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Light wave states in quasiperiodic metallic structures

Kang Wang*

Laboratoire de Physique des Solides, UMR CNRS/Université Paris-Sud, 91405 Orsay, France
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We investigate the light wave states in the octagonal and decagonal quasiperiodic metallic structures by
considering their respective approximants at different orders. The mechanisms underlying the light wave behaviors
are studied in relation to various structure parameters and configurations. We show that the formation of the first
passbands, that delimit the photonic band gaps and determine the plasma gaps, involves only the lowest frequency
resonance modes inside the fat tiles, and that light localization occurs due to resonances in high symmetry local
centers as well as in the fragments of such centers, formed by the skinny tiles. The structure filling rate affects the
localized state frequencies relative to the first passbands, as well as the plasma frequency levels, by modulating
the frequency levels of the resonance modes and the widths of the passbands. The results of this study can be
generalized to other metallic quasiperiodic and related structures.
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I. INTRODUCTION

More is known about dielectric quasiperiodic (QP) struc-
tures than about the metallic ones; still both these structures
have potential applications in photonics and interests in
fundamental understanding. On one hand, QP structures are
capable of sustaining, due to their high degree rotational
symmetries, flat frequency bands and more isotropic band gaps
as compared to simple periodic structures; metallic structures
can be used, moreover, for electromagnetic absorption and
emission, and in the design of metamaterials. On the other
hand, These nonperiodic yet determinist structures provide
instructive examples for investigating light wave behaviors in
complex dielectric and metallic media for different structure
configurations at various scales.

Indeed, numerous studies on dielectric QP structures
are conducted, triggered by the works on simple periodic1

and random2 dielectric structures. Investigations show that
two-dimensional (2D) octagonal QP structures can indeed
sustain flat frequency bands and near isotropic photonic
band gaps,3 with the gap positions determined by the aver-
age distance between scatterers.4 Many other investigations
are also reported, among which we can quote band-gap
properties,5–11 light localization and related properties,10,12–15

structure defect effects,16,17 laser effects,18,19 and light
emissions.20,21

Concerning the metallic structures, it is shown that photonic
band gaps can also be obtained in periodic systems,22,23 and
the existence of a plasma gap down to zero frequency is
demonstrated for both periodic24,25 and disordered26 struc-
tures. As far as the QP structures are concerned, attentions
are mainly focused, in the case of one-dimensional (1D)
QP structures and related metallic particle chains, on the
lack of periodicity and the structure self-similarity. Photonic
band-gap opening, broadband absorption, and localization are
shown to occur in such structures.27–29 Higher dimensional
QP structures differ from the 1D ones by their high degree
rotational symmetries. In the 2D case, photonic band-gap
opening and defect-related localization in the plasma gap
are obtained in Penrose pentagonal structures,30 and surface
plasmon resonances are observed in planar Penrose31 and
dodecagonal32 metallic structures.

For 2D dielectric QP structures, we have shown in our
previous works that the photonic band gaps are determined
by the lattice global average order,4,10 and localized states are
formed in high symmetry local centers in the octagonal and
decagonal structures10,13 due to local resonances in relation
with both the geometrical and dielectric parameters. A thresh-
old for the localization regime can be defined as a function of
these parameters.15 In this work we investigate comparatively
light wave behaviors in octagonal and decagonal metallic QP
structures. We focus our attention on the dependance of light
resonances on various structure configurations, as well as on
the relations between resonance modes. We show that the first
passband, that delimits the photonic band gap and determines
the plasma gap, is formed from certain specific low frequency
local modes. We demonstrate that, like in the dielectric
QP structures, light localization occurs at high symmetry
local centers as well, though the underlying mechanism is
different. We investigate the mechanisms at the origin of
these phenomena in relation to various structure parameters
to understand the structure effects and their consequences on
light wave behaviors.

We consider here the approximants of the octagonal and
the decagonal QP structures. The approximants are periodic
structures, thus allowing exact resolution of Maxwell’s equa-
tions. Besides, the approximants locally reproduce their parent
QP lattice patterns, so these structures are good candidates
for studying local scale effects. Further, the higher the
approximant orders, the larger the unit-cell sizes and better the
QP lattice patterns are reproduced. The choice of approximants
with different orders will allow us to better illustrate the
effects of local configurations on light wave behaviors. Finally,
low order approximants have the advantage of containing
all the structure unities but still displaying relatively simple
lattice configurations, making them well adapted for the
time-domain method used in this work, and, as we will see
below, good complements to the high order approximants in
the understanding of the band formation.

