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Excitations of amorphous solid helium
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We present neutron scattering measurements of the dynamic structure factor S(Q,ω) of amorphous solid helium
confined in 47-Å pore diameter MCM-41 at pressure 48.6 bars. At low temperature T = 0.05 K, we observe
S(Q,ω) of the confined quantum amorphous solid plus the bulk polycrystalline solid between the MCM-41
powder grains. No liquidlike phonon-roton modes, other sharply defined modes at low energy (ω < 1.0 meV), or
modes unique to a quantum amorphous solid that might suggest superflow are observed. Rather, the S(Q,ω) of
confined amorphous and bulk polycrystalline solid appear to be very similar. At higher temperature (T > 1 K),
the amorphous solid in the MCM-41 pores melts to a liquid which has a broad S(Q,ω) peaked near w � 0,
characteristic of normal liquid 4He under pressure. Expressions for the S(Q,ω) of amorphous and polycrystalline
solid helium are presented and compared. In previous measurements of liquid 4He confined in MCM-41 at lower
pressure, the intensity in the liquid roton mode decreases with increasing pressure until the roton vanishes at the
solidification pressure (38 bars), consistent with no roton in the solid observed here.
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I. INTRODUCTION

The superfluid fraction of liquid 4He, both bulk and 4He in
porous media, is traditionally and most accurately measured in
a torsional oscillator (TO). Below a critical temperature Tc, the
TO frequency increases, indicating that a fraction of the helium
mass has decoupled and ceased to rotate with the TO. The
effect is denoted a nonclassical rotational inertia (NCRI) and
the decoupled fraction is identified as the superfluid fraction.

In 2004, Kim and Chan1,2 reported a similar NCRI in solid
4He, in both bulk solid1 and in solid 4He confined in Vycor.2

Remarkably, below a Tc� 200 mK, a small fraction of the
solid apparently decouples in a TO. The NCRI has now been
widely reproduced in other laboratories in a variety of sample
cells.3–9 However, the magnitude of the NCRI observed
varies between 0 and 1.5%, depending on how the sample is
prepared, quenched, or annealed, on the 3He concentration
and on other factors. This suggests that the NCRI is associated
with defects in the solid, dislocations, grain boundaries,
amorphous regions, or other defects.10–13 The magnitude and
character of the NCRI depends on the oscillator frequency7,8,14

and shows effects15–17 not usually associated with superflow.
For example, the NCRI is associated with substantial elastic
energy dissipation in the solid described by the Q of the
oscillator. Indeed, in some cases, the observed frequency
shift �f and the dissipation �Q can be quite well described
by the real and imaginary parts of a common dynamic
susceptibility15 as found in purely glassy systems.15–17

Day and Beamish18,19 and others20 have shown that the
shear modulus μ of solid helium increases at low temperature
with both a temperature dependence and a dependence on
3He concentration that tracks that of the observed NCRI. The
increase in μ is attributed to the stiffening of the solid as
dislocations become pinned by 3He at low temperature. A key
question is whether the �f can be entirely attributed to elastic
behavior or whether there is some remaining part that must
arise from other effects such as superflow.

Pursuing this question, Maris21 and Beamish and co-
workers22 have shown that in some TOs there is sufficient
solid helium in the torsional rod to explain the observed �f

completely in terms of elastic stiffening of the solid in the rod.
However, in many others it can not,22 and at least part of the
observed �f must have some other origin. Similarly, Choi and
co-workers,23,24 using a TO which includes dc rotation have
shown that the critical velocity depends on the dc velocity as
expected for genuine superflow. Thus, while the stiffening of
the shear modulus below Tc and elastic effects can account for
the �f and �Q in some cases, it can not account for �f in
all cases1,2,9,23,25 nor all effects.23,24,26

Path-integral Monte Carlo calculations predict that the
superfluid fraction and Bose-Einstein condensate fraction in
perfect crystalline solid helium are negligibly small.27–29

However, a finite and observable superfluid fraction and
condensate fraction is predicted28 in amorphous solid helium.
The first one to two layers of helium on rough porous media
walls are amorphous. Typically, the solid in porous media
grows from the amorphous layers inward toward the center of
the pores.30 In Vycor and aerogel, the tightly bound amorphous
layers give way to crystalline solid after a few layers so that the
solid in the interior of the pore is crystalline. However, if the
pore size is small enough, the solid is amorphous throughout
the pore, as predicted for classical solids.31 Specifically, in
47-Å pore diameter MCM-41 and 34-Å pore diameter gelsil,
we have shown32 that the entire solid is amorphous (no Bragg
peaks). Since superflow in amorphous solid 4He is predicted,
it is interesting to determine whether the amorphous solid
has any low-lying modes similar to the phonon-roton mode
of liquid 4He, that might suggest Bose-Einstein condensation
(BEC) and superflow, or whether it has vibrational modes
similar to those of a typical polycrystalline solid as observed in
classical amorphous solids.33–35 This is particularly interesting
since a low-energy mode in solid helium in aerogel has
recently been reported and identified as the origin of local
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superfluidity.36 In this context, we present measurements of the
dynamical structure factor (DSF) of amorphous solid helium.

II. EXPERIMENT

The experiment was performed at the Institut Laue-
Langevin on the time-of-flight spectrometer IN5. We used
an incident neutron wavelength of 5 Å, which provided a
spectrometer energy resolution of 85 μeV.

