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Coherent Cooper-pair pumping by magnetic flux control
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We introduce and discuss a scheme for Cooper-pair pumping. The scheme relies on the coherent transfer of
a superposition of charge states across a superconducting island and is realized by adiabatic manipulation of
magnetic fluxes. Differently from previous implementations, it does not require any modulation of electrostatic
potentials. We find a peculiar dependence of the pumped charge on the superconducting phase bias across the
pump and that an arbitrarily large amount of charge can be pumped in a single cycle when the phase bias is π .
We explain these features and their relation to the adiabatic theorem.
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I. INTRODUCTION

A Cooper-pair pump1 is a superconducting device that
can be used to transport Cooper pairs by manipulating
some of its parameters in a periodic fashion. Cooper-pair
pumps have recently attracted considerable theoretical1–16 and
experimental17–22 attention.

Part of this attention stems from the geometric properties
of the parametric cycle used to perform pumping. These
properties, in turn, leave a distinctive fingerprint in the pumped
charge. The link between geometric phases and pumped charge
has been established in the adiabatic limit, where an explicit
relation connects the pumped charge to the Berry phase,23,24

as first shown in Ref. 3 and experimentally demonstrated in
Ref. 20. In addition, the breakdown of adiabatic behavior
due to Landau-Zener transitions can be detected as a de-
crease in the pumped charge.22 This offers the opportunity
to develop Landau-Zener-Stückelberg interferometry25 based
on geometric phases.13 Finally, it has been proposed to
exploit Cooper-pair pumps for the observation of non-Abelian
geometric phases.11,12

Another reason to study Cooper-pair pumps is that they are
convenient solid-state implementations of a driven quantum
two-level system. In the presence of a dissipative environment,
the pumped charge is determined by the quasistationary state
reached by the system and thus is a sensitive probe of
decoherence effects. This explains why a Cooper-pair pump
was chosen as a “case in point” in several theoretical works
aimed at studying the role of dissipation in driven quantum
systems.14,26–28

Different types of Cooper-pair pumps have been proposed
and realized.17,18,21 All these devices comprise the same
building blocks, namely, superconducting islands connected
to each other and to superconducting leads by Josephson
junctions. They are intended to be operated in a regime
where the charging energy of the islands is much larger than
the Josephson energies of the couplings. Thus, at the heart
of these implementations is the “classical” phenomenon of
Coulomb blockade. Pumping relies on periodic modulation
of electrostatic potentials, tuned by gate electrodes which act
as pistons in pulling Cooper pairs onto and off the islands.
The main contribution to pumping comes from incoherent

tunneling of Cooper pairs,5 with phase-coherent effects only
providing small corrections.

In this paper, we undertake a different approach to Cooper-
pair pumping that we call “flux pumping” (FP). FP is based
on the coherent transfer of a superposition of charge states
across a superconducting island by adiabatic manipulation of
magnetic fluxes. Contrary to previous proposals, FP does not
involve the modulation of electrostatic potentials. The pumped
charge resulting from FP is purely coherent. Its dependence
on the phase bias across the pump reveals intriguing features.
Among them, we find that for a particular choice of the system
parameters, an arbitrarily large charge can be pumped per
cycle. However, this is by no means inconsistent as at the
same time the adiabatic criterion requires the pumping cycle
to be correspondingly slow.

The device we consider for FP uses the same hardware
as the Cooper pair sluice introduced in Ref. 4. Yet pumping
is achieved in a completely different manner. First, the
gate voltage is kept constant throughout the pumping cycle.
Second, the opening times of the superconducting quantum
interference devices (SQUIDs) used as valves have a large
overlap. FP also differs from Cooper-pair shuttling,2,6 in at
least two respects. First, while the “shuttle” is only coupled to
one lead at a time (hence its name), in our case simultaneous
coupling of the central island to both leads is required to
achieve a nonvanishing pumped charge. Second, the operation
of the shuttle is nonadiabatic and requires accurate control
of the time dependence of the pulses. By contrast, FP is
insensitive to the speed at which the cycle is performed, as
long as the modulation is adiabatic. This is a consequence of
the geometric nature of the pumped charge.

