.
We focus on the small frequency limit, ω � T , where the
conductivity σ adopts the universal scaling form1,4

σ = e2

h̄
× N�I

(
Nω

T

)
, (40)

where e is the quantum of charge, and the subscript I in
the scaling function � reminds us that it is valid only at
small frequencies, ω � T . The factors of N are such that
the small-frequency conductivity becomes a delta function
at N = ∞, the free limit. For ω � T , the conductivity

contains important contributions from the incoherent inelastic
scattering processes between the bosons. When N is large
these scattering processes can be treated perturbatively in
1/N .1,5 We now present the essence of the QBE approach
and the results; further details can be found in Refs. 1, 5,
and 14. Under an applied oscillatory electric field that couples
to the charge, the distribution functions of the bosonic posi-
tive/negative (+/−) charge excitations are modified to linear
order according to f±(k,ω) = nB(εk)2πδ(ω) + s E · kϕ(k,ω).
[Note that the O(N ) model has many conserved charges; we
pick one and couple the “electric field” to it.] It can be shown
that the linearized QBE for the deviation ϕ takes the form:1,14

−iω̃ϕ + g(p) = −F (p)ϕ +
∫

dp′K(p,p′)ϕ(p′), (41)

where we have rescaled the frequency, ω̃ = Nω/T , defined
the dimensionless momentum p = k/T , and absorbed factors
of T and N into the unkown function ϕ. The right-hand side
is the linearized collision term arising from the interactions
between the quantum critical modes appearing at order 1/N .
In the NLσM formulation, the system consists of a vector
field coupled to a single Lagrange multiplier field that enforces
the unimodular constraint for the former. The collision term
arises from interactions between the vector field and the
Lagrange multiplier, the latter aquiring dynamics at order
1/N . It contains two terms: the first, depending on a function
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FIG. 7. (Color online) Conductivity (a) and its dual (b), σ̂ = 1/σ , arising from a holographic treatment with a truncated number of poles,
2np − 1. One pole lies on the imaginary axis, the Drude pole, while np − 1 pairs have a finite real part. The Drude form is characterized by a
single pole: σ = σ0/(1 − iωτ ).

F [see Fig. 8(b)], encodes elastic scattering processes; F is
essentially a momentum dependent scattering rate. The second
term involves an integral over a kernel K and it encodes
the inelastic scattering processes with the Lagrange multiplier
field. On the left-hand side the function g(k/T ) = T ∂εk

nB(εk)
acts as “source” for the QBE, where ε2

k = �(T )2 + k2 and
� ∝ T . More details regarding this temperature dependent
mass (inverse correlation length) can be found in Appendices A
and B. Solving the equation numerically, we find that to great
precision the solution satisfies the simple form

ϕ(p,ω̃) = g(p)

iω̃ − F(p)
, (42)

where F(p) is a monotonous function whose behavior closely
resembles that of F (p), Eq. (41), as can be seen in Fig. 8(b).
The case F = F would be the exact solution in the absence
of the kernel K in the right-hand side of Eq. (41). (The latter
complicates the analysis and prevents analytical solubility.)
We see that the effect the kernel K is to renormalize F to
F , which encodes all the information about the nontrivial
inelastic scattering processes. The corresponding solution for
the conductivity is shown in Fig. 8(a); it can be obtained1,14

by integrating ϕ:

σ (ω � T ) = e2

h̄
N × 1

2π

∫ �/T

0
dp

p3ϕ(p,ω̃)

εp︸ ︷︷ ︸
�I (ω̃)

, (43)

where � is a momentum cutoff that is used in the numerical
solution. We note that as ϕ decays exponentially at large
momenta, a cutoff can be safely used. Interestingly, the
resulting conductivity is found to obey a Drude form to great
accuracy:

�I (ω̃) = �(0)

1 − iτ̄ ω̃
, (44)

where �(0) = 0.085 and τ̄ = τ/T = 0.775 are two universal
numbers that characterize the entire low-frequency charge
response. The former yields the dc conductivity while the latter
is a dimensionless scattering rate:

σ0 = e2

h̄
× N�(0), (45)

τ = Nτ̄

T
. (46)
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FIG. 8. (Color online) (a) Universal scaling function for the small-frequency conductivity �I (ω̃) of the quantum critical O(N ) model. The
solid lines correspond to the numerical solution of the nontrivial QBE, while the dashed ones to the Drude form fit. (b) The momentum-dependent
F (p) function entering the kernel of the QBE, Eq. (41), and the renormalized F function determining the solution of the QBE, Eq. (42).
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The plot for the Drude form is shown with dashed lines in
Fig. 8(a). The numerical solution and the Drude forms are
nearly indistinguishable over the entire range 0 � ω̃ < 14.5.
The emergent scattering rate 1/τ gives the location of the only
pole of the conductivity in this limit:

ωDrude = −i
T

Nτ̄
. (47)

As N grows, the pole approaches the origin along the
imaginary axis in the LHP; once it reaches it, the low-frequency
conductivity becomes a delta function, as shown by the arrow
in Fig. 1(b). The N = ∞ conductivity is singular and cannot be
described by a meromorphic function. This is to be expected
since it describes the transport of a free gas of bosons as
opposed to a generic correlated CFT.