II. APPROXIMANT STRUCTURES

The octagonal and decagonal QP lattices display, respec-
tively, 8- and 10-fold global average rotational symmetries
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FIG. 1. The 1/1 [(a)] and 3/2 [(b)] approximants of the oc-
tagonal QP structure, and the (3/2,5/3) [(c)] and (8/5,13/8) [(d)]
approximants of the decagonal QP structure. The lattices nodes are
represented by circles and the unit cells delimited by dashed lines.
The fat and skinny tiles for each structure family are also outlined
(solid lines).

and bond-orientational symmetries. They contain respectively
octagonal and decagonal local centers, that belong to their
respective maximum global average symmetry groups.

The approximant lattices of these QP lattices studied in
this work are displayed in Fig. 1, where the lattice nodes are
represented by open circles. The structure unities of these
lattices consist of tiles with edge length a. Each structure
family contains two kinds of tiles, the fat ones and the skinny
ones. Indeed, the octagonal approximants are constructed by
square (fat) and π/4 rhombic (skinny) tiles. They display
square unit cells containing, respectively, 7 and 41 tiles,
with cell sizes of a(1 + √

2) and a(3 + 2
√

2). The decagonal
approximants are constructed by 2π/5 (fat) and π/5 (skinny)
rhombic tiles. They display unit cells in the form of 2π/5
rhombus, containing, respectively, 11 and 76 tiles, with widths
of a

√
5τ 3−2 and a

√
5τ 5−2, and heights of a

√
5τ 4−1/

√
1 + τ 2

and a
√

5τ 6−1/
√

1 + τ 2.
The two octagonal approximants can be described as

the 1/1 and 3/2 approximants of the octagonal QP lattice,
while the two decagonal ones the (3/2,5/3) and (8/5,13/8)
approximants of the decagonal QP lattice, in a cut-and-
projection description. In fact, these approximants can be
obtained, respectively, by approximating

√
2 by 1/1 and 3/2

along the x and y axes, and τ by 3/2 and 5/3, and 8/5 and
13/8, along the x and y axes in respectively the octagonal and
the decagonal QP lattices, in the structure formalism proposed
for QP alloys.33,34

These approximants display, respectively, pseudoglobal
average 8- and 10-fold rotational symmetries and octagonal
and decagonal bond-orientational symmetries. As mentioned
above, higher order approximants better reproduce the parent
QC structures. In our case, the 3/2 octagonal and the
(8/5,13/8) decagonal approximants are the lowest order
ones that reproduce, respectively, the 8- and 10-fold local
centers. These local centers are not contained in the 1/1
octagonal and the (3/2,5/3) decagonal approximants (the
latter contains only a 5-fold local center in its unit cell).

These low order approximants, though displaying simpler
lattice configurations, contain nevertheless all the structure
unities. Indeed, the 1/1 octagonal approximant contains three
fat and four skinny tiles in its unit cell, while the (3/2,5/3)
decagonal approximant contains seven fat and four skinny
tiles. The comparison of these structures will provide a better
understanding of the effects of various structure configurations
on the light wave states.

III. BAND STRUCTURES

The metallic structures are formed by scatterers that are
infinite high cylinders of perfect metal, of which the dielectric
constant is set to negative infinity, placed perpendicular to
the lattice plane at the lattice nodes in an air background.
Here we consider structures with a filling rate of about 20%,
corresponding to a cylinder radius r = 0.23a for these struc-
tures, characterized by close lattice node densities [1.20/a2

and 1.21/a2 for the 1/1 and 3/2 octagonal approximants,
and 1.22/a2 and 1.23/a2 for the (3/2,5/3) and (8/5,13/8)
decagonal approximants, respectively].

Maxwell’s equations are solved for TM polarization using
a FDTD method. The obtained band diagrams are displayed in
Fig. 2. As a matter of fact, the band structures are well resolved
for the low order approximants [Figs. 2(a) and 2(c)], thanks
to their simple structure configurations. As far as the high
order ones are concerned, due to the larger sizes of their unit
cells that are characterized by much more complex structural
configurations, the band branches are more closely spaced,
and there are inevitably unresolved missing states, intrinsic to
the time-domain method. However, the band gaps, as well as
the photonic states inside the gaps, are well defined [Figs. 2(b)
and 2(d)].

