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c-axis optical sum in underdoped superconducting cuprates
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In conventional metals, the total optical spectral weight under the real part of the dynamical conductivity
remains unchanged in going from normal to superconducting state. In the underdoped cuprates, however,
experiments found that the interlayer conductivity no longer respects this sum rule. Here, we find that a recently
proposed phenomenological model of the pseudogap state which is based on ideas of a resonating valence bond
spin liquid naturally leads to such a sum-rule violation. For the interplane charge transfer, a coherent tunneling
model is used. We also obtain analytic results based on a simplification of the theory which reduces it to an
arc model. This provides further insight into the effect of the opening of a pseudogap on the c-axis optical
conductivity Re[σc(ω)]. The missing area under Re[σc(ω)] normalized to the superfluid density, which is found
to be one in the Fermi-liquid limit with no pseudogap, is considerably reduced when the pseudogap becomes
large and the size of the Luttinger pockets or arcs is small.
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I. INTRODUCTION

Sum rules are useful in analyzing and understanding data
on the dynamic conductivity σ (ω). The area under the real part
of σ (ω) is related to the square of the plasma frequency which
plays a central role in optical absorption.1 For superconductors,
the Ferrell-Glover-Tinkham (FGT) sum rule2,3 states that the
missing area under Re[σ (ω � 0+)] which comes from the
quasiparticle excitations is to be found in a δ distribution at zero
frequency with its weight related to the superfluid stiffness of
the condensate. The c-axis optical response of the underdoped
cuprates is, however, different and substantial violations of
the FGT sum rule have been observed.4 Such violations
have been interpreted as an indication of non-Fermi-liquid
behavior of the in-plane charge dynamics5–12 possibly due
to the preformed pair mechanism7 in which the gap remains
above the superconducting critical temperature Tc, but without
coherence between the Cooper pairs, or the hole mechanism
of superconductivity,8,9 or the interlayer tunneling model.10–12

Effects of an in-plane magnetic field H on the FGT sum rule
have also been studied13 as well as the vortex state when H is
oriented along the c-axis perpendicular to the CuO2 planes.14

It is well known that in the underdoped cuprates, a pseudo-
gap feature15 associated with the emergence of a new energy
scale16 appears in their normal state above the superconducting
dome. Many ideas have been put forward as the origin of this
phenomenon such as preformed pairs17,18 or a (d-density wave)
competing order.19,20 More recently the phenomenological
self-energy introduced by Yang et al.21 (YRZ) has gained
prominence as it has become realized that it provides a
simple and robust explanation22–31 of the previously believed
anomalous properties of the cuprate phase diagram. The YRZ
model is based on the ideas of the resonating valence bond
spin liquid by Anderson.32 It features a quantum critical point

(QCP) below which a pseudogap emerges, and this leads to a
reconstruction of the large Fermi surface (FS) of Fermi-liquid
theory into Luttinger hole pockets about the nodal direction in
the CuO2 Brillouin zone (BZ) as the antiferromagnetic Mott
insulating state is approached. The remarkable success of the
YRZ ansatz to provide a first understanding of the super-
conducting properties of the underdoped state indicates that,
however simplified it may be, it captures an essential element
which needs to be added to conventional BCS theory. The
emergence of a pseudogap goes beyond and is quite different
from other extensions of BCS theory which have been found
important in dealing with real conventional superconductors.
These include so-called strong-coupling effects33–35 which
have their root in Eliashberg theory, anisotropies36–38 entering
the electron-phonon interaction as well as, in some materials,
energy dependence in their electronic density of states.39–42

In this paper, we study how the growth of a pseudogap in
the YRZ model affects the c-axis optical sum rule. In Sec. II,
we present a Green’s function formulation of the optical sum
rule for the transverse direction. A brief description of the
YRZ model is given in Sec. III. Numerical results are found
in Sec. IV. In Sec. V, we consider the limit of the YRZ model
which corresponds to an arc model for which we can get a
simplified analytic formula for the c-axis sum rule. This helps
greatly in our understanding of the physics behind the sum-rule
violation found in this work. A summary and conclusions are
found in Sec. VI.