Features such as the large overlap between the flux pulses,
the subordinate role played by Coulomb blockade, and the
overall coherence of the pumping process bring FP close
together with pumping in open systems,29–31 sometimes
referred to as “quantum pumping.” FP thus opens a possibility
to explore quantum pumping in superconducting systems.

FP can also be connected to some adiabatic transfer schemes
used in quantum information, in particular, the coherent
transfer by adiabatic passage (CTAP) protocol.32–35 In both
schemes, the transfer relies on time-dependent manipulation
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of tunneling rates rather than energy levels. However, only in
FP is the device connected to leads, thereby allowing for the
generation of a continuous pumped current. The presence of
superconducting leads and their phase bias introduce features
that have no equivalent in CTAP. A hallmark of CTAP is the
so-called counterintuitive pulse ordering: in order to transfer
information from left to right, the right tunnel junction is
operated first. In FP we do find a similar behavior when the
phase bias is close to π ; in general, however, current flows in
the same direction as the pulse sequence.

The outline of this paper is as follows. In Sec. II, we
introduce the Cooper-pair sluice and set up the theoretical
framework on which our calculations are based. In the core
Sec. III, we describe flux pumping. In Sec. IV, we characterize
the breakdown of adiabatic behavior by performing numerical
simulations with a master equation approach. Finally, in
Sec. V, we summarize our results and comment on the
feasibility of our proposal.

II. COOPER-PAIR SLUICE

A schematic drawing of the Cooper-pair sluice is shown in
Fig. 1(a). It is a fully tunable Cooper-pair transistor, consisting
of a small superconducting island connected to leads by
two SQUIDs. The SQUIDs are controlled independently by
adjusting the magnetic fluxes �l,�r threading their loops, so
that they can serve as Josephson junctions of tunable energy Jl ,
Jr . A gate electrode capacitively coupled to the island controls
its polarization charge in units of Cooper pairs ng = CgVg/2e,
where Cg is the cross capacitance between gate and island and
Vg is the gate voltage.

We assume that the superconducting electrodes to which
the sluice is connected are held at a fixed phase difference ϕ.
The simplest way to accomplish this is to embed the sluice
in a superconducting loop. Another possibility is to shunt the
sluice with a large Josephson junction of energy JS � Jl,Jr .
In this configuration, the Josephson junction can also serve as
a current threshold detector. This technique was first applied to
the readout of the “quantronium” circuit36 and then proposed
for7 and successfully applied to20 the sluice.

We use the sluice in the regime where the charging energy
EC = 4e2/2C� (C� is the total island capacitance) is large

FIG. 1. (Color online) Pumping with magnetic fluxes.
(a) Schematic circuit of a Cooper pair sluice. A superconducting
island (green) is coupled to superconducting leads by two SQUIDs,
acting as tunable Josephson junctions of energy Jl , Jr . A gate
capacitively coupled to the island controls its polarization charge
ng . The superconducting phase of the two leads is held at a fixed
difference ϕ. (b) Representative time modulation of Jl , Jr leading to
FP. The gate position is kept fixed throughout the modulation.

compared to Jl and Jr . We describe the dynamics in the
basis of eigenstates of charge on the island, and restrict
the Hilbert space to the states |0〉 and |1〉 with no and one
excess Cooper pair on the island, respectively. In this two-level
approximation, the Hamiltonian is given in matrix form by1

Ĥ =
(

EC( 1
2 + δng)2 J+ cos ϕ

2 + iJ− sin ϕ

2

J+ cos ϕ

2 − iJ− sin ϕ

2 EC( 1
2 − δng)2

)
, (1)

where J± = 1
2 (Jl ± Jr ), and δng = ng − 1

2 the offset between
the gate charge and the degeneracy point.

We now outline how to obtain the pumped charge in the
adiabatic limit. We use the same notation as in Ref. 27, to
which the reader is referred for a more detailed account. We
also set h̄ = 1 and 2e = 1.

A pumping cycle is described by a closed loop in the space
of a minimal set of parameters determining Ĥ . Under the
assumption that the parameters are changed slowly enough,
the system will approximately follow the instantaneous ground
state of Ĥ . This fact underlies the adiabatic theorem and is at
the basis of a perturbation expansion. The latter is formally
accomplished by introducing a local adiabatic parameter

α(t) = |〈ġ(t)|e(t)〉| /�(t), (2)

where |g(t)〉 and |e(t)〉 are, respectively, the instantaneous
ground and excited state of Ĥ (adiabatic states) and �(t) is
the instantaneous energy gap at time t . The adiabatic limit is
attained provided α(t) � 1 at all times.