The sample cell was a cylindrical aluminum container with
an inner diameter of 15 mm and a height of 55 mm. The MCM-
41 powder sample occupied a volume of 7 cm3 corresponding
to a height of 40 mm in the cell. The upper part of the cell
containing bulk He was masked with cadmium. The cell was
mounted in a dilution refrigerator built at the ILL that has a
base temperature of 40 mK. The cell was filled at T = 3.8 K
and 80 bars, and the solid sample between the grains of the
MCM-41 was formed by the blocked capillary method.

In the present 47-Å pore diameter MCM-41 powder sample,
the ratio of the volume in the pores VP to that between the
grains VIG is32 VP /VIG = 0.44. Thus, approximately 30% of
the helium in the beam is in the pores, 70% between the grains.
In a 47-Å pore, approximately 30% of the volume in the pore
is occupied by the tightly bound amorphous solid layers on the
media walls. Thus, in the present MCM-41 sample at 1.6 K
when there is liquid in the pores, approximately 80% of
the helium in the cell is solid (between the grains and on
the pore walls) and only 20% is liquid (in the pores). For
this reason, the difference in the scattering intensity arising
from the solidification of the liquid to an amorphous solid
between 1.6 and 0.05 K is expected to be small, as observed in
Figs. 2 and 3.

III. RESULTS

To set the stage, we show the phase diagram of 4He confined
in 47-Å pore diameter MCM-41 (Refs. 32 and 40) and in 25-Å
mean pore diameter gelsil38,41,42 in Fig. 1. At low temperature
and pressure, liquid 4He is a superfluid in 25-Å gelsil and in
28-Å Folded Sheet Material (FSM), as shown by Yamamoto
et al.38 and Taniguchi et al.,37 respectively. In the superfluid
phase, the associated Bose-Einstein condensation (BEC) is
expected to be connected and continuous across the sample,
providing a continuous phase that enables macroscopic su-
perflow. At higher temperature above the superfluid phase
in porous media, the liquid forms a localized BEC (LBEC)
region in which the BEC is localized to islands. In the LBEC
region, the BEC is isolated in patches, is not extended, and
there is no macroscopic superflow across the sample.43,44 The
LBEC region lies between the superfluid and normal liquid
phases as shown in Fig 1. In 47-Å MCM-41 and 25-Å gelsil,
helium solidifies at pressures p � 38 bars. The liquid-solid
boundary in MCM-41 has been determined by cooling the
liquid and observing a small reproducible increase in the peak
height of the static structure factor S(Q) on solidification.32

In 25-Å gelsil, it has been determined from pressure drop on
solidification.41 No Bragg peaks were observed in the confined
solid,32 showing that the solid is amorphous with no crystalline
regions. In larger pore diameter media, for example in 70-Å

FIG. 1. (Color online) Phase diagram of liquid 4He in MCM-41
(47 Å), gelsil (25 Å), and FSM (28 Å). The superfluid (SF) phase in
FSM and in gelsil is at the lower left, the blue region. The green line is
the Tc of the SF phase in FSM observed by Taniguchi et al. (Ref. 37)
and red line the Tc in gelsil observed by Yamamoto et al. (Ref. 38).
The yellow region shows the localized Bose-Einstein condensation
(LBEC) region in gelsil. In the LBEC region, well-defined phonon-
roton modes are observed (Refs. 39 and 40), up to but not beyond the
pressures and temperatures indicated by the blue dashed line in gelsil
and MCM-41 which is taken as the upper limit of the LBEC region.
The red solid line is the freezing onset of 4He in gelsil measured by
Shirahama et al. (Ref. 41). The black solid and dashed lines show the
freezing onset of 4He in MCM-41 observed (Ref. 40) from the static
structure factor S(Q). The dashed red lines show the phase boundaries
in bulk 4He. The blue dots at p = 46.8 bars mark the temperatures at
which the present measurements were made.

gelsil45 and aerogel,46 polycrystalline solid 4He regions are
observed.

Figure 2 shows the net DSF of helium in the present sample
cell containing MCM-41 at pressure p = 48.6 bars. S(Q,ω)
at Q = 2.0 Å−1 and temperatures T = 0.05 and 1.6 K are
shown. At T = 0.05 K, we expect amorphous solid helium
in the MCM-41 pores and polycrystalline solid between the
grains of the MCM-41 powder. The inelastic scattering (ω > 0)
at T = 0.05 K is a sum of S(Q,ω) from the amorphous solid
(30% of the helium sample in the beam) and polycrystalline
solid (70% of the helium in the beam). At low ω, the intensity
in S(Q,ω) grows smoothly with ω as expected for scattering
from a polycrystal or an amorphous solid in which the density
of states g(ω) is approximately proportional to ω2 at low ω.
There is no indication of any low-energy roton modes or
any layer modes as seen in liquid helium in porous media.
The roton and layer modes of the liquid in MCM-41 are
observed39,40,47,48 at energies 0.5–0.6 meV and 0.4–0.5 meV at
34 bars, respectively. The DSF in Fig. 2 peaks at ω � 1.3 meV.
This is consistent with the peak in the density of states (DOS)
of phonons in bulk polycrystalline helium between the grains
observed previously.40,47,48 The large peak at ω = 0 is elastic
scattering S(Q,ω = 0) from the amorphous solid in the pores.
The elastic scattering from the polycrystalline solid is confined
to Bragg peaks and the Q in Fig. 2 has been selected to avoid
these Bragg peaks.