Band gaps at lowest frequencies (down to zero) are observed
for all these structures. This is comparable to the plasma gaps
obtained in periodic and disordered metallic structures.24–26

It was argued that such a gap is related to a depressed
plasma frequency below which a metallic lattice behaves like
a homogeneous conducting material. The plasma frequency
levels ω1 for all these structures are listed in Table I.

A photonic band gap, above the plasma gap, is observed
for each structure. The characteristics of this gap, i.e., the
lower and upper gap edges ω2 and ω3, as well as the gap
width �ωg and mid-gap frequency ωg , are also given in
Table I. Similar to the case of the dielectric structures,10,13

photonic states (labeled from a to g, with two degenerate
states f and f ′) are found inside the photonic band gaps. As
will be discussed below, these states are related to certain local
resonance effects that do not affect the band formation.

We notice that both the plasma gap and the photonic band
gap are much more isotropic for the high order approximants.
This can also be compared to the case of the dielectric
structures,4,10 and is a natural consequence of the approximants
approaching perfect QP structures with increasing order.

For each structure, these gaps delimit the lower and upper
edges, ω1 and ω2, for the first passband (which includes, in the
case of the 1/1 octagonal approximant, the three lowest band
branches), and the lower edge ω3 for the second passband.
These values are very close for the approximants of each
QP structure, with relative differences of the magnitudes of
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FIG. 2. The band diagrams for the 1/1 [(a)] and 3/2 [(b)]
octagonal approximants, and the (3/2,5/3) [(c)] and (8/5,13/8) [(d)]
decagonal approximants. Photonic states inside the photonic band
gaps are labeled from a to g, two almost degenerate states inside the
second passband for the (8/5,13/8) decagonal approximant, h and
h′, are also indicated in (d).

10−3, indicating the same origin for the band formation. For
simplicity, let us consider the first passband, of which the
mid-frequency ωb and width �ωb are also listed in Table I.

As mentioned above, these approximant structures are
constructed by structure unities that are fat and skinny tiles
(Fig. 1). In fact, for the frequency ranges of the first passbands,
all the structure unities are not involved in the band formation.
To illustrate this, let us first consider the two low order
approximants, of which the structure simplicity allows well
resolved band structures [Figs. 2(a) and 2(c)]. Indeed, as
shown in Fig. 3 for the lowest and the highest branches of
the first passbands for these two approximants [Figs. 3(a)–
3(d)], the electric fields are essentially confined inside the fat
tiles (square and 2π/5 rhombic tiles, respectively), instead
of being uniformly distributed in the spaces between the
metallic scatterers. As far as the two higher order approximant
structures are concerned, their field distributions can also be
probed in spite of the lattice structure complexity. Indeed,
Figs. 3(e) and 3(f) display the field distributions resulted from
the excitation of a Gaussian source with center frequency ωb

TABLE I. The plasma frequencies ω1, the lower edges ω2,
the upper edges ω3, the widths �ωg and the mid-frequencies ωg

of the photonic band gaps, as well as the widths �ωb and the
mid-frequencies ωb of the first passbands for the (1/1) and (3/2)
octagonal and the (3/2,5/3) and (8/5,13/8) decagonal approximants.
The eigenfrequencies of the T M11 resonance modes ωT M11 inside the
square and the 2π/5 rhombic tiles of respectively the octagonal and
decagonal approximants, and the corresponding wavelengths λT M11

are also listed. All the frequency values are normalized according to
ωa/2πc, the wavelengths are given in a.

Octagonal Decagonal

1/1 3/2 (3/2,5/3) (8/5,13/8)
ω1 0.618 0.619 0.638 0.636
ω2 0.669 0.672 0.740 0.738
ω3 0.867 0.861 0.845 0.843
�ωg 0.198 0.189 0.106 0.105
ωg 0.768 0.767 0.792 0.790
�ωb 0.051 0.053 0.102 0.102
ωb 0.644 0.645 0.689 0.687

ωT M11 0.644 0.690
λT M11 1.55 1.45

(see Table I) and a frequency width of �ω = 0.2 (in ωa/2πc

unity), in respectively the 3/2 octagonal and the (8/5,13/8)
decagonal approximants. We can see that the electric fields
are essentially distributed inside the fat tiles as well. This
indicates that only the modes in the spaces insides the fat tiles
are excited for all these structures in the frequency ranges of
the first passbands, and involved in the band formation.

