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Magnetoresistance oscillations in superconducting strips: A Ginzburg-Landau study
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Within the time-dependent Ginzburg-Landau theory we study the dynamic properties of current-carrying
superconducting strips in the presence of a perpendicular magnetic field. We found pronounced voltage peaks as
a function of the magnetic field, the amplitude of which depends both on sample dimensions and external param-
eters. These voltage oscillations are a consequence of moving vortices, which undergo alternating static and dy-
namic phases. At higher fields or for high currents, the continuous motion of vortices is responsible for the mono-
tonic background on which the resistance oscillations due to the entry of additional vortices are superimposed.
Mechanisms for such vortex-assisted resistance oscillations are discussed. Qualitative changes in the magnetore-
sistance curves are observed in the presence of random defects, which affect the dynamics of vortices in the system.
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I. INTRODUCTION

Low-dimensional superconducting systems, such as
nanowires and nanoribbons, have recently received a revival
of interest due to their unusual properties, which are absent
in bulk superconductors. An example is the considerable
enhancement of the critical parameters1–5 due to condensate
confinement6–10 and quantum-size oscillations.1 Quantum-
size effects also modify the characteristic length scales,
leading to the formation of novel Andreev-type states.11

For practical implementation of these systems, the intrinsic
thermal12 and quantum13 fluctuations become very important,
as they bring the system into the resistive state well below the
superconducting transition temperature. Such fluctuations also
result in oscillatory behavior of the resistance as a function of
applied magnetic field in superconducting nanowires (see, e.g.,
Ref. 14), which are also very sensitive to imperfections in the
system and the shape of the samples.

Magnetoresistance oscillations have also been observed
in samples with transverse dimensions larger than the su-
perconducting coherence length ξ .15,16 One possible expla-
nation for such resistance oscillations is the formation of
effective multiconnected (ringlike) structures17 (due to, e.g.,
the nonuniform thickness of the sample), which may lead
to resistance oscillations similar to Little-Parks oscillations.18

However, nonperiodic behavior of the resistance oscillations
is usually observed in experiments.15,16 Similar nonmonotonic
behavior of the resistance is also a common feature of granular
superconductors19 originating from the screening currents
around phase-coherent loops of weakly linked superconduct-
ing grains. Such weak links can result in superconducting-
insulator transitions20 and consequently in large magnetoresis-
tance oscillations in a broad range of temperatures and mag-
netic fields.21 However, magnetoresistance anomalies have
also been reported in well-prepared, low-Tc superconductors,22

where the formation of such weak links is less favorable, in
part due to the larger ξ . In spite of the increased number
of theoretical and experimental works, the magnetoresistance
oscillations in such samples are not well understood.16

In their original paper, Anderson and Dayem23 proposed
an alternative explanation in which they assumed that the
resistance peaks are due to dissipation resulting from the
motion of vortices across the strip. Here, we present results
of numerical simulations, which also reveal that the magne-
toresistance oscillations originate from moving vortices. These
vortices undergo different static and dynamic phases, because
of the modification of the surface barrier for their entry and exit,
due to competing interactions between the applied current and
the Meissner currents. In addition, we found that the monotonic
background of the magnetoresistance curves at larger magnetic
fields is due to moving vortices.

The amplitude of the magnetoresistance oscillations be-
comes more pronounced in multiply connected supercon-
ductors (see, e.g., Refs. 6 and 24), which has mostly been
attributed to the Little-Parks effect,18 (i.e., the periodic
suppression of the superconducting critical temperature due
to fluxoid quantization).25 Recently the other mechanism for
the resistance oscillations in such systems have been proposed,
which is based on the motion of thermally excited26 or current-
induced27 superconducting vortices. These mechanisms are
shown to better account for the amplitude and the period of the
experimentally observed magnetoresistance oscillations. Our
numerical simulations predict that the resistance anomalies in
single connected superconducting samples can also originate
from the motion of such current-induced vortices.

