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Low-energy effective theory and two distinct critical phases in a spin-1
2 frustrated three-leg spin tube
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Motivated by the crystal structures of [(CuCl2tachH)3Cl]Cl2 and Ca3Co2O6, we develop a low-energy effective
theory using the bosonization technique for a spin- 1

2 frustrated three-leg spin tube with trigonal prism units in
two limit cases. The features obtained with the effective theory are numerically elucidated by the density matrix
renormalization group method. Three different quantum phases in the ground state of the system, say, one gapped
dimerized phase and two distinct gapless phases, are identified, where the two gapless phases are found to
have the conformal central charge c = 1 and 3

2 , respectively. Spin gaps, spin and dimer correlation functions,
and the entanglement entropy are obtained. In particular, it is disclosed that the critical phase with c = 3

2 is the
consequence of spin frustrations, which might belong to the SU(2)k=2 Wess-Zumino-Witten-Novikov universality
class, and is induced by the twist term in the bosonized Hamiltonian density.
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I. INTRODUCTION

With the discovery of several spin tube materials, such
as [(CuCl2tachH)3Cl]Cl2 (Ref. 1), Na2V3O7 (Ref. 2), and
Cu2Cl4· D8C4SO2 (Ref. 3), and so on, much effort has been
made to investigate the low-lying excitations,4–9 long-range
order,10,11 phase transitions,5,12 magnetization plateau,13–15

and other ground-state properties of spin tubes due to the
interchain frustrated couplings. A spin tube, geometrically, can
be seen as a multileg spin ladder with periodic condition along
the rung direction (see Fig. 1 for the case of three-leg ladders).
Therefore, the antiferromagnetic (AF) interchain couplings
in the odd-leg spin tubes usually give rise to geometrical frus-
trations. For the typical spin tubes4–6 [Fig. 1(a)], the excitation
is gapped when the interchain couplings are identical, and
becomes gapless when the interactions are different to some
certain extent from each other. The opening and closing of
the gap correspond to a dimerized phase and a critical phase
with central charge c = 1, respectively. Recently, a few new
spin tubes with more complex interchain couplings7,12,15,16

[Figs. 1(b) and 1(c)] have attracted much attention, in which
frustrated interchain couplings could generate twist terms that
may lead to unknown quantum phases in the ground state of
the system. The twist operator is first found in the effective
low-energy model of a zigzag spin ladder17 owing to the
frustrated interchain couplings. This parity-breaking operator
is marginal in the renormalization group (RG) sense and has
a conformal spin 1.18 Currently, the twist operator is believed
to be the origin of incommensurate correlations in XXZ

zigzag spin ladders.17,19–22 For an isotropic zigzag spin ladder,
the twist operator is proposed to cause dimerization17 in the
ferromagnetic interchain coupling region. However, what role
this operator plays in a spin tube is still unclear, which needs
further study.

In this work, by means of the bosonization technique and
the density matrix renormalization group (DMRG) method
we shall study a frustrated three-leg spin tube comprised of
trigonal prism units, which derives from the crystal structures
of [(CuCl2tachH)3Cl]Cl2 (Ref. 1) and Ca3Co2O6 (Ref. 16), as

shown in Fig. 2(a), where the AF couplings J2 and J3 form
helical paths along the tube direction. Such a spin tube can be
transformed to an equivalent spin ladder, as shown in Fig. 2(b).
Owing to the complex zigzag-like interchain couplings, the
twist operator in the bosonized Hamiltonian should depend on
both J2 and J3, where we take the coupling J1 as an energy
scale. Consequently, we only need to adjust J2 and J3 to study
the effect of the twist term on the properties in the ground
state. For the sake of simplicity, we consider the case of spin
S = 1

2 . Interestingly, we showed that a new critical phase with
central charge c = 3

2 appears in this system, which is found
in spin tubes for the first time and reveals a novel physical
effect of the twist operator. In addition, one dimer phase and
one conventional critical phase with central charge c = 1 due
to the competition of the AF couplings J2 and J3 are also
identified in the ground state.