In Fig. 2, at T = 1.6 K there is new response at low ω

in S(Q,ω) not seen at T = 0.05 K. Also, at T = 1.6 K the
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FIG. 2. (Color online) Net S(Q,ω) at Q = 2.0 Å−1 of helium in
MCM-41 at pressure p = 48.6 bars at T = 0.05 K (amorphous solid
in the pores) and at T = 1.6 K (liquid in the pores). S(Q,ω) includes the
scattering from the bulk polycrystalline 4He lying between the grains
of the MCM-41. At T = 0.05 K, S(Q,ω) at low ω is approximately
proportional to ω2 characteristic of scattering from a solid. S(Q,ω)
has a peak at ω � 1.3 meV attributed chiefly to the polycrystalline
solid. At T = 1.6 K, there is liquid in the pores with amorphous solid
adjacent on the pore walls. S(Q,ω) at 1.6 K shows new intensity at
low ω characteristic of normal liquid 4He.

intensity in S(Q,ω) at higher ω (ω > 1 meV) is marginally
smaller. At Q = 2.0 Å−1, energy transfers ω > 1.5 meV are
not observable on IN5 at the present incident neutron energy
used. From the phase diagram Fig. 1, we see that the helium
in the interior of the MCM-41 pores is liquid at p = 48.6
bars and T = 1.6 K. The helium in the one-two helium
layers tightly bound to the MCM-41 walls remains amorphous
solid at T = 1.6 K and higher temperatures. Approximately
30% of the helium in the 47-Å MCM-41 pores is in the
tightly bound layers adjacent to the pore walls which remains
solid at T = 1.6 K. Thus, approximately 20% of the total
helium sample in the beam melts to liquid between T = 0.05
and 1.6 K.

The intensity in S(Q,ω) at low ω at T = 1.6 K is attributed
to the normal liquid 4He in the interior of the pores. This
S(Q,ω) is similar to that of bulk normal liquid 4He at 20
bars49,50 and of confined normal 4He in MCM-41 at 34 bars48

as we discuss further in the following. That is, S(Q,ω) is
concentrated near ω = 0 with a tail extending out to higher
ω, as in normal liquids.51,52 Particularly, there are no sharp
modes in S(Q,ω) at either 0.05 or 1.6 K characteristic of a
Bose-condensed liquid.48

Figure 3 shows S(ω) obtained by integrating S(Q,ω) over
a range of Q values,

S(ω) =
∫ Q2

Q1

dQS(Q,ω), (1)

between Q1 = 1.8 Å−1 and Q2 = 2.2 Å−1. The purpose of the
integration is chiefly to improve the statistical precision of the
data, especially at low ω. As in Fig. 2, the additional intensity
at low ω at T = 1.6 K is attributed to normal liquid 4He in
the interior of the pores. The blue line in Fig. 3 shows S(Q,ω)
of solid helium observed at T = 0.05 K (bulk polycrystalline
helium between the grains and amorphous solid helium in the
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FIG. 3. (Color online) The net S(Q,ω) as in Fig. 2 integrated over
Q between Q1 = 1.8 Å−1 and Q2 = 2.2 Å−1 as defined in Eq. (1).
The line labeled “Bose factor” is the data at T = 0.05 K multiplied
by the Bose factor [nB (ω) + 1 ] for temperature T = 1.6 K where
nB (ω) is the Bose function. The line displays the change in S(Q,ω)
between 0.05 and 1.6 K expected from thermal contributions alone.
At T = 1.6 K, thermal contributions to S(Q,ω) are still clearly small.

pores) multiplied by the Bose factor [nB(ω) + 1] where nB(ω)
is the Bose function for T = 1.6 K (0.15 meV). The blue line
represents the change in S(Q,ω) of the solid expected when
T is increased from 0.05 to 1.6 K if the energies and lifetimes
of the modes of the solid remain unchanged. Clearly, thermal
effects make only a minor contribution to the observed change
in S(Q,ω) between T = 0.05 and 1.6 K, even at low ω for
ω > 0. Thus, it is reasonable to attribute the observed large
change in S(Q,ω) at low ω to melting of the amorphous solid
in the interior of the pores to a liquid. As in Fig. 2, no sharp or
well-defined modes are observed in the integrated S(Q,ω).

In Figs. 2 and 3, the intensity in the energy range 0.6 <

ω < 1.5 meV is very similar at T = 0.05 K and at 1.6 K. It is
marginally smaller at 1.6 K than at 0.05 K, but has a similar
energy dependence. Thus, the S(Q,ω) in this energy range
arising from the amorphous solid (T = 0.05 K) and the liquid
(T = 1.6 K) in the interior of the pores appears to be similar
but with marginally larger intensity from the amorphous solid.

Figure 4 shows the S(ω) data arising from the amorphous
solid in the pores and the polyscrystalline solid between the
grains at T = 0.05 K summed over all detectors. The goal is
to show that there are no sharply defined modes at ω � 1 meV
at accessible Q values. Rather, S(ω) increases uniformly with
ω as expected for scattering from phonons in a polycrystalline
solid. The peak in the data summed over all detectors at 1.3
meV is broader than the peak in S(Q,ω) at Q = 2.0 Å−1

shown in Fig. 1. The peak at 1.3 meV is expected to arise
chiefly from the polycrystalline solid helium between the
grains. Solid helium is a highly anharmonic solid so that there
will be substantial anharmonic broadening in the observed
S(Q,ω) and S(ω). In Sec. IV, we compare S(Q,ω) and S(ω) of
anharmonic polycrystalline and amorphous solids and provide
explicit expressions for the S(ω) observed from each.