II. FORMALISM FOR OPTICAL SUM

In terms of the interplane tunneling matrix element for the
transfer along the c-axis of an electron of momentum k in one
plane to p in the adjacent plane tk,p,43–47 the out-of-plane sum
rule5–7 reads as

Nn − Ns

ρs

= 1

2
+ 1

2

∑
ωn

∑
k,p |tk,p|2[Gs(k,iωn)Gs(p,iωn) − Gn(k,iωn)Gn(p,iωn)]∑

ωn

∑
k,p |tk,p|2F (k,iωn)F (p,iωn)

. (1)
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In this equation,
∑

ωn
is a sum over fermion Matsubara

frequencies at temperature T , Gs(k,iωn) is the in-plane
charge carrier Green’s function in the superconducting state
with Gn(k,iωn) its normal-state limit, and F (k,iωn) is the
anomalous Gor’kov Green’s function describing the Cooper-
pair condensate. The c-axis optical spectral weight in the
superconducting and normal state, respectively, is defined as
the area under the real part of the dynamic transverse (between
the planes) conductivity σc(T ,ω), namely,

Nn =
∫ ∞

0+
dω Re[σc,n(T ,ω)] (2a)

and

Ns =
∫ ∞

0+
dω Re[σc,s(T ,ω)]. (2b)

Finally, ρs is the c-axis superfluid density in units such that
the FGT sum rule would correspond to Nn − Ns = ρs with
ρs related to the denominator of the second term in Eq. (1).
Here, we will take a coherent tunneling model for the matrix
element tk,p.5–7 Consideration of the geometrical arrangement
of the CuO2 atoms in a particular plane and its directly adjacent
neighbor leads to a model for tk,p which takes on the form48–52

(see Fig. 1)

tk,p = t⊥δk,p[cos(kxa) − cos(kya)]2, (3)

where t⊥ is a constant, the Kronecker delta conserves mo-
mentum parallel to the plane, and a is the in-plane lattice
constant. The form (3) means that the probability of c-axis
tunneling of the quasiparticles of the CuO2 plane around the
nodal direction is greatly reduced and this leads to a much
less metallic response in c than in the a-b direction. The
conductivity sum of Eq. (1) now reads as

Nn − Ns

ρs

= 1

2
+ 1

2
H, (4)

FIG. 1. (Color online) The transport between CuO2 planes is
assumed to proceed through a coherent matrix element tk,p =
t⊥δk,p[cos(kxa) − cos(kya)]2.

with

H =
∑

ωn

∑
k η4(k)

[
G2

s (k,iωn) − G2
n(k,iωn)

]
∑

ωn

∑
k η4(k)|F (k,iωn)|2 . (5)

Here,

η(k) = [cos(kxa) − cos(kya)]/2. (6)

Central to this work is Eq. (5) in the pseudogap model of Yang
et al.,21 to which we now turn.

III. PHENOMENOLOGICAL YRZ MODEL

Yang et al.21 give an ansatz for the coherent part of the
Green’s function in the pseudogap state which applies to the
underdoped cuprates for doping x below a critical value xc

which represents the quantum critical point (QCP) below
which the pseudogap forms and the large Fermi surface of
Fermi-liquid theory is reconstructed into Luttinger pockets.
Their ansatz which finds some justification in the theory
of correlated doped spin liquids of an array of two-legged
Hubbard ladders21 is

Gs(k,ω,x) =
∑
α=±

gt (x)Wα
k

ω − Eα
k − �2

sc(k,x)
/(

ω + Eα
k

) , (7)

where E±
k = (ξk − ξ 0

k )/2 ± Ek, Ek =
√

ξ̃ 2
k + �2

pg(k,x),
ξ̃k = (ξk + ξ 0

k )/2, and the weights W±
k = (1 + ξ̃k/Ek)/2.