We will find use for the following quantities:

E12 = 1

2

√
J 2

l + J 2
r + 2JlJr cos ϕ, (3a)

γ = arctan

(
Jr − Jl

Jr + Jl

tan
ϕ

2

)
, (3b)

η = δng√
δn2

g +
(

E12
EC

)2
. (3c)

In terms of the fixed {|0〉,|1〉} basis, the adiabatic states are
explicitly given by

|g〉 = 1√
2

(
√

1 − η |0〉 + e−iγ
√

1 + η |1〉), (4a)

|e〉 = 1√
2

(
√

1 + η |0〉 − e−iγ
√

1 − η |1〉). (4b)

In order to properly account for the pumped charge, it
is essential to consider the corrections to the instantaneous
ground state up to first order in α. The resulting density matrix
of the sluice, expressed in the adiabatic basis, is given by

ρgg = 1, (5a)

ρge = i∂tη − (1 − η2)∂tγ

4E12
. (5b)

After solving the dynamics, we can turn to the calculation
of the pumped charge. We introduce current operators Îk for
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the kth SQUID (k = l,r). In the {|0〉,|1〉} basis, one has

Îl = Jl

2i

(
0 −e−iϕ/2

eiϕ/2 0

)
, (6)

Îr = Jr

2i

(
0 eiϕ/2

−e−iϕ/2 0

)
. (7)

The expectation value of the current is given by Ik ≡
T r(ρ̂Îk) = Id,k + Ip,k, where we have singled out a dynamic
contribution Id,k = ρgg〈g|Îk|g〉 and a geometric contribution
Ip,k = 2Re(ρge〈e|Îk|g〉). While Id,k relates to the usual su-
percurrent flowing in the presence of a phase bias, Ip,k

encapsulates the effects of the parametric drive (note that ρge =
0 for time-independent parameters) and is thus identified with
the pumped current. The total charge transferred through
the kth SQUID in a period is given by Qtr,k = ∫ T

0 Ik(t)dt .
Once again it is possible to distinguish a dynamic charge
Qd,k = ∫ T

0 Id,k(t)dt and a geometric (pumped) charge Qp,k =∫ T

0 Ip,k(t)dt , so that Qtr,k = Qd,k + Qp,k . Adiabatic evolution
and charge conservation force all three types of charges to be
equal for the left and right SQUID. For this reason, we will
safely drop the subscript k in the following.

As first shown in Ref. 3, Qd and Qp are related to the
derivative with respect to ϕ of the dynamic phase d and the
geometric (Berry) phase B accumulated by the instantaneous
ground state along a pumping cycle:

Qd = ∂d

∂ϕ
, (8)

Qp = ∂B

∂ϕ
. (9)

Experimentally, Qd and Qp can be distinguished as they obey
different symmetries. In particular upon reversing the direction
of the pumping, Qd is not affected, while Qp duly changes its
sign. We shall henceforth assume that such a distinction can
be made and only be concerned with Qp.

III. FLUX PUMPING

The principle of FP is illustrated in Fig. 1(b), showing the
time evolution of the control parameters during a pumping
cycle. The charge offset δng , not shown, is set close to the
degeneracy point (that is, |δng| � 1) and kept fixed throughout
the cycle. At the initial time t = 0, the island is decoupled
from both leads, with Jl and Jr set to their minimum value
Jmin. In sector I (0 � t < T/3), the coupling to the left lead is
turned on by maximizing Jl . In sector II (T/3 � t < 2T/3),
the coupling is swapped from the left to the right lead, in
such a way that the sum Jl + Jr is kept constant. Finally, in
sector III (2T/3 � t < T ) Jr is turned down to Jmin, bringing
the system back to the initial state. We have chosen linear
ramps and a perfect coupling swap only for simplicity in deriv-
ing analytical expressions. As it goes with geometric pumping,
a moderate tweaking of the pulses will not disrupt the pumping
process as long as the solid angle spanned in the parameter
space (see Appendix B) stays approximately the same.

