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Fluctuations of the vortex line density in turbulent flows of quantum fluids
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We present an analytical study of fluctuations of the vortex line density (VLD) 〈δL(ω)δL(−ω)〉 in turbulent
flows of quantum fluids. Two cases are considered. The first is the counterflowing (Vinen) turbulence, where
the vortex lines are disordered, and the evolution of quantity L(t) obeys the Vinen equation. The second case
is the fluctuations of the VLD in a single vortex bundle, which develops inside the domain of the concentrated
normal-fluid vorticity. The dynamics of the vortex bundle is described by the Hall-Vinen-Bekarevich-Khalatnikov
(HVBK) equations. The latter case is of special interest, because the set of the quantum vortex bundles is believed
to mimic classical hydrodynamic turbulence. In steady states the VLD is related to the normal velocity as
L = (ργ/ρs)2v2

n for the Vinen case. In the vortex bundle case, which appears inside the domain of a concentrated
vorticity of normal fluid, the stationary quantity L can be found from the matching of velocities and is described
by L = |∇ × vn|/κ . In nonstationary situations, and particularly in the fluctuating turbulent flow, there is a
retardation between the instantaneous value of the normal velocity and the quantity L. This retardation tends to
decrease in accordance with the inner dynamics, which has a relaxation character. In both cases, the relaxation
dynamics of the VLD is related to fluctuations of the relative velocity. However, for the Vinen case the rate of
temporal change for L(t) is directly dependent upon δvns , whereas for HVBK dynamics it depends on ∇ × δvns .
Therefore, for the disordered case the spectrum 〈δL(ω)δL(−ω)〉 coincides with the spectrum ω−5/3. In the
case of the bundle arrangement, the spectrum of the VLD varies (at different temperatures) from ω1/3 to ω−5/3

dependencies. This conclusion may serve as a basis for the experimental determination of what kind of turbulence
is implemented in different types of generation.
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I. INTRODUCTION

The problem of modeling classical turbulence with a set of
chaotic quantized vortices is the hottest topic in modern studies
of vortex tangles in quantum fluids (see, e.g., recent reviews
articles by Vinen,1 Procaccia and Sreenivasan,2 and Skrbek
and Sreenivasan3). The most common view of quasiclassical
turbulence is the model of vortex bundles, the collections
of near-parallel quantized vortices. In vortex bundles, the
coarse-grained vorticity field of ω = ∇ × vs and the vortex
line density (VLD) L are related to each other via Feynman’s
rule:

|ω| = κL. (1)

This formula reflects the fact that the VLD L in this
case coincides with the areal density of lines in a plane
perpendicular to the bundle. The main motivation for this
conception is that the quantized vortices have a fixed core
radius and thus they do not possess the important property
of classical turbulence—the stretching of tubes—which is
responsible for the turbulence energy cascade from the large
scales to the small scales. However, the vortex bundles do
possess this property and therefore the idea that quasiclassical
turbulence in quantum fluids is realized via vortex bundles of
different sizes and intensities (number of threads) seems to be
quite natural.

Recently, several numerical evidences of the structure of
vortex bundles were obtained. Thus, in the numerical work by
Ref. 4, in 20483 simulations of quantum turbulence within
the Gross-Pitaevskii equation (GPE), the authors observed
nonuniform structures. The authors claimed that “the visu-
alization of vortices clearly shows the bundle-like structure,
which has never been confirmed in GPE simulations on smaller

grids.” In other numerical works,5,6 the authors studied the
evolution of the vortex structures (at zero temperature) on
the basis of the Biot-Savart law. They also observed structures
reminiscent of the field of vorticity in classical turbulence (see,
e.g., Ref. 7).