The band energies on which the model is based are those
for Ca2CuO2Cl2 and we will not change these here. They
can be written as ξk = −2t(x)[cos(kxa) + cos(kya)] −
4t ′(x) cos(kxa) cos(kya) − 2t ′′(x)[cos(2kxa) + cos(2kxa)] −
μ, where μ is the chemical potential and the renormalized band
parameters are t(x) = gt (x)t0 + 3gs(x)Jχ/8, t ′(x) = gt (x)t ′0,
t ′′(x) = gt (x)t ′′0 , with t0 the unrenormalized first-neighbor
hopping parameter, J/t0 = 1

3 , χ = 0.338, t ′0/t0 = −0.3, and
t ′′0 /t0 = 0.2. The energy ξ 0

k is obtained from ξk setting all
higher-order hopping t ′0 = t ′′0 = 0. Results can be presented
in units of t0 which is sometimes taken to be 170 meV for
illustrative purposes. The Gutzwiller factors are

gt (x) = 2x

1 + x
and gs(x) = 4

(1 + x)2
. (8)

The x dependence of this renormalized band is such that they
narrow on approach to the Mott insulating state. Note that
the Gutzwiller factor gt (x) also appears directly in G(k,ω,x)
[Eq. (7)], and this reduces the weight of the coherent part of
the electron spectral density as correlations increase and the
system becomes more incoherent. Both superconducting and
pseudogap have d-wave symmetry with

�sc(k,x) = �0
sc(x)[cos(kxa) − cos(kya)]/2 (9a)

and

�pg(k,x) = �0
pg(x)[cos(kxa) − cos(kya)]/2. (9b)

The gap amplitudes as a function of doping are �0
sc/t0 =

0.14[1 − 82.6(x − 0.2)2] and �0
pg/t0 = 0.6[1 − x/0.2]. Here,

we take the superconducting dome for �0
sc(x) to reflect the

experimental observations for the variation of the supercon-
ducting critical temperature Tc as a function of x with two
modifications. This is shown in Fig. 2(a). Optimum doping
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FIG. 2. (Color online) (a) The superconducting gap amplitude
�0

sc [solid (red) line] and the pseudogap amplitude �0
pg [dashed

(black) line] in units of t0 as a function of doping x. (b) Large Fermi
surface of Fermi-liquid theory for x = 0.2 [dashed-dotted (black)
line] and reconstructed Fermi surface for x = 0.12 [solid and dashed
(red) lines].

is taken at x = 0.2 rather than the experimental value of
0.16. This is the model used by YRZ and we will not
modify it here. The second modification is that, guided by
experimental findings, we will take for definiteness the gap
to Tc dimensionless ratio 2�(0)/(kBTc) = 6 rather than the
canonical BCS value of 4.3 for d-wave symmetry. From
Eq. (7), we can determine in the usual way the regular A(k,ω)
and anomalous B(k,ω) spectral functions

A(k,ω) =
∑
α=±

gt (x)Wα
k

{
(uα)2δ

[
ω − Eα

s (k)
]

+ (vα)2δ
[
ω + Eα

s (k)
]}

(10)

and

B(k,ω) =
∑
α=±

gt (x)Wα
k

�sc(k,x)

2Eα
s (k)

{
δ
[
ω − Eα

s (k)
]

− δ
[
ω + Eα

s (k)
]}

, (11)

with

(uα)2 = 1

2

[
1 + Eα

k

Eα
s (k)

]
(12a)

and

(vα)2 = 1

2

[
1 − Eα

k

Eα
s (k)

]
, (12b)

where

Eα
s (k) =

√(
Eα

k

)2 + �2
sc(k,x). (13)