Although a Drude-like low-frequency conductivity can
be expected from the broadening of the zero-frequency
delta function by interactions,4 we do not have a complete
understanding regarding the excellent quantitative agreement
mentioned above. We observe that many different deviation
functions ϕ can give rise to a conductivity that is very well
characterized by the Drude form. For example, one could use
ϕ(p) = 1 + 1/(1 + p) in Eq. (43) and obtain a very accurate
Drude form. At the same time, numerous choices would
yield clear deviations. One ingredient that seems to contribute
to the Drude form is the presence of a nonparametrically
small temperature dependent mass for the excitations, � ∼ T .
In contrast, in the Wilson-Fisher fixed point accessed by
dimensional expansion in ε = 3 − d, where d is the spatial
dimension of the O(N ) model, the mass in the QBE can be
neglected at leading order in ε. The resulting conductivity
does not agree as well with the single-pole form. A further
example can be found below where we consider a CFT of
Dirac fermions. The QBE for the conductivity can again be
solved by ignoring the temperature-dependent mass to leading
order,5 and we find that although the Drude form fits well,
it is not as a successful when compared with the large-N
O(N ) model. A full treatment of these questions is beyond
the scope of the present paper and we leave it for future
work.

At this point, we can compare these numerical results with
those from the holographic analysis. In the latter, we take
γ = 1/12, which saturates the stability bound on the particle-
like side and should be the most appropriate to compare with
the almost free large-N O(N ) quantum critical point. Indeed,
the further γ is from the bound, the closer the effective
theory is to the strongly interacting “ideal quantum fluid”
limit found at γ = 0. At γ = 1/12, we find that the Drude
pole is located at whol

Drude ≈ −0.26i [see Fig. 5(a) or 11(a)],
which translates to ωhol

Drude = −i4πwhol
DrudeT ≈ −i3.27T . On

the other hand, the Drude pole of the O(2) model obtained
by extending the result from the large-N limit, Eq. (47), is
located at ωDrude ≈ −i0.65T . The Drude pole from the QBE
approach is thus located closer to the origin compared to the
one arising from the holographic analysis. We thus predict
that higher 1/N corrections to the QBE will push the pole
further down in the LHP. This is not surprising because the
extension of the large-N result to N = 2 yields a ratio of the
dc to high-frequency conductivities, σ0/σ∞, that is larger than

within the holographic analysis:
σ0

σ∞
= N�(0)

�(∞)
N=2−−→ 2.13, large-N O(N ) model, (48)

σ0

σ∞
= 1 + 4γ = 1.33, holography, (49)

where we have used �(∞) = (1 − 8η/3)/16
N=2−−→ 0.039 98

as the large-frequency scaling function for the conductivity
of the O(N ) model at order 1/N , with η ∝ 1/N being the
anomalous dimension of the boson field.32 It is expected that
higher order 1/N corrections will decrease this ratio and will
thus push the Drude pole further away from the origin.

A. Interactions spread the weight

Using the above quasiexact Drude dependence, we can
examine the sum rule for the low-frequency part of the
conductivity. This is a limited version of the sum rules for
the full universal conductivity, Eqs. (1) and (2). The sum rule
reads ∫ ∞

0
dω̃ ��I (ω̃) = πD/4 = 0.172 350 6 . . . , (50)

where we have defined the constant

πD =
∫ ∞

�

dx

(
1 + �2

x2

)
1

ex − 1
= 0.689 403 . . . , (51)

where � = 2 ln[(1 + √
5)/2] is twice the natural logarithm

of the golden ratio. The integral involving the Bose-Einstein
function follows simply from the expression of the conduc-
tivity in the free theory at N = ∞, see Appendix B. In
that limit, the low-frequency part of the conductivity reads
�σI (ω) = (T πD/2)δ(ω). On the other hand, the Drude form,
Eq. (44), satisfies the following relation:∫ ∞

0
dω̃ ��I (ω̃) =

∫ ∞

0
dω̃ �

{
�(0)

1 − iτ̄ ω̃

}

= π

2

�(0)

τ̄
= 0.172 21 . . . , (52)

where in the last equality we have used the result given
above for �(0) and τ̄ . We find that the emergent Drude form
satisfies the sum rule Eq. (50) within a margin of 10−4, leaving
plenty of room for numerical uncertainty. We thus see that the
interactions generated at order 1/N spread the weight of the
δ function over a finite Drude peak, whose area corresponds
exactly to that of the δ function of the free theory at N = ∞.
Not only is this an excellent check on the calculation, it also
provides a constraint between the location of the Drude pole
and the value of the dc conductivity. We are effectively left with
a single universal number characterizing the small-frequency
behavior of the complex conductivity at low frequencies.