II. THEORETICAL APPROACH

We consider a superconducting strip (with thickness d �
ξ,λ) in the presence of a uniform applied magnetic field H and
transport current I (see Fig. 1). To understand the dynamical
properties of the system we used the following time-dependent
Ginzburg-Landau (TDGL) equations:

u
∂ψ

∂t
= (∇ − iA)2ψ + (1 − |ψ |2)ψ, (1)

∂A
∂t

= Re[ψ∗(−i∇ − A)ψ] − κ2rot rotA. (2)
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FIG. 1. (Color online) The model system: a superconducting strip
(of width w, thickness d � λ,ξ , and periodically extended in the
y direction) in the presence of a dc current I and a perpendicular
magnetic field H .

Here distance is scaled to ξ , temperature is in units of the
critical temperature Tc, the vector potential A is in units of
�0/2πξ (where �0 is the quantum of magnetic flux), time
is in units of the GL relaxation time tGL = 4πλ2σn/c

2 (σn is
the normal state conductivity), and voltage is scaled to ϕ0 =
h̄/2etGL. The magnetic field is scaled with Hc2 = �0/2πξ 2

and the current density with j0 = σnh̄/2eξ tGL. The coefficient
u, which governs the relaxation of the order parameter ψ

(i.e., the ratio between relaxation times for the phase and the
amplitude of ψ) is chosen as u = 1, which is usually accepted
in the literature (see, e.g., Ref. 28) and leads to qualitatively
(and often quantitatively) good results.29 Simulations are done
for a GL parameter κ = 4. The above equations are solved
self-consistently using the semi-implicit Crank-Nicholson
algorithm30 with periodic boundary conditions in the y

direction [ψ(y) = ψ(y + L) and A(y) = A(y + L)] and
Neumann boundary conditions [(∇ − iA)ψ |x=0,w] in the x

direction. The transport current is introduced via the boundary
condition for the vector potential, rotA|z(x = 0,w) = H ± HI ,
where HI = 2πI/c is the magnetic field induced by the
current I . Note that in Eqs. (1) and (2) the screening of the
magnetic field is neglected, which is valid for extremely thin
superconductors or for samples infinite in the z direction.

III. VORTEX-MOTION-INDUCED
MAGNETORESISTANCE OSCILLATIONS

We study the response of our system to increasing magnetic
field for a constant external dc current, by constructing
time-averaged voltage vs magnetic field V (H ) and voltage
vs time V (t) characteristics of the sample. As a representative
example, we consider a superconducting strip with w = 4ξ ,
the time-averaged voltage vs magnetic field characteristics
[V (H )] of which are shown in Fig. 2 for different values of
the current. For small values of the applied current (not shown
here) the zero resistance of the sample is maintained before the
system goes into the resistive state with a finite voltage jump.
With increasing the applied current, a pronounced voltage peak
(with amplitude larger that 30% of the normal-state voltage) is
observed in the V (H ) curve (see solid black curve in Fig. 2).
Careful analysis of the simulation results shows that this
voltage signal originates from the motion of vortices across
the sample (see panel 2 in Fig. 2 and discussion of Fig. 3).
With further increasing I , both the amplitude and width of
the voltage signal increases (see dashed red and dotted blue
curves) due to the increased rate of the vortex nucleation and
crossing process (Fig. 2, panel 6). Moreover, an extra peak
appears in the V (H ) curve at smaller magnetic fields, which

FIG. 2. (Color online) (a) Time-averaged voltage V (in the units
of normal state voltage Vn) as a function of magnetic field H for
different values of the applied current I . Panels 1–6 show snapshots
of the Cooper-pair density at the field and current values indicated in
the V (H ) curves. Arrows in panels 2, 4, and 6 indicate the direction
of vortex motion. The width of the sample is w = 4ξ and the size of
the unit cell is L = 4ξ .

also results from the moving vortices (Fig. 2, panel 4). At larger
currents (dash-dotted green curve), a background voltage (i.e.,
characteristic for a resistive state) is observed on which the
magnetoresistance oscillations due to the individual entry of
additional vortices superimposed (Fig. 2, panel 6).