This is not surprising if we consider that the resonance
modes occurring inside an individual tile, formed by metallic
cylinders at its vertices, have their wavelengths scaling with
the tile size. And low frequency modes (in the frequency
ranges of the first passbands) can only be supported by the
fat tiles. In fact, as shown by the field patterns in Fig. 4,
the resonance modes inside these fat tiles, of widths wf

and heights hf , can be viewed as cavitylike modes, with,
roughly, the tile inner diagonals wf − 2r and hf − 2r as cavity
sizes. For a perfect rectangular cavity of the same sizes, the
eigenfrequency for the lowest frequency TM mode ωT M11 =
a
√

1/(wf − 2r)2 + 1/(hf − 2r)2/2 (in ωa/2πc unity). In the
present case, the tiles are not perfect square and rectangular
cavities, resonance modes inside these structures are obtained
by solving the Maxwell’s equations. We obtain the eigenfre-
quencies for the T M11 resonance modes for respectively the
square and the 2π/5 rhombus tiles, with the same geometrical
parameters as in the approximant structures (cylinder radius
r = 0.23a), ωT M11 = 0.644 and 0.690 (in ωa/2πc unity), that
are effectively in the frequency ranges of the first passbands
of their corresponding approximant structures.

It is worth further considering these eigenfrequency values
in relation to the characteristics of the first passbands in more
detail. In fact, as shown in Table I, both the band widths �ωb

and the center frequencies (the band positions) ωb are very
close for the approximants of each QP structure. Moreover,
the center frequencies ωb for the octagonal and decagonal
approximants are almost identical to the eigenfrequencies of
the first resonance mode ωT M11 inside, respectively, the square
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FIG. 3. (Color online) Electric field distributions at � point for the lowest [(a) and (c)] and the highest [(b) and (d)] branches of the first
passbands for respectively the 1/1 octagonal and the (3/2,5/3) decagonal approximants, as well as those resulted from a Gaussian source with
center frequency ωb (Table I) and a frequency width of 0.2 (ωa/2πc) in respectively the 3/2 octagonal [(e)] and the (8/5,13/8) decagonal [(f)]
approximants. The fat tiles for each structure family are outlined by solid lines, and the unit cells by dashed lines. The “ + /−” signs indicate
the field polarities.

and 2π/5 rhombus tiles. Therefore, the upper and lower edges
of the first passbands, ω2 and ω1, can be related approximately
to the eigenfrequencies ωT M11 by the following relation for all
these structures:[

ω2

ω1

]
≈ ωT M11 +

[
1
2�ωb

− 1
2�ωb

]
. (1)

This relation corresponds to the typical situation for weak
coupling between T M11 modes, where the band position is
determined by the eigenfrequency of the T M11 mode, and the
band width by the coupling between these modes, measured
by the transfer integrals if a tight binding model is used. This,
together with the field distributions in Fig. 3, where the field

wf

fhfh

aa

(a) (b)

r
wf

r

FIG. 4. (Color online) A square [(a)] and a 2π/5 rhombic [(b)]
tile, both formed by four metallic cylinders at their vertices. The
electric field distributions corresponding to the T M11 resonance
modes inside these tiles are also shown. The “+/−” signs indicate
the field polarities.

patterns for the lowest band branches [(a) and (c)] and those for
the highest ones [(b) and (d)] are comparable to respectively
the bonding and antibonding states between T M11 modes in
neighbor fat tiles, corroborates the above proposition that the
first passbands are formed by interaction between the low
frequency modes inside the fat tiles.

This point can further be checked by considering the
number of branches in the passbands. As a matter of fact,
if the passbands are formed by the T M11 modes inside the
fat tiles, the number of branches in each passband should
equal the number of T M11 modes, i.e., the number of fat
tiles, contained in the unit cell. Although, as mentioned above,
the structure complexity of the two high order approximants
prevents us from obtaining all the band branches, intrinsically
to the time-domain method used in the present work; this can
indeed be checked with the two low order ones. As a matter
of fact, there are respectively three and seven branches in the
passbands for the 1/1 octagonal and the (3/2,5/3) decagonal
approximants, while the two structures contain respectively
three and seven fat tiles in their unit cells, satisfying the
band-branch number condition.