B. Flattening the conductivity with gauge bosons

We now consider an interesting application of the above
sum rule to a gauged O(N ) model, where the gauge field
is Landau damped by a Fermi surface of spinons,14,42 which
breaks conformal invariance of the critical point. This field
theory was shown to be relevant to the quantum critical Mott
transition from a metal to quantum spin liquid,42 as well as
for the quantum critical transition between a Néel-ordered
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FIG. 9. (Color online) Universal scaling function for the conduc-
tivity �(ω̃) of the gauged O(N ) model, with damped gauge field.
The solid lines correspond to the numerical solution of the nontrivial
QBE, while the dashed ones to the Drude form.

Fermi-pocket metal and a non–Fermi-liquid algebraic charge
liquid, called a “doublon metal.”43 It was shown14 that the
same scaling form, Eq. (40), holds as for the pure rotor model,
Eq. (40), since only the static gauge fluctuations contribute,
the dynamical ones being strongly quenched by the Landau
damping. This phenomenon was referred to as a “fermionic
Higgs mechanism.”43 The numerical solution to the QBE
including the static gauge fluctuations is shown in Fig. 9 (for
details, see Ref. 14). As in the case of the pure O(N ) CFT, it
obeys a Drude form, Eq. (39) with Drude parameters Eqs. (45)
and (46), this time with numerical values:

�(0) = 0.010, τ̄ = 0.092 . (53)

The dc conductivity �(0) is smaller than in the ungauged
O(N ) model due to the additional scattering channel: the
gauge bosons. The static gauge fluctuations are actually quite
strong and thus appreciably decrease the scattering time. The
numerical solution and the Drude form agree very well again.
Note the large range of scaled frequencies over which the
agreement occurs. The deviations between the Drude and
numerical solution seem slightly larger than in the pure
rotor theory probably due to numerical uncertainties. The
low-frequency sum rule for the conductivity, Eq. (50), yields

π

2

�(0)

τ̄
= 0.1720 . . . , (54)

differing from πD/4 by only 3.5 × 10−4. We see that as we
add Landau damped gauge bosons to the pure O(N ) model,
we flatten the conductivity while keeping the emergent Drude
form. The interactions, again, preserve the weight of the Drude
peak.

C. Fermionic CFT

We now examine the conductivity in an interacting CFT of
Dirac fermions that arises in a model for transitions between
fractional quantum Hall and normal states.5 The field theory
consists of two Dirac fermions with masses M1 and M2

coupled to a Chern-Simons gauge field. The latter attaches
flux tubes to each Dirac fermion converting it to a Dirac
anyon with statistical parameter (1 − α), where α = g2/(2π ),
g being the gauge coupling. The coupling α characterizes
the strength of the long range interaction between the Dirac
quasiparticles mediated by the Chern-Simons field. When
M1,M2 > 0, the system is in a fractional quantum Hall state
with Hall conductivity σxy = e2q2/[h(1 − α)], where qe is the
electric charge of each Dirac quasiparticle. The transition to
an insulating state is obtained at the point where M1 changes
sign while M2 is taken to be large and constant. At the
quantum critical point, the M1 Dirac quasiparticles coupled
to the Chern-Simons gauge field yield a finite and universal
longitudinal conductivity, whose small-frequency functional
form is analogous to Eq. (40):

σ̃ qp
xx (ω) = q2e2

α2h
�̃qp

xx

(
ω

α2T

)
, (55)

where 1/α2 plays the same role as N did in the O(N ) model
and is taken be large. To be more accurate, σ̃ is the response
to the total electric field, including a contribution from the
emergent Chern-Simons field. It can be simply related to
the physical conductivity.5 The superscript “qp” reminds us
that this is the low-frequency contribution arising from the
scattering of thermally excited quasiparticles with each other;
it is simply a different notation for �I .

A QBE was numerically solved5 to leading order in α2, and
the result is reproduced in Fig. 10(a), while the corresponding
Drude form fit is shown in Fig. 10(b). Again, both plots agree
very well. The two universal Drude parameters extracted from
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FIG. 10. (Color online) Universal
scaling functions for the conductivity of
interacting Dirac fermions (a) as com-
puted by solving a QBE,5 (b) from the
Drude form fitted to (a).
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the fit are

�qp
xx(0) ≈ 0.437, τ̄ ≈ 0.664 . (56)

The sum rule for the model is given in Ref. 5:∫ ∞

0

dω̃

π
�[

�̃qp
xx(ω̃)

] = ln 2

2
= 0.3466 . . . , (57)

where ω̃ = ω/(α2T ). By using the Drude form �
qp
xx(ω̃) =

�
qp
xx(0)/(1 − iτ̄ ω̃), we find∫ ∞

0

dω̃

π
�[

�̃qp
xx(ω̃)

] ≈ 0.33. (58)

The agreement is again quite good.
In summary, we have shown that the Drude form with its

single pole captures well the low-frequency hydrodynamic
conductivity of different CFTs, a fact that was not appreciated
before. We have also seen that such a description holds for a
deformation of the O(N ) model to include nearly static gauge
modes. Low-frequency sum rules where verified in all the
models and serve as a useful guide in the study of interactions
on the charge response.