In the following, we will use the formalism of Sec. II to
understand the adiabatic dynamics generated by FP and the
corresponding pumped charge. We first discuss the case ϕ = 0,

as it allows for an intuitive explanation. For simplicity, we also
set Jmin = 0.

A. ϕ = 0 case

At t = 0, the island is in a definite charge state (0 if δng <

0, 1 if δng > 0) and the energy difference between charge
states is 2ECδng . As Jl increases so that Jl � ECδng , the
ground state evolves into a superposition of charge states. As
a result, charge flows from the left lead onto the island. The
charge transferred in this case is simply given by |〈1|g( T

3 )〉|2 −
|〈1|g(0)〉|2. In sector II, the swapping of the couplings does
not change the Hamiltonian (1). As a result, ρge = 0 and no
charge is transferred. Finally, in sector III, the same amount
of charge is released to the right lead as the system comes
back (up to a geometric phase) to the initial state. Some plots
of the instantaneous geometric currents Ip,l,Ip,r are shown in
Appendix A.

In this scheme, the fact that the dynamics is coherent
plays a crucial role. This marks a clear difference between
FP and previous pumping protocols. In the latter Cooper-pair
tunneling is made energetically favorable via modulation of
electrostatic potentials, so that the coherent-versus-incoherent
nature of the tunneling process has only a modest influence on
the pumped charge. By contrast, in FP there are no “pistons”
pulling the Cooper pairs around. As a result, one can show that
in the limit of incoherent Cooper-pair tunneling the pumped
charge vanishes.

The total pumped charge for the case ϕ = 0 can be inferred
from this heuristic argument, calculated by direct integration
of Ip,k (see Sec. II), or obtained by virtue of (9) (see
Appendix B). The result is

Qp[ϕ = 0] = −1

2
sgn(δng)

(
1 − 1√

1 + r2

)
, (10)

where we have introduced the ratio

r = Jmax

2ECδng

. (11)

In the limit r → ±∞ (corresponding to EC |δng| � Jmax), the
absolute value of Qp approaches a maximum of half a Cooper
pair. This result is approximately valid also for a finite Jmin, as
long as Jmin � ECδng .

The dependence of Qp on δng exhibits a sawtooth behavior,
as shown by the solid line in Fig. 2(a). At δng = 0, the pumped
charge changes sign discontinuously. However, when δng → 0
also the minimum energy gap �Emin ≡ mint∈[0,T ] �E(t) =
δngEC tends to zero. This implies that the adiabatic limit,
in which the present derivation is valid, is only attained
for infinitely slow evolution. We will return to this point in
Sec. IV.

B. General case

When ϕ �= 0, the same calculation leading to (10) shows
that the pumped charge in sectors I and III is the same as in the
case ϕ = 0. This is only to be expected: as long as the island
is only coupled to a single lead, the phase difference between
the leads cannot play any role. The situation is different for
sector II, where the coupling swap now takes place between
two leads at different phases. As a result, an adjustment of the
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FIG. 2. (Color online) Pumped charge in the adiabatic limit.
(a) Pumped charge Qp versus offset charge δng for different values
of the superconducting phase bias ϕ. (b) Qp versus ϕ for different
values of δng .

superconducting order parameter on the island is required.37

This causes an additional geometric current to flow across the
sluice, in a direction opposite to that of the pumping.

In Fig. 2(a) we plot Qp versus δng for different values of
ϕ. For values of ϕ in the range of 0 and π/2, Qp simply
decreases with respect to the case ϕ = 0. As ϕ is further
increased, however, a diverse trend emerges: Qp changes its
sign with respect to the unbiased case, except in the vicinity
of the degeneracy point. The magnitude of the counterflowing
Qp can well exceed a Cooper pair. Finally, at ϕ = π the sign
of the pumped charge is opposite to that of the unbiased case
for all values of δng . Furthermore, Qp diverges as 1/δng for
δng → 0.

