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Possible charge instabilities in two-dimensional doped Mott insulators

Matı́as Bejas,1 Andrés Greco,2 and Hiroyuki Yamase3

1The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151 Trieste, Italy
2Facultad de Ciencias Exactas, Ingenierı́a y Agrimensura and Instituto de Fı́sica Rosario (UNR-CONICET),

Av. Pellegrini 250, 2000 Rosario, Argentina
3National Institute for Materials Science, Tsukuba 305-0047, Japan and Max-Planck-Institute for Solid State Research,

D-70569 Stuttgart, Germany
(Received 9 July 2012; revised manuscript received 20 November 2012; published 17 December 2012)

Motivated by the growing evidence of the importance of charge fluctuations in the pseudogap phase in high-
temperature cuprate superconductors, we apply a large-N expansion formulated in a path integral representation
of the two-dimensional t-J model on a square lattice. We study all possible charge instabilities of the paramagnetic
state in leading order of the 1/N expansion. While the d-wave charge density wave (flux phase) becomes the
leading instability for various choices of model parameters, we find that a d-wave Pomeranchuk (electronic
nematic phase) instability occurs as a next leading one. In particular, the nematic state has a strong tendency to
become inhomogeneous. In the presence of a large second nearest-neighbor hopping integral, the flux phase is
suppressed and the electronic nematic instability becomes leading in a high doping region. Besides these two
major instabilities, bond-order phases occur as weaker instabilities close to half-filling. Phase separation is also
detected in a finite temperature region near half-filling.
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I. INTRODUCTION

The pseudogap (PG) phase in cuprate superconductors
provides one of the most active subjects on high-Tc super-
conductivity. The PG phase is characterized by highly anoma-
lous properties1,2 which are rather universal for all cuprate
superconductors. One of the puzzling observations comes
from angle-resolved photoemission spectroscopy (ARPES)
measurements,3 which revealed arc-shaped disconnected
Fermi surfaces,4 called Fermi arcs, instead of a large Fermi
surface. In underdoped cuprates the PG opens below a tem-
perature T ∗, which is far above the superconducting transition
temperature Tsc. Furthermore, in contrast to the behavior of Tsc,
T ∗ increases with decreasing doping in the underdoped region.
The PG is very anisotropic along the Fermi surface. It has a
maximal gap in the (0,0)-(0,π ) direction (antinodal direction)
and vanishes upon approaching the Brillouin zone diagonal
(nodal direction), similar to the d-wave superconducting gap.

In spite of the consensus on the existence of the PG,
its origin and nature remain elusive. There are two major
scenarios. One is that the PG originates from preformed pairs
above Tsc.5,6 The other is that the PG is distinct from the
superconducting gap and associated with a certain order which
competes with superconductivity, but both coexist at low tem-
perature, leading to “two gaps” in the electronic spectrum.7–9

Several phenomenological models which are in favor of the
two-gap scenario were already studied in various contexts, but
invoking different orders, such as d-wave charge density wave
(dCDW),10 d-wave Fermi surface deformations,11 charge
density wave12–15 including stripes,16,17 phase separation
(PS),12,13,18 and others such as resonating-valence-bond-type
charge order19 and loop-current order.20

The dCDW is a flux phase, where orbital currents flow
around each plaquette in a staggered pattern. The electronic
spectrum in the flux phase has a gap with d-wave symmetry,
the same as the superconducting gap symmetry. The flux
phase was obtained in the large-N approach to the t-J

model in various formalisms21–25 and the presence of flux
correlations was confirmed by the exact diagonalization.26

On the other hand, in the Hubbard model, the dynamical
cluster approximation failed to detect static long-range order
of the dCDW27 whereas the variational cluster approximation
showed that the dCDW is a metastable solution.28 Fluctuations
associated with the dCDW can provide a route to address the
PG. A perturbative analysis of the electron self-energy due to
dCDW fluctuations catches many important features observed
by ARPES, not only a PG and its associated Fermi arcs29,30

but also a semiquantitative aspect of renormalization of the
electron band dispersion in the PG phase.31

The d-wave Fermi surface deformations are driven by a d-
wave Pomeranchuk32 instability (dPI), leading to an electronic
nematic state.33 In this state, an orientational symmetry of
the systems is broken without breaking, however, translational
invariance. The dPI was found in the slave-boson mean-field,34

exact diagonalization,35 and variational Monte Carlo36 studies
in the t-J model, and also in the Hubbard model.37–39 The
dPI itself does not become the leading instability in most of
the theoretical studies. However, it was pointed out that the
models retain appreciable correlations of the dPI,34,40 which
then may lead to a giant response to a small xy anisotropy.
Such a giant response was actually observed in the PG region
in YBa2Cu3Oy , which has a small anisotropy originating from
the orthorhombic crystal structure, by neutron scattering41,42

and transport measurements.43 Theoretical studies for the
former11,44 and the latter45 confirmed that idea.

Charge-stripe order is extensively discussed for
cuprates.16,17 Since the charge-stripe order breaks both orien-
tational and translational symmetry of the system, the stripe
phase is also called an electronic smectic phase33 and has lower
symmetry than the nematic phase. The experimental observa-
tion of charge order in La-based cuprates46 provides grounds to
consider the stripe order. A charge-stripe solution was indeed
obtained in the density matrix renormalization group (DMRG)
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study47,48 in the t-J model. However, in the presence of the
second nearest-neighbor hopping integral the charge-stripe
order turned out to be unstable in the t-J model.49,50

PS is also another possible instability in the t-J model.51,52

It is, however, still highly debated whether the model indeed
shows the instability toward PS53,54 or not47,48,55–59 in a
parameter region realistic to cuprates. Although PS is in
general suppressed by long-range Coulomb forces, strong
charge fluctuations in the proximity to PS can be important
and responsible for anomalous properties in the PG phase
and superconductivity.18 In fact, the proximity to PS plays
an important role to generate a singular interaction between
electrons at zero momentum transfer as shown in the infinite-U
Hubbard Holstein model.12,13 When long-range Coulomb in-
teractions are added, the singularity shifts to a finite momentum
transfer, leading to an incommensurate charge density wave
similar to stripes.12,13

Theoretically it is believed that the two-dimensional (2D)
t-J and Hubbard models contain the main ingredients for
describing cuprates,60 that is, antiferromagnetism at zero
doping, a metallic state at finite doping, and a strong ten-
dency to d-wave superconductivity. Given that various charge
instabilities are invoked to address the PG, and also other
anomalous properties in cuprates, it is interesting to study what
kind of charge instabilities are favored in the 2D t-J model
by treating all possibilities on equal footing in a controllable
scheme.