IV. CONCLUSIONS

The main thesis of this paper is that charge transport of
CFTs in 2 + 1 dimensions is most efficiently described by
knowledge of the poles and zeros of the conductivity in
the lower half of the complex frequency plane. Truncation
to a small number of poles and zeros gives an accurate
description of the crossover from the hydrodynamic physics
at small frequencies to the quantum-critical physics at high
frequencies, as was shown in Sec. II E. Such truncated forms
can be used as a comparison ground with experimentally or
numerically measured charge response at conformal quantum
critical points. We also showed that the conductivity of CFTs
with a global U(1) symmetry exactly obeys two sum rules,
Eqs. (1) and (2), for the conductivity and its (S-dual) inverse.
The holographic computations presented here are the first
to satisfy both sum rules, while earlier quantum Boltzmann-
theory computations satisfy only one of them.

In the holographic approach, the poles and zeros of the
conductivity are identified with quasinormal modes of gauge
field fluctuations in the presence of a horizon. These quasinor-
mal modes are the proper degrees of freedom for describing
quantum critical transport, replacing the role played by the
quasiparticles in Boltzmann transport theory. We presented
results for the quasinormal mode frequencies in an effective
holographic theory for CFTs which kept up to four derivative
terms in a gradient expansion.

We expect that the quasinormal modes will help describe a
wide variety of dynamical phenomena in strongly-interacting
quantum systems, including those associated with deviations
from equilibrium.19 The quasinormal mode poles and zeros
should also help in the analytic continuation of imaginary
time data obtained from quantum Monte Carlo simulations.
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APPENDIX A: CONDUCTIVITY SUM RULES

Conductivity sum rules are familiar in condensed matter
physics in systems with a finite lattice cutoff. The standard
derivation starting from the Kubo formula for a general
Hamiltonian, H, yields44

I ≡
∫ ∞

0
dω � σ (ω) = −π

2
lim
q→0

1

q2V
〈[[H,ρ(q)],ρ(−q)]〉,

(A1)

where ρ(q) is the density operator at wave vector q, and V

is the system’s volume. It is now our task to understand the
structure of the commutators on the right-hand side in the
scaling limit appropriate for a CFT in 2 + 1 dimensions.

In quantum field theory, the right-hand side of Eq. (A1)
has the structure of an ultraviolet divergent Schwinger contact
term.45 The divergence is acceptable to us, because the sum
rule in Eq. (1) is convergent only after the subtraction of the
constant σ∞ term. The important issue for us is whether the
right-hand side of Eq. (A1) has any finite corrections that
depend upon infrared energy scales such as the temperature
or chemical potential (μ). If such finite corrections are absent,
then the sum rules in Eqs. (1) and (2) follow immediately,
because σ∞ is the value of the σ (ω) at T = 0 and μ = 0, and
the integral is independent of T and μ.

It is useful to analyze this issue first for a simple CFT of free
Dirac fermions. Here we can regularize the Dirac fermions on
a honeycomb lattice (as in graphene). Fortunately, such a sum
rule analysis for the honeycomb lattice has already been carried
out in Ref. 46. On a lattice with spacing a, Fermi velocity vF ,
temperature T , and chemical potential μ, they find when T

and μ are smaller than the bandwidth that

I = c1
vF

a
+ a2T 3

v2
F

f (μ/T ), (A2)

for some constant c1 and function f . Observe that this
is divergent in the continuum limit (a → 0 at fixed vF ,
T , μ), but the leading portion dependent upon T and μ

vanishes. So there is no dependence of I of the CFT upon μ

and T .
Let us now carry out the corresponding analysis for the

large-N limit of the O(N ) rotor model. This is an interacting
theory at finite N , and we will see that the scaling limit has to be
taken carefully so that we remain properly in the vicinity of the
conformal fixed point in the presence of infrared perturbations
like T or deviations from the critical point. We regularize the
rotor model on a square lattice of sites i,j , spacing a, with the
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Hamiltonian

H = ga2

2N

∑
i

π̂2
iα + c2N

2g

∑
〈ij〉

(φ̂iα − φ̂jα)2, (A3)

where φ̂iα , with α = 1 . . . N are the rotor co-ordinates, which
obey the constraint ∑

α

φ̂2
iα = 1 (A4)

at all sites i. The π̂iα are their conjugate momenta with

[φ̂iα,π̂jβ] = iδαβ

δij

a2
. (A5)

The coupling constant g is used to fix the model in the vicinity
of the critical point at g = gc, and we will take the continuum
limit a → 0 at fixed velocity c and T . In the large N limit, the
critical point is at

1

gc

=
∫

k∈BZ

∫
dω

2π

1

{ω2 + 2(c/a)2[2 − cos(kxa) − cos(kya)]} . (A6)

This determines gc ≈ 3.11ac. If we move away from the critical point, or to nonzero temperatures, then the Lagrange multiplier
enforcing the constraint Eq. (A4) induces an energy gap �(T ) determined by