The full dependence of Qp on ϕ is shown in Fig. 2(b)
for three selected values of δng . The reader may guess that
the integral of each curve in Fig. 2(a) vanishes. Indeed, using
(9) we obtain 〈Qp〉

ϕ
≡ 1

2π

∫ 2π

0 Qp(ϕ)dϕ = B(2π ) − B(0).
Even if in general B does not have to be single valued,7 in
the present case B(2π ) = B(0), so that 〈Qp〉

ϕ
= 0. This

implies that FP can only be observed in the presence of a
well-defined phase bias, for if ϕ randomly fluctuates in time,
then no net charge is transferred on average. This is a clear
signature of the coherent nature of the pumping process.
On the other hand, Qp exhibits some degree of robustness
against small phase fluctuations. In particular, for δng � 1,

Qp develops a plateau centered at ϕ = 0. This can be seen
in the increased flattening of the curves with smaller δng in
Fig. 2(b) (an analytical argument is provided in Appendix B).

We remark that these features are peculiar to FP. To
draw a comparison, let us recall that in “ordinary” Cooper-
pair pumping4,7 〈Qp〉

ϕ
= 1, the phase dependence of QP

only appears as first-order correction in the small parameter
Jmin/Jmax, and no significant dependence on the charge offset
δng is found as long as the gate modulation crosses the
degeneracy point.

C. Case ϕ = π

We now fix our attention on the case ϕ = π , for which
we can present analytical results. Upon direct integration of
the current operator, we obtain for the charge pumped in the
sector II

Q(II)
p [ϕ = π ] = sgn(δng)

r2

2
√

1 + r2
. (12)

This must be added to the contribution (10) from sectors I and
III to give the total pumped charge

Qp[ϕ = π ] = 1
2 sgn(δng)(

√
1 + r2 − 1). (13)

An alternative derivation of (13) involving the Berry phase is
shown in Appendix B. On comparing (10) and (13), we see
that the pumping direction for ϕ = π is always opposite to
that for ϕ = 0. From (13), it is apparent that Qp diverges for
ϕ = π and r → ∞ (or δng → 0). Notably, one finds that this
divergence is not removed even when relaxing the constraint
Jmin = 0.

As mentioned, the present results have been derived in the
adiabatic limit. So far, we have not investigated how tight a
requirement this imposes on the driving frequency. To do so,
we first notice that the adiabatic condition α � 1 is equivalent
to ρge � 1. Now for ϕ = π , |ρge| is maximum at t = T/2,
where it attains the value

max
0�t<T

|ρge| = 3r2

JmaxT
. (14)

Equation (14) implies that when approaching the degeneracy
point, the pumping period should be increased according to
T ∝ r2 in order to stay in the adiabatic limit. In other words,
the increase in Qp comes at the cost of an increasingly long
T . We discuss this point in more detail in Appendix C. One
can also check that the pumping current Ip does not diverge
at any time. In fact, Ip never exceeds Imax ≈ Jmax

4 ρge � Jmax,
that is, much less than the critical current of the SQUIDs.

IV. ADIABATIC BREAKDOWN AND DECOHERENCE

In Sec. III, we carried out our calculations assuming
adiabatic evolution during the pumping cycle. In this limit, the
pumped charge is uniquely determined by the loop described
in the parameter space of Ĥ . As such, it does not depend on
the pumping frequency. We also pointed out, however, that
the validity of the adiabatic theorem requires the condition
|ρge| � 1 to hold. We then warned the reader that in the limit
δng → 0, due to the vanishing of the instantaneous energy gap
at t = 0 (and at t = T/2 when ϕ = π ), this condition requires
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the pumping cycle to be infinitely slow. As real measurements
are always performed at finite frequencies, this implies that
none of the traces of Fig. 2(a) can be exactly reproduced in an
experiment in the vicinity of δng = 0.

In this section, we investigate the behavior of the pumped
charge beyond the adiabatic limit. As soon as we allow nona-
diabatic transitions to take place, the dynamics of the system
becomes highly nontrivial. As argued elsewhere,13,15,26–28 the
pumped charge is a sensitive probe of this dynamics. Indeed,
it was exploited in Ref. 22 to characterize Landau-Zener
transitions in the Cooper-pair sluice. Furthermore, the final
state of the pump at the end of the pumping cycle is in general
different from its initial state. As measurements are typically
averaged over very many cycles, the quantity of experimental
interest becomes the stationary pumped charge Qst

p . The latter
is determined by an interplay between the nonadiabatic drive
and decoherence effects due to the electromagnetic environ-
ment in which the pump is embedded. A full characterization
of such effects is beyond the scope of this work. Still, the
inclusion of decoherence in the model is essential in order to
reach a quasistationary state.