In this paper, we analyze the 2D t-J model in terms of
Hubbard operators by including the nearest-neighbor Coulomb
interaction V to avoid a subtle feature of PS; our main results
are not affected by the presence of V . We apply a large-N
expansion formulated in a path integral representation.25,61,62

In this approach the two spin components are extended to
N and an expansion in powers of the small parameter 1/N

is performed, providing a controllable scheme without a
perturbative expansion in any model parameter. In addition,
different kinds of instabilities can be studied on equal footing,
allowing us to perform a stability analysis on all possible
charge instabilities already at leading order. We find that
the t-J model shows tendencies to the flux and electronic
nematic state in a wide doping region. In particular, the
nematic state has a strong tendency to become inhomogeneous.
Close to half-filling, bond-order phase (BOP) and PS are also
obtained.

In the next section, we first provide a brief summary of
our theoretical scheme and then explain the most important
charge instabilities, dCDW, dPI, BOP, and PS. Our results
are presented in Sec. III and are discussed by comparing
with literature in Sec. IV. Implications for cuprates are also
discussed in the same section. Our conclusions are given in
Sec. V.

II. THEORETICAL FRAMEWORK

A. Large- N approach to the t- J-V model

In a previous paper,25 a large-N expansion for the t-J -V
model was formulated in terms of a path integral representation
for the Hubbard X operators. For the sake of a self-contained
presentation, we first summarize the formalism.

The t-J -V model is described by the following Hamilto-
nian,

H = −
∑
i,j,σ

tij c̃
†
iσ c̃jσ + J

∑
〈i,j〉

(
�Si · �Sj − 1

4
ninj

)

+V
∑
〈i,j〉

ninj , (1)

where tij = t (t ′) is the hopping integral between the first
(second) nearest-neighbor sites on a square lattice; J and
V are the exchange interaction and the Coulomb repulsion,
respectively, between the nearest-neighbor sites. The main role
of the V term in the present study is to suppress the tendency
toward PS while, in other works,63,64 the V term was included
to investigate its effect on superconductivity. c̃

†
iσ and c̃iσ are

the creation and annihilation operators of electrons with spin
σ (σ =↓,↑), respectively, under the constraint that the double
occupancy of electrons is excluded at any site i. ni is the
electron density operator.

The electron and spin operators are connected to Hubbard
operators65 via c̃

†
iσ = Xσ0

i , c̃iσ = X0σ
i , S+

i = X
↑↓
i , S−

i = X
↓↑
i ,

and ni = X
↑↑
i + X

↓↓
i . The operators Xσ0

i and X0σ
i are called

fermionlike, whereas the operators Xσσ ′
i and X00

i are called
bosonlike; X00

i will be introduced later [Eq. (4)]. After writing
Hamiltonian (1) in terms of the Hubbard operators, we extend
the spin degree of freedom to N channels and obtain the
Hamiltonian in the large-N formalism,

H = − 1

N

∑
i,j,p

tijX
p0
i X

0p

j

+ J

2N

∑
〈i,j〉,pp′

(
X

pp′
i X

p′p
j − X

pp

i X
p′p′
j

)

+ V

N

∑
〈i,j〉,pp′

X
pp

i X
p′p′
j − μ

∑
i,p

X
pp

i . (2)

The spin index σ is extended to a new index p, which runs
from 1 to N . In order to obtain a finite theory in the N -infinite
limit, t , t ′, J , and V are rescaled as t/N , t ′/N , J/N and V/N ,
respectively. The chemical potential μ is introduced in Eq. (2).

In the path integral formulation our Euclidean Lagrangian
reads

LE = 1

2

∑
i,p

(
Ẋ

0p

i X
p0
i + Ẋ

p0
i X

0p

i

)
X00

i

+ H, (3)

with the following two additional constraints,

X00
i +

∑
p

X
pp

i − N

2
= 0, (4)

and

X
pp′
i − X

p0
i X

0p′
i

X00
i

= 0, (5)

which are imposed on the path integral via two δ functions. In
Eq. (3), Ẋp0

i = ∂τX
p0
i and τ is the Euclidean time, namely τ =

it . Equation (4) is the N -extended completeness condition.
The form of the kinetic term in the Lagrangian LE , as well
as the constraint Eq. (5), comes from the requirement that the
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X operators should fulfill their commutation rules. For details
we refer to Ref. 61. In the path integral approach we associate
Grassmann and usual bosonic variables with fermionlike and
bosonlike X operators, respectively.

We now discuss the main steps needed to introduce a large-
N expansion.25,62 First the V term in the Hamiltonian is written
in terms of X00

i by using Eq. (4). We then eliminate the bosonic
variables Xpp′

by implementing the δ function associated with
Eq. (5). The completeness condition [Eq. (4)] is imposed by
introducing Lagrange multipliers λi . We write X00

i and λi in
terms of static mean-field values, r0 and λ0, and fluctuation
fields, δRi and δλi ,

X00
i = Nr0(1 + δRi), λi = λ0 + δλi. (6)

In addition, we introduce the following fermion fields66

defined by

f
†
ip = 1√

Nr0
X

p0
i , fip = 1√

Nr0
X

0p

i . (7)

The exchange interaction is then described by four fermion
fields, which are decoupled through a Hubbard-Stratonovich
transformation by introducing a field associated with a bond
variable,

�ij = J
∑

p

f
†
jpfip√

(1 + δRi)(1 + δRj )
. (8)

The field �ij is parametrized by

�
η

i = �
(
1 + r

η

i + iA
η

i

)
, (9)

where r
η

i and A
η

i correspond to the real and imaginary parts
of the fluctuations of the bond variable, respectively, and �

is a static mean-field value. The index η takes two values

associated with the bond directions η1 = (1,0) and η2 = (0,1)
on a square lattice. After expanding 1/(1 + δR) in powers of
δR, we obtain an effective Lagrangian, which can be written
in terms of a six-component boson field,

δXa = (δR , δλ, rη1 , rη2, Aη1 , Aη2 ), (10)

the fermions fp, and their interactions.
From the quadratic part for fermions we obtain an electronic

propagator in the paramagnetic phase,

G(k,iνn) = 1

iνn − εk
. (11)