Figure 5 shows the difference between S(Q,ω) with normal
liquid 4He in the pores (at T = 1.2 and 1.6 K) and amorphous
solid in the pores at T = 0.05 K, the latter multiplied by the
thermal Bose factor for each temperature as discussed in Fig. 5.
This difference is interpreted as the net scattering from the
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FIG. 4. (Color online) The net S(ω) as defined in Eq. (1) and
shown in Fig. 3 for amorphous solid in the pores and polycrystalline
solid between the grains at T = 0.05 K summed over all detectors.
The sum over all detectors does not show any well-defined modes at
low ω � 1 meV, only an S(ω) expected from a density of phononlike
modes as given by the sum of Eq. (13) describing a polycrystalline
solid between the grains and Eq. (20) an amorphous solid in the pores.

normal liquid at low ω. At higher ω (ω � 0.8 meV), the S(Q,ω)
of the liquid and amorphous solids could be quite similar
and the net S(Q,ω) is not well determined. The net liquid
S(Q,ω) is a smooth function of ω as expected for normal 4He.
The S(Q,ω) also peaks near ω = 0 as observed in classical
liquids.51,52 In contrast, the S(Q,ω) of normal liquid 4He at
SVP (p ≈ 0) peaks at ω � 0.5 meV. Thus, normal 4He at
higher presssure responds much like a classical liquid. The
lines in Fig. 5 are fits of a damped harmonic oscillator (DHO)
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function

S1(Q,ω) = ZQ/π

1 − exp(−h̄ω/kBT )

×
[

4ωωQ�Q(
ω2 − [

ω2
Q + �2

Q

])2 + 4ω2�2
Q

]
, (2)

to the data with energy ωQ, width 2�Q, and intensity ZQ,
treated as free fitting parameters. The origin of the DHO is
discussed in the Appendixes of Refs. 49 and 53, and the DHO
is a standard fitting function in the literature.50 We found good
fits to the data for energies and widths in the DHO function
that were independent of temperature within precision (see
Fig. 6). Only the weight or intensity in the DHO increased
with increasing temperature between 0.8 and 1.4 K. The weight
(strictly the product ωQ�QZQ which fluctuates less than ZQ

alone since ωQ is nearly zero) is shown in the inset of Fig. 5.
The increase in intensity with temperature was attributed to
the increase in volume of liquid with temperature as the solid
melts. The intensity in the liquid S(Q,ω) reaches a maximum
at T = 1.4 K, which is interpreted as the temperature when
melting of the amorphous solid in the pores is complete. At
lower pressure,48 we also found the energy and width of the
normal liquid S(Q,ω) was independent of temperature over
the temperature range investigated (1.2 < T < 1.8 K). No
physical meaning is attributed to the energy or width in terms
of modes. The DHO is only a convenient representation of
S(Q,ω).

Figure 7 shows the net elastic scattering from the helium
in the sample cell at T = 0.05 and 1.6 K. The top frame of
Fig. 7 shows S(Q,ω) at Q = 2.2 Å−1 with the elastic peak at
ω = 0. The elastic peak in the top frame arises chiefly from the
amorphous solid helium in the pores or on the grain surfaces.
The elastic scattering from the polycrystalline solid between
the grains is confined chiefly to Bragg peaks which are not
seen at Q = 2.2 Å−1. At T = 0.05 K, the pores are full of
amorphous solid. At 1.6 K, there is amorphous helium in the
first one to two layers on the pore walls only, approximately
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FIG. 7. (Color online) The net elastic scattering from helium in
and between the grains of MCM-41 at T = 0.05 and 1.6 K. At
0.05 K, there is amorphous solid throughout the pores, at 1.6 K
on the pore walls only. Top: S(Q,ω) with elastic peak at ω = 0
attributed to the amorphous solid. Bottom: S(Q,ω = 0) vs Q with
lines through the amorphous component. Bragg peaks from the
bulk hcp polycrystalline solid between the grains can be seen in
S(Q,ω = 0) at Q = 2.02 Å−1 (1000), 2.15 Å−1 (0002), and 2.29 Å−1

(1011).

30% of the 4He in the pores. The elastic peak is clearly larger
at 0.05 K, indicating more amorphous solid than at 1.6 K.
However, the peak is only approximately 20% larger rather
than a factor of 2 to 3 as might be expected if only amorphous
solid contributes to the peak.

The bottom frame of Fig. 7 shows the elastic scattering
S(Q,ω) at ω = 0 as a function of Q. In this case, Bragg peaks
arising from the polycrystalline solid lying between the grains
are observed at Q = 2.02 and 2.28 Å−1. The blue and red lines
in Fig. 7 are guides to the eye through elastic scattering arising
from the amorphous solid at T = 0.05 and 1.6 K, respectively.
Again, the intensity from the amorphous solid is greater at
0.05 K when the pores are filled with amorphous solid than at
1.6 K when there is amorphous solid in one to two layers on
the pore walls only. The difference in intensity is comparable
to that shown in the top frame of Fig. 7.

