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Dynamics of confined cavity modes in a phononic crystal slab investigated
by in situ time-resolved experiments
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The confinement of elastic waves within a single defect in a phononic crystal slab is investigated both
experimentally and theoretically. The structure is formed by a honeycomb lattice of air holes in a silicon plate
with one hole missing in its center. The frequencies and polarizations of the localized modes in the first band gap
are computed with a finite element method. A noncontact laser ultrasonic technique is used both to excite flexural
Lamb waves and to monitor in situ the displacement field within the cavity. We report on the time evolution of
confinement, which is distinct according to the symmetry of the eigenmode.
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I. INTRODUCTION

In periodic elastic structures, the main consequence of the
coherent scattering, and the subsequent interferences of the
scattered elastic waves, is the opening of complete phononic
band gaps (i.e., frequency intervals over which propagation is
forbidden, whatever the direction of the incident wave). The
geometric and physical conditions for a band gap to occur have
been extensively studied both theoretically and experimentally
for bulk or guided waves propagating in perfect phononic
crystals (PCs) made of any combination of materials.1–8

Altering the geometrical and/or physical properties of the
perfect structure at a single point drastically changes dispersion
curves since the localization in the vicinity of the defect of one
or several elastic modes at frequencies in the band gap is
expected. This occurrence has raised a lot of interest, not only
due to the large number of possible applications (e.g., sensing,
filtering, waves guiding, wavelength (de)multiplexing) but also
because of the rich physics in fundamental topics, such as wave
localization in inhomogeneous media or the simultaneous
confinement of photons and phonons in phoxonic cavities.9–12

Quite a few situations have been envisaged and investigated
by several theoretical or experimental approaches, including
calculation of the band structure,13–15 computations of and
experiments with sound transmission,16,17 or even direct
observation of the confined elastic energy.18,19 In particular,
it has been shown that a defect band opens when defects
are periodically distributed in an otherwise perfect PC.13

This defect band reduces to the degenerate state within the
Bragg gap, such that neighboring defects are separated by a
few unit cells. Such a resonance mode manifests itself as a
sharp peak in the transmission power spectra at a frequency
within the band gap. This was mainly investigated in PCs with
a fluid background (i.e., supporting only bulk compression
waves),13,16,20–22 though composite structures with solid host
material are of great practical importance.18,23,24 Motivated by
needs for new microelectronic components, it was proposed25

that the confinement between free surfaces of a silicon plate be
used to elaborate PC slabs with two-dimensional periodicity
of similar thickness and featuring a resonant line defect in
the middle. Similar to the resonant tunneling effect through

a double barrier, peaks in the transmission throughout the
entire structure at the resonant frequencies of the cavity are
then expected and were measured in the range of hundreds
of megahertz.25 It was the first step to a better understanding
of the mechanisms of sound confinement in inhomogeneous
media. Our goal in this paper is to go further by addressing
the confinement of elastic modes in a point defect since
there have been only a few experimental studies dealing
with such a defect. Besides demonstrating the existence of
defect modes, we study especially the time evolution of
the formation of confined states by means of in situ time-
resolved experiments and show that the dynamics of confine-
ment are distinct according to the symmetry of the defect
modes.

II. SAMPLE AND EXPERIMENTAL DETAILS

The PC slab we used for this study was elaborated in a
silicon plate with a honeycomb lattice of circular air holes
drilled through the plate (see right panel in Fig. 1). The lattice
constant (a = 111 μm) was set to a value almost equal to
the thickness of the plate (t = 110 μm) in order to obtain a
phononic band gap as large as possible in this PC. For the
same reason, the filling ratio was fixed to about its maximum
value (f ∼ 0.54), leaving only a few micrometers between
two adjacent holes. Twenty-five and 26 rows of holes were
etched along the crystallographic directions 〈100〉 and 〈010〉 of
silicon, respectively, with a deep, reactive-ion etching process.
The overall lateral dimensions were 1.9 × 2.3 mm2. With
these geometrical parameters, a complete band gap centered
on 17 MHz was computed to open up in the dispersion
curves between 13 and 21 MHz. The band structure of the
perfect infinite system, calculated by a three-dimensional finite
elements method (FEM) is shown in Fig. 1. By removing
one hole in the middle of the sample, we created a vacancy-type
defect forming a planar cavity in the PC. In order to ensure
good confinement of potentially trapped elastic modes, this
cavity was surrounded by six hexagonal cells on both sides
of the cavity along x and by three cells on both sides
along y.
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FIG. 1. (Color online) Band structure of a Si/air phononic plate
with a honeycomb lattice. The thickness is t = 110 μm, and the
lattice parameter is a = 111 μm. The lines in the band gap are for the
eigenmodes localized within a single defect. The right panel shows a
scanning electron micrograph (SEM) image of the sample, together
with the unit cell used to calculate the dispersion curves.