To obtain a better insight into the process leading to
the magnetoresistance oscillations, we plotted in Fig. 3(a)
the time evolution of the output voltage in the sample of
Fig. 2 for I/(j0w) = 0.01 and H = 0.53Hc2, together with
the snapshots of the Cooper-pair density at times indicated in
the V (t) curve. At this field the voltage oscillates periodically
in time with a global minimum corresponding to the Meissner
phase (see inset 1). With time, a vortex penetrates the sample

FIG. 3. (Color online) Voltage (in units of normal state voltage
Vn) vs time characteristics of the sample in Fig. 2 at I/(j0w) = 0.01
and H = 0.53Hc2 (a) and I/(j0w) = 0.012 and H = 0.83Hc2 (b).
Insets show snapshots of |ψ |2 at time intervals indicated on the V (t)
curve.
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(inset 2), leading to a local maximum in the voltage curve
(point 2). This vortex resides inside the sample for a short
time interval (inset 3), at which the voltage reaches a local
minimum (point 3). Later, it leaves the sample (inset 4) through
a maximum in the V (t) curve (point 4), and the system relaxes
to its initial state. Immediately after, a new vortex penetrates
the sample and the entire vortex entry-exit sequence repeats.
Thus, the finite voltage is due to the periodic entrance of
vortices. However, these vortices will be pinned inside the
sample by the surface barrier when the applied field is further
increased (see panel 5 in Fig. 2). For this value of the current
and the magnetic field range (H/Hc2 = 0.52−0.64) the
frequency of the voltage oscillations is in the range f (1/tGL) =
0.005−0.0155. For a sample made of Nb thin film [with the
normal-state resistivity ρN = 18.7 μ�cm, zero temperature
coherence length ξ (0) = 10 nm and the penetration depth
λ = 200 nm (see, e.g., Ref. 31)] the frequency of the voltage
oscillations is estimated to be in the f = 2.5 GHz–5.7 GHz
range.

The interplay of applied (j ) and screening (and circulation)
currents (js) turns out to be the reason that drives vortices
through such alternating static and dynamic phases. The
applied current j enhances the supercurrent js on one side
of the sample (i.e., the total current is jt = js + j ), while
suppressing js on the other side (jt = js − j ). This, in turn,
directly affects the barriers for vortex entry and exit, which are
indicated in Figs. 4(a) and 4(b), where we plotted the time
evolution of the free energy of the system for two values of the
applied magnetic field. When the total current jt reaches its
critical value32 the vortex nucleates at the edge of the sample
in spite of the finite energy barrier Fp [see filled circles in
Fig. 4(c)]. At that field the barrier for vortex expulsion Fe

on the opposite side of the sample is strongly suppressed [see
open circles in Fig. 4(c)]. As a consequence, the vortex is driven
across the sample resulting in a periodic voltage versus time
signal as shown in Fig. 3(a). With increasing the magnetic
field, the barrier for vortex exit increases [open circles in
Fig. 4(c)] and, consequently, the time interval over which the
vortex is present inside the sample t [see Figs. 4(a) and
4(b)] increases. With further increasing H , the vortex remains
trapped inside the sample and the output voltage becomes
zero. Such modulation of the barrier for vortex entry and exit
is observed for the transition between different vortex states
(see solid black curve and compare panels 1–3 in Fig. 2).

Thus, we conclude that the magnetoresistance peaks orig-
inate from the moving vortices in the system. Note however
that at higher driving current or for larger magnetic fields,
it is no longer possible to stabilize the stationary vortex
phase—vortices remain in motion, causing a background
voltage (characteristics of a resistive state) on which the
peaks for every additional vortex entry are superimposed (see
dash-dotted green curve in Fig. 2). For this case, we plotted
the time evolution of the output voltage together with the
evolution of the superconducting condensate in Fig. 3(b). For
these values of the external parameters, two rows of vortices
enter the sample alternately (see the insets) leading to periodic
oscillations of the V (t) curve. Thus, the resistance background
stems solely from continuous, dissipative vortex motion.

We would like to mention that similar resistance oscilla-
tions in singly connected mesoscopic superconductors as a

FIG. 4. (Color online) (a), (b) Time evolution of the free energy
(in units of F0 = H 2

c V0/8π with V0 being the unit cell volume) for
the same sample as in Fig. 2 for H = 0.53Hc2 (a) and H = 0.63Hc2

(b). Vertical arrows indicate the penetration Fp and expulsion Fe

barriers and horizontal arrow shows the time interval t over which
the vortex is present inside the sample. Insets show snapshots of |ψ |2
at the times indicated on the curves. (c) Time-averaged voltage (solid
curve, referred to the right axis, voltage is given in units of normal state
voltage Vn), Fp (filled circles) and Fe (open circles) as a function
of the magnetic field. The applied current is I/(j0w) = 0.01.