Here k and iνn are the momentum and fermionic Matsubara
frequency, respectively, and the electronic dispersion εk is

εk = −2(tr0 + �)(cos kx + cos ky)

− 4t ′r0 cos kx cos ky − μ. (12)

Here λ0 in Eq. (6) was absorbed in the chemical potential μ.
From the completeness condition [Eq. (4)] r0 is equal to

δ/2, where δ is the hole doping rate away from half-filling.
The field � is given by the expression,

� = J

4Ns

∑
k,η

cos(kη)nF (εk), (13)

where nF is the Fermi function and Ns is the total number
of lattice sites. For a given doping, μ and � are determined
self-consistently by solving Eq. (13) and

(1 − δ) = 2

Ns

∑
k

nF (εk). (14)

The quadratic part for δXa defines a 6 × 6 bare bosonic prop-
agator D

(0)
ab (q,iωn), which after Fourier transformation reads

[
D

(0)
ab (q,iωn)

]−1 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ2

2

(
V − J

2

)
[cos(qx) + cos(qy)] δ

2 0 0 0 0
δ
2 0 0 0 0 0

0 0 4�2

J
0 0 0

0 0 0 4�2

J
0 0

0 0 0 0 4�2

J
0

0 0 0 0 0 4�2

J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where q and iωn are the momentum and bosonic Matsubara frequency, respectively. The quantity D
(0)
ab (q,iωn) describes all

possible types of bare charge susceptibilities. The bare susceptibilities are renormalized already at leading order to become
dressed ones, which are given by the Dyson equation,

D−1
ab (q,iωn) = [

D
(0)
ab (q,iωn)

]−1 − ab(q,iωn). (16)

Following the diagrammatic rules in Ref. 25, the 6 × 6 boson self-energies ab are computed as

ab(q,iωn) = − N

Ns

∑
k

ha(k,q,εk − εk−q)
nF (εk−q) − nF (εk)

iωn − εk + εk−q
hb(k,q,εk − εk−q) − δa 1δb 1

N

Ns

∑
k

εk − εk−q

2
nF (εk). (17)

224509-3



BEJAS, GRECO, AND YAMASE PHYSICAL REVIEW B 86, 224509 (2012)

The prefactor N in front of the right-hand side of Eq. (17)
comes from the sum over the N channels of p. Thus, the 6 × 6
boson self-energies ab are of the same order as [D(0)

ab ]−1

[see Eq. (15)]. In Eq. (17) ha is an effective six-component
interaction vertex which comes from the interaction
terms between bosonic and fermionic fields derived from the
effective Lagrangian. The explicit expression for ha is given by

ha(k,q,ν)

=
{

2εk−q + ν + 2μ

2
+ 2�

[
cos

(
kx − qx

2

)
cos

(
qx

2

)

+ cos

(
ky − qy

2

)
cos

(
qy

2

)]
; 1;

− 2� cos

(
kx − qx

2

)
; −2� cos

(
ky − qy

2

)
;

2� sin

(
kx − qx

2

)
; 2� sin

(
ky − qy

2

)}
. (18)

From the N -extended completeness condition [Eq. (4)] we
see that the charge operator X00 is O(N ), while the operators
Xpp are O(1). Consequently, the 1/N approach emphasizes
the effective charge interactions. In fact, while in leading order
charge susceptibilities contain collective effects, they enter the
spin susceptibilities in the next-to-leading order. Similarly,
superconductivity appears in the next-to-leading order.24,63

Therefore, instabilities of the paramagnetic phase are expected
only, in leading order, in the charge sector.

In leading order, our formalism agrees with the 1/N

slave-boson formalism.23 However, in the present approach
the fermion variables fip are proportional to the X operators
[Eq. (7)] and should not be confused with the spinons in the
slave-boson approach. In addition, δR [Eq. (6)] is proportional
to charge fluctuations and not related to holons. Since the
X operators are treated as fundamental objects, problems
associated with fluctuations of gauge fields in the slave-boson
approach67 are avoided. Our formalism was also checked to
yield results consistent with the exact diagonalization68,69 as
well as results in another formalism of the 1/N expansion in
leading order.24

B. Instabilities of the paramagnetic phase

An instability of the paramagnetic phase is signaled by the
divergence of the static susceptibilities defined by Dab(q,iωn)
for a continuous phase transition. Therefore we study eigenval-
ues and eigenvectors of the matrix [Dab(q,iωn)]−1 at iωn = 0.
When an eigenvalue crosses zero at a given doping rate,
temperature T , and momentum q, an instability occurs toward
a phase characterized by the corresponding eigenvector. We
have found five instabilities associated with eigenvectors V a

explained below.
(a) V a = 1√

2
(0,0,0,0,1,−1), which corresponds to the

freeze of the imaginary parts of the bond variable [Eq. (9)].
The pure imaginary contribution to the hopping term gen-
erates a net magnetic flux in each plaquette, leading to the
instability toward the flux or dCDW phase as already found
previously.21–25 The commensurate flux phase is characterized
by the modulation vector q = (π, π ) and describes staggered

ππ

π

FIG. 1. Sketch of various phases appearing in our work. Com-
mensurate orders for (a) dCDW, (b) dPI, (c) BOPx , and (d) BOPxy

in real space. The commensurate dPI has a momentum q = (0,0)
whereas the commensurate dCDW, BOPx , and BOPxy have q =
(π,π ). Solid and dashed lines in (b)–(d) represent the strong and
weak bonds, respectively. (e) Fermi surface deformations (black line)
associated with the commensurate dPI; the original Fermi surface is
sketched by gray lines.

circulating currents as sketched in Fig. 1(a), whereas the
incommensurate phase is characterized by q 
= (π, π ).

(b) V a = 1√
2
(0,0,1,−1,0,0), which corresponds to the

freeze of the real parts of the bond variable. This eigenvector
corresponds to the commensurate [q = (0 ,0)] or incommen-
surate [q 
= (0 ,0)] instability toward the dPI phase. The
commensurate phase is sketched in Fig. 1(b) in real space.
In momentum space it leads to Fermi surface deformations
where the Fermi surface expands along the ky direction and
shrinks along the kx direction [Fig. 1(e)], or vice versa if the
bond along the y direction would become stronger than the
x direction. While the commensurate dPI has been discussed
since 2000,34,37 an incommensurate dPI starts to be discussed
very recently.70–73

(c) V a = (0,0,1,0,0,0) ((0,0,0,1,0,0)), which correspond
to the freeze of the third (fourth) component and describe the
instability toward the BOPx (BOPy).23–25 The corresponding
modulation vector turns out to be q = (π,π ) or very close to it.
The commensurate BOPx , namely with q = (π,π ), is sketched
in Fig. 1(c) whereas the BOPy with q = (π,π ) is obtained by
rotating Fig. 1(c) by 90◦.