II. BOSONIZATION AND LOW-ENERGY
EFFECTIVE THEORY

The Hamiltonian of the present spin tube could be written
as

H =
L/3∑
i=1

[J1(S3i−2 · S3i+1 + S3i−1 · S3i+2 + S3i · S3i+3)

+ J2(S3i−1 · S3i+1 + S3i · S3i+1 + S3i · S3i+2)

+ J3(S3i−2 · S3i−1 + S3i−1 · S3i + S3i−3 · S3i+1)], (1)

where Sj is the spin operator on the jth site, L is the total
number of sites, and J1, J2, J3 > 0 are all AF couplings. In
what follows we consider the two limit cases: (i) J2 � J3,J1,
and (ii) J3 � J2,J1. In the following DMRG calculations J1 is
set to be unity for simplicity.

A. J2 � J3,J1

This case is quite simple. From Fig. 2, one may note that the
system can be regarded as a single spin chain with next-nearest
and next-next-nearest neighbor interactions. The Hamiltonian
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FIG. 1. Spin ladders and its corresponding spin tubes (the ladder
with periodical condition along the rung direction). (a) shows the
standard spin ladder and the typical spin tube. (b) and (c) are the
ladders with next-nearest couplings and the spin tubes generated by
them.

can be written as

H = J2

∑
i

Si · Si+1 + J3

∑
i

Si · Si+2 + J1

∑
i

Si · Si+3,

(2)

where the last two terms can be viewed as perturbations.
Following the standard bosonization techniques,23 in the
continuum limit, the Hamiltonian density of Eq. (2) can be
written as

H = H0 + HJJ , (3)

H0 = 2πvs

3
(: JL · JL : + : JR · JR :), (4)

HJJ = gJL · JR, (5)

g = 2J3 + 4J1 − Jc, (6)

where JL,R are the left or right moving SU(2) current operators
representing the smooth magnetization part of spin density
operators,24 vs ∼ J2a0 is the spin velocity with a0 the lattice
constant, and Jc >0. Obviously, Eq. (3) has the same form as
the Hamiltonian density for a zigzag spin ladder20 except for
the coefficient g of the HJJ term. When g > 0, the system is
in the dimer phase with an energy gap

� � exp

(
−const

g

)
. (7)

J1

J3

J2

(a)

(b)

J1

J2

J3

FIG. 2. (Color online) (a) The structure of the frustrated three-leg
spin tube under investigation. The circles (purple) indicate the sites
with spin S = 1

2 . The antiferromagnetic couplings J2 and J3 are
presented by the dashed line (blue) and dotted line (red), respectively.
The solid line (black) indicates the AF interaction along the leg
direction. (b) shows the equivalent spin ladder structure transformed
from (a) by setting J3 bonds as legs.

It is worth mentioning here that this gap could also survive even
for J1 � J2,J3, in which the system can be seen as the three
free spin chains with intrachain couplings J1 perturbed by the
relevant perturbations generated by the interchain couplings J2

and J3, as in the case of spin ladders.24–26 Therefore, this case
as well falls into the gapped phase. At last, when g < 0 it is in
the Luttinger liquid phase with central charge c = 1. The phase
transition between the two phases is of a Kosterlitz-Thouless
transition.5,24

B. J3 � J2,J1

This case is very interesting. In this situation, the model can
be reshaped into a spin ladder structure as shown in Fig. 2(b).
By treating all interchain couplings as perturbations, after
the bosonization procedure, the corresponding Hamiltonian
density can be written as

H = H0 + HLR + HJJ + Htwist, (8)

H0 = 2πvs

3

∑
j=1,2

(: Jj,L · Jj,L : + : Jj,R · Jj,R :), (9)

HLR = gLR(J1,L · J1,R + J2,L · J2,R), (10)

HJJ = 2(J1 + J2)(J1,L + J1,R) · (J2,L + J2,R), (11)

Htwist = −3J1 − J2

2
(n1∂xn2 − n2∂xn1), (12)

where ni is the staggered part of the spin density operator
with the subscript i the leg index, spin velocity vs ∼ J3a0, and
Jj,L,R is the left or right current operator of the j th leg. The
coefficient gLR ∝ −J3, and HLR , HJJ and Htwist are marginal
perturbations with scaling dimension d = 1 (Ref. 17). Htwist

is the twist term that is produced by the frustrated inter-chain
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interactions. As pointed out in Refs. 17 and 19, it arouses a
spin nematic phase in the ground state of the XXZ zigzag spin
ladder. Its effect on an isotropic Heisenberg model is still not
very clear and needs further investigations.