function of external parameters have been reported in previous
experiments (see, e.g., Refs. 9 and 22). Magnetoresistance
oscillations observed in Ref. 22 have been associated to
the formation of quantized vortices limited in size by the
confinement effects.22 Fine oscillations in the experiments by
Moshchalkov et al. in mesoscopic superconductors as a func-
tion of temperature have been related to quantum interference
processes, which results in the formation of superconducting
but non-current-carrying states in the system. Our numerical
simulations support the predictions of Anderson and Dayem23

that the voltage oscillations in finite width superconducting
strips originate from the alternating static and dynamic regimes
in the dynamics of superconducting vortices.

In what follows, we study the effect of the strip width w

on its transport properties. Figure 5 shows the time-averaged
voltage as a function of the flux (calculated over the unit cell
area) for different widths of the sample w and for the same
value of the applied current density. As one can see from
this figure, the size of the first voltage peak (corresponding
to one row of moving vortices, see inset 1) decreases with
increasing w (compare solid black and dashed red curves) and
eventually disappears starting from w > 8ξ . The entry of the
first row of vortices will not bring any resistance anomalies for
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FIG. 5. (Color online) Time-averaged voltage (in units of normal
state voltage Vn) as a function of flux � (calculated over the unit
cell area S = w × L) for different width of the sample. The applied
current density is j = 0.04j0.

wider samples (dashed blue curve), since the vortices will be
completely pinned inside the sample (Fig. 5, inset 3). This is
due to the bulk pinning, which comes into play with increasing
w. Note the displacement of the vortices due to the external
current (inset 3). One can observe more resistance peaks for
wider samples due to the formation of extra vortex rows (see
insets 4 and 5). However, the amplitude of those extra voltage
peaks will be suppressed and they are always superimposed
on the resistance background (see dotted blue and dash-dotted
green curves).

IV. EFFECT OF DISORDER

It is well known that the response of a superconductor to
external magnetic field is strongly affected by the disorder in
the system and by edge imperfections,33 which is inevitable
in real superconductors. For example, the critical field for the
penetration of vortices in type-II superconductors is strongly
reduced by introducing edge defects (see, e.g., Ref. 32),
resulting in qualitative changes in the magnetization curves
of the system.32 The disorder also results in multiple reentrant
transitions between the superconducting and normal states by
increasing the applied current (see, e.g., Ref. 17). Defects on
the mesoscopic scale can also result in magnetoresistance
oscillations similar to Little-Parks oscillations due to the
formation of effective multiconnected (ringlike) structures.

In this section we study the effect of edge imperfections and
inhomogeneities on the magnetic and dissipative properties
of superconducting strips. We include disorder as nonmag-
netic inclusions of size comparable to the superconducting
coherence length ξ with reduced transition temperature. These
weakly superconducting regions are described by spatially
changing the coefficient α in the Ginzburg-Landau free
energy expression.34 This modifies the last term of Eq. (1)
as (ν − |ψ |2)ψ ,35 where the spatially dependent parameter ν

is given by ν < 0 inside the defect and ν = 1 otherwise and
characterizes the attractive strength of the defect. As a typical
example, we consider a superconducting strip with width
w = 5ξ and length L = 15ξ with eight randomly generated
defects of radius r = 1ξ and pinning strength ν = 0.5 (the
location of the defects are indicated by white circles in panels
2–4 of Fig. 6). We consider the case when the defects are
present both at the sample surface and at the interior of
the sample. We would like to mention that, although the

FIG. 6. (Color online) Time-averaged voltage V (in units of
normal state voltage Vn) as a function of magnetic field H for
the sample with w = 5ξ and L = 15ξ without (a) and with eight
randomly generated defects of radius r = 0.5ξ (b) inside of which
the superconducting transition temperature is suppressed. Results are
shown for three different values of the applied current. Panels 1–4
show snapshots of |ψ |2 for current and magnetic field values indicated
on the V (t) curves. White circles in panels 2–4 indicate the positions
of the defects.