(d) V a = 1√
2
(0,0,1,1,0,0), which corresponds to the freeze

of both third and fourth components simultaneously. The
modulation vector is q = (π,π ) or very close to it, as in the
case of the BOPx and BOPy . We refer to this instability as the
BOPxy . The commensurate BOPxy with q = (π,π ) is sketched
in Fig. 1(d). For simplicity, we also use the phrase BOP when
we do not have to distinguish between BOPx , BOPy , and
BOPxy .

(e) V a = (1,0,0,0,0,0), which corresponds to the freeze
of charge fluctuations δR and describes the instability toward
PS for q = (0,0) and a charge-density-wave phase, including
stripes, for a finite q. A finite q instability, however, was not
detected in the present study.

In general, eigenvectors of [Dab(q,iωn)]−1 can have a
nonzero value in each component. However, we checked that
the inner product between an eigenvector of [Dab(q,iωn)]−1
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and V a becomes larger than 0.99 at the corresponding critical
point.

C. Effective susceptibilities

While numerical results presented in this paper are com-
puted from the full susceptibility Eq. (16), it is instructive
to extract an effective susceptibility associated with each
instability explained in the previous section by discarding the
interactions with other modes contained in Dab(q,iωn).

The usual charge-charge correlation function is written as

χc
ij (τ ) = 1

N

∑
p,q

〈
TτX

pp

i (τ )Xqq

j (0)
〉
. (19)

Using the completeness condition [Eq. (4)] and the relation
between X00

i and δRi [Eq. (6)], χc
ij can be written in Fourier

space,25

χc(q,iωn) = −N

(
δ

2

)2

D11(q,iωn). (20)

Thus the charge-charge correlation function is just the com-
ponent (1,1) of the Dab. Note that the factor N in front of the
right-hand side of Eq. (20) shows that charge fluctuations are
of O(1) since Dab ∝ 1/N as seen in Eq. (15).

The susceptibility of the dCDW is obtained by focusing on
the sector a,b = 5,6 of the matrix D−1

ab . We obtain

χdCDW(q,iωn) = [(8/J )�2 − dCDW(q,iωn)]−1, (21)

where dCDW(q,iωn) is the electronic polarizability of the
dCDW and is given by

dCDW(q,iωn) = − 1

Ns

∑
k

γ 2
dCDW(q,k)

nF (εk+q) − nF (εk)

εk+q − εk − iωn

,

(22)

with a form factor γdCDW(q,k) = 2�[sin(kx + qx/2) −
sin(ky + qy/2)].

Similarly, the susceptibility of the dPI is obtained from the
sector a,b = 3,4 of the matrix D−1

ab :

χdPI(q,iωn) = [(8/J )�2 − dPI(q,iωn)]−1, (23)

and the electronic polarizability of the dPI reads

dPI(q,iωn) = − 1

Ns

∑
k

γ 2
dPI(q,k)

nF (εk+q) − nF (εk)

εk+q − εk − iωn

,

(24)

with a form factor γdPI(q,k) = 2�[cos(kx + qx/2) − cos(ky +
qy/2)].

For the case of the BOPx we focus on the sector a = b = 3
and obtain

χBOPx
(q,iωn) = [(4/J )�2 − BOPx

(q,iωn)]−1, (25)

where the electronic polarizability is given by

BOPx
(q,iωn) = − 1

Ns

∑
k

4�2 cos2(kx + qx/2)

× nF (εk+q) − nF (εk)

εk+q − εk − iωn

. (26)

For the case of a = b = 4, that is, BOPy , the form factor
in Eq. (26) is replaced by cos2(ky + qy/2). It is easily seen
in Eq. (26) that the BOPx and BOPy instabilities occur si-
multaneously, but with a different modulation vector: suppose
q = (qx,qy) for the BOPx , then q = (qy,qx) for the BOPy .
While we will not present results for the BOPy , it should be
understood that the instability of the BOPy also exists.

The susceptibility associated with BOPxy is given by the
same equation as Eq. (23), except that the form factor γdPI in
Eq. (24) is replaced by γBOPxy

(q,k) = 2�[cos(kx + qx/2) +
cos(ky + qy/2)].

The form factor γdCDW(q,k) [γdPI(q,k)] has a k dependence
of cos kx − cos ky at q = (π,π ) [q = (0,0)], which indicates
the d-wave character of the instability. Note that the dPI and
dCDW belong to different eigenspace and are not connected
with each other by changing the momentum q.

While the terminology of the dPI itself makes sense when
a modulation vector is close to q = (0,0), we may consider
formally a large q in Eqs. (23) and (24). The dPI is then
connected with the BOPx and BOPy when q is located along
the direction of (π,0)-(π,π ) or (0,π )-(π,π ). Suppose q′ =
(π,qy), we can easily find

dPI(q′,iωn) = BOPx
(q′,iωn) + BOPy

(q′,iωn), (27)

by noting that

1

Ns

∑
k

sin kx cos(ky + qy/2)
nF (εk+q′) − nF (εk)

εk+q′ − εk − iωn

= 0. (28)

We thus obtain

χ−1
dPI(q

′,iωn) = χ−1
BOPx

(q′,iωn) + χ−1
BOPy

(q′,iωn). (29)

In particular, when q′ is equal to Q ≡ (π,π ), Eq. (29) is
reduced to

χdPI(Q,iωn) = 1
2χBOPx

(Q,iωn), (30)

because χBOPx
(Q,iωn) = χBOPy

(Q,iωn). Similarly, we can
also obtain

χdPI(Q,iωn) = χBOPxy
(Q,iωn). (31)

Hence when the static BOP susceptibility diverges at q =
(π,π ), the dPI susceptibility also diverges simultaneously at
the same momentum unless it already diverges at a different
momentum. In fact, the dPI with q = (π,π ) is equivalent to
the BOPxy and is interpreted as superposition of the BOPx and
BOPy as seen in Fig. 1(d).