We present numerical results obtained using the master
equation approach developed in Refs. 26 and 27, which
consistently accounts for the combined action of a quasia-
diabatic drive and decoherence on an open quantum two-
level system. This formalism is not intended to address the
fully nonadiabatic case, yet, it can be conveniently used to
investigate the parameter region where the adiabatic condition
ceases to hold. Decoherence (dephasing and relaxation) is
modeled by attaching a fictitious environment to the pump,
in the form of a resistor capacitively coupled to the central
island. This mimics the effect of charge noise, which is known
to be the first cause of decoherence in charge-based devices.38

In Refs. 26 and 27 it was found that a zero-temperature en-
vironment tends to stablize ground-state pumping, effectively
extending the region of adiabaticity. Here we also consider a
zero-temperature enviroment. By tuning the coupling parame-
ter to a small value, we make sure that nonadiabatic transitions
still play the major role. In this case, decoherence only acts
as a weak source of dissipation: it damps the oscillations
in the pumped charge and slowly brings the system into a
quasistationary state.

In Fig. 3 we plot Qst
p versus δng for the emblematic

cases ϕ = 0 (a) and ϕ = π (b). We choose the realistic
device parameters EC = 1 K,Jmax = 0.1EC,Jmin = 0.03Jmax,
use smooth pulses instead of those in Fig. 1(b), and explore
different pumping frequencies (solid lines). The adiabatic-
limit predictions for the two cases [Eqs. (10) and (13),
respectively] are also plotted for comparison (dashed lines);
notice, however, that they were derived in the limit Jmin → 0.

In general, nonadiabatic transitions result in a decrease of
Qp. This is qualitatively accounted for by the fact that the
adiabatic excited state of the sluice carries an opposite Qp

with respect to the ground state. For the case ϕ = 0 [Fig. 3(a)],
this results in a smearing of the adiabatic sawtooth. Note
that since we have considered the realistic case Jmin �= 0,
in the limit δng → 0 one still has �Emin = Jmin, so that the
residual coupling partly holds back nonadiabatic transitions.
Analogous considerations can be made for the case ϕ = π

[Fig. 3(b)]. As δng is reduced, however, the nonadiabatic
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FIG. 3. (Color online) Breakdown of adiabatic behavior. Qp

versus δng for ϕ = 0 (a) and ϕ = π (b), for different pumping
frequencies f (solid lines). The results are obtained by numerical
integration of the master equation of Ref. 26. The adiabatic-limit
predictions (10) and (13) are also plotted for comparison (dashed
lines). Smooth pulses are used in place of those of Fig. 1(b) for
improved adiabaticity. Relevant parameter values for the pump
are EC = 1 K,Jmax = 0.1EC,Jmin = 0.03Jmax. For the fictitious en-
vironment (see Ref. 27 for details) g = 0.02, R = 300 k�, T = 0,
T0 = 0.4 K.

behavior is no longer mitigated by the presence of a finite
Jmin [this relates to the fact that E12 vanishes for Jl = Jr

when ϕ = π ; see Eq. (3a)]. The effect is thus more dramatic,
with higher frequencies hitting the nonadibatic onset first. We
terminate each data series as soon as ρge exceeds the arbitrary
threshold 0.3; further points would fall outside the range of
validity of our master equation.

These results indicate that nonadiabatic effects must be
taken into serious consideration in any practical implementa-
tion of FP. A relevant figure of merit for optimization is the
average geometric current 〈Ip〉 = f Qp (f = 1/T ), as this is
the signal to be detected in a realistic readout scheme. An
example of such optimization is presented in Appendix C for
the case ϕ = π .

V. CONCLUSIONS

We have presented a scheme for Cooper-pair pumping,
flux pumping (FP). Based on magnetic-flux control, FP uses
neither a bias voltage nor a modulation of gate voltages. FP
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is realized by coherent transfer of a superposition of charge
states across a superconducting island. The resulting pumped
charge depends on the gate position and on the phase difference
across the pump in a distinctive fashion. As no incoherent
process can mimic these features, their witnessing would be
an unambiguous demonstration of purely coherent Cooper-pair
pumping.