The band formation at low frequencies is thus selective,
involving only the lowest frequency cavitylike resonance
modes inside the fat tiles, and the light propagation in
the corresponding frequency ranges is realized through the
interaction between these modes. The skinny tiles do not
contribute directly to the band formation, since, on one hand,
they can not sustain cavitylike modes like the fat tiles, as their
edge lengths a are much larger than their widths; on the other
hand, rectangular cavities of the sizes of the skinny tiles are
too narrow to sustain resonance modes in the frequency ranges
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FIG. 5. (Color online) Electric field patterns for the localized
states inside the photonic band gaps (a to g), as well as two almost
degenerate states in the second passband of the (8/5,13/8) decagonal
structure (h and h′). The patterns are lettered following the band
labeling in Fig. 2. The “ + /−” signs indicate the field polarities.

of the first passbands. The skinny tiles can however affect the
interaction between the resonance modes in the fat tiles by
modulating the distances between the latter.

IV. LIGHT LOCALIZATION

As mentioned above, the band diagrams (Fig. 2) show the
existence of photonic states, labeled from a to g, inside the
band gaps of the 1/1 and 3/2 octagonal approximants and that
of the (8/5,13/8) decagonal approximant. The corresponding
electric field patterns are displayed, using the same labels, in
Fig. 5, (f and f ′ being two degenerate states), together with
those corresponding to two almost degenerate states, h and
h′, inside the second passband of the (8/5,13/8) decagonal
approximant. The frequency values of these states at � point
ωl are listed in Table II.

The electric field patterns show clearly that these states are
localized. Indeed, the field patterns of b, f and f ′ and g, h and
h′ are confined in the respective maximum symmetry (8- and
10-fold) local centers of the octagonal and decagonal struc-
tures, formed by an octagonal or decagonal ring surrounding

a central scatterer. The other patterns are confined in local
structures that can be considered as parts of the 8-fold local
center, formed by a central scatterer and a fragment of the
octagonal ring (a and c to e). The localization is corroborated
by the flatness of the corresponding frequency bands in Fig. 2.
We notice, however, that band a is curved around X point,
though the mode a is locally confined. This can be attributed
to interaction between localized modes in neighbor unit cells
that are small for the 1/1 approximant. This localization
phenomenon can be compared to the case of the dielectric QP
structures that we studied previously,10,13,15 where localization
occurs intrinsically in the maximum symmetry local centers,
as well as in the fragments of such centers, without implying
either structure defects or disorders. However, as we will show
below, the underlying mechanism in the metallic QP structures
is fundamentally different from that in the dielectric ones.

As a matter of fact, in the present case, the field is confined
between the octagonal or decagonal rings (or broken rings)
and the central scatterer. The field distributions correspond to
resonance modes, that occur in the local spaces delimited by
these scatterers. To further investigate this point, let us consider
isolated individual structures formed by a central scatterer
surrounded by octagonal and decagonal rings, as well as
broken octagonal rings, with the same geometrical parameters
(a and r) as in the approximant structures. Resonance modes
inside such individual structures are obtained by solving the
Maxwell’s equations. We get for these structures the same field
patterns as those in the approximant structures shown in Fig. 5.
The corresponding resonance frequency values ωr are listed in
Table II as well. Indeed, the same local structure configurations
lead to resonance modes with very close frequency values,
ωr ≈ ωl . This shows that the modes in Fig. 5 are indeed local
resonance modes sustained by the local structure patterns. It
is worth pointing out that, though there are broken 10-fold
local centers in the decagonal approximants, the modes inside
these local structures have their frequency levels in the second
passbands and are mixed with extended states.

Similar to the case of the fat tiles discussed above, the field
distributions of these modes suggest local cavitylike effects.
To further illustrate this point, let us give an approximate
analytical description to the simplest and most significant
cases, i.e., the resonance modes inside the perfect rings. Let ρ

be the radial coordinate with its pole on the central cylinder
axis. As shown in Fig. 6 in the cases of modes b and g, the
electric field magnitude falls to zero at the central cylinder
surface Ez|ρ=r = 0, and in the vicinity of the surrounding
rings Ez|ρ∼ring = 0. The later condition can be approximately
replaced by Ez|ρ=R = 0, with R the effective inner radius of
the rings. In fact, this simplification consists of approximating

TABLE II. The frequencies of the localized states ωl at � point lettered using the same labels as in Figs. 2 and 5, the resonance frequencies
in isolated individual structures ωr , and the wavelengths λr corresponding to ωr . Frequencies are normalized to ωa/2πc. Wavelengths are
given in a.