The cavity shows fewer symmetry elements than the perfect
PC: the sixfold axis normal to the plate reduces to a threefold
axis, with no mirror plane parallel to the (y, z) plane, which
could be a drawback for future applications. However, this
geometry allows for only a small numbers of localized modes,
which is an advantage in the framework of this study. This
is further confirmed by an FEM analysis of the dispersion
in the altered structure that shows only three defect bands in
the band gap of the perfect PC at A = 15.4, B = 15.3, and
C = 14.3 MHz. The three components of the displacement
field associated with each of these defect modes are displayed
in Fig. 2. It is important to point out here several symmetry
elements in these displacement fields since selection rules
could introduce some limitations in the excitation processes.
Modes A and C have identical symmetries with respect
to the (x,z) mirror plane (antisymmetric along x and z;
symmetric along y), whereas mode B has opposite symmetries
(symmetric along x and z; antisymmetric along y).

The experimental technique we used is based on laser
generation and detection of acoustic pulses within a narrow
spectrum.26,27 Ultrashort light pulses of 35 ps issued from a
frequency-doubled (532-nm) Q-switched Nd:YAG laser were

FIG. 2. (Color online) Calculated components of the displace-
ment fields for eigenmodes: A = 15.4 MHz, B = 15.3 MHz, and
C = 14.3 MHz.

focused onto the sample after they had passed through an
amplitude mask and an imaging system. As a result, a series
of alternately bright and dark fringes were produced, which
in turn excited elastic waves owing to photoelastic processes.
This technique allows the fine selection of any k vector in the
Brillouin zone by tuning the spacing of the light fringes—or
equivalently the wavelength of the elastic waves—with the
imaging system. In all the experiments described here, laser
power was kept well below the ablation threshold in order
to operate in the thermoelastic regime. In this regime, we
measured the maximum normal displacement in the excitation
zone at ∼300 pm (i.e., about half the lattice parameter of Si).
The excitation zone was located a few millimeters ahead of
the PCs in a uniform region of the sample free from any air
inclusion. As a result of the large number of fringes in the
excitation spot and their length (∼3 mm), both the direction
and the magnitude of the excited k vector were accurately
defined. It should also be noted that antisymmetric Lamb
waves, which have an out-of-plane component much larger
than symmetric Lamb waves, are more efficiently excited by
this method. The time dependence of the surface displacements
was recorded at any point of the sample, inside or outside the
PC, using a Michelson interferometer with a He-Ne laser light
source. One beam of the interferometer was focused on the
sample with a microscope objective (NA 0.42), acting as one
of the mirrors of the interferometer to a spot of ∼5 μm, whereas
the reference beam was reflected by an actively stabilized
mirror. Both mirrors were finely set to achieve the optical
contact and uniform intensity pattern, yielding a maximum
contrast of 0.92. A loop feedback device allowed the setting of
optical path differences to λ/4 (modulo λ), therefore achieving
optimum sensitivity and a linear response to the normal
displacements at the surface of the sample. The microscope
and the sample were both mounted on translation stages in
such a way that the probe beam could be scanned across the
sample over a maximum area of 25 × 25 mm2, with absolute
and relative precisions of ∼10 and ∼1 μm, respectively.
The interference pattern was collected by a high-speed photo-
diode and digitized at 500 MS s−1 by a digital oscilloscope. The
frequency response of the device was flat between 20 kHz and
the cutoff frequency of the photodiode, set to 50 MHz. This
noncontact technique allowed us to record the displacement
field at any point at the surface of the sample and hence resolve
fine details of the interaction between the acoustic waves with
the PC and the cavity. Note that this interferometric method is
only sensitive to the normal component of the displacements,
not to the in-plane components.