1

g
=

∫
k∈BZ

T
∑
ωn

1{
ω2

n + 2(c/a)2[2 − cos(kxa) − cos(kya)] + �2(T )
} , (A7)

where ωn are the bosonic Matsubara frequencies. We will take the limit a → 0 at fixed �(T ) and T . In this limit, we have

1

g
= 1

gc

− �(0)

4π
. (A8)

The density operator is

ρ(q) = a2
∑

i

e−iq·r i lαβ φ̂iα π̂iβ , (A9)

where lαβ is one of the antisymmetric generators of O(N ) normalized so that Tr(l2) = −1. Evaluating the commutator in Eq. (A1),
we find

[ [H,ρ(q)] ,ρ(−q)] = −2c2

g

∑
〈ij〉

φ̂iαφ̂jα|eiq·r i − eiq·rj |2. (A10)

So taking the limit, the long-wavelength limit yields

lim
q→0

1

q2
[ [H,ρ(q)] ,ρ(−q)] = −c2a2

g

∑
〈ij〉

φ̂iαφ̂jα. (A11)

Using Eq. (A4), we can now write the conductivity sum rule as

I = πc2

2g
− πc2a2

4gV

∑
〈ij〉

〈(φ̂iα − φ̂jα)2〉 = πc2

2g
− πc2

2

∫
k∈BZ

T
∑
ωn

[2 − cos(kxa) − cos(kya)]{
ω2

n + 2(c/a)2[2 − cos(kxa) − cos(kya)] + �2
} . (A12)

Evaluating the frequency summation, and then taking the limit a → 0, we obtain the expansion

I = πc2

2g
− α1

c

a
+ α2

�2

c
a − a2 πc2

4

∫ ∞

0

d2k

4π2

k2

√
c2k2 + �2(e

√
c2k2+�2/T − 1)

+ · · · , (A13)

where α1 ≈ 0.75 and α2 ≈ 0.13. The crucial feature of this
result is that there is no term ∼�, and all terms containing
� vanish as a → 0. A term ∼� does appear if we choose a
general �, which does not obey Eq. (A7) and then evaluate
Eq. (A11). Thus the imposition of the constraint Eq. (A4) at all
T was important for the absence of such a term. The general
features of Eq. (A13) are similar to Eq. (A2), and so the same
conclusions apply.

APPENDIX B: ANALYTIC STRUCTURE IN THE N → ∞
LIMIT OF THE O(N) MODEL

This Appendix notes a few features of the conductivity of
the O(N ) rotor model in the complex frequency plane, in the
N → ∞ limit. For the model in Eq. (A3), the conductivity as
a function of the complex frequency z follows from Ref. 4:

σ (z) = iT D

z
+ iz

4π

∫ ∞

�

d�
(�2 − �2)

�2(z2 − 4�2)
coth

(
�

2T

)
,

(B1)
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where the contour of � integration determines the specific
choice of the current correlator, and the Drude weight scales
linearly with the temperature. We have defined the numerical
constant

D = 1

8π

∫ ∞

�

d�
(�2 − �2)/T 2

� sinh2[�/(2T )]
(B2)

whose value is given in Eq. (51).
The retarded response function σR(z) is obtained by

choosing z in the UHP, and the contour of integration along
the real frequency axis. This function σR(z) is analytic in the
UHP and has a pole at z = 0 and branch points at z = ±2�.
We can perform the analytic continuation of σR(z) into the
lower-half plane by deforming the contour of � integration into
the lower-half plane, so that it is always below the points ±z/2.
Because of the presence of these branch points, the analytic
continuation of σR(z) into the lower-half plane is not unique,
and depends upon the path of z around the branch points. This
is a key difference from the holographic results of the present
paper, which had no branch points and a unique analytic
continuation into the LHP. We expect that fully incorporating
1/N corrections will make the O(N ) model result similar to
the holographic computation. We have already demonstrated
this for the case of the pole at z = 0, which becomes a LHP
Drude pole. However, a careful analysis of 1/N corrections
determining the fate of the branch points at z = ±2� has not
yet been carried out.

In any case, the physical value on the real axis σR(ω + i0+)
is unique, and was shown in Fig. 3(d). At the critical point, this
is to be evaluated at � = �T , where � = 2 ln[(

√
5 + 1)/2)].

Curiously, for this value of �, we find zeros of the conductivity
on the real axis branch points, with σR(±2�T + i0+) = 0. So
the structure of poles and zeros of the N = ∞ conductivity
has a remarkable similarity to the γ > 0 holographic results, as

was reviewed in Fig. 3. The pole at z = 0 of the N = ∞ theory
corresponds to the closest pole on the negative imaginary axis
of the holographic result, as we have already noted. And the
zeros at z = ±2�T of theory correspond to the two zeros
closest to the real axis in Fig. 4(b).