III. RESULTS

We choose the parameters, J/t = 0.3 and V/t = 0.5.
Since a realistic value of J is around 150 meV in cuprate
superconductors, the value of t is around 500 meV. We set
t = 1, and all quantities with dimension of energy are in units
of t . Irrespective of the presence of the V term, our theory
catches intrinsic charge instabilities in the 2D t-J model such
as dCDW, dPI, and BOP, which are driven by the J term. We
compute the full susceptibility Eq. (16) for various choices
of t ′ by assuming the paramagnetic phase and determine
possible charge instabilities in the plane of hole density δ and
temperature T . At half-filling an analytical solution is obtained
and the dCDW, dPI, and BOP have the same onset temperature,
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FIG. 2. (Color online) Critical temperature versus doping rate for
dCDW, dPI, BOPx , BOPxy , and PS for t ′ = 0 and J = 0.3. Thick
(thin) lines describe commensurate (incommensurate) transitions.
The critical line for PS is shown in a larger scale of T in the inset.

Tc = J/8 = 0.0375t , at which the static field � [Eq. (9)] also
sets in. Away from half-filling (δ > 0.004) our computation is
fully numerical. Since we determine critical lines by studying
the susceptibility, the transition is continuous. In other words,
a possibility of a first-order transition is not considered in the
present analysis.

A. Results for t ′ = 0

Figure 2 shows the phase diagram for t ′ = 0. As mentioned
in Sec. II B, five different types of charge instability are
found: dCDW, dPI, BOPx , BOPxy , and PS. The instability
toward the commensurate dCDW, namely with q = (π,π ),
occurs in a wide doping region. The transition temperature
decreases gradually with increasing hole density and exhibits
reentrant behavior at low T in the region 0.12 � δ � 0.14.
However, near δ ≈ 0.14 an incommensurate [q 
= (π,π )]
dCDW instability occurs below T ≈ 0.015 and its critical
doping rate is higher than that of the commensurate dCDW.
Hence the resulting critical line of the dCDW follows the outer
line (i.e., the thin line at low T and the thick line for high T ).

For t ′ = 0 the commensurate dPI with q = (0,0) has
the same onset temperature as the commensurate BOPx

and BOPxy , namely with q = (π,π ); this reason will be
explained in the last paragraph in the present section. The
transition lines exhibit reentrant behavior at low T . However,
an incommensurate dPI emerges at low T and preempts
the reentrant line, extending the region of dPI. BOPx and
BOPxy also exhibit an incommensurate instability at low T

and preempt their commensurate instabilities. Furthermore
the degeneracy between BOPx and BOPxy is lifted via an
incommensurate transition. While the critical doping rate for
BOP becomes higher than for dPI at low T , this result occurs
only for a small t ′ and, as will be shown below, the opposite
occurs in the presence of a realistic t ′ for cuprates.

The system also exhibits PS at low doping. The inset of
Fig. 2 shows the PS line in a larger temperature scale. We see
that PS appears with decreasing temperature, but with further
cooling down it goes back to the paramagnetic phase. As a
result, PS occurs only in an intermediate temperature region.

(π,0) (π,π)(π,0) (π,0)(π,π) (π,0)(π,π)

FIG. 3. (Color online) Modulation vectors for dCDW (left panel),
dPI (middle panel), and BOPx (right panel) along the corresponding
outer critical line in Fig. 2. For each critical temperature, the critical
doping rate can be read off from Fig. 2. Because of symmetry, the
results along the direction of (0,π )-(π,π ) are the same as those along
the (π,0)-(π,π ) direction for the dCDW and dPI.

This peculiar reentrant behavior was also found in Ref. 74 in
the Hubbard model. The region of PS shrinks with increasing
V and also by introducing t ′(<0), as will be discussed in
Sec. III D.

The phase diagram in Fig. 2 should not be interpreted in
such a way that the dCDW is unstable against the dPI or BOP
at low T or low δ, because we perform a stability analysis in
the paramagnetic phase. Rather, Fig. 2 indicates a hierarchy
for different charge instabilities, that is, the outer the critical
line is, the stronger the tendency toward the corresponding
instability is.

It requires highly accurate numerics to determine precisely
a modulation vector q of each order along its outer critical
line because of a rather flat structure of the susceptibility in
momentum space, especially for the dPI. Therefore consid-
ering our achieved numerical accuracy we present in Fig. 3
modulation vectors of each instability, for which the absolute
value of the corresponding eigenvalue of D−1

ab (q,0) becomes
less than 10−4t on its outer critical line. The width of such
a q region, at a fixed temperature, implies how sharp the
susceptibility is in momentum space. Since modulation vectors
of each instability are computed along its outer critical line,
each critical temperature shown in Fig. 3 corresponds to
a certain critical doping rate, which can be read off from
Fig. 2. Although Fig. 3 is presented only along the axis
(π,0)-(π,π )-(0,0)-(π,0), we scanned the whole q region of
the Brillouin zone and checked numerically that instabilities
indeed occur along that axis.

In Fig. 3(a) we show the result for the dCDW along its
outer critical line in Fig. 2. At high critical temperature (i.e.,
low critical doping rate) the instability occurs at q = (π,π ),
and with lowering temperature the modulation vector shifts
from (π,π ) and becomes incommensurate. In Fig. 3(c) we
plot the corresponding modulation vector of the BOPx . At low
T , the modulation vector q slightly shifts from (π,π ) and the
BOPx becomes incommensurate, as in the case of the dCDW.
At high T , q is located at (π,π ), but in contrast to the case
of the dCDW, the q region is not extended on the side of the
direction of (π,π )-(0,0). This is because the eigenvector of the
BOPx does not exist there, instead, the eigenvector of the full
susceptibility [Eq. (16)] changes to that corresponding to the
dPI. A modulation vector of the BOPxy appears only along
the axis (π,π )-(0,0). Its Tc dependence is very similar to that
of BOPx , but the labels (π,0) and (0,0) in Fig. 3(c) should be
replaced by (0,0) and (π,0), respectively.
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The corresponding result for the dPI is shown in Fig. 3(b),
which looks very different from those for the dCDW and BOP.
In fact, for t ′ = 0, the static electronic polarizability of the dPI
has a special feature, which was already noted in Ref. 23 in a
different context. To see this we rewrite Eq. (24) in a different
form,

dPI(q,0) = − 1

Ns

∑
k

nF (εk)

[
γ 2

dPI(q,k)

εk − εk+q
+ γ 2

dPI(−q,k)

εk − εk−q

]
.