a b c d e f f ′ g h h′

ωl 0.821 0.792 0.811 0.832 0.848 0.853 0.853 0.824 0.885 0.888
ωr 0.825 0.792 0.813 0.831 0.851 0.854 0.854 0.824 0.885 0.888
λr 1.21 1.26 1.23 1.20 1.18 1.17 1.17 1.21 1.13 1.13
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FIG. 6. Normalized electric field distributions for modes b [(a)]
and g [(b)] (Fig. 5), in slices passing through the ring center along
the x (solid line) and x ′ (at π/8) (dashed line) axes [(a)] and along
the x (solid line) and y (dashed line) axes [(b)], respectively. The
vertical dashed-dotted lines represent the cylindrical scatterer axes.
The scatterer cross sections along the x axis are delimited by the
dotted lines. Various length parameters are also presented.

the original field pattern symmetry, which is that of the ring,
by a cylindrical one. This can be justified by the high degree
symmetry of the rings. In fact, the electric field magnitude
falls to zero at ρ = a − r when ρ passes through the axis
of a cylinder on the ring [along the x axis in Figs. 5(b) and
5(g)], while it displays a Gaussian-like tail beyond ρ = a − r

when ρ passes between two neighbor cylinders [along the
x ′ axis in Fig. 5(b) and along the y axis in Fig. 5(g)]. The
cylindrical boundary condition approximation neglects this
difference. It is obvious that higher symmetry degree leads to
a better approximation, as exemplified by the field distributions
of modes b and g; the Gaussian-like tail is reduced in the latter
case.

Using the above simplified boundary conditions, the reso-
nance frequencies are determined by the classical characteris-
tic equation:

Jm(kR) − Jm(kr)

Nm(kr)
Nm(kR) = 0 (2)

where Jm and Nm are the mth order Bessel and Neumann
functions, respectively. Eq. (2) defines a series of resonance
modes T Mmn, corresponding to the nth roots of Eq. (2) at mth
order.

The field patterns b and g display the topology of the T M01

mode (no node in neither the angular nor the radial directions),
while the patterns f and f ′, and h and h′, display that of the
T M11 mode (two nodes in the angular direction). And we can

check that the resonance frequency values for these modes (b,
f , f ′ and g, h, h′) given in Table II correspond effectively to
the first roots of Eq. (2) for a well defined R value for each
structure. Indeed, for the octagonal one[

ωb

ωf (f ′)

]
≈

[
ω01

ω11

]
(3)

for R = 0.84a; while for the decagonal one[
ωg

ωh(h′)

]
≈

[
ω01

ω11

]
(4)

for R = 0.82a.
This shows that these resonance modes can indeed be

described as cavitylike modes, with approximate cylindrical
boundary conditions. For given geometrical configurations
(a, r and the symmetry), the eigenfrequency levels can be
estimated through a unique parameter R. We notice that R

satisfies the relation (a − r) < R < a in both cases, and the
R value for the decagonal structure is shorter than that for the
octagonal one, due to the shorter interscatterer distance, that
is the width of the skinny tiles ws , on the ring, leading to a
better field confinement and higher frequency levels for the
cavitylike resonance modes.

The comparison with local centers of lower symmetry
degree allows us to probe the condition for such resonances.
Here the resonances occur in the maximum symmetry local
centers that are formed by skinny tiles, for which the widths ws

are shorter than the local center size a. The 5-fold local centers
contained in both the (3/2,5/3) and (8/5,13/8) decagonal
approximants are formed by 2π/5 fat tiles, with width wf

larger than a. They do not support such resonance modes.
The resonance condition can thus be expressed through the

relation between the local center size a and the interscatterer
distance l on the ring. A local center behaves in a cavitylike
way for l < a. Indeed, the wavelength of a cavitylike mode
λ scales with the cavity size a − 2r . The resonance modes
can be efficiently confined inside the rings for wavelengths
much larger than the widths of the space gap between neighbor
scatterers, l − 2r , on the rings. For the 8- and 10-fold local
centers, l = 0.765a and 0.618a, and, as listed in Table II,
λ � l − 2r = 0.31a and 0.16a. The energy loss of the local
centers increases with l, and cavitylike resonances can no more
be sustained for l > a (in any way, a local center can no more
be considered as cavity if the interscatterer distance on the ring
is larger than the local center size), as in the case of the 5-fold
local centers for which l = wf = 1.176a, and no cavitylike
resonance modes are obtained.