To date, strong evidence of the bundle structure has
not been obtained by experimental confirmation. There are
experimental results which would seem to refute the idea of
bundles. Thus, in experiments by Roche et al.8 and by Bradley
et al.,9 it was observed that the spectrum of the fluctuation of
the VLD 〈δL(f )δL(−f )〉 (f is the frequency) is compatible
with a −5/3 power law. Sometimes this fact is interpreted as
contradictory to the idea of the bundle structure, because the
spectrum of vorticity [and, correspondingly, of the VLD L,
via Eq. (1)] should scale as the 1/3 power law. However, this
conclusion is not entirely accurate, because the scalar (and
positive) quantity L is not identical to the vector variable,
vorticity ω, and therefore the spectra of their fluctuations may
differ. However, the situation is not so obvious. Formally,
the spectra are the Fourier transforms from the correlation
functions and, at least inside the bundle, the vorticity ω(r) and
the VLD L(r) should have coordinated changes [via Eq. (1)].
Accordingly, the correlation functions of fluctuations of δL

and δω should coincide (up to a coefficient). In the case of
many bundles randomly oriented in space, the correlation
functions 〈ω(r1)ω(r2)〉 and 〈L(r1)L(r2)〉 behave differently
and the spectra should also differ. It is not clear which
scenario is realized in experiment (if any). For instance, in the
numerical paper by Salort et al.,10 made on the basis of Hall-
Vinen-Bekarevich-Khalatnikov (HVBK) theory, the spectra of
absolute value of |ωs | has different slopes (depending on the
temperature) from −5/3 up to the positive slope that may
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be 1/3. In numerical papers by Baggaley et al.,5,11 made on
the basis of the vortex filament method, the authors reported
about a −5/3 power law for spectrum fluctuations of the
VLD, and the 1/3 dependence for the spectrum of enstrophy
〈ω(k)ω(−k)〉.

A theoretical study of the VLD fluctuation in turbulent flows
was offered by Roche and Barenghi.12 The authors considered
the VLD L to be decomposed into two components, where
the smaller part consisting of the polarized component is
responsible for the large-scale turbulent phenomena, and the
other disordered part evolves as a “passive” scalar, thereby
taking the −5/3 velocity spectrum.

We present an analytical evaluation of the spectrum of
fluctuations VLD 〈δL(f )δL(−f )〉 in turbulent flows. The
principal proposition of this paper is that the vortex line density
L(t) is the secondary quantity, whose evolution depends (in
general as a functional) on the applied normal velocity vn.
The evolution of L(t) obeys dynamical equations, which
in general are different depending upon the arrangement
of the experiment. All these equations include the normal
velocity vn and therefore small deviations of L(t) depend on
fluctuations of quantity vn. By analyzing these equations, one
is in a position to obtain the spectrum 〈δL(f )δL(−f )〉 as
a functional of the energy spectrum 〈δvn(k)δvn(−k)〉. Two
cases are considered. The first is the counterflowing (Vinen)
turbulence, where vortex lines are disordered and the dynamics
of quantityL(t) is governed by the Vinen equation. The second
case is the fluctuations of VLD in the vortex bundle, which
develops inside the domain of the concentrated normal-fluid
vorticity. The dynamics of the vortex bundle is described by
the HVBK equations.

In steady states the VLD is related to the normal velocity
as L = (ργ/ρs)2v2

n for the Vinen case. For the HVBK case,
the stationary values of VLD should be found from the HVBK
equations (see, e.g. Refs. 13–18). Due to mutual frictions,
which enter the HVBK equations and are proportional (vn −
vs), a stationary solution satisfies (with great accuracy) the
condition of matching velocities vn − vs− > 0 . Mismatch
is usually small and therefore L = |∇ × vn|/κ can serve as
a good approximation for stationary solutions under various
realization, e.g., in rotation, or in the concentrated normal-fluid
vorticity.

In the fluctuating flow in nonstationary situations in par-
ticular, there is a retardation between the instantaneous value
of the normal velocity and the quantity L(t). This retardation
tends to decrease, according to the inner dynamics, which
has a relaxation character. In both cases, the relaxation of
δL(t) is related to fluctuations of the normal velocity δvns .
However, for the Vinen disordered turbulence, the rate of
temporal change for L(t) depends directly on δvns , whereas
for the HVBK dynamics it depends on the quantity ∇ × δvns .
In addition, the relaxation mechanisms, and, consequently, the
times of relaxation are different. The factors outlined above
lead to different formulas for spectra 〈δL(f )δL(−f )〉 and their
dependence on temperature.