Finally, in Fig. 8 we reproduce from Ref. 48 measurements
of S(Q,ω) at lower pressure where there is liquid 4He in the
MCM-41 pores at low temperature T = 0.4 K. In Fig. 8, we
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FIG. 8. (Color online) S(Q,ω) at Q = 2.1 Å−1 (the roton Q)
versus pressure at T = 0.4 K from liquid 4He in MCM-41 and bulk
solid helium between the grains (from Ref. 48). The intensity arising
from the roton of liquid 4He in MCM-41 decreases with increasing
pressure until at 37.8 bars there is little or no roton. There is no roton
at p = 45 bars. The energy of the phonon DOS of the solid increases
with increasing pressure.

observe elastic scattering from the amorphous solid layers in
the pores at ω = 0, as in the top half of Fig. 7 at p = 48.6
bars. The peak at ω = 0.6 meV is the roton mode of the Bose
condensed liquid at Q = 2.1 Å−1. The intensity in the roton
mode clearly decreases with increasing pressure until there is
only a very weak mode observed at p = 37.8 bars, which is
immediately below the solidification pressure. No roton mode
is observed at p � 45 bars. The decrease in intensity of the
phonon-roton modes in the liquid with increasing pressure
and disappearance of the mode at the solidification pressure p

� 38 bars is consistent with no low-energy, liquidlike mode
observed here in the amorphous solid at 48.6 bars. The broad
peak at higher energy ω = 1.0–1.3 meV in Fig. 8 is scattering
from the phonons of the polycrystalline solid lying between
the grains. The energy of the peak arising from the phonons
increases with increasing pressure as expected for phonons.
The broad peak at ω � 1.2 meV at p = 37.8 bars shown in
Fig. 8 is similar in shape to the peak in S(Q,ω) at ω � 1.3 meV
observed here at 48.6 bars, as seen in Figs. 1 and 4. In each case,
this peak is interpreted as arising chiefly from the phonons in
the hcp polycrystalline solid between the grains.

IV. DISCUSSION

A. Melting in confinement

Taniguichi and Susuki54 have recently reported measure-
ments of freezing and melting of helium in a 28-Å pore
diameter FSM which is quite similar to the present MCM-41.
They observe melting continuously over a wide temperature
range, quite different from melting of bulk helium, but freezing
over a narrower temperature range. In Fig. 5 above we
presented the DSF S(Q,ω) of normal liquid 4He in the present
MCM-41. Particularly, on warming, intensity in the liquid
S(Q,ω) is first observed at T = 0.9 K, the intensity grows
continuously until 1.5 K, and saturates to a constant value
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at 1.5 K (see inset of Fig. 5). We interpret this as onset of
melting at 0.9 K and melting complete at 1.5 K. This increase
in intensity of the liquid S(Q,ω) over a wide temperature
range is consistent with the continuous melting over a wide
temperature range observed by Taniguchi and Susuki. They
also observe a very small volume change on freezing, two
orders of magnitude below the bulk value. This suggests that
the molar volumes of the amorphous solid and liquid in FSM,
and probably in the present MCM-41, are nearly identical.

B. Modes in confined liquid 4He

In earlier measurements,39,40,47,48 we have observed the
DSF S(Q,ω) of liquid 4He in the present MCM-41 and in
25-Å diameter gelsil as a function of pressure and temperature.
Both phonon-roton (P-R) and layer modes are observed at
low temperature. The intensity in the roton decreases with
increasing pressure, as noted above, and with increasing
temperature. At p = 34 bars, for example, the intensity in the
roton disappears at T = 1.5 K and a roton is no longer observed
above this temperature. The solid circles, squares, and triangles
in Fig. 1 show the maximum temperatures and pressures
at which P-R modes are observed. At temperatures and
pressures above the dashed black line through the data points in
Fig. 1, well-defined P-R modes are no longer observed. Since
well-defined P-R modes exist when there is Bose-Einstein
condensation, the dashed black line is associated with the
temperature TBEC at which BEC disappears in liquid 4He
confined in these porous media. In 25-Å gelsil, TBEC lies above
TC for superflow as observed in a torsional oscillator.38 For this
reason, the temperature region TC < T < TBEC is identified as
a region of localized BEC with no superflow across the sample
as discussed at the beginning of Sec. III.

Equally interesting, the roton energy decreases with in-
creasing pressure, decreasing from � = 0.74 meV at saturated
vapor pressure (SVP) to approximately � = 0.55 meV at
37.8 bars.39,47 The energy of a single P-R mode can not
exceed twice the roton energy55,56 2�. If the single P-R mode
energy exceeds 2�, it has sufficient energy to spontaneously
decay to two rotons and the mode will be broadened and not
observable as a well-defined mode. Thus, at higher pressure,
a well-defined liquid P-R mode exists at low energy only, at
wave vectors in the phonon region and in the roton region only.
For example, at p � 38 bars (at solid pressures), a well-defined
P-R mode exists in the liquid at energies 2� � 1.1 meV only,
i.e., at wave vectors in the phonon region Q � 0.6 meV and in
the roton region 1.7 < Q < 2.4 Å−1 only. Thus, even if there
were trapped liquid in a solid at higher pressure, we would not
observe a complete liquid P-R mode.

In summary, our previous finding that the intensity in the
liquid roton mode decreases with increasing pressure and goes
to zero at p � 38 bars is consistent with the absence of a
mode at roton energies in the amorphous solid in the present
measurements.

C. Amorphous solid helium

In this section, we compare expressions for the dynamic
structure factor (DSF) S(Q,ω) of an anharmonic polycrys-
talline and an anharmonic amorphous solid. The goal is to

show that we expect the S(Q,ω) of solid helium in these
two structures to be very similar when S(Q,ω) is integrated
over a range of Q values as in Eq. (1). The integrated S(ω)
may be somewhat more sharply peaked as a function of ω

in a polycrystalline solid because of the coupling between
the scattering wave vector Q and the wave vector q of the
phonons in the polycrystalline solid. This coupling limits the
number of phonons that can contribute to S(ω) in a polycrystal.
However, because of (1) anharmonic effects which broaden the
phonons substantially, (2) the large vibrational displacements
of the atoms which make multimode contributions to S(Q,ω)
large, and (3) because we are considering polycrystals rather
than single crystals, we expect the difference to be small.
To illustrate, we write out the single-mode excitation term
S1(Q,ω) of S(Q,ω) for polycrystalline and amorphous solids
in the following. Higher-order terms are discussed in the
Appendix.