This specifies completely our model based on the work of
Yang et al.21 In Fig. 2(b), we present our normal-state results
�sc(k,x) = 0 for the reconstructed Fermi surface brought
about by the opening of the pseudogap in the case x = 0.12
[solid and dashed (red) lines] and compare to the case of
optimum doping x = 0.2 [dashed-dotted (black) curve] which
also coincides with the QCP at which the pseudogap first opens
in Ref. 21. Of course, in experiments the QCP for the growth
of the pseudogap [dashed (black) line] is not necessarily
the same point as optimum doping, that is, the maximum
in the superconducting gap [solid (red) curve]. In the phase
diagram of Hüfner et al.,16 which is based on considerations
of many different data sets involving different techniques such
as scanning tunneling microscopy (STM), angular-resolved
photoemission spectroscopy (ARPES), optical conductivity,
and Raman, the QCP is found to reside at the overdoped end
of the phase diagram of Fig. 2(a). For simplicity, we retain here
the phase diagram of YRZ as shown in Fig. 2(a). Returning to
Fig. 2(b), the dashed-dotted (black) line represents the large
Fermi surface of Fermi-liquid theory for x = 0.2, while the
shaded (gray) region depicts the Luttinger hole pocket with
Fermi contours on both sides of the pocket but that facing the
antiferromagnetic BZ boundary [dotted (black) line] carries a
weak weighting factor as compared with the other side, which
gives a Fermi arc. Beyond this arc, there are no zero-energy
excitations and the rest of the contour is gaped and represents
a contour of nearest approach for a given direction defined by
the angle θ with its origin at M(π,π ). As x is decreased further,
the Luttinger contour shrinks and there are fewer and fewer
states with zero excitation energy and this implies a reduction
in metallicity as we approach half filling, i.e., x = 0.

IV. NUMERICAL EVALUATION

Central to our work is the calculation of the quantity H

[Eq. (5)]. We can write the Green’s functions G(k,iωn) and
F (k,iωn) in terms of their spectral representations A(k,ν) and
B(k,ν) as

G(k,iωn) =
∫ ∞

−∞
dν

A(k,ν)

iωn − ν
(14)

with a similar form for the anomalous Gor’kov function. We
obtain

T
∑
ωn

G(k,iωn)G(k′,iωn)

=
∫ ∞

−∞

dν dν ′

ν − ν ′ [f (ν) − f (ν ′)]A(k,ν)A(k′,ν ′) (15)

and want the case k′ → k. Here, f (ν) is the Fermi-Dirac
distribution function at temperature T . For zero temperature,
f (ν) = 1 for ν < 0 and zero for ν > 0 and can be written in
terms of the Heaviside θ function. To illustrate the algebraic
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steps involved in writing H in terms of the spectral densities
rather than Green’s functions themselves, we consider first the

normal pseudogap state, i.e. the case �sc = 0. Its contribution
to H involves

T

∫
d2k

(2π )2
η4(k)

∑
ωn

[
G0

n(k,iωn)
]2 =

∫
d2k

(2π )2
η4(k)

{
gt (x)2

[∑
α=±

(
Wα

k

)2 ∂f
(
Eα

k

)
∂Eα

k
+ 2W+

k W−
k

f (E+
k ) − f (E−

k )

E+
k − E−

k

]}
. (16)

The first term on the right-hand side of Eq. (16) involves intraband transitions and the second is interband. We have taken the limit
k′ → k and recognized that the denominator in the interband case can vanish at most on a set of points of measure zero. At zero
temperature, ∂f (Eα

k )/∂Eα
k goes into a Dirac δ distribution, namely, −δ(Eα

k ). An equivalent term involving the superconducting
state energies Eα

s (k) instead of the normal pseudogap energy Eα
k would lead to zero contribution for the sum over the Brillouin

zone momentum
∫

d2k/(2π )2. But, this is not the case for the normal state since the energies Eα
k vanish on the Luttinger pockets

[see Fig. 2(b)]. Our final formula for H (x) is

H (x) = 1

N

∫
d2k

(2π )2
η4(k)

{ ∑
α,α′=±

Wα
k Wα′

k

(
Eα

k Eα′
k

Eα
s (k)Eα′

s (k)
− 1

)
1

Eα
s (k) + Eα′

s (k)

− 2

[
−

∑
α=±

(
Wα

k

)2
δ
(
Eα

k

) + 2W+
k W−

k
θ (E−

k ) − θ (E+
k )

E+
k − E−

k

] }
, (17a)

with

N =
∫

d2k

(2π )2
η4(k)

∑
α,α′=±

Wα
k Wα′

k
�2

sc(k,x)

Eα
s (k)Eα′

s (k)
[
Eα

s (k) + Eα′
s (k)

] , (17b)

which is to be evaluated numerically as an integral over the
CuO2 Brillouin zone.