II. VINEN EQUATION CASE

Let us study the reaction of the vortex line density in
a fluctuating flow of normal velocity supposing that the

dynamics of L(t) obeys the Vinen equation

∂L
∂t

= αV |vns |L3/2 − βVL2. (2)

Equation (2) was initially derived phenomenologically for
pure counterflowing superfluid helium.19–22 Attempts to derive
it an analytic form23–26 demonstrated that this equation is
seemingly valid for any nonstructured turbulence. Under the
term “nonstructured turbulence,” we understand the vortex
tangle, which consists of closed vortex loops of different
sizes, which are uniformly distributed in space. It differs,
for instance, from the turbulent fronts in rotating fluids,
which deal with the lines terminating on lateral walls.
It also differs from the mechanically excited turbulence,
which is believed to consist of the so-called vortex bundles
composed of very polarized vortex filaments. In addition to
the counterflow turbulence, the “nonstructured turbulence” is
generated by intensive sounds (both by the first and the second
sounds). The case of disordered vortex tangles also appears
after the quench due to the Kibble-Zurek mechanism, or
by the proliferation of vortices when approaching the critical
temperature.

Our goal now is to study the stochastic properties of
L(t), when vn fluctuates with a given spectral density
〈δvn(f )δvn(−f )〉 = f (f ). Furthermore, for simplicity, we
will study the pure counterflowing case in the sense that the net
flow is absent: j =ρnvn + ρsvs = 0. Then, the average value
L0V of the vortex line density in the counterflow is related to
a relative velocity vns = vn − vn by the usual relation

L0V = α2
V

β2
V

v2
ns = γ 2v2

ns . (3)

To take into account the fluctuations, we put

L =α2
V

β2
V

v2
ns + δL, vn = vn0 + δvn. (4)

From the net mass condition j = 0, the following relations
between the fluctuations of vs and vns and the fluctuations of
vn occur:

vs = vs0 − ρn

ρs

δvn, vns = vns0 + ρ

ρs

δvn. (5)

Substituting Eqs. (4) and (5) into the Vinen equation (2), we
arrive at

∂δL
∂t

= αV

ρ

ρs

L3/2
0V δvn − βV

1

2
L0V δL. (6)

Equation (6) shows that the evolution of the fluctuating
part of the vortex line density δL bears the relaxation-type
character with a characteristic time

τV = 2/(βVL0), (7)

and with a “force” proportional to δvn. In the Fourier
transform, Eq. (6) takes the form

i2πf δL(f ) = αV

ρ

ρs

L3/2
0 δvn(f ) − βV

1

2
L0δL(f ), (8)
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and therefore the spectrum 〈δL(f )δL(−f )〉 is

〈δL(f )δL(−f )〉 =
4(αV /βV )2

(
ρ

ρs

)2L0V 〈δvn(f )δvn(−f )〉
1 + (2πf τV )2

.

(9)

An equation of this type was previously obtained by Barenghi
et al.27 to test the Vinen equation with the use of the heater
fluctuations. It allows to express the spectrum of the VLD
〈δL(f )δL(−f )〉 via the spectrum of a normal velocity. We
will use it to study the response of the the VLD L(t) field to
the fluctuations of the normal component δvn(f ). To do this,
we will further apply the relationship k = 2πf/vn between
the wave number k and the frequency 2πf (vn is the mean
flow velocity). This is widely accepted in the theory of the
turbulence assumption, the so-called Taylor hypothesis (see,
e.g., the book by Frisch28).

Relation (9) shows that for small frequencies, 2πf <

1/τV , the spectrum of the VLD reproduces the spectrum of
fluctuations of the normal component, and if the Kolmogorov-
type turbulence is developed in the normal component, then
the quantity 〈δL(f )δL(−f )〉 scales as f −5/3. For larger
frequencies f , or for a larger relaxation time τV (which
takes place at lower temperatures), the decrease will be faster,
approaching an f −11/3 dependence.

III. HVBK CASE

We have already discussed that the most popular model of
quasiclassical turbulence in quantum fluids is the conception
of chaotic vortex bundles. It is believed that the quantum
turbulent flow consists of many bundles containing a large
number of threads within them. Even though the conception
of bundles is frequently used, too little is known about the
chaotic structure that is formed by them. It is not clear
what these bundles look like, how they fill the volume of
quantum fluids, and how they decay and appear. Recently,
several numerical studies have appeared where this structure
was observed,4–6,29–33 however, it is problematic to use these
results for quantitative studies. To date, the only purpose of
these bundles is that they mimic the stretching of the vortex,
a very important property of classical turbulence, which is
responsible for the energy cascade from the large scale to
the small scale. Therefore, to avoid all these difficulties, we
consider the case of a single vortex bundle that develops inside
the domain of concentrated normal-fluid vorticity. However,
because the vortex line density is an additive quantity, the
total effect from all the bundles, regardless of how they are
distributed in space, might reflect the features of individual
bundles.