The total S(Q,ω) is the sum of an elastic scattering term
S0(Q) and a series of inelastic terms representing excitation of
single modes, two modes, interference between those modes
via anharmonic terms, and higher-order mode processes

S(Q,ω) = S0(Q,0) + S1(Q,ω) + SINT (Q,ω)

+ S2(Q,ω) + · · · . (3)

In a crystal of N atoms where there is periodic translational
symmetry, we express the vibrational displacements ul(t) of
the atoms l from their lattice points Rl as a superposition of
waves (phonons) in the crystal of well-defined wave vector
q and polarization index λ. With this expression, the product
[Q · ul(t)] that appears in the DSF [see Eqs. (A2) and (A6) in
the Appendix] is, for one atom per unit cell,

[Q · ul(t)] = 1√
N

∑
qλ

fqλe
iq·Rl [Q · εqλ]Aqλ(t). (4)

In Eq. (4) fqλ = (h̄/2mωqλ)1/2 where ωqλ is the frequency and
εqλ is the polarization vector of the wave and m is the atomic
mass. Aqλ(t) is the mode annihilation operator for the phonon
(q = 1 to N and λ = 1 to 3).

In randomly oriented polycrystals of solid helium, we
assume that, averaged over the polycrystals,

〈[Q · εqλ]2〉poly = 1
3Q2. (5)

We restrict ourselves here to positive ω and low temperature
h̄ω � kT so that the number of the thermally excited phonons
is small. In this case, using the substitution (4) and the
average (5), the one-phonon component of S(Q,ω) is

S1(Q,ω) = I1(Q)
1

3N

∑
qλ

A(qλ,ω)N�(Q − q − τ )

2πωqλ

(6)

in which I1(Q) is the one-phonon weight factor, I1(Q) =
d2(Q)(h̄Q2/2m), d2(Q) is the Debye-Waller factor, and
A(qλ,ω) is the one-phonon response function. In an anhar-
monic crystal such as solid helium, A(qλ,ω) has the form53,57

A(qλ,ω) = 8ω2
qλ�(qλ,ω)[ − ω2 + ω2

qλ + 2ωqλ�
]2 + [2ωqλ�]2

, (7)
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where � = �(qλ,ω) is the half-width of the phonon group and
� = �(qλ,ω) is a shift in the initial frequency ωqλ arising
from anharmonic effects. In solid helium, the ωqλ are typically
some positive anharmonic frequencies such as self-consistent
harmonic frequencies. The �(qλ,ω) is large so that A(qλ,ω)
is a broad function of ω, especially for phonons near the
Brillouin zone edges.58,59 In a harmonic limit in which � → 0,
the A(qλ,ω) reduces to

A(qλ,ω) = 2π [δ(ω − ωqλ) − δ(ω − ωqλ)]. (8)

For positive energies ω > 0, only the first term in A(qλ,ω) in
Eq. (8) contributes to S1(Q,ω).

At p = 48.6 bars, the one-phonon weight factor I1(Q) =
d2(Q)(h̄Q2/2m) has a broad peak at Q � 2.3 Å

−1
. Thus, for

polycrystalline solid helium, we expect S1(Q,ω) to be largest
at Q values where I1(Q) has its maximum and at energies
where ωqλ is small.

The phonon density of states (DOS) of a harmonic crystal
is defined as

g(ω) = 1

3N

∑
qλ

δ(ω − ωqλ), (9)

where the sum is over one complete Brillouin zone. The
S1(Q,ω) in Eq. (6) is proportional to a modified DOS

g̃C(ω) = 1

3N

∑
qλ

1

2πωqλ

A(qλ,ω) (10)

� 1

3N

∑
qλ

1

ωqλ

δ(ω − ωqλ), (11)

which is the usual DOS weighted by ω−1
qλ . The g̃C(ω) is the

modified DOS that is always observed in neutron scattering
measurements.60 Equation (10) is the general anharmonic
DOS that will be observed in S(Q,ω) of solid helium.
The second expression, Eq. (11), for g̃C(ω) holds only in
a harmonic approximation (HA). Finally, if we integrate
S1(Q,ω) over a range of Q values as in Eq. (1), we obtain

S1(ω) =
∫

dQS1(Q,ω) (12)

= [
(2π )3/


] ∫
dQ I1(Q)g̃C(ω)δ(Q − q − τ ), (13)

where we have used N�(Q) = [(2π )3/
]δ(Q) and
(
 = V/N ) is the volume of the unit cell. In Eqs. (6) and (13),
there is a coupling between Q and the phonon wave vector q

which means that certain values of q only will contribute to
S1(ω). A full DOS is not observed. In solid helium, A(qλ,ω) is
a broad function in ω, so that only an anharmonic DOS given
by Eq. (10), substantially broadened by anharmonic terms, is
observed. In Fig. 4, we show an S(ω) that is integrated over
a limited range of Q only. Thus, we expect the corresponding
S1(ω) to be more sharply localized in ω (representing selected
phonons) than the full modified DOS g̃C(ω) given by (10).