The numerical procedure to evaluate Eq. (17) involves the
method of triangles, the two-dimensional (2D) version of the
method of tetrahedrons,53 using 21 504 triangles in the first
BZ. Particular care is required for the three integrals involving
Dirac’s δ distribution because of the additional factor η4(k),
which is strongly peaked around the X, Y , and commensurate
points of the BZ [see Fig. 2(b)]. It is common practice in
numerical work to replace the δ distribution by a Gaussian

δ(x − x ′) = lim
ε→0

1

ε
√

π
exp

[
− (x − x ′)2

ε2

]
(18)

of width ε. If we only had to evaluate an integral of the
type

∫
d2k/(2π )2 δ(Eα

k ), we would then look for the number
of triangles above which the value of the integral barely
changes for a given width ε of the Gaussian and for the
range ε ∈ [εmin,εmax] within which the value of the integral
remains stable under the variation of ε. An integral of the
type

∫
d2k/(2π )2 η4(k)δ(Eα

k ), on the other hand, can not
be expected to be stable against variation of ε because the
left-hand tails of the Gaussian multiplied by η4(k) will now
have more weight than their right-hand counterparts. In our
numerical evaluation of Eq. (17), we treated the range ε ∈
[εmin,εmax] for which the integral

∫
d2k/(2π )2 δ(Eα

k ) remains
stable against variation of ε to be “generic” to a certain δ(Eα

k )
and evaluated Eq. (17) separately for εmin and εmax treating the
corresponding values of H (x) as lower and upper boundaries
to the “real” value of H (x). This resulted in the error bars
attached to the numerical data points [solid (black) squares]
in Fig. 3. (In some cases, the error bars are of the size of the
symbol.)

As the pseudogap opens for values of the hole doping just
below the QCP at x = xc, the Fermi surface reconstructs
and both electron and hole Luttinger pockets appear. As
x is decreased below approximately x � 0.17 in our phase
diagram, only hole pockets remain. As x is reduced further,
the area of the remaining hole pockets shrinks. The super-
conducting gap also decreases in our model phase diagram
[see Fig. 2(a)] in which we have taken it to be proportional to
the critical-temperature dome. As the end of the dome closest
to the antiferromagnetic Mott insulating state is approached,

FIG. 3. (Color online) The doping dependence of H (x) given in
Eq. (4). H (x) = 0 gives an optical sum of 1

2 , while H (x) = 1 gives
the conventional value of one. The solid squares are the result of
complete calculations in the YRZ model, while the solid (red) curve
gives the result based on the simplification to an arc model.
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we expect that fluctuations will become important54,55 and
these are not part of the YRZ model. Therefore, in our
numerics we limited ourselves to the range 0.12 � x � 0.16.
Our results are shown in Fig. 3 [solid (black) squares] where
we see that H (x) equals approximately 0.5 in this range
giving (Ns − Nn)/ρs � 0.75 rather than the value of one of
Fermi-liquid theory. While the FGT sum rule is reduced in
the YRZ model, it remains above the value of 0.5 found in
experiment.4

Considerable insight into the variation of the FGT sum rule
with nonzero pseudogap amplitude is obtained by studying in
detail a simple limit of the YRZ model which results when
the pseudogap is taken to open on the Fermi surface rather
than away from it on a surface between Fermi surface and
the antiferromagnetic BZ as it does in YRZ. This simplified
“arc” model has the great virtue that we can obtain simple
analytic results as we will see next, and this greatly helps in
understanding the physics.

V. FERMI ARC MODEL

A great simplification of the YRZ model arises when
we replace the antiferromagnetic BZ energy ξ 0

k in Eq. (7)
by the band dispersion energy ξk in which case E±

k re-
duces to ±Ek ≡ ±

√
ξ 2

k + �2
pg(k,x) and Eα

s (k) ≡ Es(k) =√
ξ 2

k + �2
sc(k,x) + �2

pg(k,x) independent of α. Applying
these simplifications to Eq. (17) and accounting for the fact
that in this case ∑

α,α′=±
Wα

k Wα′
k = 1 (19)

and

(W+
k )2 + (W−

k )2 − 2W+
k W−

k = ξ 2
k

E2(k)
, (20)

we get for the first term in the numerator of Eq. (17) for H (x)