In fact, this present case provides a convenient way to
study the effect of the twist term on an isotropic Heisenberg
system since the coefficient of Htwist could be adjusted by
regulating the value of J2. To look at the effect of a group of
marginal operators, we resort to solving the renormalization
group equations17,25 numerically.

First, following the procedure of Refs. 17, 24, and 26, we
can rewrite HLR , HJJ , and Htwist using Majorana fermions
ζ

0,1,2,3
L,R as

Hpert = a1
(
ζ 0
Rζ 1

Lζ 2
Lζ 3

L + ζ 0
Lζ 1

Rζ 2
Rζ 3

R

)
+ a2

(
ζ 0
Rζ 1

Rζ 2
Rζ 3

L + ζ 0
Lζ 0

Lζ 0
Lζ 0

R

)
+ a3

(
ζ 0
Rζ 1

Rζ 2
Lζ 3

R + ζ 0
Rζ 1

Lζ 2
Rζ 3

R

+ ζ 0
Lζ 1

Lζ 2
Rζ 3

L + ζ 0
Lζ 1

Rζ 2
Lζ 3

L

)
+ b1

(
ζ 0
Rζ 0

Lζ 1
Rζ 1

L + ζ 0
Rζ 0

Lζ 2
Rζ 2

L + ζ 0
Rζ 0

Lζ 3
Rζ 3

L

)
+ b2

(
ζ 1
Rζ 1

Lζ 2
Rζ 2

L + ζ 1
Rζ 1

Lζ 3
Rζ 3

L + ζ 2
Rζ 2

Lζ 3
Rζ 3

L

)
, (13)

where a1 = − 1
3a2 = 1

3a3 = γ (− 3J1−J2
2 ), γ is a nonzero con-

stant, and b1 = − gLR

2 − J1 − J2, b2 = − gLR

2 + J1 + J2. The
terms with the coefficient ai stem from Htwist and bi from
both HLR and HJJ .

Next, we set J2 < 3J1 to keep the coefficient of Htwist

negative that cannot be achieved in a usual zigzag Heisenberg
spin ladder. Afterwards, choosing the initial values of ai and
bi in the range where J3 � J2,J1, we obtain a new solution
of the renormalization group equations17 as shown in Fig. 3,
where the RG flows corresponding to Htwist go to the strong
coupling regime first, which suggests a new phase may come
into being. Recall that for a two-leg zigzag spin ladder, the RG
flows corresponding to HJJ go to the strong coupling regime
first. In the following we shall examine numerically the results
from the low-energy effective theory.

FIG. 3. (Color online) The renormalization group (RG) flows for
the three-leg frustrated spin tube under interest with J3 � J2. The
variable b± = b2±b1

2 is the same as the definition of Ref. 17. The inset
is the enlarged part where the RG flows to the strong coupling limit
can be seen clearly. ξ is the logarithmic variable in the renormalization
group equations.

III. SPIN GAP, CORRELATIONS, AND
ENTANGLEMENT ENTROPY

To substantiate the above bosonization analysis we use
the DMRG method27 to numerically calculate the spin gap,
spin-spin, and dimer-dimer correlation functions, as well as
entanglement entropy of the model. In the calculations, up to
8000 optimal states are kept, and the truncation errors are of
10−12 for the ground state and 10−7 for the excited states.