In an amorphous solid, the mean positions Rl do not have
periodic symmetry. We treat the amorphous solid as a large
molecule or as a solid that has a single large unit cell with all
N atoms in the unit cell.61 We express ul(t) as a superposition
of the normal modes of the molecule (numerated by λ, λ = 1

to 3N ) so that Eq. (4) becomes

[Q · ul(t)] = 1√
N

∑
λ

fλ [Q · ελl] Aλ(t). (14)

In this case, the polarization vectors ελl have an index l. We
assume that averaged over the N atoms in the amorphous solid
the polarization vectors fulfill

〈[Q · ελl]〉amor = Q√
3
. (15)

With this assumption, and restricting ourselves to positive ω

and low temperatures h̄ω � kT as before, S1(Q,ω) for an
amorphous solid reduces to

S1(Q,ω) = SM (Q)I1(Q)
1

3N

∑
λ

1

2πωλ

A(λ,ω)

= SM (Q)I1(Q)g̃A(ω), (16)

where SM (Q) = 1/N
∑

l,l
′ exp(−iQ · [Rl − Rl

′ ]) is a static
structure factor defined in terms of the mean positions Rl of
the atoms, I1(Q) = d2(Q)(h̄Q2/2m) is the one mode intensity
as before, A(λ,ω) is the one mode response function of the
form Eq. (7), and

g̃A(ω) = 1

3N

∑
λ

1

2πωλ

A(λ,ω) (17)

� 1

3N

∑
λ

1

ωλ

δ(ω − ωλ) (18)

is a modified DOS for the amorphous solid. In a HA, A(λ,ω)
reduces to a δ function and Eq. (18) becomes exact. The
corresponding S1(ω) integrated over a range of Q values is

S1(ω) =
∫

dQS1(Q,ω) (19)

= g̃A(ω)
∫

dQSM (Q)I1(Q). (20)

There are two important differences between S1(ω) for a
polycrystal [Eq. (13)] and S1(ω) for an amorphous solid
[Eq. (20)]. In the amorphous solid, we observe the modified
DOS gA(ω) directly in S1(Q,ω) unaffected by selection of
particular modes via a delta function. Also, in the amorphous
solid, S1(Q,ω) contains an additional factor of SM (Q), which
as I1(Q), peaks at Q � 2.3 Å

−1
, in solid 4He at p = 48.6

bars. Thus, we expect S1(Q,ω) in the amorphous solid to be
somewhat more sharply peaked in Q (at Q � 2.3 Å

−1
) than in

the polycrystal. If g̃C(ω) and g̃A(ω) are similar, we expect the
S1(ω) for a polycrystal to be somewhat more sharply peaked
in ω because of the delta function selection of q values in the
polycrystalline case. However, given that A(λ,ω) is itself a
broad function of ω, we expect the difference to be small.

In addition to the single mode S1(Q,ω), there are higher-
mode terms S2(Q,ω), S3(Q,ω) in (3) which are not negligible
in solid helium. The S2(Q,ω), which is discussed in the
Appendix, is proportional to I2(Q) = d2(Q)(h̄Q2/2m)2 and
has a broad maximum at somewhat higher Q values than
S1(Q,ω). It peaks in ω at higher ω than S1(Q,ω). The chief
effect of the higher-order terms is to further broaden S(Q,ω)
and to extend S(Q,ω) to higher ω.
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Also, quite generally, at higher ω we expect the S(Q,ω)
to be independent of phase (liquid or solid) and to become
quite similar in polycrystalline, amorphous and liquid helium.
Ultimately, the response at high ω arises from high-energy
interaction between pairs of atoms via the hard core of the
interatomic partial, which will be independent of structure and
similar in all three phases. This high-energy region begins
at energies greater than the collective mode (e.g., phonon)
energies. Thus, we expect S(ω) of amorphous and crystalline
4He to be similar at high ω as well as at lower ω from the
arguments above.

V. CONCLUSION

The dynamical response of amorphous solid helium
confined in MCM-41 at 48.6 bars as observed in the dynamical
structure factor S(Q,ω) is a smooth function of energy (ω)
characteristic of a solid that has a vibrational density of states
approximately proportional to ω2 at low ω. No sharp excitation
at low ω similar to the phonon-roton mode in Bose-condensed
liquid helium is observed. The S(Q,ω) of amorphous and bulk
polycrystalline solid helium are similar and broad at Q values
around 2 Å−1, as anticipated for a highly anharmonic solid.
Above T = 1 K, the amorphous solid melts to normal liquid
4He. The S(Q,ω) at Q � 2 Å−1 of the normal liquid at 48.6 bars
is a broad function that peaks near ω � 0 as in classical liquids,
rather than a broad function peaking at a finite ω (e.g., ω =
0.5 meV) as in (more quantum) normal liquid 4He at p � 0.
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APPENDIX

In this Appendix, we present some background on the
dynamic structure factor S(Q,ω) to support the expressions
given in Sec. IV B. We begin with the coherent, intermediate
scattering function

S(Q,t) = 1

N

∑
l,l

′
〈e−iQ·rl (t)eiQ·r

l
′ (0)〉 (A1)

≈ d2(Q)
1

N

∑
l,l

′
e−iQ·[Rl−R

l
′ ]e〈[Q·ul (t)][Q·u

l
′ (0)]〉, (A2)

in which rl(t) = Rl + ul(t) where Rl is the mean position of
atom l (lattice vector in a crystal) and ul(t) is the displacement
of the atom from Rl at time t , Q is the wave-vector transfer
in the scattering and d2(Q) is the Debye-Waller factor
d2(Q) = exp[−Q2〈u2〉/3] in a cubic crystal. We consider
one atom per unit cell and cubic symmetry for simplicity.
Equation (A2) omits the anharmonic interference terms. The
corresponding DSF is