It is however possible to introduce cavitylike resonances
into the 5-fold local centers, and, at the same time, check
the validity of the above resonance condition. Let us consider
the (3/2,5/3) decagonal approximant. We remove the central
scatterer in the 5-fold local center, indicated by the arrow in
Fig. 7(a), so that the resulting local center size is 2a > l [see
the structure in Fig. 7(b)], satisfying the resonance condition.
Indeed, a localized state is obtained in this center, as shown
by the field pattern in Fig. 7(b). The corresponding state in the
band diagram, labeled as i [Fig. 7(c)], has its frequency level
ωi = 0.421 (ωa/2πc), and is deeply situated in the plasma
gap. Its wavelength, λ = 2.38a, is much larger than l − 2r =
0.72a.
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FIG. 7. (Color online) The removal of the center scatterer
[indicated by the arrow in (a)] in the 5-fold local center leads to
a defect [(b)] in the (3/2,5/3) decagonal approximant, that sustains a
local resonance mode [electric field patterns in (b)], with its frequency
level in the plasma gap, labeled as i [(c)]. The “ + /−” signs indicate
the field polarities.

This resonance mode can also be described analytically
using the above approximation. With the central cylinder
absent, we have the only approximate boundary condition

Ez|ρ=R = 0. (5)

The resonant frequencies are just determined by the roots of

Ez = Jm(kR) = 0 (6)

The field pattern in Fig. 7(b) corresponds to the T M01 mode.
The resonance frequency, ωi = 0.421, corresponds to the root
ω01 for R ≈ 0.91a, larger than the R values in the cases of
the 8- and 10-fold local centers. The cylindrical boundary
condition approximation is less good since the symmetry
degree of the local center is lower, and the interscatterer
distance is larger on the pentagonal ring.

V. DISCUSSION

The two families of metallic structures studied in the
present work, the octagonal and decagonal ones, are both
constructed upon two families of structure unities, the fat and
the skinny tiles. These tiles play different roles on the light
wave behaviors, in particular, on the first passband formation
and the light localization.

The first passbands are formed by the coupling between the
lowest frequency resonance modes inside the fat tiles, of which
the sizes and spatial distributions determine the first passband
positions and widths, which determine, in turn, the lower edges
of the photonic band gaps. This sheds, besides, new light on
the plasma gaps, as the plasma frequencies correspond to the
lower edges of the first passbands ω1, thus depend on the
fat-tile configurations as well. In this framework, the plasma
gaps are natural consequences of the coupling between the
specific lowest frequency modes in these structures.

The slight but noticeable photonic-band-gap width de-
creases passing from lower to higher order approximants
(Table I) can also be explained in this framework. Our results

suggest that the widths of the passbands are determined by the
coupling between resonance modes formed inside the structure
unities. With increasing order, the approximants reproduce
better the local structure patterns of their parent QP lattices,
approaching thus the average rotational symmetry of the latter
at larger local scales. A resonance mode can therefore be
surrounded by more near-neighbor modes (not necessarily
limited to the first neighbor ones) to which it can couple,
increasing the widths of the passbands and, thus, decreasing
that of the photonic band gap. This is notably relevant when
beginning from the lowest order approximants, that can only
reproduce the QP lattice patterns at minimum local scales, such
as the first (the 1/1) approximant of the octagonal structure.

Light localization can be described as cavitylike resonance
modes inside local structures formed by skinny tiles. The
localization is favored by high degree symmetry, that implies
short interscatterer distance l on the ring, and by high structure
filling rate as well, since a weaker width for the interscatterer
space gap on the ring, l − 2r , leads to a better confinement.

The filling rate of 20% is rather high for these structures,
the scatterer diameter being about three quarters of the shortest
interscatterer distance ws in the decagonal structures. It is
interesting to further probe the relation between the localized
states and the first passbands for lower structure filling rates.

As mentioned above, the position of the first passband for
each structure is determined by the frequency of the cavitylike
mode T M11 inside the fat tiles [Eq. (1)], and the wavelength
for such a mode scales with the cavity width wf − 2r . T M11

0.1

0.1

0.15 0.2

0.15 0.2

0.4

0.5

0.4

0.6

0.5

0.7

0.6

0.8

0.7

0.8

r  a(  )

r  a(  )

ω 1
ω 2
ω 3

ω gω hω h

11ω TM

ω f

ω 3
ω 2
ω 1

11ω TM
ω b

ω
   

   
 π

a/
 2

   
c

( 
   

  )
ω

   
   

 π
a/

 2
   

c
( 

   
  )

(a)

(b)

ω f

’

’