A. Spin gap

Figure 4(a) is the coupling dependence of the finite-size
spin gap at L = 180 obtained in open boundary conditions
(OBCs). With increasing J3 for any J2, the spin gap has two
areas with tiny values relatively, between which there is a
raised region of the spin gap. In Fig. 4(b), the J3 dependence

0
2

4 0

2

4

6

0

1

2

J
3

(a) Spin gap at L=180 in OBCs

J
2

ga
p c=3/2

gapped

c=1

FIG. 4. (Color online) (a) Coupling dependence of the spin gap at
L = 180 obtained with OBCs. (b) J3 dependence of the spin gap for
J2 = 0.5 and 2.0. Finite-size scaling of spin gap for (c) the gapless
and (d) the gapped phases.
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of the spin gap at J2 = 2.0 is shown, where the spin gaps
increase to the maximum value in the raised region and
decrease slowly with growing J3, while those in other regions
diminish fast, probably suggesting a gapped spin excitation in
the middle region and a gapless excitation in other regimes.
As shown in Figs. 4(c) and 4(d), the spin gaps away from
the raised region extrapolate to zero, while those within the
raised region go to finite values in the thermodynamic limit,
therefore indicating two gapless and one gapped phases. These
results are also in accordance with our previous bosonization
analysis that the system will be in the gapless phase for
J2 � J3, J1 and J2, J1 � J3, and is gapped in other parameter
regimes.

B. Spin-spin and dimer-dimer correlation functions

The spin- 1
2 one-dimensional (1D) gapless spin systems

usually preserve the translation symmetry and have the
spin correlations with power-law decay, while the gapped
ones should break the translation symmetry and have spin
correlations of exponential decay. Figure 5(a) presents the
spin correlation function |〈S0 · S3r〉| in different phases. For
J2 = 2.0, J3 = 0.2, and J2 = 2.0, J3 = 6.0, which are in the
two gapless phases, |〈S0 · S3r〉| decays with a power law, while
at J2 = J3 = 2.0 that is in the gapped phase, |〈S0 · S3r〉| has
an exponential decay with a short correlation length ξ � 2.7.
The breaking of translational symmetry is usually detected
by the dimer-dimer correlation function D(i,j ),(k,l) = 〈(Si · Sj )
(Sk · Sl)〉 − 〈Si · Sj 〉〈Sk · Sl〉. In Fig. 5(b), |D(0,3),(3r,3r+3)| is
shown for the three phases. In both gapless phases, the dimer
correlations decay with a power law, which is consistent
with the preserved translation symmetry and gapless spin
excitations. In the gapped phase, the dimer correlation builds
a long-range order (LRO).

C. Entanglement entropy

To distinguish the two gapless phases,28 we calculated
the central charge c from the block entanglement entropy
of the system Sl = −Trρl ln ρl , where ρl is the reduced
density matrix of a subsystem of size l. For a gapless system

FIG. 5. (Color online) (a) The spatial dependence of the spin-spin
correlation function 〈S0 · S3r〉 in the three phases. For J3 = 0.2 and
2.0, the spins (S3r ) are assumed along the leg direction as indicated
in Fig. 2(a), while for J3 = 6.0, the spins along the leg as indicated
in Fig. 2(b). (b) The spatial dependence of the dimer correlation
|D(0,3),(3r,3r+3)| in the three phases. The dimers are supposed along the
leg shown in Fig. 2(a).

FIG. 6. (Color online) Fitting of the entanglement entropy given
by Eq. (14) to the DMRG results in the two gapless phases. The
central charges from the fitting are obtained to be c = 1 and 3

2 ,
respectively.

with periodic boundary conditions (PBCs), the entanglement
entropy is given by

Sl = c

3
ln

[
N

π
sin

(
πl

N

)]
+ gPBCs, (14)

where N is the total length of the system, and gPBCs is a
nonuniversal constant with PBCs.29 The central charge is
obtained by fitting the entanglement entropy given by Eq. (14)
to the DMRG results for the system with L up to 360.