The implementation of FP looks feasible, especially in the
light of recent results obtained with the Cooper-pair sluice.20,22

An apparent matter of concern is the fact that the supercurrent
flowing through the device may well exceed the pumped
current. For instance, let us take the device parameters of Fig. 3
and the pumping cycle of Fig. 1(a). The mean dynamic current
at ϕ = π/2 can be approximated by 〈Id〉 ≈ 2e

24h̄ Jmax ≈ 350 pA,
independent of frequency. Now at a typical f = 120 MHz,
Qp = e corresponds to 〈Ip〉 ≈ 20 pA, so that the pumped
current accounts for less than 10% of the signal. This is not an
issue, however, as the supercurrent term is even with respect
to time-reversal symmetry, while the pumped current is odd.
As a result, 〈Ip〉 can be determined by simply subtracting the
measured currents when pumping in opposite directions (as
done in Ref. 20).

Still, detecting such a small current circulating in a loop may
challenge customary techniques. In the search for signatures
of FP, an important role is likely to be played by its distinctive
symmetries. Besides time reversal, 〈Ip〉 is also an odd function
of the gate position with respect to degeneracy. Finally, it
should not depend on the direction of the circulating currents in
the SQUIDs. Altogether, these symmetries may be used to rule
out the contribution of undesired rectification effects, possibly
originating from spurious inductive or capacitive couplings.

ACKNOWLEDGMENTS

The authors are grateful to T. Aref, L. Arrachea, F. Giazotto,
J. Pekola, A. Shnirman, and P. Solinas for valuable discussions.
This work was supported by the European Community FP7
under Grant No. 238345 “GEOMDISS.’ S.G. acknowledges
financial support from the Finnish National Graduate School
in Nanoscience.

APPENDIX A: INSTANTANEOUS GEOMETRIC
CURRENTS

In Fig. 4 we plot the instantaneous geometric currents Ip,l

and Ip,r for the cases ϕ = 0 (a), π/2 (b), and π (c). The
current profiles in the first and third sector are the same for
all three plots [notice the change of scale in panel (c)]. By
contrast, the currents in sector II strongly depend on ϕ. A
counterflowing current, absent for ϕ = 0 [Fig. 4(a)] develops
for finite ϕ [Fig. 4(b)] and largely exceeds the forward current
in magnitude as ϕ approaches π [Fig. 4(c)]. The discontinuities
at sector boundaries are due to the cusps in the pulses of
Fig. 1(b) and disappear as soon as the latter are replaced by
smooth pulses.

APPENDIX B: FLUX PUMPING AND BERRY PHASE

The charge pumped by a superconducting pump in the
adiabatic limit is linked to the Berry phase B accumulated by
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FIG. 4. (Color online) Instantaneous geometric currents. Ip,l

(solid line) and Ip,r (dashed line) versus time for δng = −0.02 and
ϕ = 0 (a), π/2 (b), and π (c).

the instantaneous ground state along the pumping cycle,3 as
prescribed by (9). For a two-level system parametrically driven
in closed loop, B is proportional to the solid angle spanned by
the Bloch vector, which performs an adiabatic rotation on the
Bloch sphere. The path drawn by the Bloch vector is shown in
Fig. 5(a) for the pumping cycle of Fig. 1(b) and a few selected
values of ϕ. The resulting B is plotted versus ϕ and δng in
Fig. 5(b). According to (9), the pumped charge Qp is given by
the local slope of the surface plot along the ϕ axis.

Using (3), (4), and the definition,23 we find

B ≡ i

∫ T

0
dt 〈g|ġ〉 = 1

2

∫ T

0
dt (1 + η) γ̇ . (B1)

For the given pumping cycle, γ (t) = −ϕ/2 in sector I and
γ (t) = ϕ/2 in sector III. The time derivative of γ vanishes in
these regions. The sudden change of γ from ϕ/2 to −ϕ/2 at
times 0, T , . . . yields a δ function in the time derivative, but
at that time 1 + η = 0, so that the integrand in (B1) vanishes
as well. As a result, the only contribution to B comes from
sector II. The fact that sectors I and III do not contribute to B

is a consequence of our choice of adiabatic basis [Eqs. (4)],
and is not in contrast with the fact that there is a charge flow in
sectors I and III. Indeed, B is only defined for closed loops.
It is possible to give a gauge-invariant generalization of the
Berry phase for open loops,39 but we do not need it here.