FIG. 8. The lower and upper edges of the first passband, ω1 and
ω2, the fat-tile resonance mode frequencies ωT M11 , the localized mode
frequencies in the maximum symmetry local centers ωb, ωf (f ′) and
ωg , ωh(h′), together with the lower edges of the second passbands ω3,
as functions of the scatterer radius r for respectively the 3/2 octagonal
[(a)] and the (8/5,13/8) decagonal [(b)] approximants.
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FIG. 9. The photonic band gap and the upper edge of the plasma
gap, together with localized state a, obtained for the 1/1 octagonal
approximant for a dispersive metal with ωp = 10(ωa/2πc) (“+”),
compared to those in Fig. 2(a) (“·”). For clarity, only the branches at
the gap edges are plotted.

will be shifted to low frequencies for decreasing filling rate.
Besides, the coupling between the T M11 modes will increase
with decreasing filling rate, since these modes will become
more spatially extended for increasing space-gap width,
a − 2r , on the tile edges, leading to the passband width
increase.

For a localized state, the wavelength scales with the cavity
size a − 2r . Here a is shorter than the fat tile width wf ,
and the frequency levels of the localized states are above the
first passband. The localized state frequencies will be shifted
to low frequencies as well for decreasing filling rate. And
their differences with ωT M11 will decrease, as the difference
between a − 2r and wf − 2r decreases with decreasing r .
Therefore, with decreasing filling rates, the localized states
will approach the first passbands and eventually fall inside the
latter.

The evolution of the passbands and the localized states
following the structure filling rate is illustrated by Fig. 8, where
several frequency levels for the two high order approximants
are plotted as functions of the scatterer radius r , for r down to
0.1a (corresponding to a filling rate of about 4%). Effectively,
all the frequency levels are shifted to lower values with
decreasing filling rate, and the first passband widths are larger.
We notice that Eq. (1) remains satisfied down to the lowest
filling rates. Moreover, the frequency levels of the localized
states approach those of T M11, and, for the lowest filling rates,
the levels of ωb and ωg fall inside the first passbands, while
those of ωh and ω′

h for the (8/5,13/8) decagonal approximant
are shifted down into the band gap.

It is worth pointing out that perfect metal, with negative
infinity dielectric constant, is used to model the metallic
structures in this work. This is a good approximation at
frequency ranges well below the plasma frequency of the

electron gas in the metallic material ωp. Corrections to the band
frequencies will be introduced if metallic dispersion is taken
into consideration, especially for higher frequency ranges.
Let us illustrate this aspect in the case of the 1/1 octagonal
approximant by using a lossless Drude model, with the metallic
dielectric constant ε(ω) = 1 − ωp

2/ω2. The photonic band
gap, the upper edge of the plasma gap, as well as the localized
state inside the photonic band gap, obtained for a dispersive
metal with plasma frequency ωp = 10(ωa/2πc), are displayed
in Fig. 9, together with those obtained for the dispersiveless
perfect metal. It is obvious that, due to the metallic dispersion,
the band branches are all shifted to low frequencies. The
photonic band gap becomes slightly more anisotropic, and
its width is reduced as well. These are natural consequences
of the reduction of the absolute value of the dielectric
contrast between the metallic scatterers and the air background
following the frequency. The perturbation of the light wave by
the scatterers is weaker, implying, for the resonance modes
inside the structure unities, lower eigenfrequencies and more
extended spatial distributions, leading to lower positions and
larger widths for the passbands with less flat band branches.

Finally, the analysis in the present work shows the intimate
relations between the physical properties and geometrical
parameters in the metallic approximant structures. Moreover,
the results obtained on the approximant structures can be
generalized to their parent QP structures, since, on one hand,
the existence of different families of structure tiles and high
symmetry local centers are characteristics common to both
the QP lattices and approximants of sufficiently high orders,
and, on the other hand, approximants reproduce locally their
parent QP structures, and the properties studied in the present
work are essentially determined by local scale effects. Finally,
the present results can be generalized to other metallic QP
and related structures containing different structure unities and
local centers.

VI. CONCLUSION

In summary, light wave states in octagonal and decagonal
quasiperiodic metallic structures, that display different long
range orders and local configurations, are comparatively
studied through their respective approximant structures of
various orders. Mechanisms underlying the formation of the
first passbands, that separates the photonic band gaps and
the plasma gaps, and the light localization in high symmetry
local centers are investigated and discussed. This study
shows the particularities of metallic structures constructed
upon different families of structure components, by analyzing
the contributions of different structure unities to the band
formation, localization, as well as the plasma gap opening.
The effects of local symmetry and structure filling rate are
discussed as well. The results and analysis can be generalized
to other metallic quasiperiodic and related structures.
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