(32)

When q lies along the diagonal direction q ‖ (q,q), we find
after some algebra,

dPI(q,0) = 8�2

(tδ + 2�)Ns

∑
k

nF (εk) cos
kx + ky

2

× tan
kx − ky

2
sin

kx − ky

2
, (33)

that is, the static dPI susceptibility [Eq. (23)] does not depend
on q for any momentum along the diagonal direction. This
result holds for any carrier density and any temperature.
Therefore, if the dPI takes place for a vector q in the diagonal
direction, the susceptibility diverges simultaneously at all q
along the diagonal direction. The full susceptibility [Eq. (16)]
actually shows that feature in Fig. 3(b). Furthermore, this
flat feature of the susceptibility extends more away from the
diagonal direction. The q region along (0,0)-(π,0) shrinks
at Tc ≈ 0.024 in Fig. 3(b), which results from the proximity
to PS, as will be discussed in the Sec. III C. While the
susceptibility is always flat along the diagonal direction of
q, the susceptibility shows a peak at a modulation vector along
(0,0)-(π,0) at low T . The q region has a sharp boundary at
(π,π ) in Fig. 3(b) and the dPI does not have any possible
modulation vector along the (π,0)-(π,π ) direction. This is
because the eigenvector corresponding to the dPI is not
realized along (π,0)-(π,π ), instead, the BOPx eigenvector
appears there. This property may be understood also in terms
of the effective susceptibilities. Equation (29) indicates that
if χ−1

dPI(q
′,0) becomes zero, either χ−1

BOPx
(q′,0) or χ−1

BOPy
(q′,0)

should be already negative, since in general χBOPx
is not

equal to χBOPy
for a momentum along (π,0)-(π,π ), except

for q′ = (π,π ) where both χ−1
BOPx

(q′,0) and χ−1
BOPy

(q′,0) can
become zero simultaneously. Therefore a possible instability
of the dPI along (π,0)-(π,π ) is replaced by the BOPx .

The q independence of dPI along the diagonal direction
leads to another special feature. As we mentioned at the end
of Sec. II, the onset temperature of the BOP with q = (π,π )
is the same as that of the dPI with q = (π,π ) [Eqs. (30) and
(31)]. Therefore the onset temperature of the commensurate
BOP becomes the same as that of the dPI with q = 0, as shown
in Fig. 2.

B. Results for finite t ′

The degeneracy between the dPI and BOP seen in Fig. 2 is
lifted by introducing t ′. The upper and lower panels in Fig. 4
show the results for t ′ = −0.20 and −0.30, respectively. While
the BOP instability is always restricted to a lower doping
region, the dPI becomes favorable in a wider doping region.
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FIG. 4. (Color online) Critical temperature and doping rate for
t ′ = −0.20 (upper panel) and t ′ = −0.30 (lower panel). The notation
is the same as Fig. 2.

Near half-filling the dPI and BOP are still almost degenerate
because, as seen from Eq. (12), the hopping integral t ′ is
renormalized to be t ′r0 ∝ t ′δ and becomes irrelevant close to
half-filling. The BOPx and BOPxy are always degenerate as far
as they exhibit a commensurate instability. Their degeneracy is
lifted when their modulation vector becomes incommensurate
at low temperature.

As shown in Fig. 4, the doping region of the commensurate
dCDW instability is extended by the presence of t ′ and an
incommensurate dCDW becomes dominant at high δ and low
critical temperature. On the other hand, PS is suppressed by
introducing t ′. The critical line for PS bends back to zero
doping for high T (not shown) in a way similar to the case for
t ′ = 0 (inset of Fig. 2).

The modulation vector of each instability is shown in the
upper and middle row in Fig. 5 for t ′ = −0.20 and −0.30,
respectively, along the corresponding outer critical line in
Fig. 4. Both dCDW [Figs. 5(a) and 5(d)] and BOPx [Figs. 5(c)
and 5(f)] show an instability at q = (π,π ) for high critical
temperature, and becomes incommensurate for low critical
temperature. These features are the same as those seen in
Figs. 3(a) and 3(c). Results of BOPxy are essentially the same
as those of BOPx , but the labels (π,0) and (0,0) should be
interchanged in Figs. 5(c) and 5(f).

Figures 5(b) and 5(e) show results for the dPI. They are
very different from Fig. 3(b), except for a region of high
critical temperature near Tc ≈ 0.03, namely the doping region
0 < δc � 0.02, where the effect of t ′ becomes irrelevant. For
t ′ = −0.20 [Fig. 5(b)], as the critical temperature decreases,
the q region shrinks around q = (0,0) and the dPI tends to
become commensurate. Close to zero temperature, however,
a tendency toward an incommensurate dPI appears in the
(0,0)-(π,0) direction. This incommensurate feature is also seen
more clearly for t ′ = 0 at low T [Fig. 3(b)], and disappears
quickly with increasing t ′. It becomes nearly invisible for
t ′ = −0.30 in our temperature scale. For t ′ = −0.30, the
q region shrinks first around q = (0,0) with decreasing the
critical temperature. In the intermediate temperature range,
0.021 � Tc � 0.008, the modulation vector becomes slightly
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(π,0) (π,π)(π,0) (π,π) (π,0) (π,0)(π,π)

FIG. 5. (Color online) Modulation vectors for dCDW (left pan-
els), dPI (middle panels), and BOPx (right panels) for t ′ = −0.20
(upper row), t ′ = −0.30 (middle row), and t ′ = −0.40 (lower row)
along the outer critical line of the corresponding order for each t ′ in
Figs. 4 and 6 (middle).

incommensurate along the diagonal. This deviation from the
commensurate vector is also barely visible in the bottom panel
of Fig. 4, where the incommensurate dPI line separates very
slightly from the commensurate dPI in the corresponding
temperature region. For Tc � 0.008, the dPI becomes fully
commensurate.

The phase diagram close to half-filling does not depend
essentially on a choice of t ′. In fact, the critical lines for
the BOP and PS do not change much even for a further
larger t ′. However, we find that tendencies toward dCDW
and dPI have strong t ′ dependence. In Fig. 6 we present the
phase diagram for t ′ = −0.35, −0.40, and −0.45. First we
focus on the dCDW for t ′ = −0.35 and −0.40. The instability
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FIG. 6. (Color online) The same plot as Fig. 4, but for different
choices of t ′: t ′ = −0.35 (top panel), t ′ = −0.40 (middle panel), and
t ′ = −0.45 (bottom panel). In the latter two cases the phase diagram
in a high doping region is magnified in the inset.

extends to a higher doping region with increasing t ′ and the
commensurate dCDW tends to become more favorable even
at low T . The doping region of the dCDW, however, starts to
decrease quickly for |t ′| > 0.41, as can be seen in the result
for t ′ = −0.45.