III. RESULTS AND ANALYSIS

We excited the zero-order antisymmetric Lamb mode A0

over a narrow band of frequencies centered on 15 MHz
close to eigenmodes A and B, and we measured the normal
displacements as a function of time at several points inside
and outside the PC. In a first set of experiments, the excitation
area was located in the homogeneous part of the sample above
P1 (see Fig. 3). As expected for elastic waves at frequencies
in the forbidden band, a strong reduction of their amplitude
was observed when measurements were made inside the PC:
a peak-to-peak amplitude of ∼100 pm just before the elastic
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FIG. 3. SEM top view of the cavity in a Si/air phononic plate with
honeycomb lattice. The dashed lines and crosses indicate the regions
where measurements were made.

waves encountered the PC reduced drastically while traveling
inside the PC. The amplitude was still ∼15 pm, which was well
above the noise floor when measured at point P1, where the
waves enter the cavity. However, amplitude does not decrease
monotonically along the path to P1. Our simulation results
as well as our measurements show that the center of each
hexagonal cell is a node of vibration, whereas the thin bridges
between two adjacent holes over-vibrate.

We recorded the time dependence of the out-of-plane
displacements, uz, every 5 μm within the defect between points
P1 and P2, 220 μm apart from each other. The results are
displayed in Fig. 4(a), where we show the normal component
of the displacements in a time-position plot. Along the time
axis, the main feature is a fast oscillation around the position
of equilibrium with a period of ∼70 ns, corresponding to a
vibration at 14 MHz, slightly less than the frequency of mode
B. Along the space axis, three antinodes are clearly observable.
The greatest amplitude of about 15 pm arises near P1 and P2,
and it reduces to ∼7 pm for the antinode in the center of
the cavity. These maxima are separated from one another by
nodes where the membrane is at rest. The relative amplitudes
of these maxima are in good agreement with the computations
of the component uz of mode B shown in Fig. 2. Furthermore,
the top view displayed in Fig. 4(b) confirms the forming of a
standing wave in the cavity, which allows the related dynamics
to be studied. In addition the phase of the standing wave
along the line joining P1 and P2 matches that of mode B [see
Fig. 4(c)], which appears to be the only mode excited in this
experimental configuration. This period, lasting from ∼0.2 to
∼1.8 μs, during which the waves remain confined in the cavity,
is surrounded by episodes in which waves propagate from P1

to P2 or from P2 to P1, as can be inferred from the slopes of
the equiphase lines in the time-position plot [see the full lines
in Fig. 4(b)]. Moreover, this is consistent with the symmetry
of the source, which might not excite this mode if it has no
symmetry elements in common with it, as is the case for modes
A and C.

It is also interesting to point out in Fig. 4(b) the moments
when the maxima of vibration come up: although the wave
enters the cavity at point P1, an antinode first settles near P2

on the opposite side of the cavity. The antinode near P1 takes
place ∼0.2 μs later [see arrows in Fig. 4(b)]. This delay is
easily understood by noting that the acoustic mode trapped

FIG. 4. (Color online) (a) Normal component of the displacement
field inside the cavity in a time-position plot. The signal was recorded
along the line joining P1 (0 in the position axis) to P2 (200 in the
position axis). The frequency of the zero-order flexural Lamb mode
is tuned to 15 MHz. (b) Top view of the data displayed in panel (a).
The arrows are for the maximum of the antinodes located near P1 and
P2. The full lines are guides to the eyes showing propagating waves.
(c) Zoom of the data in the area delimited by a dashed line in panel
(b) showing standing waves in the cavity (mode B).

in the cavity originates from the interference of the incident
wave with itself after it has been partly reflected in P2 to form a
standing wave in the cavity [Fig. 4(c)]. Another fundamentally
important aspect of these experimental results relates to the
spectrum of the confined mode. While the spectrum of the
excitation pulse extends over about 5 MHz, a Fourier transform
of the signal recorded on any of the three antinodes inside
the cavity features a sharp peak of ∼0.45 MHz width and
centered on 14 MHz (Fig. 5), instead of 15.3 MHz as expected
from the numerical simulations. The same deviation from
theory was measured for mode A (see below); we attribute
this discrepancy to imperfections in the sample dimensions.

Quality factor Q, defined as the ratio of the eigenfrequency
over the width of the Fourier component at half maximum,
is commonly used to describe the quality of the resonance. It
must be stressed here that the experimental procedure we used
for this work is not appropriate for estimating the Q factor
accurately. Because the excited wave is not a pure continuous
sine at frequency νB of mode B, the edges of the cavity are
deformed by the elastic energy associated with all the spectral
components different from νB, in turn causing leakage of the
confined mode.