Finally, we can verify that the sum rule in Eq. (1) is satisfied
by Eq. (B1):∫ ∞

0
dω

[
� σR(ω + i0+) − 1

16

]
= 0, (B3)

where we have used σ∞ = 1/16. Note that this result is obeyed
only for � = �T , and not for other values of �, as is expected
from the considerations in Appendix A. Also, as noted in the
introduction, the inverse sum rule in Eq. (2) is not satisfied by
Eq. (B1). Although σ (ω) has a zero at ω = 2�, the location
of the branch point, this nevertheless leads to an integrable
divergence in �[1/σ (ω)] at that point. We have indeed verified
that the integral of �[1/σ (ω)] − σ−1

∞ is finite (actually, it is
greater than unity), proving that the conductivity of the critical
O(N → ∞) model does not respect the S-dual sum rule.

Let us also mention that the analytic structure of response
functions of the O(N ) model was also examined recently in
Ref. 47 away from the CFT critical point, but at T = 0. In the
ordered phase with broken O(N ) symmetry, poles were found
in the lower-half plane corresponding to the Higgs excitations
damped by multiple spin-wave emission.

APPENDIX C: DIFFERENTIAL EQUATION FOR THE
NUMERICAL SOLUTION OF THE CONDUCTIVITY

We first factor out the singular part of Ay near the horizon:
Ay = (1 − u)−iwF (u). Making this substitution in the EoM
for Ay , Eq. (12), we obtain the following differential equation
for F :

0 = F ′′ −
{

3u2[1 − 4(1 − 2u3)γ ]

(1 − u3)(1 + 4u3γ )
− 2iw

1 − u

}
F ′

+ iw{(1 + u + u2)[1 + 2u + 4u2(3 + 4u + 5u2)γ ] − i(2 + u)(4 + u + u2)(1 + 4u3γ )w}
(1 − u)(1 + u + u2)2(1 + 4u3γ )

F. (C1)

This is to be compared with the simpler form of the equation
for the full Ay , Eq. (12). The two boundary conditions at the
horizon read

F (1) = 1, (C2)

F ′(1) = iw[i + 2w + 8γ (2i + w)]

(1 + 4γ )(i + 2w)
. (C3)

The second condition follows from the solution of the
differential equation near u = 1: F (u) ≈ 1 − (1 − u)�, with
� being the right-hand side of Eq. (C3). The numerical solution
is shown in Figs. 4 and 11, where the poles and zeros in the
LHP can be seen more precisely.

APPENDIX D: WKB ANALYSIS FOR ASYMPTOTIC
QUASINORMAL MODES

The goal of the WKB analysis is to identify the QNMs of
the gauge field at large frequencies, |w| � 1. According to
the AdS/CFT correspondence, these frequencies can then be
put in correspondence with the poles of the gauge correlation
function Gyy proportional to the conductivity, Eq. (14). The
standard analysis examines the solutions to Eq. (D15) near
(1) the black-hole singularity, (2) the event horizon, and (3)
the asymptotic boundary. Matching of the solutions usually
gives an expression for a set of discrete QNM frequencies.
Generically one obtains two solution for Ay , with one
vanishing as the boundary is approached. Discarding the
nonvanishing one leads to a “quantization” condition on the
QNMs.
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(a) σ(γ = 1/12)} (b) σ̂(γ = 1/12)}

(c) σ(γ = −1/12)} (d) σ̂(γ = −1/12)}

FIG. 11. (Color online) Conductivity
σ and its dual σ̂ = 1/σ in the LHP,
w′′ = �w � 0, for |γ | = 1/12. There is
a qualitative correspondence of the pole
structure between σ (w; γ ) and σ̂ (w; −γ ).
Note that the poles of σ̂ (w; γ ) are the zeros
of σ (w; γ ).

As mentioned in the main text, the EoM for the y component
of the gauge field reads

0 = A′′
y + h′

h
A′

y + 9w2

f 2
Ay, (D1)

h′

h
= f ′

f
+ g′

g
. (D2)

The second equality follows from h = fg. We can change
coordinates to bring this equation into a Schrödinger form,
which will be more convenient for the analysis of the QNMs.
To do so, we want to transform away the linear-derivative
term. One way involves changing variables to dx = du/f , as
we illustrate below.

Before going into the WKB analysis, let us first review the
simplest scenario, γ = 0, i.e., in the absence of the function g

arising from the Weyl curvature coupling. The exact solution
is obtained by using the new (complex) coordinate z:

dz

du
:= 3

f
= 3

1 − u3
. (D3)

This puts Eq. (D1) in the form

∂2
z Ay + w2Ay = 0 (D4)

with solutions e±iwz. To apply the boundary condition, we need
to examine the explicit form of z(u). Integrating Eq. (D3), we

obtain

z(u) =
3∑

p=1

3

f ′(up)
ln(1 − u/up), (D5)

where up are the 3 zeros of f . They are simply the cubic roots
of unity: u3

p = 1, i.e.,

u1 = 1, (D6)

u2 = −(1 + i
√

3)/2, u3 = u∗
2, (D7)

which is trivially found by noting that 1 − u3 = (1 − u)(u2 +
u + 1). We give a few properties of the generating polynomial
f and its roots that will be useful for future analysis. First,
the derivative of f permutes u2 and u3, while leaving u1

invariant (up to signs): f ′(u1)/3 = −u1 and f ′(u2)/3 = −u3.
As a result, we get the following identities:

3∑
p=1

up = 0, (D8)

3∑
p=1

un
p

f ′(up)
=

{−1 if n mod 3 = 2,

0 otherwise. (D9)

Recall that we need to apply an infalling boundary condi-
tion, Ay ≈ (1 − u)−iw, near the event horizon, u = 1. Using
Eq. (D5), we find that as u → 1,

e±iwz → C± × (1 − u)∓iw (D10)
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where C± = e±iw(ln 3+π/
√

3)/2. Hence, the boundary condition
selects Ay = eiwz. This in turn yields σ = −i

∂uAy

3wAy
|u→0 =

−i 3iw
3w(1−u3) |u→0 = 1. As expected the conductivity of the CFT

holographically dual to the Einstein-Maxwell theory on S
AdS4 is constant for all complex frequencies, hence self-dual.
We now include a finite γ , which prevents analytical solubility,
just like the 1/N collision term did for the O(N ) model.

We wish to transform Eq. (D1) into a Schrödinger form. To
facilitate comparison with the literature, notably with Ref. 48
which serves as a guide for our analysis, we shall perform the
WKB analysis starting with the coordinate r = 1/u instead
of u. This is the radial holographic coordinate introduced in
the main body, with the difference that it is rescaled by r0. We
define f = r2f = r2 − r−1 and the corresponding new tortoise
coordinate (the analog of z introduced above):

dx

dr
= 1

f
. (D11)

In terms of x, the EoM for Ay becomes

d2Ay

dx2
+ 1

g

dg

dx

dA

dx
+ ν2Ay = 0, ν = 3w . (D12)

We have defined the rescaled frequency ν to simplify the
comparison with previous works. We note that in the limit
where γ = 0, the linear derivative term vanishes and we are
left with a trivial harmonic equation as above. For finite γ ,
we can remove such a term by introducing two functions to
parametrize Ay :

Ay = G(x)ψ(x), (D13)

where in order for ψ to satisfy an equation of the Schrödinger
form, G needs to satisfy the first order differential equation:

dG

dx
+ 1

2g

dg

dx
G = 0 . (D14)

This can be solved in general by G = 1/
√

g = 1/
√

1 + 4γ u3.
The resulting “Schrödinger” equation for ψ is

−d2ψ

dx2
+ W (x)ψ = ν2ψ, (D15)

where

W = 6γ (r3 − 1)

r4(r3 + 4γ )2
[2r6 + (2γ − 5)r3 − 14γ ] . (D16)

The potential W prevents the exact solubility of the equation,
and as expected vanishes as γ → 0. In that limit, G → 1
and W → 0, and the equation reduces to the harmonic one
Eq. (D4). Note that the potential vanishes at the boundary,
r = ∞, just as the Weyl curvature does.

The underlying idea of the WKB method is to examine the
behavior of Ay or ψ on the Stokes line in the complex r plane
defined via:

�(νx) = 0 . (D17)

The first step is thus to identify this Stokes line by studying the
behavior of the tortoise in terms of r . As above, the defining

FIG. 12. (Color online) The Stokes line, �(νx) = 0, in black in
the complex r plane; r = 0 corresponds to the intersection point of
the two branches of the Stokes line. The color shading represents the
value of �(νx). The three branch cuts coming from the logarithms
are clearly visible.

relation for the tortoise can be integrated to give

x(r) = 1

3

3∑
p=1

1

f′(rp)
ln(1 − r/rp) (D18)

= 1

3
[ln(1 − r) + α∗ ln(1 − α∗r) + α ln(1 − αr)],

(D19)

where r1 = 1,r2 = α,r3 = α∗ = α2 are the three cubic roots
of unity, with α = (−1 + i

√
3)/2; precisely the up introduced

above. Near r = 0,∞, the tortoise scales like

x ≈ − r2

2
, r → 0, (D20)

x ≈ x0 − 1

r
, r → ∞, (D21)

respectively, where we have introduced

x0 ≡ x(r → ∞) = 2π
√

3

9
e−iπ/3, (D22)

which will play a central role in the WKB analysis.48 Its value
is well defined due to the absence of monodromy at infinity,
even in the presence of the three branch cuts coming from
the logarithms, see Fig. 12. The value of x0 dictates that of ν

via νx0 ∈ R: ν = ζeiπ/3, where ζ ∈ R. In particular, from this
and Eq. (D21), we see that the branch of the Stokes line that
extends to infinity follows the line r = ρeiπ/3, where ρ is real.
Near the origin, we have �(eiπ/3x) ≈ −�(eiπ/3r2)/2, which
implies r = ρe−iπ/6, ρ ∈ R, in addition to r = ρeiπ/3. These
two branches of the Stokes line cross at the origin as we show
in Fig. 12. We now proceed to the WKB analysis by examining
the solution to Eq. (D15) in the vicinity of r = ∞,0,1.