In contrast to the dCDW, the outer critical line for the dPI
extends to higher doping with increasing t ′. For t ′ = −0.35,
an incommensurate dPI becomes dominant in a wide doping
region (0.05 � δ � 0.25). While the commensurate dPI is
realized for δ � 0.16 and δ � 0.19, it does not occur between
these two doping region. This feature is more evident for
t ′ = −0.40 [Fig. 6 (middle panel)]. In a wide doping region
(0.10 � δ � 0.30) the commensurate dPI does not occur
and only an incommensurate dPI is possible. However, in a
high doping region (0.30 � δ � 0.35), the commensurate dPI
shows up again; see the inset in Fig. 6 (middle panel). These
peculiar features of the dPI are due to the presence of the van
Hove singularity around δ = 0.33, where the d-wave weighted
density of states,75 which is defined by limq→0 dPI(q,0) in
Eq. (24), is enhanced, favoring the instability at q = (0,0). In
an intermediate doping region, the d-wave density of states
is suppressed and the dPI with a finite q becomes more
favorable. Closer to half-filling, however, the d-wave density of
states is again enhanced because of narrowing the bandwidth
upon approaching half-filling, leading to a recovery of the
commensurate dPI for δ � 0.10. For t ′ = −0.45 these features
are more emphasized. Figure 6 (bottom panel) shows that
the commensurate dPI occurs both close to half-filling and
around van Hove filling (δ = 0.42), and these two regions are
connected by the critical line of an incommensurate dPI. The
commensurate dPI close to half-filling and in a high doping
region was also found in the slave-boson mean-field theory.34

In Fig. 5 we compare the modulation vector of each
instability for t ′ = −0.20, −0.30, and −0.40. With increasing
t ′, the dCDW tends to be more commensurate even at low
critical temperature. For the dPI, on the other hand, a large
t ′ tends to favor an incommensurate modulation along the
diagonal direction of the Brillouin zone in an intermediate
range of a critical temperature, and the commensurate dPI
can be realized only at high and low critical temperature,
corresponding to a doping region close to half-filling and
around van Hove filling, respectively. The modulation vectors
of the BOPx (and also BOPxy) do not depend much on a choice
of t ′.

C. Mutual interaction among different modes

Because of the renormalization of the bosonic propagators
due to the coupling to electronic bubbles [Eq. (16)], one would
expect in general some coupling among different modes. This
effect actually appears for modulation vectors of the dPI. There
is a dip on the side of the region of (0,0)-(π,0) at Tc ≈ 0.024
in Fig. 3(b), and Tc ≈ 0.025 and 0.026 in Figs. 5(b) and 5(e),
respectively. This dip occurs near the temperature where the
critical lines of the dPI and PS cross each other (see Figs. 2
and 4). Moreover, we checked that the dip in question does
not appear in results obtained from the effective susceptibility
of the dPI [Eq. (23)]. Therefore a tendency toward PS plays a
role in the suppression of the incommensurate feature of the
dPI along (0,0)-(π,0).
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Except for the above feature, we checked that our results
(Figs. 2–6) are nearly the same as those determined by the
effective susceptibilities [Eqs. (20), (21), (23), and (25)]. In
this sense, the coupling among different bosonic fluctuations
is rather weak at least in leading order.

D. Effect of the V term and stability of phase separation

We checked that the results for dCDW, dPI, and BOP are
almost intact for different choices of V (�0) and that an
additional instability such as the usual checkerboard charge
density wave does not occur at least for V � 1 for any doping
rate.25,76 Furthermore, the reentrant critical line of PS (inset
of Fig. 2) is a robust feature. However, it is a subtle issue
whether PS actually occurs at T = 0. The result depends on
choices of V , t ′, and J . For t ′ = 0 and J = 0.3, we found
that PS at T = 0 occurs for δ � 0.08 (0.025) at V = 0 (0.1)
and vanishes already for V � 0.2. When t ′ is introduced, PS
is strongly suppressed even at V = 0, for example, it occurs
at T = 0 only for δ � 0.01 for t ′ = −0.35. A smaller J also
suppresses PS, and for the special case of J = 0 no PS is
observed at T = 0 for any V (�0) and t ′ (�0).

IV. DISCUSSIONS

A. Comparison with literature

Taking into account a number of papers about charge stripes
in cuprates,16,17 it may be surprising that we do not detect stripe
tendencies in our formalism, which exclusively favors charge
instabilities. If the t-J model would exhibit a tendency to
charge-stripe order, it might be a consequence of a coupling
with incommensurate magnetic modes, which could appear in
the next-to-leading order [O(1/N )] in the present scheme.
A charge-stripe solution was actually obtained in the t-J
model with t ′ = 0 in the DMRG study,47,48,77 which, however,
contradicts other studies.56,78 In the presence of t ′, on the
other hand, most of the numerical studies in the t-J model
reported that the charge-stripe solution becomes unstable.49,50

Our results, therefore, agree with major literature.
Interestingly, the BOPx(y) shares the same feature as stripe

order from a symmetry point of view. When q shifts away
from (π,π ), q is located only along the qy(x) direction and
thus the BOPx(y) breaks both orientational and translational
symmetry of the lattice. In fact such an incommensurate
BOPx(y) instability is found to occur up to δ ∼ 0.10; see Figs. 2,
4, and 6. While the BOP has not been discussed much so
far, the BOP was also obtained in other studies in the t-J
model.23–25

As discussed in Sec. III D, PS at T = 0 strongly depends
on a choice of V , t ′, and J . However, it is a robust
feature that PS occurs in an intermediate temperature region.
This property for a finite T has not been discussed so far
except for Ref. 74 in the Hubbard model, probably because
various numerical simulations are usually coded only at zero
temperature. Interestingly, the reentrant critical line of PS (see
the inset of Fig. 2) was interpreted as a source to generate
a strong forward scattering channel of the electron-phonon
vertex which emerges only at finite T .74

While the commensurate dPI (q = 0) was already found in
the t-J 34 and Hubbard37 models, an incommensurate dPI (q 
=