To further investigate the confinement dynamics of this
mode, we measured the vibrations at points P3 and P4 in
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FIG. 5. (Color online) Normalized Fourier spectra of the exci-
tation pulse (black line) and of the confined mode measured at the
antinode inside the cavity.

the middle of the cavity. While FEM simulations predict
that both parts of the cavity vibrate in phase with P1 (see
Fig. 2), an out-of-phase movement was observed instead for
∼1.2 μs after the confinement mechanism started. Following
this period, the in-phase movement was observed, as expected
from the simulations. This duration corresponds to that of
the first antinode appearing along the time axis in Fig. 4(a).
Additionally, it is interesting to notice that the delay of 1.5 μs
also corresponds to the time necessary for the node initially
positioned at ∼130 μm from P1 to shift toward ∼140 μm, in a
position closer to P2. This latter position is in good agreement
with the value deduced from our simulations displayed in
Fig. 2. Similar measurements performed in P5 and P6 did not
show any delay in the phase settling, which further confirms
that the localization process first takes place in the lower part
of the cavity.

For comparison, we show in Fig. 6 the signal recorded
along the line P1 to P2 with identical experimental conditions,
except the frequency of the excitation pulse, which was tuned
to 3 MHz, a value in the first band of the antisymmetric
Lamb mode A0. At this frequency, the system behaves as an
effective medium and, as it should, the antisymmetric Lamb
mode propagates through the cavity at 2000 m s−1, in very
good agreement with the velocity deduced from the dispersion
curves in Fig. 1, without any indication of confinement.

FIG. 6. (Color online) Normal component of the displacement
field inside the cavity in a time-position plot. The signal was recorded
along the line P1–P2. The frequency of the zero-order flexural Lamb
mode is tuned to 3 MHz.

FIG. 7. (Color online) Top view of the normal component of
the displacement field inside the cavity in a time-position plot. The
frequency of the zero-order flexural Lamb mode is 15 MHz. The
signals were recorded along the lines P5–P6 (a) and P7–P8 (b).
The time origin is set to the time the elastic waves enter the cavity.

Instead, oscillations with a period of 0.3 μs are observed along
the time axis.

In another set of experiments, the sample was excited
laterally, and the elastic response was recorded along the
lines joining P5 to P6 and P7 to P8 (Fig. 3). Because of the
symmetry of the source, only mode A is expected to be excited
in that case. As explained above, the Lamb mode A0 is more
efficiently excited by our thermoelastic source than is the mode
S0; mode C being symmetric with respect to the midplane of
the sample, it cannot be excited by A0. Additionally, because
its normal component uC

z is one order of magnitude less than
uA

z , it is not likely to be detectable with our experimental
setup. Top views of the normal displacements as a function
of time, along both these lines, are shown in Fig. 7(a) and
7(b), respectively. The confinement dynamics for this mode
appears to be much more complex than it is for mode B.
Our measurements [Fig. 7(a)] show that the confinement first
begins within the narrowest part of the cavity, where mode
A features one antinode on each side of a single node line:
both amplitude and phase of the vibration are consistent with
what is predicted by FEM calculations. However, Fig. 7(a)
reveals some fluctuations in the position of the node line, which
stabilizes on its final position ∼2.5 μs after the waves have
entered the cavity. These fluctuations are even more clearly
seen in the wider part of the cavity [Fig. 7(b)]. Whereas the
node lines and the antinodes near P7 and P8 set up with the
right phases almost immediately, these fluctuations prevent
the antinodes on either side of central node line to emerge
for ∼2.5 μs. The confinement process then completes during
a short time that must be related to the finite duration of the
excitation pulse.

IV. CONCLUSION

In summary, we reported here in situ measurements of
the defect modes confined in a point defect inserted in a
two-dimensional PC, which allowed us to gain insight into
the dynamics of PC cavity–mode localization. These results,
combined with our theoretical predictions, describe how the
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spatial distribution of eigenmodes depends on the symmetry
of the defect and the geometry of excitation. In particular,
we have shown that an eigenmode can be selectively excited
by a proper choice of source position. For both modes,
we investigated the overall dynamics and found that it is
mainly governed by the time necessary for the standing waves
to stabilize in the widest part of the cavity (area above
the line P3–P4 in Fig. 3) because the localization process
first occurs in the lower part of the cavity. By advancing
the level of understanding of wavelength-scale ultrasonic
phenomena, our result, at the same time, has important

implications for surface acoustic wave and opto-acoustic
technologies.
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