The coarse-grained hydrodynamics of the vortex bundles
have been studied by many authors (see, e.g., Refs. 15–17
and 34), but the basis of these studies was the hydrodynamics
of rotating superfluids, or the HVBK model (see, e.g., Ref. 35).
The essence of the HVBK theory is that it does not consider
individual filaments, but deals with averaged (cross-grained)
motion, which takes into account the contribution from all
near-parallel quantized vortices composing vortex bundles.
In this case, the vorticity field ω(r,t) of this coarse-grained
superfluid motion is not zero (unlike the vortex-free motion,

or the Vinen counterflow case), but is expressed via a vortex
line density field L(r,t) with the use of Eq. (1).

In terms of HVBK dynamics, the vorticity field ω(r,t) obeys
the following equation (see Ref. 35),

∂ω

∂t
= ∇ × [vL × ω], (10)

where vL is the velocity of lines. In a comoving frame of
reference the quantity vL is

vL = α[ω̂×(vn − vs)]. (11)

Equation (10) describes the motion of vortex lines in the
transverse (with respect to the unit vector ω̂ along the vorticity)
direction, when the coarse-grained superfluid velocity vs

differs from the normal velocity vn. In the stationary case, the
coarse-grained superfluid velocity coincides with the normal
velocity in the bundle vs = vn, and the steady value L0b of the
vortex line density in the bundle is

L0b = |∇ × vn|/κ. (12)

Again, this equation is derived without fluctuations. To take
into account the latter, we use the linearization L = L0b + δL,
vn = vn0 + δvn into Eq. (10) and have

∂ω̂(L0b + δL)

∂t
= ∇ × [(vns + δvns)(L0b + δL)]. (13)

After a little algebra this equation is transformed to

∂ω̂(δL)

∂t
= αL0b∇ × δvns = αL0b(∇ × δvn − ∇ × δvs).

(14)

Consequently using HVBK theory, and assuming that Eq. (1)
relating the superfluid (coarse-grained) vorticity and number
of lines is also valid for disturbances δω (which is ∇ × δvs)
and δL, we rewrite the ω̂ component of Eq. (14) in the form

∂(δL)

∂t
= αL0b∇ × δvns = αL0b∇ × δvn − 1

τb

δL, (15)

where the relaxation time τb of the vortex lines population
inside the bundle is

τb = 1

αL0bκ
. (16)

Before moving further, we would like to make one comment
concerning the HVBK theory and relations (14)–(16). This
theory describes the redistribution of preexisting vortex lines in
the transverse direction [see Eq. (11)], while it does not include
a mechanism of the appearance of new lines. In Refs. 30
and 36–38 it was shown that the bundle structure of quantized
vortices develops inside the eddies of the normal component
due to the proliferation of vortex filaments. The mechanism
for this proliferation is quite involved. It is similar to the
development of the vortex tangle in an applied counterflow
with the growth of the number of lines due to reconnections,
and with the growth of length due to the relative velocity with
the subsequent polarization. This effect is not considered in
the HVBK approach and it is not included in Eqs. (14)–(16).
In the phenomenological HVBK approach this process can
be taken into account just by the proper enlarging of the
inverse relaxation time 1/τb. Indeed, analyzing the numerical
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results, Samuels36 observed the exponential-like saturation of
the vortex tube (of the normal component) with the superfluid
vortex filaments. He offered an expression for typical τb1 of this
saturation, which included the circulation of the vortex tube
(of normal component) and its size (for details, see Ref. 36).
The important fact is that quantity τb1 is proportional to 1/

√
α,

and thus it decreases with an increase of temperature.
In Fourier component equation (14) takes a form

−i2πf δL(ω) = iαL0b

ρ

ρs

k × δvns(f ) + 1

τb

δL(f ),

which leads to the following spectral density:

〈δL(f )δL(−f )〉 =
α2L2

0b

(
ρ

ρs

)2
τ 2
b k2〈δvn(f )δvn(−f )〉

1 + (2πf τb)2
.

(17)

Again, as in the case of the Vinen turbulence, the shape of the
spectrum depends on the value of 2πf τb.