0) started to be discussed quite recently.70–73 We have obtained
that the static d-wave electronic polarizability [Eq. (33)] does
not depend on q for any momentum along the Brillouin zone
diagonal, which holds for any temperature and any electron
density as long as t ′ is zero. In our model, this feature remains
even for a finite t ′ near half-filling since t ′ is effectively reduced
by a factor of δ. Our result shown in the inset of Fig. 6 (bottom
panel) may be best compared with existing results, since they
were obtained in a weak coupling analysis.70–73 At hole density
below van Hove filling (δ � 0.42), the leading instability is an
incommensurate dPI and its modulation vector is located along
the (0,0)-(π,π ) direction, which agrees with literature.70–73 At
hole density above van Hove filling we have obtained the dPI
with q = 0, while Ref. 72 showed that the static electronic
polarizability of the dPI has a peak along the (0,0)-(π,0)
direction at least at T = 0. In our case, an incommensurate
peak along the (0,0)-(π,0) direction indeed develops as seen
in Figs. 3(b) and 5(b) for a small t ′, but it develops below
extremely low temperature for a large t ′. This effect is not
visible in Fig. 6 (bottom).

B. Implications for cuprate superconductors

Antiferromagnetism and superconductivity are not captured
in the present leading order theory [see the paragraph after
Eq. (18)]. It would be likely that antiferromagnetism is
stabilized close to half-filling and overcomes various charge
instabilities we have found there. In a moderate doping region
and sufficiently low temperatures, on the other hand, d-wave
superconductivity may occur and the competition with charge
instabilities is expected as seen in literature, for example,
Ref. 24 for the dCDW and Refs. 34, 70, and 71 for the
dPI. The advantage of the present theory is that we can deal
with all possible charge instabilities on equal footing in a
controllable scheme. As a result, the present theory can provide
a microscopic insight into possible charge fluctuations detected
in the pseudogap phase in cuprates, namely above the onset
temperature of superconductivity and in a moderate doping
region, where our results are more reliable in the sense that
antiferromagnetism and superconductivity are not expected.
Since the present analysis is performed in leading order, the
critical temperature in our phase diagram should be interpreted
as a temperature scale where the corresponding charge order,
at least its fluctuation effect, can become relevant in cuprates.
Furthermore when different charge orders have comparable
critical temperatures in our phase diagrams, it is reasonable to
consider that those charge orders are equally important.

In the 1/N expansion, the dCDW is the leading instability
in most of the cases, in agreement with previous studies.23–25

However, we have found that close to the dCDW, the dPI
also exists in a wide doping region. Therefore we expect that
at least fluctuations associated with both dCDW and dPI
are important in cuprates. The mutual interaction between
dCDW and dPI seems rather weak at least in leading order
because both the full calculation [Eq. (16)] and effective
susceptibilities [Eqs. (20), (21), (23), and (25)], give nearly the
same results. Given that the presence of t ′ is usually assumed
for cuprates and our critical lines of dCDW and dPI have the
same doping dependence of the PG temperature, furthermore
with a comparable temperature for t ≈ 500 meV (see the first
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paragraph in Sec. III), it is interesting to study each fluctuation
effect on the electronic property.

Existing work already showed interesting results, but with
some open questions. The phenomenological study assuming
the dCDW showed that essential features of the PG are well
captured.10 However, fluctuation effects were not considered
in Ref. 10. In a perturbative calculation of the electron
self-energy due to a coupling to dCDW fluctuations in
the t-J model, a pseudogap is obtained in the electronic
spectral function, which shares many important features with
experimental data.29–31 Moreover the same analysis was also
applied to the explanation of anisotropic scattering rate of
quasiparticles79 observed in angle-dependent magnetoresis-
tance experiments.80 However, no calculation was performed
beyond the perturbative analysis. On the other hand, in a
perturbative calculation for dPI fluctuations centered around
q = (0,0), a splitting of the spectral function near the Fermi
energy was obtained, reminiscent of a pseudogap.81 Going
beyond the perturbation theory and summing up all diagrams
in the Gaussian fluctuation regime, however, instead of a
splitting, the spectral function exhibits a broad single peak
centered at the Fermi energy with a strong k dependence of
d-wave symmetry.81 The spectrum in the Ginzburg region82

is an open question. Furthermore, the role of incommensurate
dPI fluctuations on a pseudogap phenomenon remains elusive.

The dPI couples directly with xy anisotropy such as due to
a lattice structure and an external strain. While the dPI changes
to a crossover phenomenon in such a case, the anisotropy can
be strongly enhanced by the underlying dPI fluctuations as
already discussed.34,40 The same idea is also discussed for iron-
pnictide superconductors near the structural phase transition
from the tetragonal to orthorhombic phase.83 Given that lattice
anisotropy frequently exists in cuprates, the relevance of the
dPI channel in the t-J model suggests important implications
for understanding cuprate superconductors, not only for Y-
based11,41–45 but also for La-based34,84–86 compounds.

For a large t ′, the commensurate dPI appears in a heavily
overdoped region around van Hove filling (δ ≈ 0.3 − 0.45 in
Fig. 6). While our critical line exhibits reentrant behavior at
low T , the canonical model for the dPI75,87 suggests that the
reentrant behavior is preempted by a first-order transition as

a function of the chemical potential, or equivalently a phase
separation as a function of doping, as far as the dPI occurs at
q = 0. It is known that Sr3Ru2O7 exhibits the dPI in a magnetic
field.88–90 In addition, a highly overdoped region in cuprates,
where no superconducting and antiferromagnetic instabilities
are expected, may also provide an opportunity to explore the
dPI.

V. CONCLUSIONS

Applying a large-N expansion formulated in the path
integral representation of the t-J model, we have analyzed
all possible charge instabilities of the paramagnetic phase,
and have elucidated the phase diagram in the doping and
temperature plane for a sequence of t ′. We have found that
dCDW, dPI, BOP, and PS are the most important charge
instabilities. The first two instabilities appear in a wide doping
region. The dCDW usually becomes the leading instability and
the dPI occurs as a next leading one with a strong tendency to
become incommensurate. In the presence of a large t ′, however,
we have found that the dPI becomes the leading instability in
a high doping region. Considering the high complexity of the
t-J model, it is beyond the scope of the present study to address
which charge instability would become ultimately the leading
one. Rather, the present stability analysis on charge instabilities
of the paramagnetic state was motivated by active studies on
the PG in cuprates in terms of various charge fluctuations.
We have provided a microscopic basis of possible charge
fluctuations in doped Mott insulators.
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