−
∫

d2k

(2π )2
η4(k)

�2
sc(k,x) + �2

pg(k,x)

2E3
s (k)

, (21)

and for the denominator∫
d2k

(2π )2
η4(k)

�2
sc(k,x)

2E3
s (k)

. (22)

The second term in the numerator of Eq. (17) works out to be∫
d2k

(2π )2
η4(k)

[ ∑
α=±

(
Wα

k

)2
(

− 2
∂f (Ek)

∂Ek

)

+ 4W+
k W−

k
1 − 2f (Ek)

2Ek

]
. (23)

Next, we take the continuum limit for the en-
ergy bands in which the approximation

∫
d2k/(2π )2 =

N (0)
∫ ∞
−∞ dξ

∫ (2π)
0 dθ/(2π ) and the integral over energy ξ can

be done. Here, N (0) is the electronic band density of states
assumed constant throughout the infinite band. As part of this
same model, the tunneling factor η(k) = cos(2θ ) and �sc(k,x)
and �pg(k,x) become �0

sc(x) cos(2θ ) and �0
pg(x) cos(2θ ),

respectively. This simplified band model is illustrated in Fig. 4.
It shows a circular Fermi surface with Fermi arc (on which

FIG. 4. (Color online) Arc model for Luttinger pockets [shaded
(gray) region]. The two sides of the shaded region are Fermi surfaces
and the gray line beyond is a contour of closest approach which is
gaped. The Fermi contour in the arc model is the solid (red) line with
θ ∈ [π/4,θc] and the dashed-dotted (blue) is the extension but with a
gap.

there are zero-energy excitations) restricted to the region
θ ∈ [θc,π/2 − θc] and the remainder of their circle is gaped
in the regions θ ∈ [0,θc) and θ ∈ (π/2 − θ,π/2]. We will use
the fact that

∫ ∞
−∞ dξ�2/(�2 + ξ 2)(3/2) = 2 for any value of �.

Applying this rule to Eqs. (21) and (22) gives explicitly

−
∫ π/4

0
dθ cos4(2θ ) (24)

and∫ π/4

θc

dθ cos4(2θ ) +
[
�0

sc(x)
]2[

�0
sc(x)

]2 + [
�0

pg(x)
]2

∫ θc

0
dθ cos4(2θ ),

(25)

where we left out common factors which will drop out of the
ratios in Eq. (17) for H (x). The term (23) needs to be treated
with special care as its value depends critically on the value
of θ , i.e., whether it is within the interval [θc,π/2 − θc] about
the nodal direction where the Fermi surface exists, or on the
remaining part of the Fermi circle where the contour is gaped
out by the pseudogap. We get∫ θc

0
dθ cos4(2θ ) + 2

∫ π/4

θc

dθ cos(2θ ), (26)

with the first term coming from the second term in Eq. (23) and
the second term from the Dirac δ distribution −∂f (E)/∂E =
δ(E) as T → 0. This leads to our final approximate result

H (θc) =
∫ π/4
θc

dθ cos4(2θ )∫ π/4
θc

dθ cos4(2θ ) + 1
1+[�0

pg (x)/�0
sc(x)]2

∫ θc

0 dθ cos4(2θ )
.

(27)

For no pseudogap, θc → 0 and we get one for H (θc) in
Eq. (27) and so recover the conventional sum rule of one. For
a large pseudogap, θc → π/4 (very small Luttinger pockets)
the numerator of Eq. (27) goes to zero and the denominator
remains finite in the range where �0

sc(x) is finite and so we
get H (x) = 0 and the sum rule is now equal to 0.5. In general,
θc remains finite within the superconducting dome and, thus,
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FIG. 5. (Color online) The sum rule of Eq. (4) with S(θc) ≡
(Nn − Ns)/ρs as a function of the arc cutoff θc (see Fig. 4) for
two assumptions in the treatment of the transverse tunneling matrix
element. The dashed (blue) and dashed-double dotted (green) lines
are for a cosine to the fourth power as in Eq. (3) in the continuum
limit and the solid (black) and dashed-dotted (red) lines, which are
presented only for comparison, are for a cosine to the sixth power. The
solid (black) and dashed (blue) curves are for �0

pg/�
0
sc = 1, while

the dashed-dotted (red) and dashed-double dotted (green) lines are
for a case when this ratio is equal to two.