anisotropy parameter ν changes stepwise at the defect inter-
face, the order parameter changes smoothly at the interface
due to the proximity effect.36 Figure 6 shows the V (H ) curves
of the sample without (a) and with (b) the defects for three
different values of the applied current. The presence of the
defects changes the voltage curve of the sample considerably:
(i) voltage oscillations are observed at lower values of the
applied current [compare solid black curves in Figs. 6(a) and
6(b)] and magnetic field (dashed red curves); (ii) voltage peaks
become wider and their amplitude increases when defects are
present [compare dashed blue curves in Figs. 6(a) and 6(b)];
(iii) more voltage peaks are observed in the defective sample
before the monotonic background in the V (H ) curve is reached
(for the given parameter set we observed three voltage peaks);
and (iv) irregularities are observed in the voltage signal [dotted
blue curve in Fig. 6(b)].

It has been shown in previous theoretical studies (see, e.g.,
Ref. 32) that the modulation instability of the superconducting
order parameter occurs when the kinematic momentum (or
supervelocity) of the condensate reaches a threshold value at
the edge of the superconductor. This results in the formation
of a chain of vortices in the system (see panel 2 in Fig. 8).
However, this condition is reached near the surface defects (due
to crowding of the supercurrents near the defects)37 at magnetic
field values smaller than the one for the uniform sample. As a
consequence, vortices penetrate the sample through the surface
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FIG. 7. (Color online) Voltage vs time characteristics of the
sample of Fig. 6 without (dashed red curve) and with (solid black
curve) defects at I/(j0w) = 0.013 and H = 0.365Hc2. Panels 1–4
show snapshots of |ψ |2 at time intervals indicated on the V (t) curve.

defects (see panel 2 in Fig. 6) reducing the critical field for the
voltage oscillations. The expulsion barrier of the vortices is
also affected by the defects located near the other edge of the
sample, which results in a widening of the voltage peaks to
higher magnetic fields. As we will show in Fig. 7, for some
location of the defects an easy channel is formed for vortex
crossing across the sample. As the time-averaged voltage is
directly proportional to the net rate with which vortices cross
the strip, the latter explains the increased voltage peaks in
the presence of defects [Fig. 6(b)]. Once vortices are trapped
inside the sample, we need to increase the magnetic field
further to reach the condition for the penetration of extra
vortices. The defects reduce the penetration barrier and the
above condition is reached earlier. As a consequence, we
observe more voltage peaks in the V (H ) curve. We relate the
irregularities observed in the magnetoresistance curves [dotted
blue curve in Fig. 6(b)] to the randomness of the defects (see
white circles in panels 2–4 of Fig. 6). These results resemble
the nonperiodic behavior of the resistance oscillations usually
observed in experiments.15,16

To see the dynamics of vortices in the presence of defects
we plotted in Fig. 7 the voltage vs time characteristics of
the sample in Fig. 6 together with snapshots of the spatial
variation of the order parameter at times indicated on the
V (H ) curve. For the given values of the external parameters
[I/(j0w) = 0.013 and H = 0.365Hc2], the global minimum
in the voltage curve corresponds to two vortices trapped inside
the sample (Fig. 7, panel 1). Both of the vortices are pinned
by the defects. With time going on the vortex close to the
lower boundary leaves the sample (Fig. 7, panel 2), resulting
in a maximum in the V (t) curve (point 2). Thus, the next
minimum in the voltage curve corresponds to the state with
a single vortex pinned in the defect (Fig. 7, panel 3). Later,
another vortex enters the sample through the defect that is close
to the surface (panel 4) and it will be pinned in the same defect
as before (panel 1). This periodic process results in periodic
oscillations in the voltage signal across the sample. Note that
one vortex is always immobile due to the pinning and the

other vortices move through an “easy” channel formed by the
other defects, whereas in a defect free sample vortices oscillate
alternately [see Fig. 3(b)]. Formation of this channel results in
a considerable decrease of the period of voltage oscillations
(compare solid and dashed curves in Fig. 7) and explains the
increase of the voltage peaks in the time-averaged voltage vs
magnetic field characteristics of the system [see Fig. 6(b)].

Thus, the presence of defects results in qualitative changes
in the magnetoresistance curves of superconducting strips.
This is because of the influence of the defects to both static
(panel 4 in Fig. 6) and dynamic (panels 1–4 in Fig. 7) properties
of vortices. The resistance oscillations in a defective sample is
also due to the moving vortices.