For large τs , which implies a small coupling between the
normal and superfluid components and is realized for a low
temperature, the spectrum 〈δL(f )δL(−f )〉 is proportional
to 〈δvn(f )δvn(−f )〉. Thus, the spectrum 〈δL(f )δL(−f )〉 ∝
f −5/3 for Kolmogorov turbulence in the normal component. In
this case the result is similar to the previous (Vinen turbulence)
case, considered above. However, for small 2πf τs < 1,
which corresponds to a large temperature (strong coupling
due to the larger mutual friction), the spectrum behaves
as 〈δL(f )δL(−f )〉 is proportional to f 2〈δvn(f )δvn(−f )〉
(f 1/3 for Kolmogorov turbulence), and the intensity of this
spectrum is much lower. This result is in good qualitative
agreement with the numerical results.10

IV. DISCUSSION AND CONCLUSION

We studied analytically the spectrum of fluctuations of
the vortex line density, both in the counterflowing (Vinen)
turbulence and based on HVBK theory. In both cases, these
deviations of quantity δL(t) appear due to the strongly
fluctuating field of the normal velocity. Deviations of δL(t)
evolve in a relaxationlike manner, which is determined either
from the Vinen equation or from the HVBK equation. It allows
the determination of the Fourier transform and evaluation of
the spectra 〈δL(f )δL(−f )〉. The crucial difference between
these two cases is that the stirring force for L(t) in the
Vinen case is proportional to perturbations of the normal
velocity δvn(t), whereas for HVBK this force is related to
∇ × δvn(t). This difference results in different spectra and
their dependence on the temperature. Specifically, as the
temperature increases, the slope of the spectrum of the VLD
fluctuation 〈δL(f )δL(−f )〉 runs from 1/3 to −5/3 in the

HVBK model. In the Vinen equation model the interval of
the change of slope is from −5/3 to −11/3. The point of the
bending of the curve is determined by the inverse relaxation
time (either τV [Eq. (7)] or τb [Eq. (16)]) of the vortex structure.
This conclusion may serve as a basis for the experimental
determination of what kind of turbulence is realized in different
types of generation of the vortex tangle. Of course the same
result would be obtained by varying the frequency, but this
way is restricted by the presence of the inertial interval.

Let us consider the experiment by Roche et al.8 from
the point of view of relations (9) and (17). We will restrict
ourselves only by the scaling (power law) behavior of the
spectra as functions of frequency. The absolute values are
difficult to discuss because of uncertainties both in the
experiment and in the theoretical models. The authors of
Ref. 8 suggested that for the mean flow vn ≈ 1 m/s and
at T = 1.6 K, the value of the vortex line density is about
6 × 106 1/cm2. The difficult question concerns the value of
the coefficient βV , the point being that only the quantity
(αV /βV ) has been studied and determined and, separately, the
coefficients of the Vinen equation have been poorly studied.
The values proposed by Vinen in his pioneering work20 were
revised later by Schwarz,24 who concluded that both αV and
βV should be larger (by about a factor of 6). The latter result
was also confirmed in experiment by Stamm et al.39 Taking
the Vinen value βV = 0.0034 cm2/s we obtain that τV is
about 0.002 s (we took βV = 0.0034 cm2/s). Therefore, the
change of slope of the curve 〈δL(f )δL(−f )〉 as a function
of frequency f should happen at fc = 1/2πτV ≈ 160 Hz.
Adopting the Schwarz values, one can conclude that the
bending of the curve 〈δL(f )δL(−f )〉 (as a function of f )
occurs at fc ≈ 1000 Hz. Therefore, for the condition of
experiment,8 the spectrum VLD should have the −5/3 depen-
dence. Let us now explore the HVBK case. The inverse relax-
ation time 1/τb [Eq. (16)] for the experiment8 is about 600 s−1.
This implies for frequencies f (in Hz) exceeding ≈100 Hz the
slope of the curve 〈δL(f )δL(−f )〉 should be also −5/3.

The above speculations mean that experiment by Roche
et al.8 is not able to identify which scenario (chaotic vortex
tangle, or the bundle structure) is realized in the turbulent flow.
At the same time results obtained in the present work may serve
as a basis for the experimental determination of what kind of
turbulence is implemented in different types of generation.
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