We will now explicitly calculate B and Qp in two
important cases.

1. Case ϕ = 0

For definiteness, we assume δng < 0. To calculate Qp for
ϕ = 0, it is sufficient to expand B to first order in ϕ. Up to this
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(a)

(b)

FIG. 5. (Color online) Pumping cycle and Berry phase. (a) Plots
of the path drawn by the ground state of the sluice on the Bloch
sphere along a pumping cycle, for ϕ = α (blue), ϕ = π/2 (red), and
ϕ = π − α (green), with α � 1. The Berry phase is proportional to
the solid angle spanned by the paths. (b) Berry phase B versus ϕ

and δng . According to (9), the pumped charge Qp is proportional to
the slope of the surface plot along the ϕ axis.

order, η is time independent in sector II, so that B ≈ 1
2 (1 +

η)[γ (2T/3) − γ (T/3)] = 1
2 (1 + η)ϕ. The pumped charge is

thus

Qp[ϕ = 0] = 1
2 (1 − η), (B2)

as we found in (10).
It is worth noting that near the degeneracy point δng � 1,

the validity of (B2) extends to all phases ϕ �= π . In fact, for
sufficiently small δng , η ≈ 0 for all times in sector II. As a
result, the pumped charge is half a Cooper pair, as predicted
by (B2).

2. Case ϕ = π

Using (9) and (B1), we find for the pumped charge

Qp[ϕ = π ]= 1

2

∫ 2T/3

T/3
dt

⎡
⎣1 + δng√

δn2
g + [(Jl − Jr )/(2EC)]2

⎤
⎦

× ∂2

∂t ∂ϕ
arctan

(
Jr − Jl

Jr + Jl

tan
ϕ

2

)
. (B3)

Using Jr + Jl = Jmax and Jr − Jl = 6Jmaxu/T with u =
t − T/2, the integral can be evaluated analytically to give

Qp[ϕ = π ] = T

12

∫ T/6

0

du

u2

[
1 − 1√

1 + (6ru/T )2

]

= 1

2
[
√

1 + r2 − 1]. (B4)

APPENDIX C: ADIABATIC BREAKDOWN AND OPTIMAL
PUMPING FREQUENCY

Here we present a numeric optimization of the average
pumped current 〈Ip〉 for the case ϕ = π .

In Fig. 6(a) we plot 〈Ip〉 versus f for different values of δng

in the range of 0.005 and 0.1 (from left to right). The fact that
each curve reaches a maximum indicates that there is a tradeoff
between speedup gain and adiabaticity loss. For each value of
δng , the optimal frequency f ∗(δng) and the corresponding
maximum current I ∗(δng) are plotted in Figs. 6(b) and 6(c),
respectively. From Fig. 6(b) we see that the optimal frequency
is approximately proportional to δng . From Fig. 6(c), we see
that I ∗ attains its maximum at a finite δng . In particular, this
shows that the optimal operation point is not arbitrarily close
to δng = 0, as one might erroneously guess before taking
nonadiabatic corrections into account. The scaling of both f ∗
and I ∗ is approximately linear as δng → 0, as demonstrated
by the linear fits shown as dashed lines in panels (b) and (c).
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FIG. 6. (Color online) Optimal pumping frequency when ϕ = π .
(a) Average pumped current 〈Ip〉 versus pumping frequency f with
ϕ = π and δng taking a set of values in the range of 0.005 and
0.1 (from left to right). The other parameters are the same as in
Fig. 3. (b),(c) Optimal pumping frequency f ∗ (b) and corresponding
maximum pumped current I ∗ (c) versus δng . The dashed lines in (b)
and (c) are linear fits to the numeric data close to δng = 0.
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26J. P. Pekola, V. Brosco, M. Möttönen, P. Solinas, and A. Shnirman,

Phys. Rev. Lett. 105, 030401 (2010).
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