V. EFFECT OF SUPERCONDUCTING
CURRENT CONTACTS

In most of the experiments, including the pioneering works
of Park and Mochel22 and the famous work of Anderson and
Dayem,23 a bridge geometry is used, where a superconducting
strip is connected to large superconducting leads. As was
shown in numerical simulations by Vodolazov et al.38 such
connecting regions can play a role of a “weak” point for the
nucleation of phase-slip centers at sufficiently large applied
currents. Generation of a local charge imbalance around
such phase-slip centers can results in strong nonlocal effects,
manifesting itself as, for example, local enhancement of the
resistance above the normal state value. Such pronounced volt-
age peaks near the superconducting transition temperature has
been reported previously in quasi-one-dimensional structures
with attached extra contacts (see, e.g., Ref. 7).

In what follows, we study the effect of such su-
perconducting contacts to our findings. For the system
shown in the inset of Fig. 8, we solved the follow-
ing TDGL equations:39 ( ∂

∂t
+ iϕ)ψ = (∇ − iA)2ψ + ψ −

|ψ |2ψ and ∂A
∂t

= Re [ψ∗(−i∇ − A)ψ] − κ2rot rotA, where
ϕ(x,y) = jx is the electric potential and j denotes the applied
current density. Assuming that the applied magnetic field
H is always perpendicular to the sample, we neglect the
formation of curved vortices in the z direction and carry out
the simulations on a two-dimensional (2D) space grid. To
characterize the vortex dynamics and phase transitions in the
system under applied current and magnetic field, we used the
time average of ∂|ψ |/∂t ≡ |ψ |t .

Figure 8 shows the magnetic field dependence of |ψ |t for
the sample with L = 32ξ and W = 4ξ for different values
of the applied current density j , together with the snapshots
of |ψ | for current and magnetic field values indicated on the
|ψ |t (H ) curves. For small values of the applied current (black
circles) the system is in the Meissner state until a critical
magnetic field is reached (see Fig. 8, panel 1), starting from
which a row of vortices penetrates the sample (Fig. 8, panel 2).
These vortices are pinned inside the sample and no dissipation
is observed (point 2). With further increasing H vortices
start moving (Fig. 8, panel 3) and form easy-flow channels
across the sample. The latter is clearly seen in the trajectories
of the vortices plotted in Fig. 8, panel 3′. At larger field
superconductivity is completely suppressed and the system
transits into the normal state (Fig 8, panel 4).
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FIG. 8. (Color online) The average |ψ |t vs applied magnetic
field for the sample with L = 32ξ and W = 4ξ for different current
densities j . The inset shows the system setup used for the simulations.
Panels 1–9 show snapshots of |ψ | for the current and field values
indicated in the main panel. Panels 3′ and 9′ show contour plots of
the time average of |ψ |t from which the trajectories of the moving
vortices can be clearly identified. The GL parameter is κ = 2.2.

With increasing applied current, the |ψ |t (H ) curve shows
a distinct double peak behavior (red squares). The peaks
together with the region |ψ |t (H ) = 0 between them are due to
the alternating phase transitions between the vortex flow and
pinning (normal) states that are tuned by the external field,
as we have discussed above. In the flux flow regime (point 5)
alternating entrance of vortices is observed (panel 5), which
is due to repulsive interactions between vortices in type-II
superconductors. In this particular case the number of vortices
inside the sample varies between three and four. With further
increasing H , all seven vortices will be pinned inside the sam-
ple (Fig. 8, panel 6) and no dissipation is observed (point 6).
At larger magnetic fields, irregular motion of vortices can
be observed (Fig. 8, panel 7). Thus, regardless of the sample
geometry (i.e., infinitely long strips or short samples connected
to bulk superconductors) resistance oscillations as a function
of magnetic field can be observed due to the moving vortices.