Near r = ∞, the potential W (r) is irrelevant since W ∼
1/r . This is not surprising since we expect γ to be irrelevant
near the UV boundary and W ∝ γ . The equation becomes
harmonic. We write the solution in terms of the shifted variable,
x − x0, and use Bessel functions although simple sines and
cosines would suffice; this allows us to compare with other
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QNM analyses.48 We have

ψ(x) = B+
√

2πν(x − x0)Jj∞/2[ν(x − x0)]

+B−
√

2πν(x − x0)J−j∞/2[ν(x − x0)], (D23)

where j∞ = 1 and J1/2(z) = √
2/π sin(z)/

√
z, J−1/2(z) =√

2/π cos(z)/
√

z. As we have discussed in the main text, we
need to impose the vanishing of Ay = ψG at the boundary,
which leads to ψ(x0) = 0 since G(x0) = 1. We thus have our
first constraint, B− = 0.

Near r = 0. Near the black-hole singularity, the potential
diverges

W (r) = 21

4r4
= 21/4

4x2
= j 2

0 − 1

4x2
, (D24)

with j0 = 5/2. In the second inequality we have used x ≈
−r2/2 near the singularity. We thus have the Bessel solution

ψ(x) = A+
√

2πνxJj0/2(νx) + A−
√

2πνxJ−j0/2(νx). (D25)

We can match the solutions near r = ∞ and r =
0 using the asymptotic expansion for z � 1: Ja(z) ≈√

2/(πz) cos[z − (1 + 2a)π/4]. Expanding near the origin,
r = 0, we obtain

ψ(x) ≈ 2A+ cos(νx − α+) + 2A− cos(νx − α−) (D26)

= (A+e−iα+ + A−e−iα− )eiνx + (A+eiα++A−eiα− )e−iνx,

(D27)

where we have defined α± = (1 ± j0)π/4. On the other hand,
extending from r = ∞, we get

ψ ≈ 2B+ cos[ν(x − x0) − β+] (D28)

= B+e−iβ+eiν(x−x0) + B+eiβ+e−iν(x−x0), (D29)

where β+ = π/2. Matching both solutions by equating the
ratios of the coefficients of e±iνx yields another constraint:

A+ sin(νx0 + β+ − α+) + A− sin(νx0 + β+ − α−) = 0 .

(D30)

We turn to the behavior near r = 1. We want to match the
behavior on the Stokes branch r = ρeiπ/3 with that near the
black hole event horizon r = 1. First, we have the small-z
expansion Ja(z) ≈ zaw(z), where w(z) is an even and holo-
morphic function, w(z) = 0F1(a + 1; −z2/4)/[2a�(a + 1)],
where 0F1 is an instance of the hypergeometric function. We
will rotate from the branch r = ρeiπ/3, ρ ∈ R− to r = ρe−iπ/6,
ρ ∈ R+. Using x ∼ r2 near r = 0, the π/2 r-rotation becomes
a π x rotation:√

2πe−iπ νxJ±j0/2(e−iπ νx) = e−i(1±j0)π/2
√

2πνxJ±j0/2(νx)

(D31)

→ 2e−i2α± cos(νx − α±). (D32)

Using this we have the following behavior on the r = ρe−iπ/6,
ρ ∈ R+ branch:

ψ(x) ∼ 2A+e−i2α+ cos(−νx − α+)

+ 2A−e−i2α− cos(−νx − α−) (D33)

= (A+e−iα+ + A−e−iα− )eiνx

+ (A+e−i3α+ + A−e−i3α− )e−iνx . (D34)

We know that at the horizon, ψ(x) ∼ eiνx in order to satisfy
the infalling condition, consequently,

A+e−i3α+ + A−e−i3α− = 0 . (D35)

Combining Eqs. (D30) and (D35), we find get a condition
that the homogeneous system of equations needs to satisfy in
order to have a solution:

det

(
e−i3α+ e−i3α−

sin(νx0 + β+ − α+) sin(νx0 + β+ − α−)

)
= 0.

(D36)

This equation leads to the general solution for the asymptotic
QNMs:

3wx0 = ξ − 2πn, n ∈ N & n � 1, (D37)

where we have switched back to w = ν/3. We find two
solutions for the offset parameter ξ :

ξ1 = 2i tanh−1

[
4
√

2 + (1 + i)
4
√

2 + (−1 − i)

]
≈ −2.356 − i0.173,

(D38)

ξ2 = 2 tan−1

[
i

4
√

2 + (1 − i)
4
√

2 + (1 + i)

]
≈ 0.785 − i0.173. (D39)

The offset and gap, defined via w = [gap] − n[offset] for large
n, are given by

offset = ξ

3x0
, (D40)

gap = 2π

3x0
=

√
3eiπ/3, (D41)

where the offset obtained using ξ1,2 is −0.283 − i0.586
or 0.150 + i0.164, respectively. Interestingly, we note that
these results for the asymptotic QNMs are independent of
the value of γ , as long as it is finite. In contrast, if γ = 0, we
obtain j0 = j∞ = 1, and the determinant condition Eq. (D36)
leads to eiνx0 = 0, which has no finite solution. This is in
agreement with the exact solution: there are no QNMs when
γ = 0 because the corresponding conductivity is a constant
function.
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