As shown in Fig. 6, in the gapless phase with large J2

(for instance, J2 = 2.0, J3 = 0.1), both results for Sl are fitted
quite well with c = 1, which indicates that this gapless phase
belongs to the same universality class as the spin- 1

2 Heisenberg
AF chain. In the gapless phase with large J3 like J2 = 0.2,
J3 = 7.0, the central charge is identified as c = 3

2 . Therefore,
we can label the different phases with its central charge in
Fig. 4(a), which comprises the phase diagram. As the model
preserves the SU(2) symmetry, the transition from the dimer
phase to the gapless phase with c = 3

2 might be in the SU(2)k=2

Wess-Zumino-Witten-Novikov (WZWN) universality class.23

In combination with the bosonization analysis, it is observed
that for J3 � J2 the RG flows of Htwist go to the strong
coupling regime faster than HJJ that leads to a dimerized
phase,17,24 and one may judge that such a gapless phase
with nontrivial central charge c = 3

2 in the frustrated three-leg
Heisenberg spin tube is probably induced by the twist term
Htwist.

IV. SUMMARY

To summarize, by means of the bosonization technique
we develop a low-energy effective theory for the spin- 1

2
frustrated three-leg spin tube in two limit cases, and also
invoke the DMRG calculations on the spin gap, spin-spin, and
dimer-dimer correlation functions as well as the entanglement
entropy to elucidate the effective analyses. We have discovered
a dimer phase and two distinct critical phases in this system.
The dimer phase is characterized by the finite spin gap,
exponentially decaying spin-spin correlations, and a dimer-
dimer LRO. The critical phases are found to have gapless spin
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excitations, power-law decaying spin, and dimer correlations.
The different central charges 1 and 3

2 distinguish the two
critical phases. Based on the bosonization analysis, the novel
critical phase with c = 3

2 can be attributed to the negative
sign of Htwist in Eq. (12), which in turn reflects a new effect
of the twist term, and might belong to the SU(2)k=2 WZWN
universality class. The RG flows in this frustrated three-leg
Heisenberg spin tube with J3 � J2 differ from those of the
two-leg zigzag spin ladder.
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9M. Lajkó, P. Sindzingre, and K. Penc, Phys. Rev. Lett. 108, 017205
(2012).

10M. Sato and T. Sakai, Phys. Rev. B 75, 014411 (2007).
11M. Sato, Phys. Rev. B 75, 174407 (2007).
12J. B. Fouet, A. Lauchli, S. Pilgram, R. M. Noack, and F. Mila, Phys.

Rev. B 73, 014409 (2006).
13R. Citro, E. Orignac, N. Andrei, C. Itoi, and S. Qin, J. Phys.:

Condens. Matter 12, 3041 (2000).

14M. Sato, Phys. Rev. B 72, 104438 (2005).
15Yang Zhao, Shou-Shu Gong, Wei Li, and Gang Su, Appl. Phys.

Lett. 96, 162503 (2010).
16S. Agrestini, L. C. Chapon, A. Daoud-Aladine, J. Schefer,

A. Gukasov, C. Mazzoli, M. R. Lees, and O. A. Petrenko, Phys.
Rev. Lett. 101, 097207 (2008).

17A. A. Nersesyan, A. O. Gogolin, and F. H. L. Essler, Phys. Rev.
Lett. 81, 910 (1998).

18A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics
(Cambridge University Press, Cambridge, England, 1995).

19A. M. Tsvelik, Nucl. Phys. B 612, 479 (2001).
20Steven R. White and Ian Affleck, Phys. Rev. B 54, 9862 (1996).
21Ronald Zinke, Stefan-Ludwig Drechsler, and Johannes Richter,

Phys. Rev. B 79, 094425 (2009).
22A. A. Aligia, C. D. Batista, and F. H. L. Essler, Phys. Rev. B 62,

3259 (2000).
23I. Affleck, Nucl. Phys. B 265, 409 (1986).
24A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization

and Strongly Correlated Systems (Cambridge University Press,
Cambridge, England, 2010).

25D. C. Cabra, A. Honecker, and P. Pujol, Eur. Phys. J. B 13, 55
(2000).
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