However, the effect of the superconducting leads becomes
more obvious at larger current values, at which the critical
magnetic field for the dissipation onset becomes weaker, as
shown by the blue triangles in the main panel of Fig. 8 for
j = 1.25. In this case, just before the transition to the highly
resistive state (point 8), although there are no vortices in the
sample (Fig. 8, panel 8), vortex motion near the electrodes has
a clear influence and leads to a nontrivial |ψ |t (H ) response.
With further increasing H , the vortices enter and leave the

FIG. 9. (Color online) Phase diagrams: |ψ |t versus the magnetic
field H and (a) the current density j for L = 32ξ and W = 4ξ ; (b) the
width W for fixed length L = 32ξ at j = 0.65; (c) the length L for
fixed width W = 4ξ at j = 0.65. Regions I–IV indicate four different
phases (see text for the description of different phases) separated by
the white dashed lines and the Arabic numbers in (c) indicate the
number of vortices pinned in the sample. The vertical red/dotted lines
highlight the upper critical magnetic field Hc2. H ∗

c1 and H ∗
c2 shows

the transitions from the Meissner state to the vortex state and from
the vortex state to the normal state, respectively.

sample row by row with fixed intervortex spacing (see Fig. 8,
panels 9 and 9′). Thus, a Bragg glass phase of vortex motion
can also be observed in our system.

Our findings are summarized in Fig. 9, where we con-
structed three phase diagrams showing the effect of the applied
current and sample dimensions to the transitions between
different superconducting phases with intrinsic properties.
These phases are: I, the Meissner state; II, vortex pinning
state; III, moving vortex phase; and IV, normal state. As
seen from Fig. 9(a), the peak response of |ψ |t (H ) (i.e., the
reentrant behavior of the phase III as a function of H) is
observed only for the relatively low magnetic fields and only
in a limited current region, which can be attributed to the
matching between the fields and the sample size. At the proper
field region, the number of vortices may not be exactly an
integer for the matching effect, but the vortex density in the
sample will ensure a favorable vortex spacing for the proper
vortex-vortex interaction, which results in a stable vortex flow
state. With increasing the applied current the two separate
vortex flow regions are gradually merged into a single one. As
expected, the critical magnetic fields for the transition between
the Meissner state and the vortex state H ∗

c1 and between
the superconducting state and the normal state H ∗

c2 decrease
gradually with increasing applied current.

As we have shown in Fig. 5, novel transport properties can
be obtained by increasing the width of the sample. Figure 9(b)
shows the detailed analysis of the effect of the sample width
on the transitions between different superconducting phases.
For narrow samples, the system transits to the phases I, III, and
IV with increasing the magnetic field. Clear alternating phase
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transitions between phase II (pinned vortices) and phase III
(moving vortices) occur only for intermediate values of the
sample width. For larger transverse dimensions, the system
crosses all four phases consecutively with increasing field.
However, the level of dissipation is not constant for fixed width
of the sample in the flux regime, as was discussed in Fig. 5.
The critical magnetic fields of the sample are also affected
by the width of the sample: H ∗

c1 decreases gradually with
W at small sample sizes, followed by a sharp decrease of
H ∗

c1 for wider samples. Whereas, the second critical field H ∗
c2

becomes almost independent of W after a certain critical width.
However, the magnetic field values for the alternating phase
transitions are almost independent on the length of the sample
L, as shown in Fig. 9(c). This is in spite of the fact that the
number of vortices present in the system increases with L

[see Arabic numerals in Fig. 9(c)]. Note that the broadening
of the region III for smaller L is due to the effect of the
superconducting leads (see the discussions of panel 8 of Fig. 8).

VI. CONCLUSION

In summary, we have readdressed the problem of mag-
netoresistance oscillations in superconducting samples with
transverse dimensions larger than the superconducting co-
herence length. We found that such oscillations result from
the nucleation, motion, and stabilization of superconducting

vortices due to the interplay of the driving current and the
persistent currents in the system. Our findings confirm the
predictions of Anderson and Dayem23 about the vortex-
assisted resistance oscillations in narrow superconducting
strips. Continuously moving vortices also contribute to the
background voltage signal on which the voltage peaks due
to the formation of extra rows of vortices are superimposed.
Magnetoresistance oscillations are sensitive to the external
parameters (e.g., the applied current), as well as to the
transverse dimensions of the sample because of the bulk
pinning, which becomes important for wider samples. Periodic
motion of superconducting vortices is strongly affected by the
disorder in the system, which results in qualitative changes in
the magnetoresistance curves of the system. However, even in
a defective sample resistance peaks are observed due to the
moving vortices.
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B 83, 104524 (2011); G. R. Berdiyorov, A. R. de C. Romaguera,
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