S(Q,ω) = 1

2π

∫
dt eiωtS(Q,t). (A3)

To generate the series Eq. (3), we expand the second
exponential in Eq. (A2) in a power series in 〈[Q · ul(t)][Q ·

ul
′ (0)]〉n in the usual way.53,60 The zero-order term (n = 0)

is the elastic term. For a crystal in which the Rl has periodic
order, the corresponding elastic DSF is

S0(Q,ω) = d2(Q)
1

N

∑
l,l

′
e−iQ·[Rl−R

l
′ ]δ(ω)

= d2(Q)N�(Q − τ )δ(ω). (A4)

The intensity in S0(Q,ω) is confined to Bragg peaks at the
reciprocal lattice vectors τ . In the present measurements
involving bulk polycrystalline solid lying between the grains
of the MCM-41, we generally chose wave vectors Q to avoid
the Bragg peaks. In this way, elastic scattering from the
polycrystalline solid is not observed. Above 1 K, this is not
always easy since above 1 K the polycrystals are continually
recrystallizing32,62 and a Bragg peak may appear during a
measurement.

For an amorphous solid, where the mean positions Rl of
the atoms do not have periodic order,

S0(Q,ω) = d2(Q)
1

N

∑
l,l

′
e−iQ·(Rl−R

l
′ )δ(ω)

= d2(Q)SM (Q)δ(ω), (A5)

where SM (Q) is a static structure factor defined by the mean
positions Rl of the atoms. The elastic SM (Q) is not the same as
the static structure factor S(Q). We have found that the S(Q)
of the amorphous solid is somewhat more sharply peaked in
the peak region than that of the liquid, but otherwise the S(Q)
of the liquid and amorphous solid are very similar.32

The inelastic scattering in which the neutron creates or
annihilates a single mode arises from the term proportional to
〈[Q · ul(t)][Q · ul

′ (0)]〉 (n = 1) in the expansion of Eq. (A2).
The corresponding intermediate DSF is

S1(Q,t) = d2(Q)
1

N

∑
l,l

′
eiQ·[Rl−R

l
′ ]〈[Q · ul(t)][Q · ul

′ (0)]〉.

(A6)

For a crystal, we expand [Q · ul] in Eq. (A6) in terms of phonon
modes as in Eq. (4). The single-mode term of S(Q,ω) for a
crystal is then

S1(Q,ω) = 1

2π
[nB(ω) + 1]d2(Q)

1

N

∑
qλ

f 2
qλ[Q · εqλ]2

×A(qλ,ω)N�(Q − q − τ ), (A7)

where A(qλ,ω) is the one-phonon response function given by
Eq. (7) in general and by Eq. (8) for a harmonic crystal. Making
the assumption Eq. (5) for a polycrystal and in the limit of low
temperatures where nB(ω) may be neglected, Eq. (A7) reduces
to Eq. (9).

For an amorphous solid, we expand the [Q · ul] in terms of
the modes λ of the molecule given by Eq. (14). The resulting
S1(Q,ω) for an amorphous solid is

S1(Q,ω) = 1

2π
[nB(ω) + 1]d2(Q)

∑
l,l

′
eiQ·(Rl−R

l
′ )

× 1

N

∑
λ

f 2
λ [Q · ελl][Q · ελl

′ ]A(λ,ω). (A8)
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With the assumption Eq. (16) for the [Q · ελl] and neglecting
nB(ω), Eq. (A8) reduces to Eq. (17) for amorphous solids. As
discussed in Sec. IV B, the coherent S1(Q,ω) of an amorphous
solid is directly proportional to the DOS g̃A(ω) that would
be observed in the incoherent DSF. There is no well-defined
wave vector q and therefore no coupling between q and Q as
there is in the crystalline case. For an anharmonic solid, we
expect S1(ω) in the crystalline and amorphous phases to both
be substantially broadened by anharmonic effects, which will
make the two quite similar.

The two-phonon term S2(Q,ω) is the term propor-
tional to 〈[Q · ul

′ (t)][Q · ul
′ (0)]〉2 in the expansion of

Eq. (A2). Substituting the expansion Eq. (4) in this term,
we obtain

S2(Q,ω)

= d2(Q)
1

2π
[nB(ω) + 1]

1

2N

∑
q1,λ

∑
q2,λ

f 2
2 f 2

1

× [Q · ε1]2[Q · ε2]2�(Q − q1 − q2 − τ )A2(12,ω),

(A9)

where

[nB(ω) + 1]A2(12,ω) =
∫ ∞

−∞

dω′

2π
[nB(ω′) + 1]A(1,ω′)

× [nB(ω − ω′) + 1]A(2,ω − ω′)
(A10)

and where 1 = q1λ1 and 2 = q2λ2. For a polycrystalline
sample in which Eq. (5) is assumed to hold and in which
the temperature is low, S2(Q,ω) reduces to

S2(Q,ω) = d2(Q)

(
h̄Q2

2M

)2
1

2

(
1

3N

)2 ∑
q1λ1q2λ2

1

2πω1ω2

×A(12,ω)N�(Q − q1 − q2 − τ ), (A11)

where

A(12,ω) =
∫

dω′

2π
A(1,ω′)A(2,ω − ω′). (A12)

Since A(qλ,ω) is a broad function, the A(12,ω) will be an even
broader function since A(12,ω) is a convolution. S2(Q,ω) is
significant in solid helium and contributes to S(Q,ω) at higher
ω. When S2(Q,ω) is significant, we expect S(ω) given by (1)
to be even more similar for amorphous and crystalline solids,
especially at higher ω.
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