the sum rule will be larger than 0.5 but less than one in line
with our full numerical calculations. The arc model, however,
allows us to make estimates of the magnitude of the optical sum
rule not tied directly to the parameters that were used in the
original paper by Yang et al.21 A reasonable set of parameters
could be an arc of θc = 30◦ and a pseudogap twice the value
of the superconducting gap. In this case, H (θc) = 0.055 and
the optical sum of the system becomes according to Eq. (26)
approximately 0.53, very nearly 0.5. It is clear that with
reasonable parameters, not constrained to the set used by YRZ,
one can obtain a sum rule near the observed value reported by
Basov et al.4 On the other hand, if we take parameters for the
arc model through a fit to the work of YRZ as we did in the solid
(red) curve in our Fig. 3, we get a higher value of the sum rule.
This implies that changes in the parameter set used in Ref. 21
are required to get agreement with present experiments. In
making such comparisons, experimental error, which increases
as the conductivity decreases in magnitude, should also be kept
in mind. We make a final point. The form of the tunneling
matrix element (3) also influences the quantitative values
of the c-axis optical sum as can be seen in Fig. 5. In this
plot, we give results for the sum rule S(θc) ≡ (Nn − Ns)/ρs

of Eq. (4) as a function of the angular cutoff θc of the arc
model (see Fig. 4). No constraint has been imposed on the
size of θc for a given value of the pseudogap amplitude �0

pg .
The solid (black) and dashed-dotted (red) curves apply to
the case when the tunneling matrix element squared has a

cos6(2θ ) dependence rather than the fourth power [dashed
(blue) and dashed-double dotted (green) curves]. Two values of
the pseudogap to superconducting gap amplitude �0

pg/�
0
sc are

shown with the solid (black) and dashed-dotted (red) curves for
�0

pg/�
0
sc = 1 and the dashed (blue) and dashed-double dotted

(green) curves for a ratio of two. It is clear that the numerical
value for S(θc) does depend on the form of the transverse
transfer matrix element and is smaller for the higher power
of the cosine. The qualitative dependence of the sum rule,
however, is not strongly modified.

VI. SUMMARY AND CONCLUSION

In underdoped cuprates, in the pseudogap state, the trans-
verse c-axis optical conductivity perpendicular to the CuO2

planes does not obey the usual FGT sum rule. Rather, the
ratio of the missing area under the real part of the optical
conductivity between normal and superconducting phases is
observed to be closer to half of the c-axis superfluid density
than to the more conventional value of one. Here, we present
a numerical evaluation of this sum rule within the recent
pseudogap model of YRZ who provide an ansatz for the
system Green’s function as well as for its Gor’kov anomalous
counterpart, which is phenomenological, although grounded in
the ideas of the resonating valence bond spin liquid. Without
making any adjustments to the set of parameters set out in
Ref. 21 as an illustration, and based on considerations of the
bands in Ca2CuO2Cl2, our numerical evaluation gives a sum
rule of order 0.75, which falls between the measured value
of 0.5 and the conventional value of one for the FGT sum
rule. The model also predicts a variation of the sum rule with
doping.

We show that simple analytic formulas can be obtained in a
limit of the YRZ model, which reduces to the well-known
Fermi arc model. In this model, there is a Fermi surface
centered on the antinodal direction but its extent is limited
to an arc beyond which there is a gap on the remaining contour
of Fermi-liquid theory. The formula so obtained is very simple
and allows one to make estimates of the FGT sum rule for
parameters characterizing the pseudogap which are not tied to
those in the original formulation of YRZ. The formula involves
only the tunneling matrix element between planes, the ratio
between superconducting and pseudogap amplitude, and the
angular length of the Fermi surface arc. It is clear that a sum
rule between �0.5 and one is easily obtained for a range of
reasonable values for the parameters involved and that a FGT
sum greater than one half but significantly less than one is
generic to the YRZ model.
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